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 Nonhomogeneous Continuous-Time Markov Chain (NH-CTMC) is a stochastic process that can 
be used to model problems where the future state depends only on the current state and is inde-
pendent of the past. The transition intensity in NH-CTMC is not constant but is a function of time. 
In this paper, NH-CTMC is employed to model information dissemination on Twitter, where tran-
sitions occur only from followee groups to follower groups. Information is considered spread on 
Twitter when followers retweet posts from their followees. The tweet-retweet process on Twitter 
satisfies the Markov property, as a retweet from a follower depends only on the tweet posted just 
before by the corresponding followee. The probability of a tweet spreading is determined by the 
transition intensity, assumed to be a Sigmoid function whose parameters are estimated using Max-
imum Likelihood Estimation (MLE). This method is applied to Twitter data from Indonesia re-
lated to discussions on Covid-19 vaccination. The results indicate that information about Covid-
19 vaccination on Twitter spreads rapidly from followees to followers in the first 20 hours, and 
then slows down after 40 hours. The NH-CTMC model outperforms the Homogeneous Continu-
ous-Time Markov Chain (H-CTMC) approach, where the transition intensity (tweet spreading 
intensity) is assumed to be constant. 

© 2023 by the authors; licensee Growing Science, Canada. 
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1. Introduction 
 

 
A Markov chain is defined as a stochastic process with the property of conditional distribution of future events given the 
current and past events, relying solely on the present state and being independent of the past (memoryless) (Bremaud, 2020). 
This property is known as the Markov property. Markov chains have been widely used by researchers to predict a state influ-
enced only by the preceding state. The Continuous-Time Markov Chain (CTMC) model can be used to observe transitions 
that occur in very small time intervals (Begun et al., 2013). CTMC itself is classified into Homogeneous CTMC (H-CTMC) 
and Nonhomogeneous CTMC (NH-CTMC). In practice, H-CTMC is more commonly used in modeling due to the assumption 
of homogeneity, where the transition rates are assumed constant, making it easier to solve (Ocaña-Riola, 2005). Generally, 
H-CTMC is used in medical problems, such as the clinical course of chronic diseases like cancer analysis (Kalbfleisch and 
Lawless, 1985; Ocaña-Rilola, 2002), and disease progression in poultry (Trajstman, 2002). Though limited, H-CTMC is also 
applied to certain issues in social media information dissemination (Li et al., 2014; Zhu et al., 2014; Firdaniza et al., 2022b). 
However, not all cases are suitable for modeling with H-CTMC, as in reality, the transition intensities may depend on time. 

The information dissemination on Twitter can be modeled using a Markov chain because it satisfies the Markov property, 
where a user's tweet dissemination depends only on the tweets they received previously and is independent of the tweet history. 
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If user A follows user B, then A is considered a follower of B, and B is referred to as A's followee (Firdaus et al., 2018). 
Information is said to be disseminated if a tweet posted by a followee is retweeted by their follower. The use of Markov 
models in information spread phenomena on Twitter is still relatively uncommon (Firdaniza et al., 2022a). In Firdaniza et al. 
(2022a), it is mentioned that studies on information dissemination or information diffusion on Twitter have been conducted 
using various methods such as the Quantum q-attention model (Shuai et al., 2012), Poisson regression (Kwon et al., 2017), 
Time decay features cascade model (Agarwal and Mehta, 2020), Susceptible-Infected-Recovered (SIR) model (Zheng et al., 
2018), and Susceptible-Exposed-Infected (SEI) model (Kumar et al., 2020), as well as Bayesian networks (Varshney et al., 
2017). Only one article, Li et al. (2014), discusses information dissemination on Twitter using continuous-time Markov chain. 
Furthermore, Firdaniza et al. (2022b) used H-CTMC to model information diffusion among Twitter users, where the transition 
intensity of information dissemination on Twitter users, representing the state of CTMC, is assumed constant. However, this 
assumption does not truly reflect reality, as the rate of information spread depends on time, making the NH-CTMC model 
more appropriate. Nonetheless, unlike H-CTMC, the NH-CTMC model is quite complex and challenging. Determining tran-
sition intensities is not as straightforward as in the H-CTMC model.  

Several researchers have employed different approaches to estimate transition intensities. For instance, Hsieh et al. (2002) 
assumed the transition intensity to be a piecewise exponential function, while Ocaña-Riola (2005) assumed it to be a piecewise 
constant function. However, these assumptions have a drawback in the interval partitioning, leading to drastic changes in the 
intensity matrix. Subsequently, Hubbard et al. (2008) utilized time transformation to make the process homogeneous in the 
new time domain. The weakness of this model lies in the non-homogeneity, as the Markov chain's non-homogeneity will be 
the same for every state. Titman (2011) then assumed the transition intensity function to be a Bspline function and estimated 
the parameters using maximum likelihood estimation (MLE). All these NH-CTMC models have been previously used by 
researchers in medical issues, where the Markov chain states represent patients' treatment statuses, such as assessing the 
progression of chronic diseases (Hsieh et al., 2002), biomedical data analysis (Ocaña-Riola, 2005), delirium in cancer patients 
(Hubbard et al., 2008), spiking neuron response (Tapson, 2009), post-heart transplant patient disease progression (Titman 
2011), and kidney disease development (Begun et al., 2013). However, so far, no NH-CTMC research has been found regard-
ing information dissemination on Twitter (Firdaniza, 2022a). 

This paper discusses the NH-CTMC model for information dissemination on Twitter data. The contribution of this paper lies 
in determining the transition intensity matrix as a function of time and its application to the problem of information dissemi-
nation on Twitter. Here, the transition intensity is assumed to be a family of Sigmoid functions, and the parameters are esti-
mated using Maximum Likelihood Estimation (MLE). Furthermore, this NH-CTMC model is applied to analyze the dissem-
ination of Covid-19 vaccination information on Twitter in Indonesia. In this study, it is assumed that the two states in NH-
CTMC are represented by the followee and follower groups of Twitter users. Lastly, a comparison of the performance of the 
NH-CTMC and H-CTMC models in information dissemination on Twitter is also presented in the discussion. 

2.  Problem Description   
 

The tweet-retweet process that occurs on Twitter heavily depends on the tweets posted by Twitter users. If a Twitter user, the 
followee, posts a tweet and it is subsequently retweeted by their follower, then it is considered that the information has been 
disseminated. The probability of information spreading from one user to another on Twitter can be determined through the 
intensity of information dissemination. Firdaniza et al. (2022b) have discussed a model for information diffusion on Twitter 
using H-CTMC, where the intensity of information dissemination is assumed to be constant. However, this assumption does 
not align with reality, as the intensity of information dissemination is not constant but varies over time, necessitating the use 
of the NH-CTMC model in this phenomenon.  

The research questions in this study are as follows: 
1. How to estimate the transition rate matrix and transition probability matrix that describe the dissemination of information 

from one user to another on Twitter? 
2. How does the NH-CTMC model compare to the H-CTMC model for the problem of information dissemination on Twitter? 
 
3. Literature Review 
 

Referring to Bremaud (2020), a stochastic process ሼ𝑋ሺ𝑡ሻ, 𝑡 ≥ 0ሽ is said to be a CTMC) if it satisfies the Markov property, 
which means that for any 𝑠, 𝑡 ≥ 0 and non-negative integer 𝑖, 𝑗, 𝑥ሺ𝛾ሻ, 0 ≤ 𝛾 < 𝑠, the following holds, 𝑃ሼ𝑋(𝑡 + 𝑠) = 𝑗|𝑋(𝑠) = 𝑖,𝑋(𝛾) = 𝑥(𝛾),  0 ≤ 𝛾 < 𝑠ሽ = 𝑃ሼ𝑋(𝑡 + 𝑠) = 𝑗|𝑋(𝑠) = 𝑖ሽ (1) 

In NH-CTMC, it holds that 𝑃ሼ𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖ሽ = 𝑝௜௝(𝑠, 𝑡), meaning that the transition probability from state 𝑖 to state 
j at time t will depend on the starting point 𝑠. Determining the transition probability matrix heavily relies on the transition 
intensity matrix. The transition intensity is not constant but varies with time (as a function of 𝑡). In this case, the transition 
probability matrix needs to be estimated for each time 𝑡. 
 
For small time h, the transition intensity satisfies (Ocaña-Riola, 2005), 
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(2) 

 
and  
 𝑣௜(𝑡) = lim௛→଴ ଵି௣೔೔(௧,௧ା௛)௛ . (3) 

 
The transition intensity matrix 𝐐(𝑡) with entries 𝑞௜௝(𝑡) of size (𝐾 × 𝐾) can be written in the form of 
 

𝐐(𝑡) = ൦𝑞ଵଵ(𝑡) 𝑞ଵଶ(𝑡) … 𝑞ଵ௄(𝑡)𝑞ଶଵ(𝑡) 𝑞ଶଶ(𝑡) … 𝑞ଶ௄(𝑡)⋮𝑞௄ଵ(𝑡) ⋮𝑞௄ଶ(𝑡) ⋮ ⋮… 𝑞௄௄(𝑡)൪ 
 

(4) 

 
under the following conditions: 
 

(i) The off-diagonal entries are non-negative; 𝑞௜௝(𝑡) ≥ 0 untuk 𝑖 ≠ 𝑗. 
(ii) The sum of each row's entries is zero; ∑ 𝑞௜௝௄௝ୀଵ (𝑡) = 0. 

As a result, the entries for the diagonal of the transition intensity matrix are −∑ 𝑞௜௝(𝑡)௄௜,௝ୀଵ , 𝑖 ≠ 𝑗 and 𝑣௜(𝑡) = −𝑞௜௜(𝑡) =∑ 𝑞௜௝(𝑡)௄௜,௝ୀଵ , 𝑖 ≠ 𝑗 . 
 
The transition probability of NH-CTMC is the solution of the Forward Kolmogorov equation (Titman, 2011), 
 ௗ𝐏(௧బ,௧)ௗ௧ = 𝐏(𝑡଴, 𝑡)𝐐(𝑡) dan 𝐏(𝑡଴, 𝑡଴) = 𝐈   (5) 

 

where 𝐏(𝑡଴, 𝑡) is the transition probability matrix with entries 𝑝௜௝(𝑡଴, 𝑡). Equation (5) must be satisfied for every different 
value of 𝑡. This transition probability matrix 𝐏(𝑡଴, 𝑡) = [𝑝௜௝(𝑡଴, 𝑡)] can be determined by first estimating the transition inten-
sity matrix 𝐐(𝑡) = [𝑞௜௝(𝑡)]. 
 
4. Results and Discussion 
 
4.1 Transition intensity in NH-CTMC 

In this study, the entries of the transition intensity matrix 𝑞௜௝(𝑡) are assumed to be a family of Sigmoid Functions. Based on 
the phenomenon of information dissemination on Twitter, the transition rate or rate of information dissemination on Twitter 
will decrease over time, so the function used as the assumption of transition intensity in this study is 

𝑞௜௝(𝑡) = 𝑒ఈ೔ೕ 𝑒ఉ೔ೕ + 𝑒ఊ೔ೕ ௧ (6) 

with 𝛼௜௝ ,𝛽௜௝ , 𝛾௜௝ are the parameters of the function estimated using MLE. 

Suppose there are 𝑁 individuals observed at time 𝑡௜௝ , 𝑖 = 1,2, … ,𝑁; 𝑗 = 1,2, … , 𝐽௜. 𝑋௜(𝑡௜௝) is the state of individual i at time 𝑡௜௝. 𝛉 = (𝑞ଵଶ(𝑡), 𝑞ଶଷ(𝑡) , … , 𝑞௞௞ିଵ(𝑡)) is the transition intensity vector. 

The Likelihood function for 𝑁 individuals is 

𝐿(𝛉) = ෑෑ𝑝௑೔൫௧೔ೕషభ൯,௑೔൫௧೔ೕ൯(𝑡௜௝ିଵ, 𝑡௜௝;𝛉)௃೔
௝ୀଵ

ே
௜ୀଵ  

 

(7) 

where 𝑝 ௑೔ቀ௧೔ೕష1ቁ, ௑೔൫௧೔ೕ൯൫𝑡௜௝ି1, 𝑡௜௝;𝛉൯ = 𝑃൛𝑋௜൫𝑡௜௝൯ = 𝑥௜|𝑋௜൫𝑡௜௝ିଵ൯ = 𝑥௜௝ିଵ;𝛉ൟ,  
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In this case, 𝑝 ௑೔ቀ௧೔ೕష1ቁ, ௑೔൫௧೔ೕ൯൫𝑡௜௝ି1, 𝑡௜௝;𝛉൯ = 𝑝௜௝൫𝑡0, 𝑡;𝛉൯ is the entry of the transition probability matrix 𝐏൫𝑡0, 𝑡;𝛉൯ that satis-

fies the initial value problem, ௗ𝐏(௧0,௧;𝜽)ௗ௧ = 𝐏൫𝑡0, 𝑡;𝛉൯𝐐(𝑡;𝛉) dan 𝐏൫𝑡0, 𝑡0;𝛉൯ = 𝐈. (8) 

The solution of 𝐏(𝑡଴, 𝑡;𝛉) is determined numerically, by substituting the intensity function used. To obtain an estimate of 𝛉, 
the first and second partial derivatives of the Log-likelihood function of Eq. (7) are used, 

ℓ = 𝑙𝑛 𝐿(𝛉) = ෍෍ ln ൬𝑝௑೔ቀ௧೔ೕష1ቁ,௑೔൫௧೔ೕ൯(𝑡௜௝ି1, 𝑡௜௝;𝛉൰௃೔
௝ୀ1

ே
௜ୀ1  

 

(9) 

Then 𝛉 is determined iteratively with the Fisher scoring algorithm. The estimated parameter 𝛉෡ at the 𝑚 + 1 iteration is de-
rived from the second-degree Taylor series of the Log-Likelihood function ℓ(𝛉) around 𝛉෡(ଵ) with the following steps: 

1. Enter the initial estimate 𝛉෡(ଵ). 
2. Iteration starts from 𝑚 = 1.  
3. Determine the first partial derivatives of all estimated parameters 

𝑋൫𝛉෡(௠)൯௭×ଵ =
⎣⎢⎢
⎢⎢⎢
⎢⎡ 𝜕 ℓ𝜕𝜃ଵ(௠)𝜕 ℓ𝜕𝜃ଶ(௠)⋮𝜕 ℓ𝜕𝜃௭(௠)⎦⎥⎥

⎥⎥⎥
⎥⎤ =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡෍෍ డడఏభ 𝑝௑೔൫௧೔ೕషభ൯,௑೔൫௧೔ೕ൯(𝑡௜௝ିଵ, 𝑡௜௝;𝛉)𝑝௑೔൫௧೔ೕషభ൯,௑೔൫௧೔ೕ൯(𝑡௜௝ିଵ, 𝑡௜௝;𝛉)௃೔

௝ୀଵ
ே
௜ୀଵ෍෍ డడఏమ 𝑝௑೔൫௧೔ೕషభ൯,௑೔൫௧೔ೕ൯(𝑡௜௝ିଵ, 𝑡௜௝;𝛉)𝑝௑೔൫௧೔ೕషభ൯,௑೔൫௧೔ೕ൯(𝑡௜௝ିଵ, 𝑡௜௝;𝛉)௃೔

௝ୀଵ
ே
௜ୀଵ ⋮෍෍ డడఏ೥ 𝑝௑೔൫௧೔ೕషభ൯,௑೔൫௧೔ೕ൯(𝑡௜௝ିଵ, 𝑡௜௝;𝛉)𝑝௑೔൫௧೔ೕషభ൯,௑೔൫௧೔ೕ൯(𝑡௜௝ିଵ, 𝑡௜௝;𝛉)௃೔

௝ୀଵ
ே
௜ୀଵ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤
 

  where 𝑧 denotes the number of parameters being estimated. 
4. Determines the inverse of the matrix ℑ൫𝛉෡(௠)൯ = ቂ𝐸 ቀ− డమℓడఏೝడఏೞቁቃ by 

 𝐸 ቀ− డమℓడఏೝడఏೞቁ = ∑ ∑ ങങഇೝ௣೉೔ቀ೟೔ೕషభቁ,   ೉೔(೟೔ೕ)൫௧೔ೕషభ,௧೔ೕ;𝛉൯ ങങഇೞ௣೉೔ቀ೟೔ೕషభቁ,೉೔ቀ೟೔ೕቁ൫௧೔ೕషభ,௧೔ೕ;𝛉൯௣೉೔ቀ೟೔ೕషభቁ,೉೔ቀ೟೔ೕቁ൫௧೔ೕషభ,௧೔ೕ;𝛉൯௃೔௝ୀଵே௜ୀଵ . 

5. Determines the estimate of 𝛉෡  at the 𝑚 + 1 by iteration 𝛉෡(௠ାଵ) = 𝛉෡(௠) + 𝑋൫𝛉෡(௠)൯ℑ൫𝛉෡(௠)൯ିଵ 
6. Iteration continues until ห𝛉෡(௠ାଵ) − 𝛉෡(௠)ห < 𝜀, with 𝜀 a certain small number. 

From this process, the parameter 𝛉 of the transition intensity matrix 𝐐(𝑡) is obtained and then the transition probability matrix 𝐏൫𝑡0, 𝑡൯)) is determined numerically using the Finite Difference method. For efficient calculation of 𝐏൫𝑡௝ , 𝑡൯ with arbitrary𝑡௝, 
it is calculated using Chapman Kolmogorov, 𝐏൫𝑡0, 𝑡൯ = 𝐏൫𝑡0, 𝑡௝൯𝐏൫𝑡௝ , 𝑡൯ such that  
 𝐏൫𝑡௝, 𝑡൯ = 𝐏(𝑡0, 𝑡௝)ି1𝐏(𝑡0, 𝑡). (10) 
 
4.2 Data Description  
 
The data used in this study is tweet data from Indonesian Twitter users who talk about the topic of Covid19 vaccination taken 
from https://netlytic.org/ (Firdaniza et al., 2022b). The number of tweets that occur between Twitter users is large, so in NH-
CTMC it is not possible for all users to be declared as Markov chain states. This is because every move that occurs is a 
function of time, as a result there are a lot of parameters involved and it is very difficult to solve. 
 
In this study, it is assumed that the transfer occurs only from the followee group to the follower group, meaning that in this 
NH-CTMC model of information dissemination on Twitter there are two states, namely the follower group and the followee 
group. Data on information transfer (tweet-retweet) from the followee group to the follower group of 20 Twitter users is seen 
based on a 20×20 matrix of time between tweets by taking entries that are above the main diagonal (see data in Firdaniza et 
al., 2022b). The retweet data of these 20 Twitter users are expressed in 145 IDs, indicating the number of transitions that occur 
is 145 (N = 145). The retweet times of the 20 followers are shown in Table 1. 
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Table 1 
Retweet time of 20 followers (in hours) 

 A B C D E F G H I J K L M O P Q R S T 
A  0.00 0.00 1.40 10.95 0.08 11.94 0.61 0.47 0.63 2.84 0.00 12.48 0.00 30.29 0.34 16.24 57.31 2.50 
B   0.00 1.37 11.18 0.32 12.17 0.85 0.27 0.48 3.07 0.00 13.02 0.00 30.51 0.58 16.48 57.85 2.72 
C    1.48 11.26 1.13 12.25 0.88 0.14 0.67 3.14 0.00 13.18 0.00 30.59 0.65 15.53 58.01 2.18 
D     10.71 4.98 11.70 1.84 0.86 4.52 4.06 0.00 14.31 0.00 30.04 1.78 17.47 59.14 1.40 
E      14.31 0.99 9.01 8.03 13.85 11.23 0.00 4.40 0.00 19.33 8.95 24.64 49.23 10.74 
F       12.29 0.56 0.77 5.87 2.75 0.00 12.79 0.00 30.64 1.69 16.16 57.61 2.45 
G        8.02 7.04 12.86 10.24 0.00 3.41 0.00 36.86 7.96 23.65 48.24 9.75 
H         0.92 5.46 4.13 0.00 14.37 0.00 30.32 1.84 17.53 59.20 1.89 
I          5.88 3.20 0.00 13.45 0.00 30.58 0.92 16.61 58.28 2.77 
J           3.17 0.00 13.09 0.00 30.58 0.68 16.58 57.92 2.54 
K            0.00 22.24 0.00 37.17 17.65 13.41 67.07 18.37 
L             13.23 0.00 28.58 0.70 16.76 58.06 2.86 
M              0.00 47.71 18.88 34.57 44.83 20.67 
N               30.17 0.40 16.30 57.72 2.55 
O                19.48 35.17 42.72 21.27 
P                 16.92 57.36 2.16 
Q                  89.24 33.67 
R                   26.53 
S                   2.34 
T                   0 

 
4.3 Information dissemination on Twitter data with NH-CTMC 
 

In this study there are 145 IDs with two states (followee group and follower group), so the Log-likelihood function of the 
information dissemination model on Twitter is in the form of 

ℓ = ∏ ∏ 𝑙𝑛 ቆ𝑝௑೔ቀ௧೔ೕష1ቁ,௑೔൫௧೔ೕ൯൫𝑡௜௝ି1, 𝑡௜௝;𝛉൯ቇ௃೔௝ୀ1145௜ୀ1 . 
(11) 

The transition intensity is assumed to be a family of Sigmoid Functions, i.e. 

𝐐(𝑡) = ቆ−𝑞12(𝑡) 𝑞12(𝑡)0 0 ቇ 
(12) 

With 𝑞ଵଶ(𝑡) = ௘ഀ௘ഁା௘ം೟ . (13) 

Based on Eq. (8) and with the transition intensity matrix as in equation (12), it can be written 

ቌௗௗ௧ ൫𝑝ଵଵ(𝑡଴, 𝑡;𝛉)൯ ௗௗ௧ ൫𝑝ଵଶ(𝑡଴, 𝑡;𝛉)൯ௗௗ௧ ൫𝑝ଶଵ(𝑡଴, 𝑡;𝛉)൯ ௗௗ௧ ൫𝑝ଶଶ(𝑡଴, 𝑡;𝛉)൯ቍ=൬𝑝ଵଵ(𝑡଴, 𝑡;𝛉) 𝑝ଵଶ(𝑡଴, 𝑡;𝛉)𝑝ଶଵ(𝑡଴, 𝑡;𝛉) 𝑝ଶଶ(𝑡଴, 𝑡;𝛉)൰ ቀ−𝑞ଵଶ(𝑡;𝛉) 𝑞ଵଶ(𝑡;𝛉)0 0 ቁ 
 

(14) 

and ൬𝑝ଵଵ(𝑡଴, 𝑡଴;𝛉) 𝑝ଵଶ(𝑡଴, 𝑡଴;𝛉)𝑝ଶଵ(𝑡଴, 𝑡଴;𝛉) 𝑝ଶଶ(𝑡଴, 𝑡଴;𝛉)൰ = ቀ1 00 1ቁ. 
Substituting Eq. (13) into Eq. (14) yields a system of differential equations  ௗௗ௧ ൫𝑝ଵଵ(𝑡଴, 𝑡;𝛼,𝛽, 𝛾)൯ = −𝑝ଵଵ(𝑡଴, 𝑡;𝛼,𝛽, 𝛾) ௘ഀ௘ഁା௘ം೟  ,   

ௗௗ௧ ൫𝑝ଵଶ(𝑡଴, 𝑡;𝛼,𝛽, 𝛾)൯ = 𝑝ଵଵ(𝑡଴, 𝑡;𝛼,𝛽, 𝛾) ௘ഀ௘ഁା௘ം೟  ,   𝑑𝑑𝑡 ൫𝑝ଶଵ(𝑡଴, 𝑡;𝛼,𝛽, 𝛾)൯ = −𝑝ଶଵ(𝑡଴, 𝑡;𝛼,𝛽, 𝛾) 𝑒ఈ𝑒ఉ + 𝑒ఊ௧  , (15) 

ௗௗ௧ ൫𝑝ଶଶ(𝑡଴, 𝑡;𝛼,𝛽, 𝛾)൯ = 𝑝ଶଵ(𝑡଴, 𝑡;𝛼,𝛽, 𝛾) ௘ഀ௘ഁା௘ം೟  .      

Next, the first partial derivative of the system of Eq. (15) is determined with respect to the three parameters 𝛼,𝛽, 𝛾. The 
intensity function in Eq. (13) and its derivatives are written as function definitions in R software. The resulting ቀ𝑝௜௝(𝑡଴, 𝑡;𝛼,𝛽, 𝛾)ቁ is then substituted into the Log-likelihood Eq. (11). Then the parameters 𝛼,𝛽, 𝛾  are estimated by Fisher 
scoring algorithm to get 𝐐(𝑡). Furthermore, the transition probability of the process being in a certain state is calculated using 
the Finite Difference method, 



 1600ௗ𝐏(௧బ,௧ೕ)ௗ௧ = ௛ଶ ൣ𝐏൫𝑡଴, 𝑡௝ାଵ൯ − 𝐏(𝑡଴, 𝑡௝ିଵ)൧. (16) 

The calculation of estimated parameters and transition probability was carried out with the help of R software, and obtained 
the value 𝛼 = −2,09203 ;  𝛽 = −1245,927  ;  𝛾 = 0,020737 , so that the transition intensity matrix of NH-CTMC was 
produced in the form of 

𝐐(𝑡) = ቌ− ௘ష2,09203௘ష1245,927ା௘0,020737 ೟ ௘ష2,09203௘ష1245,927ା௘0,020737 ೟0 0 ቍ.  
(17) 

and the transition intensity from state 1 to state 2 are shown in Fig. 1. 

 

Fig. 1. Transition intensity for function 𝑞ଵଶ(𝑡) = ௘ഀ௘ഁା௘ം೟ 
It can be seen from Fig. 1 that the intensity of information dissemination decreases gradually over time. 

Furthermore, the transition probability which is the description of information dissemination on Twitter with NH-CTMC is 
shown in Fig. 2.  

 

Fig. 2.  Transition probability by using the function 𝑞ଵଶ(𝑡) = ௘ഀ௘ഁା௘ം೟ 
Based on Fig. 2, it can be seen that information on Twitter about Covid-19 vaccination spread rapidly from followee to 
follower in the first 20 hours, then began to slow down after 40 hours. 
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4.4 Comparison of H-CTMC and NH-CTMC Models for Information Dissemination on Twitter Data 

Comparison of the H-CTMC and NH-CTMC Models for Information dissemination on Twitter data is done through the 
Likelihood Ratio Test (LRT). Referring to Hubbard et al. (2008), 𝐿𝑅𝑇 = −2൫ℓு(𝜃) − ℓேு(𝜃)൯~𝜒ଶ(௞). If 𝐿𝑅𝑇 > 𝜒ଶ(௞)𝑡𝑎𝑏𝑒𝑙, 
then it is said that NH-CTMC provides a significant improvement in fit. 

Based on the NH-CTMC transition intensity matrix in the form of the Sigmoid Function family in equation (17), numerically 
with the help of R software, −2ℓேு = 674,57 is generated.  Furthermore, the same is done for the H-CTMC Model, 
estimating the transition intensity using MLE with data from 20 Twitter users (145 IDs), resulting in 

𝐐 = ൬−0,09586 0,095860 0 ൰. (18) 

Based on the H-CTMC transition intensity matrix in Eq. (18), it is obtained that −2ℓு = 683,051, so it is obtained that 

  𝐿𝑅𝑇 = −2൫ℓு(𝜃) − ℓேு(𝜃)൯ = 683,051 − 674,57 = 8,481. 
If 5% significance level and 3 independent degrees are used, the value of 𝜒ଶ(ଷ) table = 7,815, and this result shows that 𝐿𝑅𝑇 >𝜒ଶ(ଷ), meaning that the NH-CTMC model with intensity function 

𝑞ଵଶ(𝑡) = ௘షమ,బవమబయ௘షభమరఱ,వమళା௘బ,బమబళయళ ೟   
provides a significant improvement in fit or it is said that the NH-CTMC Model is better than the H-CTMC Model in the 
problem of information dissemination on Twitter data. 

5. Conclusion 

In this paper, Information dissemination with NH-CTMC Model on Twitter data has been solved by using the assumption of 
transition intensity in the form of Sigmoid Function family. Sigmoid function parameters are estimated using Maximum 
Likelihood Estimation (MLE). The Sigmoid pattern can capture the pattern of information dissemination on Twitter. Infor-
mation spreads quickly from followee to follower on the first day, then slows down after the second day and so on. Comparison 
of the NH-CTMC Model with the H-CTMC Model for information dissemination problems on Twitter data results in that the 
NH-CTMC Model is better than the H-CTMC Model based on the Log-Likelihood Ratio Test. 
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