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Abstract

This thesis analyzes the implementation of a DT model for ANM in power grids, focusing on
active network management with intermittent renewable energy sources. Considering the increasing
implementation of renewable sources and DES systems, efficient and robust algorithms are important
for optimal grid management.
We start by evaluating two state-of-the-art RL models, PPO and SAC, as a baseline for expected
performance. The SAC model showed superior performance and was used as the teacher model for
dataset generation. This dataset was used in the training of the DT model.
Our methodology additionally includes PSO to fine-tune the output of our DT. This approach
utilizes PSO’s ability to understand non-differentiable problem spaces, complementing the DT’s
predictive accuracy. We evaluate the performance of the DT and the enhanced DT + PSO model
in various grid scenarios, especially focusing on the model’s behavior during the critical transitional
periods between different stages of power demand and generation.
Key findings indicate that while the DT aligns closely with the baseline models in terms of perfor-
mance, it has problems adapting to the sudden shifts between stages A and B in the grid simulation.
However, the integration of PSO fine-tuning shows a slight performance improvement, demonstrat-
ing the potential of this hybrid approach in improving decision-making in grid management.
This thesis contributes to the field by not only introducing a new approach for ANM but also
highlighting the importance of model adaptability in various grid scenarios. It lays the groundwork
for future research in implementing advanced machine learning techniques for efficient power grid
management, especially now as the world transitions towards more sustainable energy systems.
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Abbreviations

ANM - Active Network Management
CPU - Central Processing Unit
D4RL - Datasets for Reinforcement Learning
DES - Distributed Energy Storage
DP - Dynamic Programming
DQN - Deep Q Network
DSO - Distribution System Operator
DT - Decision Transformer
EV - Electric Vehicle
GPT - Generative Pre-trained Transformer
GPU - Graphical Processing Unit
LLM - Large Language Model
MDP - Markov Decision Process
ME-TRPO - Model-Ensemble Trust-Region Policy Optimization
MSE - Mean squared error
PPO - Proximal Policy Optimization
PSO - Particle Swarm Optimization
PV - Photovoltaic
RL - Reinforcement Learning
RNN - Recurrent Neural Network
SAC - Soft Actor-Critic
SARSA - State–Action–Reward–State–Action
SB3 - Stable Baselines 3
SGD - Stochastic Gradient Decent
SoC - State of Charge
TD - Temporal-Difference
TRPO - Trust Region Policy Optimization
TSO - Transmission System Operator

iii



Contents

Abstract ii
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures vii

List of Tables ix

1 Introduction and Background 1
1.1 Contributions and Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Report Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Active Network Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Markov Decision Process (MDP) . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 RL methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3 Value based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.4 Policy-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.4 Positional Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Decision Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 Trajectory Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Positional Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.1 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Method 15
3.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 ANM-GYM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Components of the environment . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Environment simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 State vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Action vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.5 Reward function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.6 Example environment ANM6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.7 ANM6 Easy scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.8 Clipped Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Baseline models training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iv



3.3.3 Dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Decision transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Context window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.4 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.5 Mini-batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.7 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Particle Swarm Optimization fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.1 Convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Results 24
4.1 Baseline training and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Dataset variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Decision transformer training and evaluation . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Particle Swarm Optimizer fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Discussions 31
5.1 PPO & SAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Decision transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Model choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Generalization Across Grid Scenarios . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.3 Reward-to-go vs. causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.4 Decision transformer training . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.5 Transition challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.6 Decision transformer as reward function . . . . . . . . . . . . . . . . . . . . . 33

5.3 PSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Limitations of using PSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Generalization abilities of the network . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusions 36
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography 37

A Datasheet A 42
A.1 State Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.2 Action Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42





List of Figures

2.1 Interaction between the agent and the environment, adapted from Ref. [16] . . . . . 5
2.2 Model architecture of the transformer [63] . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Scaled Dot-Product Attention (left); Multi-Head Attention (right) [63] . . . . . . . . 10
2.4 The Decision Transformer architecture involves the incorporation of states, actions,

and returns, which are processed through modality-specific linear embeddings. Addi-
tionally, a positional episodic timestep encoding is introduced. Tokens are then input
into a GPT architecture, enabling the autoregressive prediction of actions through
the utilization of a causal self-attention mask [71] . . . . . . . . . . . . . . . . . . . . 12

3.1 Project flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Flowchart of how new state and rewards are calculated based on agent action in the

ANM environment, taken from [82]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Example of the UI of the gym environment, showing the topology of ANM 6. Each

component is explained in the illustration legend. . . . . . . . . . . . . . . . . . . . . 18
3.4 PQ capacity diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Showing load and maximum available active power throughout a 24-hour period. . . 20

4.1 Training loss PPO(a), and SAC(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Average of the accumulated discounter rewards received in each episode of the eval-

uation runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Showing the distribution of trajectories in the dataset with the use of boxplot, dis-

playing actions and rewards(a), and states(b). Note that s17 has been left out of the
figure since it always oscillates between [0,95] . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Decision transformer training and evaluation loss during training. . . . . . . . . . . . 26
4.5 Comparison between the average reward found in an episode from the dataset,rd,

and the average reward achieved by the decision transformer rDT . . . . . . . . . . . 26
4.6 Showing the average power flow in each branch as a percentage of max capacity for

a 1k trajectory, with the shaded area being the maximum and maximum observed in
the trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Showing the SoC of the DES unit connected to bus 5 compared with EV park load.
Note that the SoC level does not start at 0%. . . . . . . . . . . . . . . . . . . . . . . 27

4.8 Comparing DTa agent’s actions and dataset actions with available power for wind(a)
and PV(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.9 Showing original reward for action taken by DT and reward after PSO fine-tuning
with a cost function,λ, equal to the simulation penalty function,ϕ defined in 3.2 (a),
and the predicted reward from model DTar(b) . . . . . . . . . . . . . . . . . . . . . . 28

4.10 Showing the reward predicted by the DT and the actual reward from the environment
for a subset of actions in the action space. . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



.



List of Tables

3.1 Power network parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Baseline models hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Decition transformer hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 PSO hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Training time on a Nvidia A100 80GB GPU and Intel Xeon E5-2660 v4 CPU averaged
over 3 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 The average sum of discounted rewards for 1000 steps, except for PSOperf which was
extrapolated. DTa denotes the model only trained on predict action where DTar is
trained to predict both action and reward. . . . . . . . . . . . . . . . . . . . . . . . . 30

A.1 Verbose description of each element of the environment state vector . . . . . . . . . . 42
A.2 Verbose description of each element of the environment action vector. . . . . . . . . . 42

ix



.



Chapter 1

Introduction and Background

According to the US Department of Energy’s vision report ’Grid 2030’, disturbances in power
distribution and quality issues can result in a cost of $119-$188 billion to certain industries annually
[1]. With the on-going environmental pressure, considering the increasing accumulation of CO2

emissions in the atmosphere, the sloping depletion of fossil fuels, and the fact that the world’s
population continues to grow and urbanize; a global paradigm shift in the energy sector is needed
[2]. A self-evident step is to continue increasing the utilization of renewable energy sources, and
an equally important measure is to ensure optimal management of the electricity flow in the power
grid by scheduling the energy generation based on demand (otherwise known as active network
managment) [3]. However, trying to improve energy systems by implementing such changes is a
difficult task when considering both generation and demand [4, 5].
The set of operational optimization issues that occurs when scheduling power generation is get-
ting more complex, which in turn makes it more challenging to efficiently control energy systems.
There have already been radical operational and structural improvements in power grids in the
last two decades [6]. As the electricity market has been more liberalized, a competitive aspect was
introduced in how they were managed, resulting in network enhancements and more affordable en-
ergy generation. In addition, power networks are going through a shift from the traditional model
of centralized power generation based on fossil fuel, to a smarter, more decentralized network of
renewable sources, with the arrival of distributed generators, such as photovoltaic panels (PVs)
and wind turbines [7]. For example, virtual microgrids have developed local ecosystems in which
consumers are also producers [8, 9]. It is further anticipated an increase of distributed generators
in the near future [10], as well as an expansion of considerable loads as a result of rapid growth
in the electric vehicle market [11, 12]. Furthermore, distributed energy storage (DES) is also be-
coming more available with the implementation of technologies like batteries [5, 13], vehicle fleets
[14] and power-to-gas [15]. These changes have introduced an increase in complex decision-making
challenges, such as voltage coordination, transmission line congestion, overvoltages, etc., for system
operators. Therefore, the need for robust and efficient algorithms to solve such challenges, and that
can take account of the intermittent nature of renewable energy sources, is becoming increasingly
crucial in order to ensure a smooth transition to sustainable energy systems; some of which can
benefit from recent improvements in the area of reinforcement learning (RL) research.
RL is a dynamic and exciting field of machine learning that seeks to emulate the way humans learn,
and it presents a viable solution to a broad spectrum of intricate decision-making predicaments.
For years, RL techniques have played an important role in the management of electricity networks
[16].
In this paper, we will introduce an RL method utilizing the transformer architecture for ANM prob-
lems. The transformer architecture is most commonly associated with large language models(LLM).
The architecture is utilized as an RL method by treating the problem as a set of sequential decision-
making tasks in the management of power grids [3]. In literature related to power systems, ANM
pertains to the development of control systems that regulate the generators, the loads, and the DES
devices that are connected to the grid. This is important to avoid problems at the distribution
level, and for increasing profitability by avoiding energy loss [17]. The operations that are done
by network operators, may result in decreasing power generation compared to the maximum pro-
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duction, in regards to the available resources. This is commonly known as curtailment, which can
be a requirement in certain situations. However, curtailment, together with losses in transmission
and storage, is the main cause of energy loss that ANM wish to minimize. Furthermore, the ANM
model shall ensure a robust and reliable operation of the power grid.

1.1 Contributions and Scope of the Thesis

The main contributions of this thesis are:

• Creation of an offline dataset for RL training on active network management.

• The implementation of a decision transformer for active network management with the inclu-
sion of intermittent renewable energy sources.

• A novel approach to use particle swarm optimization (PSO) to fine-tune the decision trans-
former output.

1.2 Report Outline

The rest of this thesis is organized as follows: Chapter 2 provides a thorough review of current state-
of-the-art RL approaches for power grid management. Chapter 3 covers relevant preliminaries that
help in understanding the contributions of this work, and the scaled-down power grid application
that the algorithms are tested on. Results and limitations of using a decision transformer for Active
Network Management (ANM) is discussed in Chapter 4. Finally, chapter 5 concludes the latter,
and includes relevant future work.

2



Chapter 2

Background

2.1 Previous Work

RL has demonstrated exceptional capability in solving a variety of realistic control and decision-
making problems in the presence of ambiguity. Despite its proven potential, its utilization in power
grid management is not yet well explored. Nevertheless, RL has been applied to consider the gener-
ator’s load frequency control issue [18], the unit commitment problem [19], power system transient
stability enhancement [20], and address individual preferences for private customers in the electricity
market [21]. In addition, RL has been implemented to deal with the issues regarding auction-based
energy pricing [22] and economic dispatch [23]. A Q-learning approach is introduced in [24] to
manage reactive power control and limited load flow problems in power grids. An optimization
scheme based on RL designed for tackling the actions of microgrid consumers is designed in [25];
which attempts to handle the unpredictability of the environment and renewable energy. In [26],
RL is compared to a predictive control model for solving the problem of power grid damping. Fur-
thermore, some RL approaches are mentioned in [27] where advancements in intelligent microgrid
controlling are reviewed, whereas [28] reviews various RL approaches for demand response in the
power grid. However, the revised papers mostly utilize basic RL algorithms, such as Q-learning and
SARSA methods [29], which are dependant on the memory-extensive tabular representation of the
state-action value function Q. These tabular methods introduce some limitations in their applica-
bility to large-scale problems characterized by high-dimensional state-action spaces, which is often
the case in real-world cases. Memory usage in these situations becomes difficult, and the compute
time makes it an unattractive approach. However, regression tools can be implemented to replace
the tabular representation of Q to increase the applicability of RL approaches to environments with
state spaces of any size.
Moreover, a deep Q-learning approach is utilized in [30] to attempt optimal power management
of hybrid electric buses. In [21], RL in combination with deep neural networks is designed for
smart grids to enable optimal incentive rates regarding the demand-response problem in real-time.
Deep RL is tested for short-term voltage control by dynamic load shedding in [31], whereas two RL
approaches using deep Q-learning and Gibbs deep policy gradient are implemented onto physical
models in [32]. In [33], residential demand response using RL is tackled, and [34] proposes a non-
tabular solution for optimal operation and maintenance of power grids, by merging RL with an
artificial neural network. In [35] and [36], the same gym environment uses simulations in reliability
and stability studies, respectively.
Furthermore, [37] studies optimal energy management strategies using reinforcement learning. And
we conclusively refer to [38] and [39] which both provide comprehensive overviews of reinforcement
learning algorithms applied to power systems.
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2.2 Active Network Management

The power network management at utility-scale (≥ 0.5MW) is controlled centrally, with subdivided
responsibility for handling different voltage levels. The high-voltage network, which is used for long-
distance transmission, is managed by the Transmission System Operator (TSO). On the other hand,
the Distribution System Operator (DSO) takes care of the medium and low-voltage transmission
networks, which are used for local power distribution.
Both TSO and DSO have two main jobs: to make sure the power network functions safely and
reliably, and to maintain the network frequency steady at 50Hz [40]. To do this, they need to balance
the amount of electricity being generated with the amount being used at all times. If there’s too
much electricity being made, the frequency goes up. If the demand is too high, the frequency goes
down. Even a small change in frequency of 0.5 Hz, can cause big problems, especially for industrial
equipment like induction motors that rely on this steady frequency.
To maintain this balance, the operators use special agreements, called reserve contracts, with large-
scale electricity producers or consumers (who deal with at least 0.5 megawatts). These contracts
let the operators either increase or curtail electricity production, or temporarily reduce the amount
of electricity used by big consumers.
Currently, the operations to take are decided by analyzing historical load data along with production
plans issued by utility-scale producers/consumers to get insights into future power deficits and/or
surpluses, and plan accordingly.

2.3 Reinforcement Learning

ML algorithms are categorized into three groups based on their input data and how data is processed
for it to learn: supervised learning, unsupervised learning, and RL. Supervised learning uses labeled
data that consists of input samples paired with their corresponding desired output i.e. "labels", and
aims to establish a method that maps the training input to labeled outputs, using a predetermined
evaluation index [41]. Deep neural network is an example of a supervised learning method that has
attracted more attention in recent times [42]. Unsupervised learning tries to discover relationships,
structures, or patterns within unlabeled data; typically utilizing techniques like dimensionality
reduction [43], clustering [44], and association rule learning methods [45].
Unlike supervised and unsupervised learning, RL is regarded as active learning. It is commonly
described as a game based on the interaction between an agent and environment, in which the
agent learns — through trial and error — to make decisions in its corresponding environment that
maximize cumulative rewards over time [16]. For each step, the agent performs an action based on
its current observation of the environment; receives feedback from the environment in the shape of
a reward or penalty, and updates its decision-making policy according to this feedback. The final
objective is to maximize the expected long-term reward by learning the optimal policy.

2.3.1 Markov Decision Process (MDP)

Formally, the interaction between an agent and environment is described by an MDP [46], M :=
(S,A,P, γ,R), where S and A denotes the state and the action space respectively. The state
transition probability is P : S × S × A → [0, 1], i.e., Pr(s′|s, a) is the probability that s′ will
be the next state if action a is executed in state s. The discount factor is represented by γ.
P : S → [0, 1] further describes the initial distribution of states S, and the feedback/reward is
expressed by R : S × A → R. The agent’s decision process is entirely captured by a policy
π : S → A, which maps every state to an action. The set of all policies that remains fixed or
unchanged throughout the learning process (commonly known as stationary policies) are denoted
by π. A policy that intuitively maximizes the cumulative (discounted) score long-term is called
optimal.
The so-called game of RL can be generalized to the steps shown in algorithm 1:
The game of RL is also visualized in 2.1. An agent, operating within an environment M , executes
a policy π : S → A. The agent’s interaction with the environment results in the accumulation of
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Algorithm 1 RL pseudo code
for each episode do

st ∈ S ▷ Agent observes environment’s state
at = π(st) ∈ A ▷ Agent chooses an action
rt+1 = R(st, at) ▷ Agent receives a feedback
st+1 ∼ P(·|at, st) ▷ Agent transitions to new state

Figure 2.1: Interaction between the agent and the environment, adapted from Ref. [16]

a stochastic return G =
∑∞

t=1 γ
t−1rt, where rt = R(st, at) signifies the reward obtained by taking

action at in state st. An essential goal in RL is to find the optimal policy, denoted as π∗, which
aims to maximize the discounted sum of rewards.

π∗ = arg
π:S→A

max Eπ

[ ∞∑
t=1

γt−1rt

]
(2.1)

Value Functions: Value functions serve as estimates for the expected rewards within a specified
time scope, considering the current state s ∈ S. These functions play a crucial role in the formulation
of the optimal policy. The state-value function Vπ for a policy π is expressed as

V π(s) = Eπ

[ ∞∑
t=1

γt−1rt

∣∣∣∣s0 = s

]
(2.2)

The term V π(s) describes the expected return from a given state s ∈ S. The optimal value
function, V ∗ coordinates with the value function associated with an optimal policy π∗, expressed
as V ∗ = max

π:S→A
V π(s).

When V ∗ is known, the optimal policy can be inferred by using a greedy action a based on V ∗.
In the context of RL setups, where essential model information like transition probabilities and
reward distributions is often unavailable; deducing the optimal policy directly from the state-value
function introduces a considerable challenge. Instead, we use something called the state-action value
function, denoted as Qπ(s, a). This function helps us assess how good our chosen policy (π) is. It
does so by adding up all rewards an agent gets when it takes an action (at) in the current state (st)
according to the policy. Mathematically, the state-action value function is expressed as follows:

Qπ(s, a) := Eπ

[ ∞∑
t=1

γt−1rt

∣∣∣∣s0 = s, a0 = a

]
(2.3)

And the corresponding optimal Q-function is defined as

Q∗(s, a) := max
π:S→A

Qπ(s, a) (2.4)
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Note that once Q∗ is available, we can retrieve the optimal policy using π∗(s) = argmax
a∈A

Qπ∗
(s, a).

This retrieval process stands in contrast to the state-value function scenario, because it doesn’t
require the inclusion of model information.

Dynamic Programming(DP) becomes cruical when dealing with a known MDP, M. In this
context, determining the optimal policy π∗ is called a planning problem, and DP algorithms offer
an efficient solution to solve this. The computation or estimation of value functions for a policy π
is simplified by solving the corresponding Bellman equations 2.5 and 2.6 [[47], [48]]:

V π(s) = Es′∼P (·|s,π(s))[R(s, π(s)) + γV π(s
′
)] (2.5)

Qπ(s, a) = Es′∼P (·|s,a)[R(s, a) + γQπ(s
′
, π(s

′
))] (2.6)

Derived from the Markov property [46] of the MDP and the definition of the value function, these
steps are commonly known as policy evaluation. Once a policy π is evaluated, an improved policy
can be derived with the greedy policy

π
′
(s) = max

a∈A
Es′∼P (·|s,a)[R(s, a) + γQπ(s′)] (2.7)

or π′(s) = argmax
a∈A

Qπ(s, a), a process referred to as policy improvement. Various DP algorithms, in-

cluding policy and value iterations, are dependent on different combinations of alternating iterations
of policy evaluation and improvement [48].

2.3.2 RL methods

RL can be subdivided into three primary classifications: Value-based, Policy-based, and Model-
based methods. The difference between these is based on what they optimize. Value-based focus
value functions, Policy-based on policies, and Model-based on internal environment models; which
shows the variety in approaches to decision-making and learning strategies in dynamic environments.

Model-Based

Model-based methods in RL are widely different from model-free approaches. Instead of only
relying on data collected from the environment, model-based methods involve creating a model of
the environment’s dynamics.
Model-based RL functions under the principle that understanding and modeling the environment’s
behavior can help make informed decisions. Instead of learning directly from interaction data, these
methods try to create a representation of how the environment responds to different actions [49].
The main element of model-based methods is the environment model [50]. This model, commonly
represented as a transition function or a predictive model, simulates the dynamics of the environ-
ment. It estimates the state’s behavior when a specific action is taken.
Model-based methods utilize planning algorithms to optimize decision-making. These algorithms
use already learned models to estimate future trajectories, allowing agents to make informed choices
to maximize expected rewards.
In model-based RL, exploration strategies are central for collecting data to refine the environment
model. These strategies help the agent to further explore actions that lead to informative experi-
ences.
Model-based methods can be more sample-efficient than some model-free counterparts because they
make use of the learned model to estimate potential outcomes, which reduces the need for extensive
interaction with the real environment [51].
Several model-based algorithms exist, such as the Dyna algorithm [52], Model-Ensemble Trust-
Region Policy Optimization (ME-TRPO) [53], and Stochastic Lower Bound Optimization (SLBO)
[54]. These methods, with the use of the environment model, improve decision-making and can be
applied to various domains, including robotics and autonomous systems.
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2.3.3 Value based

Value-based methods in reinforcement learning center around estimating value functions, which
compute the expected cumulative rewards linked to specific states and/or actions. These methods
focus on calculating the desirability of states or state-action pairs, introducing these value assess-
ments to guide decisions toward actions that promise higher-value outcomes.
Algorithms like SARSA [55] and Q-learning [56] seek to learn state or action-value functions and
then make action selections based on these values.
Temporal-Difference (TD) Learning, a common policy evaluation algorithm, iteratively estimates
the state value function V π for a given policy π. The TD learning update rule originates from the
squared-Bellman error and is expressed by ([16]):

Vk+1(sk) = Vk(sk) + αk (R(sk, π(sk)) + γVk(sk+1)− Vk(sk)) (2.8)

Here, sk ∼ dπ, sk+1 ∼ P (·|sk, π(sk)), and αk denotes the learning rate. The update occurs directly
after the transition (sk, ak = π(sk), rk+1, sk+1). The updated term, R(sk, π(sk)) + γVk(sk+1) =
Vk(sk), is the Temporal-Difference (TD) error, measuring the difference between the current esti-
mated value Vk(sk) and the improved estimate R(sk, π(sk))+γVk(sk+1). The TD update converges
to V π almost surely if the step-size satisfies the Robbins-Monro rule [48].
SARSA, which is an on-policy method, updates the Q-value by following sequences of experiences,
employing the update rule:

Qk+1(sk, ak) = Qk(sk, ak) + αk (R(sk, ak) + γQk(sk+1, π(sk+1))−Qk(sk, ak)) (2.9)

SARSA runs TD-learning to evaluate the state-action value function Qπ relating to the current
policy π, computes an improved policy using Qπ, and alternates both steps to find Q∗.
Q-learning, an off-policy method, updates the Q-values using the equation:

Qk+1(sk, ak) = Qk(sk, ak) + αk (R(sk, ak) + γmaxQk(sk+1, a)−Qk(sk, ak)) (2.10)

Q-learning assesses the policy based on experiences from any behavior policy, which allows the use
of a database of past experiences; this is referred to as the experience replay buffer. By contrast,
SARSA produces a new experience each time a policy is updated.
Deep Q Network (DQN) extends RL to manage problems with a larger state and/or action space.
DQN implements neural networks to estimate the Q-function. The DQN algorithm [57] trains a
neural networks parameterized by θ using the loss function:

L(θ) := E(s,a,r,s′)∼D

[(
r(s, a) + γmaxQ(s′, a′; θ−)−Q(s, a; θ)

)2] (2.11)

D is an experience replay buffer that stores past experiences to reduce associations between observa-
tions. The online and target variables, θ and θ−, respectively, are updated periodically. Augmenta-
tions like Double DQN [58] and Dueling DQN [59] improve DQN’s design by covering overestimation
issues and decoupling the value and advantage functions.

2.3.4 Policy-Based

Policy-based methods in RL take a unique approach by directly learning the policy, described as
π(a|s; θ), with respect to the parameterized function θ. In contrast to value-based methods, policy-
based approaches prove highly capable in handling continuous action spaces and can adjust to
stochastic policies. The objective function

J(θ) :=
∑
s∈S

dπθ(s)
∑
a∈A

πθ(a|s)Qπθ(s, a) (2.12)

include the stationary distribution dπθ(s) of the Markov chain for πθ. The policy gradient theorem,
which is the core of many policy gradient algorithms, states that the gradient of the objective is
given by
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∇J(θ) = Eπθ
[∇ lnπθ(a|s)Qπθ(s, a)] = Eπθ

[Gt∇ lnπθ(at|st)] (2.13)

where Gt represents the discounted cumulative return starting from time step t.
Policy gradient methods seek a local maximum in J(θ) by increasing the gradient of the policy with
respect to the parameters θ. This approach allows for direct policy optimization without the need
for value function estimation. The importance of policy-based methods is particularly noticeable in
scenarios that involve continuous action spaces and stochastic policies. The parameterized policies
that are often used in policy-based methods are adjusted during training to enhance performance.
The balance between exploration and exploitation is achieved by adapting the policy’s stochasticity,
enabling efficient exploration while utilizing the knowledge that is gained through learning.
This method is advantageous in tasks where uncertainty is apparent, making it well-suited for
learning stochastic policies, in which actions are linked to set probabilities. Well-known policy-
based algorithms, including REINFORCE, Trust Region Policy Optimization (TRPO) [60], and
Proximal Policy Optimization (PPO), have seen success across various domains.
Off-policy methods, on the other hand, learn a policy independently from the policy being executed,
allowing the agent to learn from actions that have not been executed. This flexibility can lead to
more efficient learning as the agent can evaluate and improve its strategy using data from different
policies, improving its ability to optimize decision-making for various scenarios. This method is
useful in environments where collecting new data is costly or impractical.

Proximal Policy Optimization (PPO) PPO [61] is a popular RL algorithm that is designed
to account for the challenge of training a policy that performs well, and maintaining stability during
the learning process. PPO can do this by focusing on the relative change between the old and the
new policy, using a technique called clipped surrogate objective functions.
At the core of PPO is the idea of probability ratio, denoted as rk(θ), which is the likelihood of
taking a particular action a in a given state s under the new policy (πθ) compared to the old policy
(πθk). This ratio, defined as:

rk(θ) =
πθ(a|s)
πθk(a|s)

(2.14)

explains how the new policy prioritizes a certain action in comparison to the old policy. If rk(θ) is
higher than 1, it indicates a preference for the action under the new policy, while a value smaller
than 1 means a preference for the old policy.
To avoid that the new policy makes large, sudden changes, PPO implements a constraint on the
probability ratio, with a hyperparameter ϵ (epsilon) determining the acceptable range. The con-
straint makes sure that rk(θ) remains within a specific interval around 1, defined as [1− ϵ, 1 + ϵ].
This constraint is an important feature of PPO and leads to more stable training. It prevents the
policy from diverging significantly from the old policy, mitigating the risk of training becoming
unnecessarily volatile.
PPO’s goal is to maximize the expected value of a concrete objective function, denoted as L, with
respect to the new policy parameters (θk+1). The objective function L is defined as follows:

L(s, a, θk, θ) = min{rk(θ)Aπθk (s, a), clip(rk(θ), 1− ϵ, 1 + ϵ)Aπθk (s, a)} (2.15)

In this equation, Aπθk (s, a) represents the advantage function, which estimates how much better or
worse an action is compared to the average action executed under the old policy.
The "clip" function in the objective function makes sure that the probability ratio rk(θ) is re-
stricted within the interval [1 − ϵ, 1 + ϵ]. This clipping mechanism helps maintain the stability of
policy updates by preventing unreasonable policy changes that could lead to unpredictable training
behavior.
To update the policy, PPO seeks to maximize the expected value of the objective function L in
regards to the new policy parameters (θk+1). This is typically accomplished through many iterations
of stochastic gradient descent (SGD), often using minibatches of data to improve computational
efficiency.
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Figure 2.2: Model architecture of the transformer [63]

Soft Actor-Critic (SAC) SAC [62] is an RL algorithm that has a unique approach to learning
optimal policies. Unlike many other algorithms, SAC implements the policy’s entropy into the
reward function. SAC is an off-policy actor-critic model functioning within the framework of maxi-
mum entropy RL. Its special feature lies in the emphasis on both exploration and efficient learning
in complex environments.
The main goal of SAC is to find the optimal policy (π) that maximizes the expected return. This
return is influenced by two critical components: the standard reward (R) and the entropy (H) of
the policy. The inclusion of entropy in the objective function plays an important role in encouraging
exploration. The mathematical representation of this objective is expressed as:

π∗ = arg max
π

Eπ

[ ∞∑
t=0

γ′R(St+1) + αH(π(·|at))

]
(2.16)

where R(st+1) denotes the standard reward at the next time step (t+1), signifying how beneficial
the agent’s action is in the current state (st). H(π(·|at)) is the entropy of the policy (π) given a
state (st), that indicates the level of uncertainty or stochasticity among the policy’s possible actions.
The parameter α serves as a crucial trade-off hyperparameter. It controls the balance between the
reward and the entropy in the objective; altering the value of α allows us to control the emphasis
on exploration (higher entropy) versus exploitation (higher reward).
By encouraging higher entropy, SAC motivates the policy to explore more, especially when the
optimal action is indefinite; it also enables it to explore multiple modes of near-optimal strategies,
which helps it to adapt and learn various behaviors.

2.4 Transformer

Most well-known models for transforming sequences in neural networks utilize an encoder-decoder
configuration, wherein the encoder translates an input sequence of symbol representations (x1, ..., xn)
into a series of continuous representations denoted as z = (z1, ..., zn). Subsequently, leveraging z,
the decoder produces an output sequence (y1, ..., ym) of symbols iteratively. At each step, the model
operates in an auto-regressive manner, incorporating previously generated symbols as additional in-
put during the generation of the subsequent symbol. The Transformer adheres to this overarching
design, employing stacked self-attention and point-wise, fully connected layers for both the encoder
and decoder. These components are illustrated in the left and right halves of Fig. 2.2, respectively.
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Figure 2.3: Scaled Dot-Product Attention (left); Multi-Head Attention (right) [63]

2.4.1 Model Architecture

Encoder: Comprising a stack of N identical layers, the encoder exhibits a dual-sub-layer structure.
The initial sub-layer introduces a multi-head self-attention mechanism, while the second sub-layer
use a simple position-wise fully connected feed-forward network. Each sub-layer is contained by
a residual connection [64], followed by layer normalization [65]. Specifically, the output of each
sub-layer adheres to the expression LayerNorm(x + Sublayer(x)), where Sublayer(x) denotes the
function executed by the sub-layer itself. To facilitate these residual connections, all sub-layers
within the model, including the embedding layers, yield outputs of dimension dm.

Decoder: Correspondingly composed of N identical layers, the decoder introduces an additional
sub-layer to each encoder layer. This newly added sub-layer conducts multi-head attention over the
output generated by the encoder stack. Analogous to the encoder, residual connections surround
each sub-layer, followed by layer normalization. Further, a modification is applied to the self-
attention sub-layer in the decoder stack to prevent positions from attending to subsequent positions.
This strategic masking, coupled with the fact that the output embeddings are displaced by one
position, ensures that predictions for position i rely solely on the established outputs at positions
preceding i.

2.4.2 Attention

An important part of the Transformer architecture is the attention mechanism which gives the
model the ability to selectively focus on different parts of the input sequence. In contrast to recurrent
neural networks(RNNs), which process sequences in a linear fashion, the attention mechanism allows
Transformers to decide how important each element is in the sequence based on the task it is solving.
This mechanism helps the model to capture long-range dependencies with very good efficiency.
An attention function can be describes as an opreation that maps a query and a collection of key-
value pairs to an output, in which the query, keys, values, and output are all represented as vectors.
The output is determined by a weighted summation of the values, with each value’s weight decided
by a compatibility function that involves the query and its corresponding key.

Scaled Dot-Product

The attention mechanism employed is termed "Scaled Dot-Product Attention". The input involves
queries and keys of dimension dk. The computation involves obtaining dot products between the
query and all keys, dividing each by

√
dk, and subsequently applying a softmax function to derive
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the weights associated with the values. In practical application, the attention function is computed
concurrently on a group of queries, consolidated into a matrix Q. Simultaneously, the keys and
values are assembled into matrices K and V .

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.17)

The most commonly used attention functions are additive attention and dot-product (multiplica-
tive) attention. Dot-product attention closely resembles the algorithm in equation 2.17, with the
exception of the scaling factor 1√

dk
. Additive attention, on the other hand, computes the compati-

bility function with the use of a feed-forward network featuring a single hidden layer.
Although the performance of the two mechanisms is comparable for small values of dk, additive
attention surpasses dot-product attention without scaling for larger values of dk [66]. This incon-
sistency in performance is due to the likelihood of dot products reaching substantial magnitudes
for large dk values, thereby pushing the softmax function into regions characterized by exceedingly
small gradients. As a countermeasure to this occurence, a scaling factor of 1√

dk
is included to

normalize the dot products.

Multi-head Attention

Rather than carrying out a singular attention function with model-dimensional keys, values, and
queries, a more favorable approach is the linear projection of queries, keys, and values h times. This
projection introduce distinct, learned linear projections to dimensions dq, dk, and dv, respectively.
The attention function is then independently applied in parallel to each of these projected versions of
queries, keys, and values, resulting in dv-dimensional output values. These outputs are subsequently
linked and exposed to an additional projection, peaking in the final values. The utilization of multi-
head attention makes the model able to collectively consider information from various representation
subspaces at different positions. In contrast, employing a single attention head and subsequently
averaging hinders this capacity.

MultiHead(Q,K, V ) = Concat(h1, ..., hh) ·WO (2.18)

where hi = Attention(QWQ
i ,KWK

i , V W V
i ), and the projection parameter matrices WQ

i = Rdm×dk ,WK
i =

Rdm×dk ,W V
i = Rdm×dv .

For a model with n parallel attention layers, the dimensionality of each attention layer can be
reduced to dk = dv = dm/n, which will result in a computational cost equal to that of single-head
attention with full dimensionality (dm).

2.4.3 Embeddings

Similar to commonly used sequence transduction models, learned embeddings are employed to
transform input tokens and output tokens into vectors of dimension dm. Additionally, a frequently
learned linear transformation and softmax function are applied to convert the decoder output into
probabilities for the next token prediction. Notably, an alternative configuration is to adopt a shared
weight matrix for both embedding layers and the pre-softmax linear transformation, a design choice
akin to [67]. Within the embedding layers, the weights are scaled by the square root of the model
dimensions dm.

2.4.4 Positional Encoding

In the absence of recurrence and convolution within the model, including information about the
relative or absolute position of tokens in the sequence becomes essential for the model to effectively
utilize the sequence order. Accordingly, ’positional encodings’ are introduced into the input embed-
dings at the base of both the encoder and decoder stacks. These positional encodings share the same
dimension, dm, as the embeddings, to enable summation between the two. Numerous alternatives
exist for positional encodings, including both learned and fixed approaches [68].
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Figure 2.4: The Decision Transformer architecture involves the incorporation of states, actions, and returns, which
are processed through modality-specific linear embeddings. Additionally, a positional episodic timestep encoding is
introduced. Tokens are then input into a GPT architecture, enabling the autoregressive prediction of actions through
the utilization of a causal self-attention mask [71]

.

2.5 Decision Transformer

Recent research has demonstrated the capability of transformers to effectively model high-dimensional
distributions of semantic concepts on a large scale. This includes notable achievements such as pro-
ficient zero-shot generalization in language [69] and successful out-of-distribution image generation
[70]. Given the varied success of these applications, the focus has also been directed toward as-
sessing their suitability for addressing sequential decision-making problems formulated within the
framework of RL. The approach of Decision Transformers leverages the simplicity and scalabil-
ity inherent in the Transformer architecture, along with the advancements in language modeling
exemplified by models such as GPT-x and BERT.
Diverging from previous methods in reinforcement learning that involve fitting value functions
or computing policy gradients, Decision Transformer adopts a distinctive approach by directly
producing optimal actions through the utilization of a causally masked Transformer, visualized in
Fig. 2.4. Through the conditioning of an autoregressive model on the desired return (reward),
historical states, and actions, the Decision Transformer model has the capacity to generate future
actions that lead to the desired return.

Algorithm 2 Decition transformer psuedo code

function DecitionTransformer(R̂, s, a, t)
posemb ← Embedding(t) ▷ Learnt position embedding
semb ← Linear(s) + posemb ▷ Linear state embedding
aemb ← Linear(a) + posemb ▷ Linear action embedding
R̂emb ← Linear(R̂) + posemb ▷ Linear reward embedding

inputemb ← Concat(R̂emb, semb, aemb) ▷ Inpute embeddings
hidden_state = Transformer(inputemb) ▷ Hidden states

preda ← Linear(hidden_state[a]) ▷ Action prediction from hidden states(action index)
predr ← Linear(hidden_state[R̂]) ▷ Reward prediction from hidden states(reward index)

2.5.1 Trajectory Representation

Modeling rewards poses a nontrivial challenge, as the objective is to have the model generate
actions based on future desired returns rather than past rewards. Consequently, instead of directly
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inputting rewards, the model is supplied with the returns-to-go, denoted as Rt =
∑T t′ = trt′. This

results in the subsequent trajectory representation, which lends itself to autoregressive training and
generation:

τ = (R̂1, s1, a1, R̂2, s2, a2, ..., R̂T , sT , aT ) (2.19)

During the testing phase, the desired performance and the environment’s starting state can be
specified as conditioning information to initiate the generation process. Following the execution of
the generated action for the current state, the target return is reduced by the obtained reward, and
this process is repeated until episode termination.

2.5.2 Positional Encoding

A unique embedding is learned for every timestep and appended to each token. This differs from the
conventional positional embedding typically employed in transformer models, as here, one timestep
is equivalent to three distinct tokens. These tokens undergo processing by a GPT 2 model, as
referenced in [72], which utilizes autoregressive modeling to estimate subsequent action tokens.

2.6 Optimizers

Various optimization algorithms exist, each with distinct advantages and limitations, suited to dif-
ferent types of problems. In this context, we explore Gradient Descent [73] and Quasi-Newton
methods [74] alongside Particle Swarm Optimization (PSO) [75] for our active power line manage-
ment project.
Gradient Descent is a fundamental approach used primarily in machine learning and deep learning
for minimizing the cost function. The core principle involves updating the parameters iteratively
in the opposite direction of the gradient of the cost function with respect to the parameters. Its
simplicity is a major advantage, but it can struggle with non-convex functions, potentially getting
trapped in local minima.
Quasi-Newton methods, including the Broyden–Fletcher–Goldfarb–Shanno algorithm [76], are ad-
vanced optimization techniques that approximate the Newton method for finding stationary points
of functions. They are particularly effective for large-scale optimization problems due to their low
memory requirements and ability to handle complex, nonlinear objectives. However, they require
the objective function to be differentiable and can be computationally intensive.
Furthermore, PSO is particularly advantageous with its proficiency in handling complex, multi-
dimensional optimization problems. Its strength lies in efficiently exploring search spaces without
necessitating gradient information, making it an interesting alternative for intricate applications
like power line management.

2.6.1 Particle Swarm Optimization

PSO is a computational algorithm used in optimization problems, characterized by its efficiency
and simplicity. It’s a versatile method that’s especially useful where problem spaces are complex,
and where analytical gradients are not available [77].
In PSO, a set of candidate solutions (the ’swarm’), referred to as particles, navigate the search
space to find an optimal solution. Each particle’s stochastic movement is influenced by two primary
factors: its personal best position and the global best position found by the swarm. This mechanism
enables the swarm to explore and exploit the search space effectively [78].
The algorithm operates by initializing particles randomly within the search space. These particles
iteratively tweak their velocities and positions based on their experiences and those of their neigh-
bors. The velocity update is influenced by the historical best positions of the particles, guiding
them towards promising regions.
Formally, we define the cost function as f : Rn → R, which needs to be minimized without known
gradients. This function evaluates a candidate solution (a vector in Rn) and outputs a real value
representing its quality. The objective is to find a vector a such that f(a) ≤ f(b) for all b in
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the search space, signifying that a is the global minimum. Within the swarm of P particles, each
particle i has a position xi ∈ Rn and a velocity vi ∈ Rn, with pi denoting its best known position
and g representing the best known position across the swarm. The PSO algorithm utilizes these
definitions to iteratively minimize the cost function see Fig. 3.

Algorithm 3 PSO pseudo code
for each particle i ∈ P do

xi ← U(bmin,bmax) ▷ Sample point from a uniform distrobution
pi ← xi ▷ Initilize particle best known position
vi ← U(−|bmin−bmax|,|bmin−bmax|) ▷ Sample velocity from from a uniform distrobution
if f(pi) < f(g) then

g← pi ▷ Initilize swarm best known position
while not terminated do

for each particle i ∈ P do
for dimension d ∈ xi do

rp ← U(0,1) ▷ Sample random cognitive scalar
rg ← U(0,1) ▷ Sample random social scalar
vi,d ← wvi,d + ϕprp(pi,d − xi,d) + ϕgrg(gd − xi,d) ▷ Update velocity

xi ← xi + vi ▷ Update position
if f(xi) < f(pi) then ▷ Evaluate new position

pi ← xi ▷ Update best position
if f(pi) < f(g) then ▷ Evaluate new best position

g← pi ▷ Update best swarm position

bmin and bmax define the search space’s lower and upper bounds, setting limits within which parti-
cles can move. The parameter w, known as the inertia weight, balances exploration and exploitation
by affecting the momentum of particles. The cognitive coefficient (ϕp) and social coefficient (ϕg)
lead particles towards their personal best and the swarm’s best positions, respectively. The selection
of w, ϕp, and ϕg is important, as it dictates the PSO method’s effectiveness and behavior. The
algorithm terminates either after a set number of iterations or when reaching a satisfactory solution
as defined by the objective function.
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Chapter 3

Method

3.1 Experiment setup

Figure 3.1: Project flowchart

An overview of the setup for how the decision transformer was trained to perform active network
management with intermittent renewables sources is shown in the form of a flowchart in Fig.3.1. The
setup consists of two major parts; dataset generation from baseline models, and decision transformer
training. The generation of the dataset is done similarly to how the datasets in the D4RL [79]
catalog are generated. Two state-of-the-art RL models; PPO and SAC, were chosen from the stable
baselines3 zoo [80]. The choice of models is discussed in 5.1. These models both serve as a baseline
for expected performance, and SAC is further used as a teacher model to generate the offline dataset.
The teach model choice was determined by the best performance reached after training, which was
based on evaluation runs. Multiple models were chosen to give a better baseline metric, as well as
to give the option to choose one over the other if there was found to be a performance gap. This
model was then used to generate the trajectories τ = [s, a, r, t] by capturing the rollouts as well
as the environment metrics. This would compose the offline training set D = [τ1, ..., τn] for the
decision transformer.

Two versions of the DT architecture were trained; one that only predicts action(DTa), and one that
predicts action and reward(DTar) which would be used in conjunction with PSO. Training of the
DTs was performed by initializing the model with its hyperparameters. Then loading and creating
normalized batches from the trajectories in the offline dataset. The model was trained on these
for multiple steps and periodically deployed in the online environment to evaluate its performance.
The weights of the best-performing models were saved to be evaluated further.
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3.2 ANM-GYM

A fork of ANM-Gym [81] is used to evaluate our agent and answer our research question. Some
minor deprecations and bugs were resolved for the gym to be usable. The simulation backend of
the environment is based on the work of Gemine et al.[3], which has been adapted by Henry et
al [82] to follow the structure of OpenAI environments for RL training. This framework allows
for the imitation of real-world power systems, and the creation of synthetic networks of varying
complexity. These power network simulations are focused on the DSO/TSO level, meaning that
only the larger components of the grid are considered, such as power plants, power heavy industry,
and the aggregation of smaller loads such as residential homes.

3.2.1 Components of the environment

The ANM framework allows the creation of environments using five distinct component types:
passive loads, generators, DES, transmission lines, and busbars. These components fit into two
categories; network linking components, and power components. The set of power components(D)
consists of passive loads(Dl), generators(Dg), and energy storage(De). The components in Dl can
only consume power from the grid, Dg can only inject power into the grid, and De can both
consume and produce power, depending on its state of charge(SoC). There is also a requirement for
all networks to include a slack bus, which is responsible for keeping the balance between load and
generation. It will consume surplus power from the generators and supply the required power if
needed to fulfill a power deficit. The slack bus is an imitation of the connection to the power grid,
which will always have far greater capacity than the local grid.
Network linking components are used to construct the network topology, which is represented as
a directed graph, G = (V,E), with nodes and edges representing busbars and transmission lines
respectively. The set of edges(E), represents the connections between the integer set of nodes(V ).
Each connection is represented as Ei,j where i and j are integers describing which nodes the edge
is connected between. The need to represent the network as a directed graph arises from modeling
of transmission line losses which entails that power injected at one side of the transmission line is
not equal to the power received at the other end.

3.2.2 Environment simulation

Figure 3.2: Flowchart of how new state and rewards are calculated based on agent action in the ANM environment,
taken from [82].

The environment can be divided into several smaller components, each with a dedicated function.
The next_state block is responsible for the deterministic simulation of the power network given
the agent’s output action. This is done by solving for the power flow using Newton’s method. The
loads and available renewable energy are subject to change for each time step, the logic defining the
temporal change of these values is defined in the next_vars block. These changes are then used
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in the generation of the next state vector, st+1. It is important to note that the agent requires
some information about how these variables change in order to keep it Markovian. This is ensured
through the introduction of an auxiliary vector, aux, containing all necessary information to infer
the next state. The state is further used to calculate the reward for the current time step, rt, using
the reward function defined in the reward() block. The state can be observed by removing some
elements from the vector, forming an observation state, os+1. This is done to simulate components
outside the agent’s control. However, this was not done for the ANM6 network, as it is a relatively
small network.

3.2.3 State vector

The state vector, s = [P0...n, Q0...n, SoC, P
max
0...n , κ], includes active(P0...n) and reactive power(Q0...n)

injections from devices into the grid; the SoC of DES units, and the maximum production capacity of
generators(Pmax

0...n ). To capture temporal dependencies and ensure Markovian properties, an auxiliary
variable(κ), is included. This variable enables the modeling of additional temporal factors that
influence future power injections and maximum production, ensuring that the state transitions are
solely conditioned on the current state of the environment and the action taken by the agent.

3.2.4 Action vector

The action vector, denoted as a, encompasses the set of control variables that the agent can manipu-
late in each time step. These variables, represented by the action vector a = [P g

0...n, Q
g
0...n, P

DES , QDES ,
consist of active power injections setpoints of generators (P g

0...n), reactive power setpoint of gener-
ators (Qg

0...n), active power injections for DES units(PDES), and reactive power setpoint of DES
units(QDES ]).
These variables are constrained by the physical limits of the components shown in Table 3.1, avail-
able renewable power,PRES

0...n , as well as the current SoC of DES units. The action space is bounded
by these constraints, ensuring that the agent’s choices adhere to the practical limitations of the
power system.
However, the agent is still able to choose actions that are outside of this feasible space. These
occurrences are resolved by adjusting to the closest valid point according to Euclidean distance in
the subsequent state update. This approach ensures that the agent’s decisions align with the actual
physical constraints of the power system.

3.2.5 Reward function

The reward function of the environment is defined to incentivize two types of behaviors, with
network stability being the main priority and a goal of minimizing energy loss and renewable energy
curtailment being a secondary goal. The function is defined as follows:

rt =

clip(|l|∆t, 0, c1) + clip(pλ∆t, 0, c2), if st+1 /∈ Sterm

c2
1− λ

if st+1 ∈ Sterm
(3.1)

where energy loss l, and penalties p are defined as:

l =
V∑

v=0

max(0, PRES
max − PRES) +

E∑
e=0

Ploss (3.2)

p =

N∑
i=0

max(0, |ui| − umax
i ) + max(0, umin

i − |ui|)) +
line∑
j=0

max(0, |kij | − kmax
ij ) (3.3)

with PRES
max and PRES being the maximum available renewable power and the renewable generator

set point, respectively. Ploss are the losses resulting from power transmission. ui is the voltage of
the i-th bus and the max/min superscripts denote the maximum and minimum operating limits for
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the voltage not to collapse. kij is the apparent power flowing though line ij with the subscript being
the line capacity. The reward is bound between the values [c1, c2] which are hyperparameters used
to limit the reward received each transition. A terminal state Sterm is reached when the network
solver is unable to converge to a solution for st+1. This is usually caused by a collapse in voltage
on one or more of the busbars. This is most commonly due to a shortage in reactive power [83].

3.2.6 Example environment ANM6

The ANM6 environment consists of 6 busses with 2 passive loads, 2 renewable sources, one DES
unit, and one fossil generator used as the slack generator. These buses were interconnected with 4
transmission lines and one transformer. The two intermittent renewable sources consist of a solar
farm and a wind turbine farm. This topology is illustrated in Fig. 3.3. The properties of these
components can be found in Table 3.1. The DES unit has additional parameters, SoCmax which is
set to 100MWh.

Figure 3.3: Example of the UI of the gym environment, showing the topology of ANM 6. Each component is
explained in the illustration legend.

Table 3.1: Power network parameters

Bus Type Pmax Pmin Pc Qmax Qmin Qc

3 Solar 30 0 20 30 -30 ±15
4 Wind 50 0 30 50 -50 20
5 DES 50 -50 ±30 50 -50 ±25
3 Residential 0 -10
4 Industry 0 -30
5 EV park 0 -30

Each component has a defined maximum and minimum value for active and reactive power. There
is also a limit to how much power a component can sink or inject simultaneously. This relationship
can be seen in the PQ capacity diagram in Fig 3.4. These limits arise as the components in actuality
are limited by their apparent power rating defined in equation (3.4). So the real limits are curved,
however, for simplicity, the limit used is a linear slope between Pc and Qc. The DES unit is also
constrained by its SoC, not being able to inject any active or reactive power if no energy is stored,
as well as not being able to sink any reactive or active power if full.

S =
√
P 2 +Q2 (3.4)
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Figure 3.4: PQ capacity diagram

3.2.7 ANM6 Easy scenario

The ANM6 Easy scenario, designed by [82] is a combination of the ANM6 topology along with a set
of production and load curves. This is meant to simulate a potential scenario seen on a normal day
of a grid operator. The problem can be broken down into three stages, with a transitional period
between each stage, as shown in Fig. 3.5. The stages are referred to as stages A, B, and C, and are
highlighted as green, red, and blue sections, respectively. These stages are:

• Stage A: This stage simulates a night with high winds and low power consumption. This
means that there is excess power in the grid which can be stored in the DES unit.

• Stage B: This stage simulates when people are going to and returning from work. This period
has low wind and solar production and slightly higher demand from industrial and residential
loads. The demand for the EV park is at its peak when cars are charged after the commute.
This creates a high demand for bus 5, and the DES has to be unitized to not exceed the
capacity of the transmission line going into this bus.

• Stage C: In this stage, the EVs are fully charged, so there is no demand for the EV park.
People are at work so industrial demand is at its peak, and the residential demand is minimal.
During this period solar and wind farms are at peak production.

Each day is represented in 15-minute intervals, resulting in a total of 96 steps per day. This was
chosen as it is a common resolution used by DSO for energy reserve markets [84].

3.2.8 Clipped Reward

Periodic evaluations were performed every 40k steps to assess the performance of the agents in the
ANM6-Easy task. During these evaluations, the training is paused, and the current baseline policy,
πθ, is used to perform Nr = 5 rollouts, each spanning T = 5000 timesteps, in a separate instance of
the environment. The performance metric, R(s, a), is calculated as the expected return from the
initial state, approximated by the average discounted reward(R̃πθ

) over these rollouts:

R̃πθ
≈ 1

Nr

Nr∑
i=1

T−1∑
t=0

γtrit (3.5)

Here, rit are the rewards during the ith rollout. Given that the rewards are bounded by rclip,
approximating the true infinite discounted return may introduce an error. The potential deviation
is bounded, as shown in the equations below:
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Figure 3.5: Showing load and maximum available active power throughout a 24-hour period.

R̃πθ
(s) ≤ rclip

1

1− γ
and

T−1∑
t=0

γtrt ≤ rclip

(
1

1− γ
− γT

1− γ

)
(3.6)

3.3 Baseline models training

3.3.1 Training

The models were trained using the learn() method from SB3 with a time and normalization
wrapper around the environment. The normalization wrapper was used to normalize the action
space to be within the range [-1,1], and The time wrapper was used to define the maximum length
of each episode, which was set to 5000 steps. The default SB3 hyperparameters shown in Table 3.2
were left unchanged for training as they were sufficient to generate good results in the environment.
However, it should still be noted that better performance is likely possible through hyperparameter
optimization. The purpose of the models was to serve as a baseline and not a lower bound.

Table 3.2: Baseline models hyperparameters

(a) PPO

Hyperparameter Value

Adam learning rate 3× 10−4

Discount factor (γ) 0.995
Minibatch size 64
Entropy coefficient 0
Clip ratio 0.2
Number of epochs 10
Value function coefficient 0.5
GAE lambda 0.95
Max gradient clip 0.5

(b) SAC

Hyperparameter Value

Adam learning rate 3× 10−4

Discount factor (γ) 0.995
Minibatch size 256
Entropy coefficient auto
Buffer size 1× 106

Learning start 100
Soft update coefficient 5× 10−3

Target update frequency 1
Gradient step 1
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3.3.2 Evaluation

A callback function was used to evaluate the agent every 40k timesteps. The evaluation consisted
of averaging the episode reward from five runs each with a length of 3k steps. The episode reward is
an accumulation of the step rewards in the episode. The difference between the environment used
for evaluation and the one used for training is that the latter returns normalized rewards instead
of discounted rewards. The criterion for when to stop training was derived from the return of the
evaluations, where training was stopped once the difference between consecutive evaluations was
negligible. This was found to be around 700k timesteps.

3.3.3 Dataset generation

The dataset, D, was generated by collecting the model rollouts, a(s), the environment state, s(at−1),
as well as the reward, r(a, s), and data on whether or not the environment is in a terminal state,
s ∈ sterm ⇒ t = ⊤. The evaluation environment was used to collect trajectories as the reward
should be unnormalized. This allows for the dataset to be utilized by other models, leaving the
option to normalize the values if needed. Furthermore, the unnormalized reward was required to
calculate the returns-to-go value for the decision transformer. Returns-to-go at timestep, t, denoted
as R̂t is calculated using Eq. 3.7, where T is the last timestep of the trajectory. In addition to
collecting the trajectories, the logger also collected metrics from the environment that were not
a part of the state vector. This was done to allow for a more in-depth analysis of the model’s
performance in the environment.

R̂t =

T∑
t∗=t

rt∗ (3.7)

3.4 Decision transformer

3.4.1 Training

The two DT configurations were trained similarly by backpropagating the loss calculated with mean
squared error (MSE). The DTa model only used the MSE between the masked predicted action and
masked action from the dataset, whereas the DTar included an additional loss of the MSE between
the predicted reward and the actual reward in the dataset. The target return-to-go was set to -130
and remained the same during training as it did during inference. This value was chosen to be
slightly higher than the average reward of the dataset.
In the paper that introduced the DT model, [71], it is claimed that the prediction of reward and
state had no effect on model performance. However, the prediction of reward is required for our
approach to approximate the reward received from an action. This would then be used as the reward
function for the PSO.

3.4.2 Context window

The model used a context window of size K for predicting future action and reward for DTar. This
implies that the previous state, actions, and rewards-to-go need to be stored between each step for
the K previous steps. This was achieved by using a deque buffer which removes the oldest trajectory
when the buffer is full. An attention mask was also required since the buffer would be empty at the
start of inference, and the empty values should not be included. This was achieved by initializing
the buffer with a zero-mask, and updating this to 1 once a trajectory had been collected.

3.4.3 Optimizer

When training the decision transformer, we employed the AdamW(Adam with weight decay) opti-
mizer with a learning rate of 10−4 and a weight decay of 10−3. The AdamW optimizer was chosen
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for its adaptive learning rate properties and weight decay capabilities, which have demonstrated
effectiveness in enhancing training stability and convergence in deep neural network models [85].

3.4.4 Scheduler

To further optimize the training process, we implemented warm startup scheduling using the Lam-
daLE scheduler. The learning rate of the optimizer was linearly increased from 10−5 to 10−4 over
a period of 10k steps. The smaller initial learning rate allows the optimizer to calculate a better
approximation for the gradient by using more samples before the learning rate is large enough to
alter the weights. This guards against the model being pushed in the wrong direction based on poor
gradients [86].

3.4.5 Mini-batching

Training used a batch of 64 randomly chosen trajectories per epoch. These trajectories were normal-
ized such that all values were within the range [-1,1] using min-max scaling. This is a well-established
method to reduce training time [87]. A slice equal to the length of the context window, K was ran-
domly selected from each trajectory. For the edge cases where the end of the selected slice was
outside the range of the trajectory due to a terminal state being reached, the samples were padded
with zeros to ensure each slice was of equal length. This ensures that the samples have start indexes
in the whole range of the trajectory and that the terminal stage is not always found at the end
of a slice. Only having the terminal state appear at the end of a slice could lead to a wrongful
correlation between position embedding and terminal state.

3.4.6 Evaluation

The model was evaluated every 40k step. Evaluation of the model is done by taking the predicted
actions from the model and denormalizing them back to their respective magnitudes before using
them as input to the ANM gym environment. The model was evaluated until termination or reaching
5k steps. This was repeated 3 times, and the average episode length, step reward, and overall reward
were used to determine the performance of the current epoch. If this was the best performance so
far, the model parameters were saved as a benchmark for later epochs.

3.4.7 Hyperparameters

The hyperparameters shown in Table 3.3 are primarily related to the transformer’s architecture.
Hyperparameter search was not performed as it would only be limited to a shallow search due to
slow training time in addition to the large amount of numbers iterations required to reach a stable
region. For this reason, the only hyperparameters changed from the MuJoCo configuration in the
original paper, were the number of layers and attention heads, which were both increased to 4.

Table 3.3: Decition transformer hyperparameters

Hyperparameter Value

Number of layers 4
Number of attention heads 4
Embedding dimension 128
Context length(K) 48
Batch size 64
Activation function ReLU
Grad normalisation clip 0.25
Learning rate(γ) 10−4

Weight decay(λ) 10−3
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3.5 Particle Swarm Optimization fine-tuning

The PSO algorithm was implemented in accordance with the pseudo-code 3, in section 2.6.1. The
original implementation aims to minimize the cost from the cost function,f . However, our goal was
to maximize reward, so the implementation is modified accordingly by replacing f with the reward
function R(s, a). The parameters used in the implementation are listed in table 3.4. The initial best
position, g, was set to the predicted action by DTar. The upper and lower bounds of the uniform
distribution were set to ± 0.2 of the initial action, clipped by the range [-1,1]. This was to ensure
that the new action was not too different to the initial action. This was done since the local minima
of the full range of actions might not account for future rewards. Therefore, the action space of
the PSO was limited to a shallow region around the initial action. When evaluating a particle’s
position, only the last action of the DT context window was mutated. The deque buffer was only
updated by g once the optimization had converged.

Table 3.4: PSO hyperparameters

Hyperparameters Value

Number of particles(N) 15
Inertia (w) 0.05
Cognitive coefficient(ϕp) 0.6
Social coefficient(ϕg) 0.8
Upper bound (bmax) a + 0.2
Lower bound (bmin) a− 0.2
Convergence threshold(τ) 0.1
Max iterations(tmax) 20

3.5.1 Convergence criteria

The criteria used to determine the convergence of the optimization was the sum of differences
between the best particle positions of the current iteration compared to the previous was, smaller
than some threshold, τ , defined mathematically as τ ≥

∑N
i=0(pi,t−pi,t−1)

2. Additionally, an upper
limit, tmax, was used to terminate the optimization if no convergence had been reached.
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Chapter 4

Results

In this chapter, the results of the baseline model’s training and evaluation are presented, and metrics
for validation of the variance of the generated dataset are introduced. Next, the results from the
training process of the decision transformer are presented. In addition, the performance of the
decision transformers is evaluated by investigating the current flow in the network. Lastly, the
results from the PSO fine-tuning are presented and compared with the non-fine-tuning results along
with metrics for the decision transformer’s performance as a cost function estimator.

4.1 Baseline training and evaluation

In this section, the performance of the baseline models is evaluated. Each figure represents an
average performance over multiple independent runs. The shaded area indicates the maxima and
minima values of these runs.

(a) (b)

Figure 4.1: Training loss PPO(a), and SAC(b)

Training loss for an RL model is generally not as interpretable as in supervised learning. However,
it serves as an indicator of the stability of the learning process, with the expectation of having loss
asymptotically decrease towards zero. The PPO loss can be observed to drop quickly and remain
close to zero for the duration of the training with the variance being approximately 0.03 up until
step 5×105, where the loss stabilizes. This roughly aligns with when the evaluation reward plateaus,
seen in Fig. 4.2. It should be noted that the loss, L, depicted in 4.1a is a combination of losses as
defined in (2.15), which simplifies to the following equation:

L = Lpolicy + centLent + cvfLvf (4.1)

where, Lpolicy is the policy loss, cent is the entropy loss coefficinet, Lent is the entropy loss, cvf is
the value function coefficient, and Lvf is the value function loss.
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The loss from the SAC training, shown in Fig. 4.1b, shows both the actor loss, La, and critic loss,
Lc, rapidly moving towards zero. It should be noted that this figure contains fewer data points than
the PPO loss since the SAC model was only set up to log the mean loss of multiple gradient steps.

Figure 4.2: Average of the accumulated discounter rewards received in each episode of the evaluation runs.

The average discounted reward obtained from 3 independent training runs of the SAC and PPO
models are shown in Fig.4.2. The performance of each independent PPO model is initially varied
and sporadic. This settles down around the 350k step where the performance increases before
plateauing after the 500k steps. A similar trend is observed for the SAC training, however, it starts
to see relatively good performance after only 100k steps. Then the performance gradually increases
for the remainder of the training.
Recall that at each evaluation step, 5 evaluation episodes are evaluated. The scalar average of these
are again averages between the 3 runs. Hence, the variance of the 5 evaluation episodes is not
captured in the figure.

4.1.1 Dataset variation

(a) (b)

Figure 4.3: Showing the distribution of trajectories in the dataset with the use of boxplot, displaying actions and
rewards(a), and states(b). Note that s17 has been left out of the figure since it always oscillates between [0,95]

The distribution of normalized values on the action and state vectors, as well as rewards contained
in the offline training dataset, is shown in Fig.4.3 as a box plot. The top and bottom of the box
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represent the 75th and 25th percentile of the data, whereas the orange line represents the median.
The whiskers represent the 0th and 100th percentile, and the blue dots are outliers in the data.

4.2 Decision transformer training and evaluation

(a) (b)

Figure 4.4: Decision transformer training and evaluation loss during training.

The training loss of the two DT models DTa, and DTar are shown in figures 4.4a and 4.4b, respec-
tively. The test and validation loss in both figures can be observed to decay exponentially. The
loss of DTar is higher than DTa, which is to be expected as the loss value also includes the MSE
of the predicted reward. The validation loss remains greater than the test loss which is indicative
of a model training correctly. The decline of the validation loss in conjunction with test loss is an
indication that the model can generalize to the trajectories in the holdout set.

Figure 4.5: Comparison between the average reward found in an episode from the dataset,rd, and the average
reward achieved by the decision transformer rDT

The average reward of a 1k step trajectory from the dataset is compared with the reward obtained by
the agent in Fig. 4.5. This trajectory length roughly equates to a month of simulated operation, as
each day consists of 96 steps. It can be seen that the reward in the dataset is consistent throughout,
with there being little to no deviation from the average compared to the minima and maxima,
shown as the shaded region. It can be seen that for large parts of the day, the DT agent has similar
performance to the one in the dataset, however, between the hours 06:00 to 09:00 and, 16:00 to
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19:00 the agent performs worse. Looking at the load chart in Fig. 3.5 it can be seen that these
regions are the transitionary periods going into stages B and C, respectively.

Figure 4.6: Showing the average power flow in each branch as a percentage of max capacity for a 1k trajectory,
with the shaded area being the maximum and maximum observed in the trajectory

In the overview of the average branch power flow shown, in Fig. 4.6, it can be seen that the only
branch exceeding the power limit of 100% is branch b2−5. This occurs between 8:00 and 9:00, which
is in the transition period between stages A and B. Looking at the stage of charge of the DES unit
in that branch, shown in Fig. 4.7, it can be seen that the DES still charging as the load from the
EV park, shown in red in the figure, is starting to increase. Comparing the charge of the DES in
the dataset, SoCd, to the charge from the DT, SoCDT , it can be seen that DES is generally charged
slower by the DT agent.

Figure 4.7: Showing the SoC of the DES unit connected to bus 5 compared with EV park load. Note that the SoC
level does not start at 0%.

In the comparison of available power and the actions taken by the DTa agent and the ones in the
dataset, shown in Fig. 4.8, it can be seen that when the available power is close to zero the agents
have setpoints higher than what is possible. Recall that this is resolved by taking the closest valid
action based on Euclidean distance, so the input to the environment will be the max available power
in these cases. Another observation is that the setpoint seems to change more sporadically in this
region where the setpoint is set above the max available power.
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(a) (b)

Figure 4.8: Comparing DTa agent’s actions and dataset actions with available power for wind(a) and PV(b)

4.3 Particle Swarm Optimizer fine-tuning

(a) (b)

Figure 4.9: Showing original reward for action taken by DT and reward after PSO fine-tuning with a cost function,λ,
equal to the simulation penalty function,ϕ defined in 3.2 (a), and the predicted reward from model DTar(b)

In Fig. 4.9a the reward from an action taken by the DT is compared with the reward after PSO
fine-tuning with perfect knowledge. This refers to the fact that the cost function in the PSO can
utilize the reward function from the environment, giving it the exact reward a different action would
produce. This figure is meant to illustrate the PSO’s ability to improve the performance of the agent
given a good estimation of the reward from an alternative action. The original action taken by the
DT is used as input to the PSO as an initial starting point. Note that this figure is only showing
the reward from 96 steps as opposed to an average over many steps as in previous figures, this is
due to the heavy computing cost of solving the network equations to calculate the reward each time
a particle evaluates its position.
A comparison between the DT’s predicted reward for an action, a, and the actual reward obtained
from the simulator for the same a is shown in Fig.4.10. Recall that a represents the 6-dimensional
vector composed of sets of P-Q set-points for each controllable component. The x-y directions in
each subplot represent the normalized set-point concerning the limits of action space, A, for the
reactive effect, Q, and active effect,P , respectively. The reward at each point is calculated by
evaluating each point in a 50× 50 grid with a Gaussian kernel to get a smooth transition between
the discrete steps. While one set of P-Q points was evaluated, the other four values in a were
kept as zero. The state vector, s when a was evaluated was kept constant and was sampled from
the training dataset. The chosen sample was at 12:00 o’clock in simulation time, which is in the
transition period between stages B and C. This was chosen as it is a period with both PV and wind
power available, as well as moderate demand.
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Figure 4.10: Showing the reward predicted by the DT and the actual reward from the environment for a subset of
actions in the action space.

It can be seen that the maxima of the predicted rewards and the actual rewards are dissimilar.
The maxima of the predicted reward is close to the center, whereas the maxima of the predicted
reward is close to the upper right corner. This indicates that the DT favors power production and
charging of the DES unit. However, it should be noted that the figure only displays an extremely
small subset of actions compared to the actual size of the action space.

4.4 Summary

Table 4.1: Training time on a Nvidia A100 80GB GPU and Intel Xeon E5-2660 v4 CPU averaged over 3 runs.

Models Training time

SAC 7h 8m ± 38m
PPO 6h 58m ± 14m
DTa 3h 14m ± 12m
DTar 3h 27m ± 8m

The training times shown in Table 4.1 are included as a useful comparison for replication. However,
the shorter training times of the DT should not be interpreted as an advantage, its offline training
so the overhead of the environment is only present in the evaluation. Furthermore, the majority of
the training of the baseline models was CPU-bound due to the gym environment not being able to
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utilize the GPU.

Table 4.2: The average sum of discounted rewards for 1000 steps, except for PSOperf which was extrapolated. DTa

denotes the model only trained on predict action where DTar is trained to predict both action and reward.

Model Discounted reward

SAC (dataset) -131 ± 9.321
PPO −159± 4.412
DTa −143± 11.673
DTar −158± 12.112
DTar + PSO −138± 8.754
PSOperf (extrapolated) -46.5

The performance of all the models is summarised in table 4.2. The best performance was achieved
with the SAC as highlighted in the table. The extrapolation of the performance of the PSO with
perfect knowledge is included as a reference to achievable scores in the gym. However, it should
be noted that extrapolating the performance over 1k steps from only 96 data points is likely to
introduce a large uncertainty.
Some key findings are that DTa has 9.2% worse performance than the dataset. Moreover, it can be
seen that the performance of adding PSO to DTar yielded an improvement of 12.6%.
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Chapter 5

Discussions

5.1 PPO & SAC

When using reinforcement learning, specifically Proximal Policy Optimization and Soft Actor-Critic,
for active power grid management, it is important to acknowledge the complexity and sensitivity
of these algorithms to hyperparameter tuning and procedural changes. This recognition plays a
fundamental role in forming the quality of datasets used for training models like the Decision
Transformer.

The complexity of tuning these algorithms comes from their numerous hyperparameters and im-
plementation details. For instance, PPO’s performance is dependent on factors like vectorized
architecture, weight initialization, the epsilon parameter in the Adam optimizer, learning rate con-
ditioning, Generalized Advantage Estimation (GAE), mini-batch updates, normalization of advan-
tages, clipped surrogate objective, and value function loss clipping. Each of these components can
notably influence the algorithm’s efficiency and the resulting policy’s quality.

Similarly, SAC’s performance depends on its own hyperparameters, including the temperature pa-
rameter that controls the trade-off between exploration and exploitation, the learning rates of the
actor and critic networks, and the architecture of these networks. The fine-tuning of these param-
eters can significantly affect the agent’s learning curve and the stability of training.

Based on this complexity, achieving optimal performance in a specific task like power grid man-
agement is difficult. There is a good chance that better performance could be achieved with more
precise hyperparameter tuning or the integration of additional methods. These improvements could
potentially lead to a higher-quality dataset for training the DT, which is key since the DT’s perfor-
mance is directly influenced by the quality of the dataset it is trained on.

Nevertheless, the training loss seen in figs 4.1a and 4.1b indicate stable training. Perhaps the
best evidence of the models successfully being trained is the evaluation performance seen in 4.2,
which has a substantial increase from the initial discounted reward and reaches a plateau where the
deviation between subsequent evaluations is minimized.

A notable drawback in our approach is the comprehensive array of hyperparameters that is used.
These were mainly selected based on heuristic methods, drawing from their demonstrated perfor-
mance in existing literature [82]. This reliance on heuristic selection indicates a potential area for
more systematic, practical optimization in future research.

However, it is important to mention that our thesis does not aim for optimal performance but
rather focuses on the relative performance based on the available dataset. This approach is useful
for academic research, where the primary goal is to explore and understand the capabilities of these
algorithms, and their limitations, in a specific context. The information attained from this research
contributes to the broader understanding of how RL can be effectively applied to complex systems
like power grids.
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5.2 Decision transformer

5.2.1 Model choice

The DT was chosen for its strong performance in tasks with complex reward dynamics like the
space reward key-to-door gym highlighted in [71]. This model’s capability to understand RL as a
sequence prediction problem makes it suitable for managing the sequential and restrictive conditions
of power grid operations.
It directly models the cumulative future rewards as a portion of the input, letting the model account
for long-term consequences of actions in a way that is both effective and computationally efficient.
This ability is particularly important in the context of power grid management, where actions
taken at one timestep can have far-reaching impacts due to the system’s cyclical patterns and the
limitations imposed by transmission line ratings.
The DT can effectively handle temporal dependencies and multi-stage decision-making in power
grid management because it uses a transformer-like architecture, which is especially proficient at
understanding sequences of data. In power grid management, decisions at one point in time can
significantly affect future states and decisions. The transformer’s ability to analyze these sequences
helps it estimate the best actions to take at each step, considering both current conditions and their
effects on future grid stability and energy distribution. This makes it theoretically well-suited for
the sequential nature of managing a power grid, however, unable to surpass the results of traditional
RL algorithms in our simulations.

5.2.2 Generalization Across Grid Scenarios

A fundamental strength of the DT model is its ability to generalize from training scenarios to
new environments. The model’s success in adapting to the cyclical nature of the power grid,
while complying to transmission regulations, indicates robust generalization capabilities. However,
the model’s performance variance during transitions between stages B and C implies a need for
further refinement. Improving generalization could involve integrating more diverse scenarios during
training or developing methods to better handle transitional dynamics.

5.2.3 Reward-to-go vs. causality

DTs utilize RL as a sequence modeling problem, essentially transforming RL into a form of sequence
prediction. Here, the concept of ’reward-to-go’, which is the total accumulated future rewards from
a given state, plays a vital role.
One argument against ’reward-to-go’ is that it might violate causality by implementing future
rewards into the current decision-making process. However, in the context of DTs, ’reward-to-go’
is used more as a guiding heuristic rather than a definitive future prediction. It is like setting a
performance target based on historical data, which impact but does not determine, the actions
taken by the model.
This approach heavily leans on the quality and nature of the data which is used to compute ’reward-
to-go’. In cases where the data is not representative of the possible range of scenarios the model
might encounter, the effectiveness of the DT could be reduced. Furthermore, the reliance on his-
torical data to set these ’rewards-to-go’ is not always practical, especially in dynamic environments
where future rewards are unpredictable.
While ’reward-to-go’ in Decision Transformers seemingly challenge traditional rules of causality in
RL, it operates within a framework where future rewards are used as a reference point rather than
a deterministic factor in decision-making. This refined approach allows DTs to utilize the strength
of transformer models for sequence prediction while acknowledging and working within the inherent
uncertainties of RL environments.

5.2.4 Decision transformer training

In evaluating the robustness of our Decision Transformer models, DTa, and DTar, an important
measure to take is their potential overfitting to the training dataset. Overfitting is generally not
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a concern in RL, but since our model is reliant on an offline dataset, there is a chance the model
is only doing behavior cloning, meaning that it copies the actions seen in the dataset without
generalization. This is usually analyzed by comparing the model’s performance with a behavior
cloning algorithm. However, we opted for a simpler approach of using a holdout set.
For our analysis, we reserved a holdout set, making up 20% of the total data, to compare the
training loss (Lt) with the validation loss (Lv). The reasoning behind using a holdout set is to have
a dedicated portion of data that the model has never seen during training, which serves as a proxy
for real-world, unseen scenarios.
Referring to 4.4a and 4.4b, the training and validation losses both show an exponential decay, which
is a good sign indicating that the model is learning and improving over time. If the model were
noticeably overfitted, we would expect the validation loss to either plateau or increase after a certain
point, as the model’s predictions would start to diverge from the actual outcomes in the holdout
set.
Furthermore, the training procedure’s periodic evaluations on the separate environment instances
help secure that the policy remains general and applicable beyond the training dataset. It is also
worth mentioning that an overfitted model would likely perform well on the training set but poorly
on the validation set, which is not the case here.

5.2.5 Transition challenges

The DT model has some challenges during the transitional periods between stages A and B. These
stages are characterized by significant shifts in demand and production that are critical to the
day-to-day operations simulated in the model.
Stage A, representing the morning and evening commute times, involves a spike in demand for low
renewable energy generation, particularly from wind sources. The DT agent, which is trained to
maximize rewards, have some problems here due to the sudden change from the over-supply in Stage
A to the under-supply in Stage B. This situation is intensified by the high demand at branch b5−2,
as seen in 4.6 due to electric vehicle (EV) charging, placing further strain on the system.
It can be seen from Fig. 4.7 that the DT charges the DES slower compared to what is done in the
dataset in the lower demand hours with high wind in Stage A. It is also apparent that the DES is
still charging; putting additional load on branch b2− 5 which leads it to exceed its rating, resulting
in high penalties.
Similarly, Stage B transitions to a period where EV charging demand decreases, but industrial
demand increases while residential demand dips. Although renewable energy production rises, the
DT agent must navigate a complex balance between varying demands and the sudden influx of
renewable energy.
These transitional periods present an apparent contrast from the more stable conditions in other
parts of the simulation, requiring the DT to adapt quickly to the dynamic environment. The reward
figures associated with the DT model exhibit a notable dip in performance during these times (06:00
to 09:00 and 16:00 to 19:00), as illustrated in 4.5. The pronounced fluctuations in the graph reflect
the model’s difficulty in optimizing decisions amidst the competing demands of the grid.
The scenario-specific challenges during these periods are indicative of a realistic grid management
situation where demand can fluctuate greatly, and production from renewable sources can be unpre-
dictable. Despite these struggles, the DT’s ability to learn from sequences of actions and rewards
is still beneficial. It allows the model to potentially capture and predict patterns over longer-term
horizons, even if short-term transitions may introduce some problems.

5.2.6 Decision transformer as reward function

There is a notable discrepancy between the predicted reward and the actual reward, as depicted in
Fig. 4.10. However, the actual reward represents the instantaneous reward for that step but does
not take into account how it may affect future actions. For instance, not charging the DES will lead
to a penalty in the future, as there will be a power deficit in branch b2−5. Looking at Fig. 4.9b it is
also seen that the 12:00 o’clock region is one where there is no difference between reward for DTar
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and DT with PSO. Since the PSO takes the predicted action from DTar as the initial global best
action, this might indicate that no higher rewards were found in the PSO search space.

5.3 PSO

The decision to employ PSO is mainly due to its simplicity and efficiency in handling complex,
non-differentiable problem spaces; which is a common characteristic in power system optimization.
Compared to gradient-based optimizers, PSO does not require derivative information, making it
more fitting for our project where the problem space involves non-linear and potentially non-
differentiable dynamics. Traditional optimizers like gradient descent or quasi-Newton methods are
not as effective here, as they are dependent on gradient information that is difficult to estimate in
such environments [88]. Furthermore, PSO’s ability to explore a broad search space with a swarm
of particles helps in avoiding local optima, a well-known constraint in single-point search methods
like hill-climbing algorithms.
However, PSO does come with drawbacks, for example, its inability to guarantee convergence to
a global optimum and potential inaccuracies in high-dimensional spaces. Even when considering
these limitations, its robustness in exploring complex landscapes and ease of implementation make
PSO a fitting choice for our project’s unique requirements, creating a very good balance between
computational feasibility and the ability to navigate through a multifaceted optimization problem.

5.3.1 Limitations of using PSO

The evaluation of the PSO performance gives a perfect reward function, seen in Fig. 4.9a shows
that the PSO is able to improve upon an additional inferior action. This is especially apparent when
comparing the extrapolated accumulated reward in Table 4.2, with the other models. However, it
is important to note that the extrapolation of PSO’s performance from a limited number of 96 data
points can be misleading. The uncertainties in this process may lead to an overestimation of the
optimization capabilities, particularly over a long operation horizon like 1k steps.

5.3.2 Reward Function

When designing a reward function for a RL environment it is important that this function does not
only lead the agent toward the target goal but also embeds an understanding of the operational
limitations and realities of the system that is being managed.
Our findings analyzing the agents’ actions, as shown in 4.8 indicate that the reward function of the
environment is not complex enough to encourage the desired behavior. To address this, we propose
incorporating a penalty in the reward function for unrealistic power requests, aiming to align the
agent’s actions with the realistic constraints of power generation sources.
The reason for choosing this modification is twofold. Firstly, it addresses a habit observed in the
agent’s behavior, where it tends to request large amounts of power from renewable sources, without
considering their actual availability, as shown in 4.8. This pattern indicates that the agent was not
sufficiently factoring in auxiliary vectors, which provide information about available power, into its
decision-making process. By penalizing unrealistic power requests, the reward function incentivizes
the agent to gain a more nuanced understanding of the power generation capabilities and limitations
of various sources.
Secondly, this penalty aims to minimize the difference between requested power and the actual
power that is delivered, developing a more efficient energy management. In a scenario where a solar
plant has a maximum capacity (Pmax) of 20 MW but only 4 MW is available, penalizing a request
for 20 MW encourages the agent to readjust its requests based on real-time availability.

5.4 Generalization abilities of the network

The generalization capabilities of our network model, especially in adapting to novel network archi-
tectures, continue to be a subject of speculative analysis. Although our thesis did not explicitly focus
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on model generalization across varying grid topologies, it is important to recognize this feature for
practical applications. Grid topologies are dynamic, and frequently changing due to maintenance,
faults, or developmental upgrades. Thus, a model’s ability to adapt to these changes is of significant
importance for its real-world applicability.
It is hypothesized that the model at present might have some challenges with novel network struc-
tures, given its training on a specific grid configuration. In real-world applications, it is not enough
for a power grid model to only understand but also adapt to these changes efficiently. The inability
to do so could lead to suboptimal decision-making, making the model less efficient and reliable.
To deal with this limitation, future improvements of the model could be integrating additional
information about grid topology into its learning model. This would mean expanding the context
window of the model to also include dynamic topological data, enabling it to get an understanding
of different grid structures. Such an approach could both improve the model’s responsiveness to
changes and also increase its predictive accuracy in various operational scenarios.
However, it’s important to note that incorporating such topological flexibility will make the model
much more complex. It would need the model to process a more diverse range of data inputs and
likely, recalibrate its decision-making algorithms to consider different grid configurations. Despite
these challenges, increasing the model’s generalization capabilities is vital for its practical application
in real-world grid management, where adaptability is as crucial as accuracy and efficiency.
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Chapter 6

Conclusions

This thesis first developed an offline dataset designed for RL training, specifically addressing ac-
tive network management with the implementation of intermittent renewable energy sources. The
dataset was created through the evaluation and training of two state-of-the-art models, SAC and
PPO. SAC showed a better performance of the two networks and was thus used to develop the
offline dataset, which served as a teacher network for the DT.
A key focus of this research was the implementation and testing of two configurations of the DT.
One DTa was designed to predict actions based on trajectory contexts, while the other DTar also
included reward prediction in the given states. Even though the DT models did not surpass the
dataset’s set performance benchmarks. The DTa showed similar results with only a decrease in
performance of 9.2% compared to SAC.
This thesis also introduces the use of PSO with the DTar model. This approach utilized the DT’s
reward prediction ability as a reward function, refining the decision-making process. Interestingly,
training the DT to predict both rewards and actions showed a slight decrease in performance,
the implementation of PSO notably increased the overall effectiveness of the model by 12.6%.
This combination of DT and PSO underlines the potential of combining traditional optimization
techniques with modern predictive models to tackle complex grid management challenges, marking
a potential direction for future research in this field.

6.1 Future work

As discussed in subsection 5.3.2, future work should explore changing the reward function of the
environment to see if this improves performance allowing for more complex topologies to be tested.
To get closer to real-world operations, the environment and agent need to consider the monetary
cost of actions such as curtailment and energy prices. In this case, operation costs should determine
the performance of the agent.
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Appendix A

Datasheet A

A.1 State Vector

Table A.1: Verbose description of each element of the environment state vector

Element Description Range Unit

s0 Fossile active power generation [0, 200] MW
s1 Residential active power consumption [-10, 0] MW
s2 Solar farm active power production [0, 30] MW
s3 Industrial active power consumtion [-30, 0] MW
s4 Wind farm active power production [0, 50] MW
s5 EV park active power consumtino [-30, 0] MW
s6 Energy storage active power flow [-50, 50] MW
s7 Fossile reactive power [-200, 200] Mvar
s8 Residential reactive power [-2, 2] Mvar
s9 Solar farm reactive power [-30, 30] Mvar
s10 Industrial reactive power [-6, 6] Mvar
s11 Wind farm active power [-50, 50] Mvar
s12 EV park reactive power [-6, 6] Mvar
s13 Energy storage reactive power [-50, 50] Mvar
s14 Energy storage state of charge [0, 100] MWh
s15 Solar farm available active power [0, 30] MW
s16 Wind farm available active power [0, 50] MW
s17 Time of day [0, 95] -

A.2 Action Vector

Table A.2: Verbose description of each element of the environment action vector.

Element Description Range Unit

a0 Wind farm active power set point [0, 50] MW
a1 Solar farm active power set point [0,30] MW
a2 Wind farm reactive power set point [-50, 50] Mvar
a3 Solar farm reactive power set point [-30, 30] Mvar
a4 Energy storage active power setpoint [-50, 50] MW
a5 Energy storage reactive power setpoint [-50, 50] Mvar
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