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Abstract: Abnormal event detection is one of the most challenging tasks in computer vision. Many
existing deep anomaly detection models are based on reconstruction errors, where the training
phase is performed using only videos of normal events and the model is then capable to estimate
frame-level scores for an unknown input. It is assumed that the reconstruction error gap between
frames of normal and abnormal scores is high for abnormal events during the testing phase. Yet, this
assumption may not always hold due to superior capacity and generalization of deep neural networks.
In this paper, we design a generalized framework (rpNet) for proposing a series of deep models by
fusing several options of a reconstruction network (rNet) and a prediction network (pNet) to detect
anomaly in videos efficiently. In the rNet, either a convolutional autoencoder (ConvAE) or a skip
connected ConvAE (AEc) can be used, whereas in the pNet, either a traditional U-Net, a non-local
block U-Net, or an attention block U-Net (aUnet) can be applied. The fusion of both rNet and pNet
increases the error gap. Our deep models have distinct degree of feature extraction capabilities. One of
our models (AEcaUnet) consists of an AEc with our proposed aUnet has capability to confirm better
error gap and to extract high quality of features needed for video anomaly detection. Experimental
results on UCSD-Ped1, UCSD-Ped2, CUHK-Avenue, ShanghaiTech-Campus, and UMN datasets with
rigorous statistical analysis show the effectiveness of our models.

Keywords: attention block; crowd; CNN; non-local mean; transformer; U-Net

1. Introduction

Detection of abnormal events in automated video surveillance systems is one of the
most challenging, overriding, and time-sensitive tasks. Recently, deep-learning-based
algorithms have been dominating the literature as the deep learning solutions for crowd
events detection have outperformed the conventional machine learning solutions. Mo-
tion and appearance features are widely used in video anomaly detection algorithms.
In deep-learning-based video anomaly detection algorithms, a common technique is to
build reconstruction model considering motion and/or appearance features. A common
assumption is that the reconstruction error of the frame of normal event is small but that
of the frame of abnormal event is large [1–3]. To learn normal data patterns of videos, the
deep model is trained solely on videos of normal events. Consequently, during testing
with videos of normal events, the deep model demonstrates its ability to show normal
events with low reconstruction error, but the deep model suffers from exhibiting high
reconstruction error needed for abnormal events. As a result, the error gap between the
low reconstruction error and the high reconstruction error differentiates the normal and
abnormal events in videos. Normally, research in this direction is targeted to increase this
error gap [2,3]. In brief, a larger error gap plays the vital role to detect anomaly in videos.

A burning question is: can the reconstruction-based model guarantee the expected
large reconstruction error (i.e., high error gap) of the anomaly? Liu et al. [2] claimed that
the deep model trained by minimizing the reconstruction error of normal data cannot
guarantee a higher reconstruction error of an abnormal event at the testing phase. Further,
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Gong et al. [4] stated that abnormal events may not correspond to larger reconstruction
errors due to the improved capacity and generalization of deep neural network. Thus,
reconstruction errors of normal and abnormal events will be indistinguishable, resulting in
a very small error gap [2]. Both Gong et al. [4] and Park et al. [5] suggested the addition
of a memory module for solving this pitfall. Nonetheless, the restricted memory cannot
fully reveal the distinctiveness of normal events and the effective size of memory is not
facile to find out [3]. To keep away from this problem, Zhong et al. [3] adopted a cascade
reconstruction model to increase the reconstruction error of anomaly in videos. Motivated
by the performance of the video prediction model of Mathieu et al. [6], Liu et al. [2]
presented an appearance-motion model for video frame prediction that applied a U-Net
structure [7] to predict a frame from a number of recent ones and then estimated the
corresponding optical flow. Their model was optimized according to the difference between
the output and original versions of video frame as well as the optical flow together with an
adversarial loss.

In this paper, we design a generalized architecture (rpNet) as shown in Figure 1,
which includes a group of different deep models. Each model integrates an rNet (an image
frame reconstruction network or an appearance-only stream) and a pNet (a video frame
prediction network or an appearance-motion stream), in which every stream possesses its
own contribution for the task of detecting abnormal frames. Both streams can promise
substantial anomaly scores. The fusion of outputs from two streams guarantees a certain
degree of augmentation of the error gap. Our approach is inspired by the Zhong et al. [3]
model but with distinct modules and designs. Primarily, Zhong et al. [3] applied a tradi-
tional autoencoder (AE) as an rNet and the squeeze-and-excitation network of Hu et al. [8]
as a pNet to handle motion. Differently, we apply a convolutional AE (ConvAE) or a skip
connected ConvAE (AEc) as an rNet and we adopt Liu et al.’s [2] future frame prediction
model as a pNet to handle appearance and motion. The performance of a ConvAE in rNet
is better than a traditional AE. The ConvAE extends the basic structure of the simple AE by
changing the fully connected layers to convolution layers. The ConvAE is more suitable for
the images as it uses a convolution layer. The reason of choosing Liu et al. [2] prediction
model is that a fixed and optimized procedure of optical flow estimation (e.g., FlowNet [9])
is embedded in it. Mainly, Liu et al. [2] applied a traditional U-Net [7] as the heart of their
model. We also employ a traditional U-Net [7] as the first option of our pNet. Aside from a
traditional U-Net [7], we propose to use two more of its derivatives, namely a non-local
block U-Net and an attention block U-Net (aUnet), for performance improvements.

A U-Net [7] is an improved CNN (convolutional neural network) model that can
train data with fewer samples and segment images more accurately, but its efficiency and
effectiveness can be limited by using the local operators (e.g., convolutions and down-
sampling operators) only [10]. However, non-local blocks can strengthen the temporal and
spatial characteristics and establish the long-distance dependencies of video frames [11].
Buades et al. [12] explained non-local mean operation, and later Wang et al. [11] wrapped
the non-local operation into a non-local block. A new non-local block can be inserted in
a U-Net [7] without breaking its initial behavior [10]. Because of this, Zhang et al. [13]
adopted three non-local blocks in their U-Net frame prediction model to detect surveillance
video anomaly. However, Wang et al. [11] showed that more non-local blocks lead to better
performance. To this end, we adopt four non-local blocks in the U-Net architecture as
the second option of our pNet. In addition to non-local blocks, attention mechanism puts
down less fitting features and highlights more salient features. Oktay et al. [14] introduced
attention gates in the intermediate layers of a U-Net architecture for pancreas segmen-
tation. Yet, due to better breast-tumor segmentation performance in ultrasound images,
Vakanski et al. [15] applied attention blocks at beginning layers of a U-Net architecture.
Following Vakanski et al. [15], we propose an aUnet as the third option of our pNet. There
exist some internal architectural differences at our proposed aUnet from Vakanski et al. [15].
For example, Vakanski et al. [15] employed external auxiliary inputs in the form of visual
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saliency maps, whereas we employ an internal motion saliency map and original video
frame as inputs of the aUnet.

Figure 1. Generalized architecture (rpNet) of our proposed anomaly detection framework.

We presume that if any frame ft contains an appearance anomaly then our rNet
can improve its determinability, whereas if ft contains an appearance-motion anomaly,
then our pNet can improve its determinability. The rNet and pNet enforce both the
reconstructed frame and the predicted frame to be close to their ground truth frame,
respectively. Therefore, we combine the error scores of both networks to calculate the
final anomaly score of each frame for detecting its anomalousness by considering the
anomaly scores of consecutive multi-frames (e.g., past, present, and future frames). This
also helps to exploit the persistent flow of abnormal events. In essence, we propose six deep
models by combining two-alternative of rNets and three-alternative of pNets from our
generalized framework in Figure 1: (1) AE-Unet (convolutional autoencoder and U-Net),
(2) AEcUnet (convolutional autoencoder with skip connection and U-Net), (3) AEnUnet
(convolutional autoencoder and non-local block U-Net), (4) AEcnUnet (convolutional
autoencoder with skip connection and non-local block U-Net), (5) AEaUnet (convolutional
autoencoder and attention block U-Net), and (6) AEcaUnet (convolutional autoencoder
with skip connection and attention block U-Net). Although these models can provide an
improved error gap for abnormal events, they have different degrees of feature extraction
capabilities required for crowd video anomaly detection. Consequently, in experimental
setups, some of these models showed inferior results, while others presented superior
results. For example, AEcaUnet demonstrated the best results and outperformed its
alternatives by both confirming better error gap and extracting high quality features from
the available videos.
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Our key contributions are summarized as follows:

• We propose six different deep models for crowd anomaly detection by designing a
generalized framework (rpNet).

• We propose an aUnet (see Figure 2) for an option of the pNet of our rpNet architecture.
• Experiments on five benchmark datasets and a rigorous statistical analysis demon-

strate the potential of our models with competitive performance compared with the
state-of-the-art models.

Figure 2. Our proposed aU-Net.

The rest of this paper is organized as follows. Section 2 addresses the most relevant
previous studies. Section 3 overviews our generalized architecture of rpNet. Section 4
discusses the rNet of our rpNet. Section 5 illustrates the pNet of our rpNet. Section 6
exemplifies mainly the non-local block U-Net and our proposed aUnet. Section 7 illustrates
anomaly detection on testing datasets. Section 8 hints a simulation to show that a larger
error gap is guaranteed by rpNet. Section 9 explains experimental setup and results on
publicly datasets. Section 10 compares our experimental results with the state-of-the-art
methods. Section 11 makes a rigorous statistical analysis to find superiority among models.
Section 12 concludes the paper.

2. Related Work

The related work can be classified into three groups, presented below.

2.1. Frame Reconstruction-Based Models

The following articles are primarily based on frame reconstruction and calculation of
related errors. Xu et al. [16] proposed a multi-layer autoencoder (AE) for feature learning,
which demonstrated the potency of deep learning features. Hasan et al. [1] designed
a three-dimensional convolutional autoencoder (ConvAE) for modeling regular frames.
Chong et al. [17] took the advantages of both convolutional neural network (CNN) and
recurrent neural network (RNN) for simultaneously modeling of the normal appearance
and motion patterns. Luo et al. [18] proposed a temporally coherent sparse coding-based
method, which can map to a stacked RNN framework. Sabokrou et al. [19] trained a
generative adversarial network (GAN) similar to an adversarial network, in which a
reconstruction component learned to reconstruct the normal test frames. However, all
these reconstruction-based models assume that abnormal events can correspond to higher
reconstruction errors, but this assumption may not necessarily hold always [2].
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2.2. Frame Prediction-Based Models

The following studies mainly focus on how to predict future frames indirectly or
directly. Shi et al. [20] modified the original long short-term memory (LSTM) along with
a convolutional LSTM for precipitation forecasting. Mathieu et al. [6] proposed a multi-
scale network with adversarial training for creating more natural future frames in videos.
Giorno et al. [21] designed a deep model for detecting changes on a sequence of data from
videos to see which frames were distinguishable from all the previous frames. By process-
ing the video online Ionescu et al. [22] performed a similar work to that of Giorno et al. [21].
Lotter et al. [23] designed a deep predictive neural network for video prediction and unsu-
pervised learning. Some studies (e.g., [24,25]) move to predict transformations required
for creating future frames, which boosted the performance of video prediction to a greater
extent. For example, Liu et al. [2] facilitated spatial and motion constraints for predict-
ing future frame with normal events considering U-Net structure [7]. Their model also
facilitated to detect those anomalies that do not agree the assumption. Their model was
optimized according to the difference between the output and the original versions of
video frame as well as the optical flow together with an adversarial loss. Doshi et al. [26]
predicted the future video frame using previous video frames for video anomaly detection.
To detect surveillance video anomaly, Zhang et al. [13] included the non-local block [11] in
the U-Net [7] as a generator to generate high-quality prediction frames.

2.3. Reconstruction and Prediction-Based Models

The deep model of Nguyen et al. [27] consisted of three streams namely common
encoder, appearance decoder, and motion decoder. Each stream had its own benefaction
to detect exceptional frames. Basically, they combined a ConvAE for appearance along
with a U-Net [7] for motion prediction. Their encoder was constructed by a sequence of
blocks including convolution, batch-normalization, and leaky ReLU (rectified linear unit)
activation. The decoder of their U-Net [7] had the same structure as the ConvAE except
for the skip connections. Zhong et al. [3] proposed a cascaded model composed of a frame
reconstruction network and an optical flow prediction network. By predicting optical flow
based on reconstruction frame, their model increased the gap of prediction error of optical
flow containing abnormal events.

The deep model of Liu et al. [28] composed of a prediction network, a reconstruction
network, and a generative adversarial network (GAN). The prediction network integrated
hybrid dilated convolution (HDC) [29] and DB-ConvLSTM [30] strategies to widen the gap
between normal and abnormal events, while reconstruction network used an AE structure.

Inspired by the success of the video prediction model of Liu et al. [2], we adopt a
U-Net structure to predict a frame from a number of recent ones and then estimate the
corresponding optical flow. Similar to Liu et al. [2], a fixed procedure of optical flow
estimation (e.g., FlowNet [9]) is embedded inside our pNet. The purpose of our rNet (i.e.,
ConvAE) is to learn the regular appearance structures. Table 1 summaries a qualitative
comparison of the most relevant works.

Table 1. A qualitative comparison of the most related works. MSE: Mean Square Error, PSNR: Peak
Signal to Noise Ratio.

Reference Reconstruction Prediction Network Employed Used Crowd DatasetNetwork Generator Optical Flow Score

Liu et al. [2] Not applicable U-Net [7] Flownet [9] PSNR Ped1 [31],
Ped2 [18,31,32]

Nguyen et al. [27] ConvAE ConvAE + U-Net [7]
with skip connections FlowNet2 [33] MSE Ped2 [31,32], etc.

Zhong et al. [3] Traditional AE SE module [34] Output of SE
module [34] MSE Ped1 [31],

Ped2 [18,31,32]
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Table 1. Cont.

Reference Reconstruction Prediction Network Employed Used Crowd DatasetNetwork Generator Optical Flow Score

Liu et al. [28] AE U-Net [7] + HDC [29]
+ DB-ConvLSTM [30]

Difference of
RGB [35] PSNR Ped1 [31],

Ped2 [31,32]

Zhang et al. [13] Not applicable U-Net [7] + Non-local
block [11] Flownet [9] PSNR Ped1 [31],

Ped2 [18,31,32]

AE-Unet (Ours) ConvAE U-Net [7] Flownet [9] PSNR Ped1 [31],
Ped2 [18,31,32,36]

AEcUnet (Ours) ConvAE with skip
connection U-Net [7] Flownet [9] PSNR Ped1 [31],

Ped2 [18,31,32,36]

AEnUnet (Ours) ConvAE U-Net [7] + Non-local
block [11] Flownet [9] PSNR Ped1 [31],

Ped2 [18,31,32,36]

AEcnUnet (Ours) ConvAE with skip
connection

U-Net [7] + Non-local
block [11] Flownet [9] PSNR Ped1 [31],

Ped2 [18,31,32,36]

AEaUnet (Ours) ConvAE

U-Net [7] + Proposed
attention block +
Proposed Motion

Saliency Map

Flownet [9] PSNR Ped1 [31],
Ped2 [18,31,32,36]

AEcaUnet (Ours) ConvAE with skip
connection

U-Net [7] + Proposed
attention block +
Proposed Motion

Saliency Map

Flownet [9] PSNR Ped1 [31],
Ped2 [18,31,32,36]

3. Overview of the Generalized Architecture (rpNet)

Fundamentally, we design a generalized architecture named rpNet as depicted in
Figure 1. It consists of two neural networks connected in parallel namely reconstruction
network (rNet) and prediction network (pNet). The rNet depends on appearance only as it
works with images, but the pNet relies on both appearance and motion as it works with video
frames. The key difference between images and video frames is that the video frames are
sequential and correlated, whereas the images are static. Video frames need to be measured
in both space and time dimensions, but images need to be measured in space dimension.
The rpNet includes information of both images and video frames simultaneously.

Machine learning methods in computer vision and image processing problems [37]
have been applied for a good deal of research applications (e.g., [38–51]). Deep learning is a
subset of machine learning that utilizes huge volumes of data and sophisticated algorithms
for training a model. Nowadays, deep learning models are used to detect anomalies
in various kinds of applications (e.g., [52–57]). The extraction of appropriate features
plays a decisive role for detecting anomalies in deep learning models. Recently, due
to powerful capability of deep learning models in reconstruction, it has unquestionably
made advancement in abnormal event detection tasks. The video anomaly detection
models (e.g., [1,52]) indicated that convolution is predominantly applied for extracting
features. Thereupon, such structure scarcely encodes temporal dependencies in a long
video sequence. Basically, our rNet is a convolutional autoencoder, which is similar to those
models [1,52]. Figure 3 details the two variants of the presented block diagram of the rNet
in Figure 1. In general, the rNet comprises an encoding path and a decoding path. The
block diagram of the pNet in Figure 1 is typically a prediction network of Liu et al. [2] to
predict future frames. One of its most important components is its generator, which is a
traditional U-Net [7]. However, we propose to use either non-local block U-Net or attention
block U-Net as discussed in Section 6.

In a nutshell, the rpNet both reconstructs the current frame using its rNet for scoring
reconstruction error and predicts the future frame using its pNet for scoring prediction error
in a parallel manner for anomaly detection by providing better error gaps via information
fusion (e.g., see Section 8). Both rNet and pNet can show some degree of performance, but
the performance of rpNet is better than that of either rNet or pNet individually. The straight-
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forward simulation in Section 8 and later the experimental results support this proposition.
Essentially, the rpNet brings about six separate models namely AE-Unet, AEcUnet, AE-
nUnet, AEcnUnet, AEaUnet, and AEcaUnet by combining the two-variant of rNets and the
three-variant of pNets.

Figure 3. Two reconstruction networks: (a) convolutional autoencoder (ConvAE) and (b) ConvAE
with skip connection (AEc).

Figure 3a demonstrates encoder and decoder networks of our ConvAE without skip
connection. The encoder network consists in a stack of four hidden layers with convo-
lutional filters of 64, 128, 256, and 512, kernel sizes of 5, 5, 3, and 3, and strides of (1,2),
(2,2), (2,2), and (2,2), respectively. Regarding the decoder network, it has four transposed
convolutional layers that mirror the encoder layers. Due to the loss of some features, the re-
constructed image of ConvAE may not match exactly with the input image. The difference
L( f , f̂ ′) between the original input f and the reconstructed f̂ ′ is called the reconstruction er-
ror. The learning process of ConvAE is to minimize the reconstruction error. Loss functions
play an important role in achieving the desired reconstructed image.

4. Appearance-Only Stream

In this section, we discuss in detail our adopted two alternative reconstruction net-
works. A ConvAE is used to extract the salient features by performing filter operations on
the original input image, whereas AEc boosts the performance with a notable margin.

4.1. ConvAE

The CNN has strong capability to learn spatial features [2]. Usually, a CNN consists of
convolutional layer, activation layer, pooling layer, and up-sampling layer. It uses these
layers to extract features from the two-dimensional (2D) data structure of images and then
followed by the sub-sampling or pooling layer. We can add a dense or feedforward layer
to the CNN for classification tasks, or we can add an upsampling layer to increase the
resolution of the feature maps for image generation tasks. Activation layers consist of
activation functions (e.g., ReLU, Sigmoid, Softmax, Tanh, and Linear), which introduce
non-linearity into the deep neural network. Without this non-linearity, the deep neural
networks are only able to perform the linear mapping between inputs and the outputs.
The pooling or sub-sampling layers can reduce the spatial dimensions of the feature maps
(e.g., from 256 × 256 to 128 × 128). Theoretically, we can eliminate the down/up sampling
layers altogether. The up-sampling layer performs the reverse of the pooling layer. It is
used to increase the dimensions of the incoming feature maps (e.g., from 128 × 128 to
256 × 256). The up-sampling layer is generally used in generative tasks. Leaky ReLU
decreases certain positive values to 0 if they are close enough to zero. In dropout technique,
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randomly selected neurons are ignored during training. A good value for dropout in a
hidden layer is between 0.50 and 0.80.

The AE is primarily used for image reconstruction. The AE that employs CNN mimics
its input to its output as close as possible. It aims to take an input, transform it into a reduced
representation called code or embedding. Then, this code or embedding is transformed
back into the original input. The code is also called the latent-space representation. An AE
consists of two leading parts namely an encoder and a decoder. Stacking encoders and
decoders with multiple hidden layers can form a deep autoencoder. The encoder extracts
features by gradually reducing the spatial resolution, whereas the decoder gradually
recovers the frame by increasing the spatial resolution. The encoder maps the input into the
code, whereas the decoder maps the code to a reconstruction of the input. Fully connected
AE ignores 2D image structure [58]. The ConvAE extends the basic structure of the simple
AE by changing the fully connected layers to convolution layers. The ConvAE is very
suited for the images as it uses a convolution layer. The convolutional layers are excellent
for extracting features from the images or other 2D data without modifying (reshaping)
their structure. An encoder can employ convolutional layer, batch normalization layer, an
activation function, and a max-pooling function for reducing the dimensions of the feature
maps. After a specific number of layers, when the encoder is complete, the feature maps are
flattened and a dense layer is used for the latent-space representation. The deconvolution
is used for the up-sampling of the incoming feature maps, which is usually followed by the
batch normalization and the activation function. Kernel size is one of important parameters
in CNN. The smaller the size of kernel, the more effective the preserving details of the
original image and the lower the computational cost of network. However, the extreme
kernel size of 1× 1 extracts local information from an image without considering spatial
relationship of pixel. Therefore, we can set the size of kernel to 5 and 3 for both considering
the spatial relationship of pixel and reducing computational cost.

4.2. Loss Function

The performance of ConvAE depends on input data and the loss function. The goal
of training is to minimize the loss. When the main goal of the ConvAE is to solely recon-
struct the input as accurate as possible, the loss function of MSE or Kullback–Leibler (KL)
divergence [59] can be used. The intensity loss Lintr of the reconstruction network can be
calculated by Equation (1) on minimizing the distance measured by l2-norm between f̂ ′t
and ft as:

Lintr ( f̂ ′t , ft) = || f̂ ′t − ft||22. (1)

The gradient loss Lgdr of reconstruction network can be calculated by Equation (2) as:

Lgdr ( f̂ ′t , ft) = ∑
i,j
‖ | f̂ ′t i,j − f̂ ′t i−1,j| − | fti,j − fti−1,j| ‖1 + ‖ | f̂ ′t i,j − f̂ ′t i,j−1| − | fti,j − fti,j−1| ‖1 . (2)

4.3. Replacing ConvAE by AEc

If ConvAE goes deeper or applying operations including max pooling, it cannot
work very well even with deconvolution layers. A performance degradation problem
is encountered when deeper networks start converging [60]. This is possibly due to the
fact that a big amount of image details could be lost or corrupted during the convolution
and the pooling. This drawback saturates the performance of the network as the depth of
network expands. Specially, if the ConvAE encounters this type of problem, it is arduous to
learn the details from the data. To minimize this problem, inspired by He et al. [60], we add
skip connections between two corresponding convolutional and deconvolutional layers as
shown in Figure 3b. The response from a convolutional layer is directly propagated to the
corresponding mirrored deconvolutional layer, both forwardly and backwardly. The skip
connections between the corresponding encoder and decoder layers allows the network to
converge to a better optimum in pixel-wise prediction problems [61]. Let the outputs from



Electronics 2023, 12, 1517 9 of 41

the encoder layer and the corresponding decoder layer be Outeli and Outdli , respectively.
The input to the next decoder layer Indli+1

is calculated by Equation (3) as:

Indli+1
= Outeli ⊕Outdli . (3)

Each skip connection complements the data loss due to the data compression in the
encoder part by combining the encoder convolutional layer output and the up-sampling
output. Through skip connections, each feature map of the corresponding encoder and
decoder are summed element-wise, which helps the network to recover the image well.

5. Appearance-Motion Stream

In this section, we discuss details of our prediction network and summarize the loss
functions for optimization.

Only appearance constraints cannot guarantee to characterize the motion information
well. Further, both spatial and temporal information is an important feature of videos.
Inspired by Liu et al. [2], we used an optical flow constraint into the objective function to
guarantee the motion consistency for normal events in training set, which further boosts the
performance for anomaly detection. The pipeline of our video frame prediction network
is shown in Figure 1, where we adopt a traditional U-Net [7] as generator to predict
next frame. The traditional U-Net [7] is a fully convolutional neural network, and it
uses convolutional and pooling layers. To reduce the number of parameters, it does not
have any fully connected layer. It contains a contraction path and an expansion path. Its
contraction path is employed to extract the features through the convolutional layer and
downsampling. Its expansion path accurately locates and restores the information as much
as possible. There is also a shortcut operation before each upsampling convolutional layer
to concatenate the information.

To generate high quality image, we adopt the constraints in terms of appearance (e.g.,
intensity and gradient) as well as motion (e.g., optical flow) losses. Optical flow is a widely
used estimator of motion. The Flownet [9] is a pre-trained network used to calculate optical
flow. We also clenched the adversarial training to discriminate whether the prediction is real
or fake. The aim of our appearance-motion stream is not only to predict frames to be close
to their ground truth in spatial space but also to match the optical flow between predicted
frames and the ground truth. In common, this stream is expected to associate typical
motions to common appearance objects while ignoring the static background patterns.

Given a video with consecutive t frames as { f1, f2, . . . , ft}. We predict the future
video frame f̂t using previous video frames { f1, f2, . . . , ft−1}. Following the work by
Mathieu et al. [6], to make the predicted f̂t close to its ground truth ft, we minimize their
distances with reference to intensity and gradient. Following the work of Liu et al. [2],
to preserve the temporal coherence between neighboring frames, we enforce the optical
flow between ft and ft−1 as well as the optical flow between f̂t and ft−1 to be close.
We assume that normal events can be predicted very well. Therefore, we can include the
difference between the predicted frame f̂t and its ground truth ft for anomaly detection
score. Following the work by Liu et al. [2], we employ a traditional U-Net [7], which serves
as the main prediction network for a shortcut between a high-level layer and a low-level
layer with the output resolution unchanged for each two convolution layers to decrease
gradient vanishing and to increase information symmetry. The kernel sizes are configured
to all convolution and deconvolution as 3× 3, and the max pooling layers as 2× 2.

5.1. Appearance Loss

To make the prediction close to its ground truth, following the work of Mathieu et al. [6],
intensity and gradient difference can be employed.
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5.1.1. Intensity Loss

Intensity loss is the l1-norm or l2-norm between the predicted frame f̂t and its ground
true ft, which is used to maintain similarity between pixels in the RGB space. By definition,
the sum of the absolute values is the l1-norm, and the sum of squared values is the l2-
norm. While the l1-norm increases at a constant rate, the l2-norm increases exponentially.
Minimization of the norm encourages the weights to be small. Specifically, we minimize
the distance measured by l2-norm between f̂t and ft as intensity loss Lintp of the prediction
network by Equation (4) [2]:

Lintp( f̂t, ft) = || f̂t − ft||22. (4)

5.1.2. Gradient Loss

There exists a flaw in calculating pixel intensity loss by l2-norm, which produces blur
in the output. Henceforth, it is vital to apply gradient difference loss for sharpening the
predicted frame f̂t by using the l1-norm. As compared to l2-norm, l2-norm is more likely
to reduce some weights to 0. The gradient loss Lgdp of the prediction network can be
calculated by Equation (5) as:

Lgdp( f̂t, ft) = ∑
i,j
‖ | f̂ti,j − f̂ti−1,j| − | fti,j − fti−1,j| ‖1 + ‖ | f̂ti,j − f̂ti,j−1| − | fti,j − fti,j−1| ‖1, (5)

where fti,j denotes the pixel at the i-th row and j-th column in ft, and |.| returns the
absolute value.

5.1.3. Motion Loss

To detect anomaly the coherence of motion is an important factor for the evaluation of
normal events. Only difference between intensity and gradient for future frame generation
cannot guarantee to predict a frame with the correct motion. Optical flow is a good
estimator of motion [62]. We adopt a temporal loss defined as the difference between
optical flow of predicted frames and ground truth to improve the coherence of motion
in the predicted frame. We employ the Flownet [9] denoted as F, which is a CNN-based
approach for optical flow estimation. We consider that F is pre-trained on a synthesized
dataset [9] and all the parameters in F are fixed. The motion loss Lmot in terms of optical
flow can be measured by l1-norm using Equation (6) as:

Lmot( f̂t, ft, ft−1) = ||F( f̂t, ft−1)− F( ft, ft−1)||1. (6)

5.1.4. Adversarial Generator Loss

Usually, a generative adversarial network (GAN) contains a generator G and a dis-
criminator D. The G learns to generate frames that are hard to be classified by D. Similar
to Liu et al. [2], we use a U-Net-based prediction network as G. As for D, we follow
Isola et al. [63] and utilize a patch discriminator, which means each output scalar of D
corresponds a patch of an input image. The goal of training D is to classify ft into class
1 (i.e., genuine label) and G( f1, f2, . . . , ft−1) = f̂t into class 0 (i.e., fake label), respectively.
The goal of training G is to generate frames, whereas D classify them into class 1. The
adversarial generator loss Ladg is minimized to confuse D as much as possible such that it
cannot discriminate the generated predictions, and is given by the MSE loss function as:

Ladg( f̂t) = ∑
i,j

1
2

LMSE(D( f̂ti,j), 1), (7)

where D( fi,j) = 1 denotes real decision by D for patch (i, j), D( f̂ti,j) = 0 indicates fake
decision, and LMSE is the mean squared error function.
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5.2. Minimization Objective Function

We combine the losses on appearance, motion, and adversarial training to obtain the
following minimization objective function:

L( ft, ft−1, f̂t, f̂ ′t) = λintp Lintp( f̂t, ft) + λgdp Lgdp( f̂t, ft) + λintr Lintr ( f̂ ′t , ft) (8)

+ λgdr Lgdr ( f̂ ′t , ft) + λmotLmot ( f̂t, ft, ft−1) + λadg Ladg( f̂t),

where λintp , λgdp , λintr , λgdr , λmot, and λadg are the corresponding training time weights
for the losses. To train the model, the intensity of pixels in all frames can be normalized
(e.g., [−1, 1]). An Adam [64]-based stochastic gradient descent method can be used for
parameter optimization.

6. Replacement of Traditional U-Net

In this section, we discuss two alternative replacements of basic U-Net.

6.1. Replacing Basic U-Net by Non-Local Block U-Net

The non-local mean value at a given pixel is the weighted average of all pixels in an
image, but the kind of weights depend on the likeness between pixels, i.e., similar pixel
neighborhoods have bigger weights. For example, considering Figure 4, to calculate the
non-local mean at a pixel in Region 1, due to the similarity, the pixels in Region 4 and
Region 9 obtain larger weights compared with the rest of seven regions. Similarly, for
Region 3, the pixels in Region 5 and Region 10 obtain larger weights than those in the rest
of the seven regions, and so on. Thus non-local mean preserves long distance dependence
as indicated by arrows.

Figure 4. At non-local mean, similar pixel neighborhoods obtain bigger weights.

Buades et al. [12] explained non-local mean operation. Wang et al. [11] proposed a
generic non-local operation as:

yi =
1
C(x) ∑

∀j

f (xi, xj)g(xj), (9)

where x and y denote the input and output signals, respectively. Here, i and j indicate
the index of an output position in space-time and the index of enumerating all possible
positions, respectively. The pairwise function f determines the scalar between i and all j,
while the unary function g computes a representation of the input signal at j. In the end, y
is obtained following a normalization by the factor of C(x).

Wang et al. [11] also wrapped the non-local operation shown in Equation (9) into a
non-local block that can be embedded in many existing pre-trained networks including
U-Net [7] without affecting its standard behavior. Unlike fully connected layers that are
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frequently used at the end, a non-local block can be added into the earlier part of deep
neural networks—resulting a combination of both local and non-local information in an
ample hierarchy. A non-local block can be defined by Equation (10) as [11]:

zi = Wzyj + xi, (10)

where Wz belongs to a weight matrix and “+” denotes a residual connection.
Figure 5 depicts a space-time non-local block [11] with the embedded Gaussian. The in-

put feature maps are presented as their tensors with the shape of T × H ×W × C, i.e., the
input dimension of X is T × H ×W × C. The green colored boxes indicate 1× 1× 1 con-
volution. This space-time non-local block is similar to the block in the architecture of
ResNet [60]. So, the non-local operation can be easily inserted into the existing network
structure. However, the convolution is performed using a convolution kernel with a size
of 1 × 1 × 1 to obtain the outputs of three branches (θ, ϕ, and g) with the dimension
of T × H ×W × (C/2). Afterwards, three outputs of these branches with dimension of
THW × (C/2) are obtained through tensor to matrix conversion process. The output of
the ϕ branch is transposed, and then this output and the output of the θ branch are mul-
tiplied using matrix multiplication rule to obtain the output dimension of THW × THW.
Subsequently, the SoftMax operation is performed on each row. Later, the matrix multi-
plication with the output of the g branch is performed to obtain the output dimension
of THW × (C/2). A reshaping of THW × (C/2) is carried out through matrix to tensor
conversion process for getting the output dimension of T× H ×W × (C/2). The output
dimension of T× H ×W × C from the 1× 1× 1 convolution layer and the original input
dimension of T× H×W × C perform element-wise summation to achieve the final output
Z. This element-wise summation is similar to the residual connection in the ResNet [60].
Two optimization techniques are applied to improve the computational efficiency of the
non-local block: (1) The number of convolution kernels for θ, ϕ, and g operations is set to
the half of the number of input feature map channels (i.e., C/2); (2) The pooling method is
applied to sample the output of θ, ϕ, and g, so that the size of the feature map output is
reduced to half of the original.

Figure 5. A space-time non-local block.

Similar to the traditional U-Net [7], the non-local block U-Net contains both contracting
and expanding paths. There are some advantages to use non-local block in the U-Net [7]
including the non-local operations that can directly capture remote dependencies and can
also improve the correlation of distant pixels for gaining a richer feature map. However,
the usage of non-local block in U-Net [7] for detecting video anomaly is not new. For
example, Zhang et al. [13] used three non-local blocks in their U-Net frame prediction
model for detecting surveillance video anomaly. Nevertheless, Wang et al. [11] suggested
that more non-local blocks lead to better results. To this end, we propose to employ four
non-local blocks in the U-Net architecture for our prediction network. Figure 6 shows
our adopted non-local block U-Net. Basically, it consists of a traditional U-Net [7] and
four non-local blocks. Those non-local blocks are added in downsampling. On the whole,
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the contracting path of our non-local U-Net extracts features through the convolutional
layer and downsampling; while the expanding path precisely pinpoints and restores the
information to the greatest extent. There are also skip layers to fuse the information. In the
contracting path, 3× 3 convolution followed by ReLU activation and 2× 2 maximum
pooling layers are applied. A 2× 2 maximum pooling layer is added after every two
convolutional layers (e.g., the 2× 2 maximum pooling layer between Layer 1 and Layer
2). Every step of upsampling in the expanding path bridges to the contracting path for
fabricating high-quality images.

Figure 6. Our adopted non-local block U-Net.

6.2. Replacing Basic U-Net by aUnet

Attention mechanism contributes to suppress less relevant features and emphasizing
more important features in image classification. Commonly, attention in deep neural net-
works is mainly implemented in two forms, namely, hard (or stochastic) attention and soft
(or deterministic) attention. The implementation of hard attention is non-differentiable [65],
whereas soft attention models are differentiable [66]. Thus, the soft attention is a preferable
form of implementation. Roughly, there exist two types of soft-attention-based models:
(i) Usage of intermediate layers of the architecture, and (ii) Usage of beginning layers of the
architecture. For example, for image classification, Jetley et al. [67] introduced attention
gates at three intermediate layers in a VGG network and a weighted combination of the
attention maps was employed in the last layer. Oktay et al. [14] introduced attention gates
in a U-Net architecture for segmentation of the pancreas. In both models, the attention
blocks employ activation maps from the intermediate layers in the model as saliency
maps for enhancing the discriminative characteristics of extracted intermediary features.
However, Vakanski et al. [15] claimed that the segmentation performance would not be
improved using the self-attention blocks described in Jetley et al. [67] and Oktay et al. [14].
Thus, they applied the attention blocks at beginning layers of their architecture for breast
tumor segmentation in ultrasound images. Basically, their proposed attention block utilized
pre-computed saliency maps that specified to target spatial regions.

Our design of the attention blocks in U-Net was inspired by the attention blocks
of Vakanski et al. [15]. Differently from their network, our proposed attention blocks in
this work utilizes motion saliency maps that point out to target salient regions of motion.
Further, there are some internal architectural differences. For example, the pre-computed
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input spatial salient map of Vakanski et al. [15] is down-sampled through a max-pooling
layer following the standard Equation (11) as:

β =

⌊
γ− κ + 2ρ

s

⌋
+ 1, (11)

where γ, β, κ, ρ, and s indicate number of input features, the number of output features,
convolution kernel size, convolution padding size, and convolution stride size, respectively.
We also follow Equation (11), but our instantaneously computed motion saliency map is
down-sampled through a 1× 1 convolution followed by ReLU activation and 2× 2 stride
operation. A graphical representation of our proposed aU-Net is presented in Figure 2.

6.2.1. Operation of the aUnet

Essentially, our proposed aU-Net in Figure 2 consists of a standard U-Net, a motion
saliency map, and τ number of attention blocks with τ ∈ {1, 2, 3, 4}. The discussion of
motion saliency map covers in the next subsection. However, the input feature map is
down-sampled through a 2× 2 max-pooling layer and then fed to the attention block.
The motion saliency map is fed to the τth attention block with horizontal and vertical
spatial dimensions of 256/2τ−1 × 256/2τ−1 pixels. This feeding is performed directly
for the first attention block, but for other attention blocks indirectly via their preceding
attention blocks. At the τth attention block, the motion saliency map with horizontal
and vertical spatial dimensions of 256/2τ−1 × 256/2τ−1 pixels is passed through 1× 1
convolution layer followed by ReLU activation, 2× 2 stride layer, and 128 number of filters.
After 2× 2 max-pooling, the input feature map at the τth attention block with horizontal
and vertical spatial dimensions of 256/2τ × 256/2τ pixels is also passed through 1× 1
convolution layer followed by ReLU activation, 2× 2 stride layer, and 128 number of filters.
The spatial dimensions of both input feature map with size of 256/2τ × 256/2τ × 128
and the motion saliency map with size of 256/2τ × 256/2τ × 128 match, and then they
perform a summation at an element-wise sum block. Its output is an intermediate feature
map with size of 256/2τ × 256/2τ × 128. This map is further refined through a series of
linear 3× 3× 128 and 1× 1× convolution layers followed by ReLU activation. A sigmoid
activation function normalizes the values into the range of [0, 1] and outputs a semi-
attention map with a spatial size of 256/2τ × 256/2τ × 1. This semi-attention map with size
of 256/2τ × 256/2τ × 1 and the max-pooled feature map with size of 256/2τ × 256/2τ × ς
perform a multiplication at an element-wise product block, where ς = 32 and ς = 64 for the
first-second and third-fourth attention blocks, respectively. Its output is an attention map
with size of 256/2τ × 256/2τ × ς, which is propagated to the next layer of the standard
U-Net for further processing.

6.2.2. Motion Saliency Map

Normally, the human vision system pays more attention to the moving objects than the
static regions. For this reason, motion becomes one of the key features of the visual attention
model. Due to the elapse of time, an attention region on a frame becomes inattention region.
We can define such phenomenon using a decay attention factor deAtt with 1 ≤ deAtt ≤ 255 as:

v =

⌊
255

deAtt

⌋
, (12)

where v indicates the number of attention frames for a region (i.e., v frames later an
attention region becomes a background region). For example, all current motion regions
are paying maximum attention, but with deAtt = 60 all such regions become zero attention
regions after v = b255/60c = 4 frames. Normally, it is not important to process all the
regions in a frame. To speedup computation, we can obtain a region of interest (RoI)
obtained by a motion heat map [68–72] to apply on the calculation of motion saliency map.
Figure 7 indicates a straightforward RoI.
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Figure 7. (a,b) demonstrate a camera view frame and its RoI marked red, respectively.

6.2.3. Algorithm

Algorithm 1 gives details of our motion saliency map creation algorithm. It assumes
the foreground information of the current frame as the most salient feature.

Algorithm 1: Creation of Motion Saliency Map
Input: ⇒ gImg: Grayscale image, pRoI: A predefined RoI.
Output: ⇒Motion saliency map
Description: ⇒ bImg(lenR, lenC): Binary image with length of row lenR and length of column lenC,

f count: Frame counter, NOF: Total number of video frames, msMap(lenR, lenC): Motion
saliency map, row: Row counter, col: Column counter, temp: Temporary variable.

Define: ⇒ f count = 1, set deAtt, row = 1, col = 1.
1 while f count ≤ NOF do

/* Processing of input image to get bImg(lenR, lenC). */
2 Get a masked gImg by considering pRoI on gImg.
3 Get bImg(lenR, lenC): Convert the masked gImg to bImg using luminance greater than a

threshold Γ with 1 for white (i.e., maximum attention) and 0 for black (i.e., no attention).
/* Calculation of motion saliency map using bImg(lenR, lenC). */

4 if f count < 2 then
5 msMap(lenR, lenC) = bImg(lenR, lenC)

/* Motion Saliency Map is available for the first frame. */

6 else
7 for row ≤ lenR do
8 for col ≤ lenC do
9 temp = msMap(row, col)

10 if temp > 0 then
11 temp = temp− deAtt

12 else
13 temp = 0

14 msMap(row, col) = temp
15 if bImg(row, col) > msMap(row, col) then
16 msMap(row, col) = bImg(row, col)

/* Motion Saliency Map is available for multi frames. */

Based on deAtt values, the motion saliency map typically comprises of multiple
attention maps with different resolutions, thereby capturing salient features across multiple
levels of feature abstraction. Figure 8 shows some sample camera view frames from UCSD-
Ped2 [31] dataset. Figure 9 shows two samples output of Algorithm 1 considering frames
in Figure 8 and deAtt = 60.

Figure 8. Sample camera view frames of UCSD-Ped2 [31].
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Figure 9. Sample output of Algorithm 1 using frames in Figure 8, deAtt = 60, and Γ = 0.195.

7. Anomaly Detection on Testing Data

If we assume that normal events can be well predicted, then we can easily apply the
difference between the predicted frame f̂t and its ground truth ft for anomaly prediction.
In anomaly detection methods, two common metrics, namely MSE and PSNR, are widely
employed to calculate the anomaly scores. The MSE is used to measure the quality of
predicted images by computing a Euclidean distance between the prediction and its ground
truth of all pixels, whereas the PSNR represents a measure of the peak error. The MSE is
easy to compute, but sensitive to outliers. On the other hand, in the absence of error, if two
images ft and f̂t (or f̂ ′t ) are identical, then the MSE is zero but the PSNR becomes infinite
(or division by zero) [73]. In spite of that, Mathieu et al. [6] showed that PSNR is a better
way for image quality assessment.

We assume that if any frame ft holds an appearance anomaly (e.g., someone carrying a
gun) then the rNet can improve its determinability, whereas if ft contains a motion anomaly
(e.g., people fighting on the street) the pNet can improve its determinability. Therefore, we
bring the error scores of appearance and prediction into a cascaded score to compute the
final error score of each frame for detecting its anomalousness. We evaluate the anomaly of
appearance based on reconstruction error of the entire frame. This technique preserves the
complete appearance of target objects in frame. We define pixel-wise partial anomaly score
individually estimated on the prediction error of PSNRp and the reconstruction error of
PSNRr from prediction and reconstruction networks, respectively, sharing for the same
frame as:

PSNRr = 20 log10

 255√
1

WH ∑W
x=1 ∑H

y=1

(
ftx,y − f̂ ′t x,y

)2

 (13)

PSNRp = 20 log10

 255√
1

WH ∑W
x=1 ∑H

y=1

(
ftx,y − f̂tx,y

)2

, (14)

where W, H, (x, y) are the width, height, and spatial index of the frame, respectively.
The maximum pixel value of an image is 255. Large PSNRr or PSNRp of a frame hints
that it is more likely to be normal. Roughly, it is possible to use PSNRr or PSNRp for
determining whether an abnormal event has occurred. For example, if PSNRr or PSNRp is
greater than any defined threshold, the frame is normal, otherwise abnormal. Nevertheless,
it expects more refinement for better performance.

The partial frame-level score of the t-th frame Spart(t) is computed as a weighted
combination of the two incomplete scores as follows:

Spart(t) = (σ1)(ω1)(PSNRr) + (σ2)(ω2)(PSNRp), (15)

where ω1 and ω2 are the weights, which normalize the two scores to the same scale. They
can be calculated on the training data of n images using Equations (16) and (17) as:

ω1 =
1

10
log10

(
1
n

n

∑
i=1

PSNRri

)
(16)
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ω2 =
1

10
log10

(
1
n

n

∑
i=1

PSNRpi

)
. (17)

The hyper parameters of σ1 > 0 and σ2 > 0 are used to control the contribution
of corresponding score to the summation, which can be adjusted appropriately for the
importance of the appearance and motion. We perform a normalization of Spart(t) using
Equation (18) as:

Snorm(t) = e
−
(

Spart(t)
λ

)ν

, (18)

where ν > 0 and λ > 0 belong to shape and scale parameters, respectively [74]. The
occurrence of abnormal events in video has continuity, i.e., abnormal events cannot appear
in a single frame, but appear in multiple consecutive frames. Consequently, we utilize not
only the current frame but also the past and future frames to compute the final anomaly
score using Equation (19) as:

S f rame(t) =
1
η2

η

∑
i=0

(η − i)(Snorm(t± i)), (19)

where the anomaly score of the t-th frame S f rame(t) consists of the Snorm(t) as current frame
and the Snorm(t± i) with i = 1, 2, . . . , η of η past and future frames. The score of S f rame(t)
estimated from a frame of abnormal event is expected to be higher compared with the ones
of normal event. Therefore, we can predict whether a frame is normal or abnormal based
on S f rame(t). One can set a threshold to distinguish normal or abnormal frames.

8. Larger Error Gap Guaranteed by rpNet

Ideally, both pNet and rNet can produce their own outputs. We assume that the
output of either pNet or rNet can individually provide necessary anomaly scores, but
may not provide sufficient anomaly scores used for anomaly detection. The gain of the
rpNet individually relies on pNet and rNet. The overall gain of the rpNet equals to the
product of the individual gain of pNet and rNet. Mathematically, if G1 and G2 indicate the
gains of pNet and rNet, respectively, then the overall gain Goverall can be formulated by
Equation (20) as:

Goverall = (G1)(G2). (20)

When the gain of pNet and rNet applies the decibel (dB) expression, the Equation (20) yields:

log(Goverall) = log((G1)(G2)) (21)

= log(G1) + log(G2) (22)

Goverall dB = G1 dB + G2 dB. (23)

For example, Figure 10 conveys a simplified schematic diagram of the rpNet along with
any instance of video frames if pNet and rNet achieve 41.44 dB and 40.80 dB, respectively,
then the overall process has a gain of 82.24 dB.

Figure 10. Simplified structure of rpNet.
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Using a simple simulation, we wish to explain that the rpNet can provide better anomalous
detection results by providing higher anomaly scores for abnormal cases in videos than that of
either pNet or rNet individually. Explicitly, the rpNet can provide an improved reconstruction
error gap by increasing the output signal strength of pNet and rNet.

Assume that a hypothetical video surveillance system has captured the following four
scenarios of people: (i) Normal walk and gather but sudden evacuation after an unwanted
event, (ii) normal walk and sudden split after an incident, (iii) someone intentionally
passing opposite of the main stream, and (iv) sudden run after an explosion. In addition,
assume that both pNet and rNet are trained with a normal video cases and can detect
those abnormal video events by providing the anomaly scores as depicted in Figure 11.
The ground truths for four scenarios are given, but the anomaly scores of the rpNet are
calculated.
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Simulation to show the increment of signal strength in the rpNet

RunOpposite FlowWalk and Sudden SplitWalk, Gather, and Sudden Evacuation

Reconstruction Network (rNet)
Prediction Network (pNet)
Ground truth of abnormal events
Ground truth of normal events
rpNet

Figure 11. Simple simulation to show that the rpNet can guarantee larger error gap.

Table 2 shows the analyzing report of Figure 11 in qualitatively and quantitatively.
The mean ACC scores of pNet and rNet are 0.7740 and 0.8762, respectively. The mean ACC
of the rpNet is 0.9595, which is definitely higher than those scores. To gain such ACC score,
the rpNet has to come up against a mean false alarm rate of 0.0313. Nevertheless, on the
average, the rpNet achieves 16.74% better ACC score than the mean ACC score of the pNet
and rNet. At the rising edge, the values of root MSE (RMSE) are 15.0416, 6.4226, and 3.2404
for the rNet, pNet, and rpNet, respectively. The RMSE is 10.7321/3.2404 = 3.312 times less
in the rpNet compared with the mean RMSE of rNet and pNet. Similarly, at the falling edge,
the RMSE is 13.9240/2.6926 = 5.1712 times less in the rpNet. The coefficient of variation of
the RMSE, denoted as CV(RMSE), is 0.0038/0.0012 = 3.1667 and 0.0047/0.0009 = 5.2222
times less in the rpNet at rising and falling edges, respectively, compared with the mean
CV(RMSE) of rNet and pNet.

Table 2. Qualitative and quantitative analysis of the simulated normal and abnormal video events
in Figure 11.

Measures
Walk, Gather, Evacuate Walk, Sudden Split Opposite Flow Sudden Run

rNet pNet rpNet rNet pNet rpNet rNet pNet rpNet rNet pNet rpNet

Ground truth frame start (gs) 305 305 305 629 629 629 907 907 907 974 974 974
Ground truth frame end (ge) 328 328 328 685 685 685 948 948 948 1000 1000 1000
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Table 2. Cont.

Measures
Walk, Gather, Evacuate Walk, Sudden Split Opposite Flow Sudden Run

rNet pNet rpNet rNet pNet rpNet rNet pNet rpNet rNet pNet rpNet

First detected abnormal frame ( fd) 317 311 302 645 636 625 928 915 903 982 978 975
Last detected abnormal frame (ld) 325 326 328 657 669 690 928 943 950 988 991 1000
Number of false positive frames ( fp) 0 0 3 0 0 4 0 0 4 0 0 1
Number of true positive frames (tp) 8 15 26 12 33 65 1 28 47 6 13 25
Number of false negative frames ( fn) 15 8 3 44 23 9 41 13 6 20 13 1
Number of true negative frames (tn) 477 477 468 204 204 182 158 159 143 14 14 13
Sum (Tf = tp + tn + fp + fn) 500 500 500 260 260 260 200 200 200 40 40 40
Recall Rate (tp/(tp + fn)) 0.348 0.652 0.896 0.214 0.589 0.878 0.024 0.683 0.887 0.231 0.500 0.961
Specificity (tn/(tn + fp)) 1 1 0.994 1 1 0.978 1 1 0.973 1 1 0.929
False positive rate = (1 − Specificity) 0 0 0.006 0 0 0.021 0 0 0.027 0 0 0.071
Precision rate (tp/(tp + fp)) 1 1 0.897 1 1 0.942 1 1 0.922 1 1 0.961
Accuracy (ACC = (tp + tn)/Tf ) 0.970 0.984 0.988 0.831 0.911 0.950 0.795 0.935 0.950 0.500 0.675 0.950

RMSE at rising edge (Γr) for rNet
√

905
4 ≈ 15.0416 using Γr =

√
1
4 ∑4

i=1(gs(i)− fd(i))2

CV(Γr) at rising edge for rNet 15.0416
2815 ≈ 0.0053 using CV(Γr) =

Γr
1
4 ∑4

i=1 gs

RMSE at falling edge (Γ f ) for rNet
√

1337
4 ≈ 18.2825 using Γ f =

√
1
4 ∑4

i=1(ge(i)− ld(i))2

CV(Γ f ) at falling edge for rNet 18.2825
2961 ≈ 0.0062 using CV(Γ f ) =

Γ f
1
4 ∑i

i=1 ge

Γr and CV(Γr) for pNet
√

165
4 ≈ 6.4226 and 6.4226

2815 ≈ 0.0023

Γ f and CV(Γ f ) for pNet
√

366
4 ≈ 9.5656 and 9.5656

2961 ≈ 0.0032

Γr , CV(Γr), Γ f , CV(Γ f ) for rpNet
√

42
4 ≈ 3.2404, 3.2404

2815 ≈ 0.0012,
√

29
4 ≈ 2.6926, 2.6926

2961 ≈ 0.0009
ROC curve analysis AUC ≈ 0.6739 for rNet, AUC ≈ 0.8415 for pNet, AUC ≈ 0.9731 for rpNet
Mean ACC gain obtained by rpNet rpNet was 0.9595

0.7740 − 1 = 23.97%, 0.9595
0.8762 − 1 = 9.51%,

and 16.74% more accurate over rNet, pNet, and their mean ACC, respectively.
AUC gain obtained by rpNet rpNet performed 0.9731

0.6739 − 1 = 44.40%, 0.9731
0.8415 − 1 = 15.64%,

and 30.02% better than rNet, pNet, and their mean AUC, respectively.

Taking into account the data in Table 2, upon ROC curve analysis the scores of 0.674,
0.841, and 0.973 can be obtained from rNet, pNet, and rpNet, respectively. From Figure 12,
it is noticeable that the rpNet became the highest performative model considering data in
Table 2. The rpNet achieves 1.3002 times or 30.02% better AUC scores than the mean AUC
score of rNet and pNet. Explicitly, the simulated events in Figure 11 show evidence that
the rpNet can guarantee larger error gap on the identical ground of both rNet and pNet.
This proposition is also supported by the practical results from the experimental setup.
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Figure 12. Performance comparison of rNet, pNet, and rpNet deeming data in Table 2.
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In essence, the aforementioned straightforward simulation shows that the rpNet is
capable of achieving certain incremental factor of the reconstruction error gap by increasing
the signal strength of the anomaly scores.

9. Experimental Setup and Results

Our implementation was performed by Python based on the TensorFlow frame-
work [75]. Both training and evaluation of the model were performed on an Intelr CoreTM

i7-7800X CPU @3.50 GHz along with NVIDIA’s graphics card GeForce GTX 1080. We used
the Adam optimizer [64] for training and set the learning rate to 0.0001 and 0.00001 for the
generator and discriminator, respectively. The input images are resized to 256× 256 pixels
and converted to gray-scale. We trained our model using five publicly available datasets,
as illustrated in Table 3, namely UCSD-Ped1 [31], UCSD-Ped2 [31], CUHK-Avenue [32],
ShanghaiTech-Campus [18], and UMN [36] datasets with normal events. For evaluation,
we used both normal and abnormal frames of those datasets. The training procedure was
iterated up to a maximum of 100 epochs. The batch size was set to 4. AUC metric was used
to evaluate the overall model performance.

Table 3. Comparison of various specifications of crowd datasets and their available web links.
H ⇒ height, W ⇒ width.
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As our methodology possesses six combinational models, namely AE-Unet (Ours),
AEcUnet (Ours), AEnUnet (Ours), AEcnUnet (Ours), AEaUnet (Ours), and AEcaUnet
(Ours), we conduct experiment each of them individually. Table 4 lists miscellaneous
parameter values used during experiments. Figures 13–17 demonstrate sample results of
AEcaUnet (Ours) using parameters in Table 4. For a better visualization, the rectangles
on camera view images were highlighted manually. The pink region indicates the ground
truth of abnormal events. It is observable that the partial results of prediction network
are superior to that of reconstruction network. This is due to the fact that the prediction
network is capable of being extracted for better quality of features from the available videos.
However, the partial results of both networks contribute as a complement towards the
final performance of each model by confirming certain degree of augmentation of the
reconstruction error gap.

Figure 13. A sample output using UCSD-Ped1 [31], where a car anomaly was happened. (a,b) exhibit
PSNR scores, whereas (c,d) show frame-level scores.

Figure 14. A sample output using UCSD-Ped2 [31], where a bicycle anomaly was happened. (a,b)
exhibit PSNR scores, whereas (c,d) show frame-level scores.
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Figure 15. A sample output using CUHK-Avenue [32], where a person run anomaly was happened.
(a,b) exhibit PSNR scores, whereas (c,d) show frame-level scores.

Figure 16. A sample output using S.T.-Campus [18], where a bicycle anomaly was happened. (a,b)
exhibit PSNR scores, whereas (c,d) show frame-level scores.

Table 4. List of parameters and their used values.

Dataset
Value of Parameters Ratio of

λintp λgdp λintr λgdr λmot λadg Mean Γ deAtt ω1 ω2 σ1 σ2 ν λ η Training Testing

Ped1 [31] 1.05 1.03 1.05 1.05 1.90 0.05 0.357 50 0.931 0.869 1 1 0.515 1.615 2 49% 51%
Ped2 [31] 1.05 1.10 1.06 1.05 1.85 0.05 0.195 60 0.926 0.851 1 1 0.715 1.515 2 56% 44%
Avenue [32] 1.09 1.19 1.02 1.12 2.13 0.05 0.114 45 0.902 0.813 1 1 0.505 1.365 2 50% 50%
Campus [18] 1.07 1.04 1.05 1.05 2.19 0.05 0.428 55 0.942 0.877 1 1 0.355 1.125 2 85% 15%
UMN [36] 1.02 1.05 1.08 1.10 2.07 0.05 0.126 75 0.945 0.863 1 1 0.605 1.450 3 60% 40%
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Figure 17. A sample output using UMN [36], where a sudden crowd panic and run was happened.
(a,b) exhibit PSNR scores, whereas (c,d) show frame-level scores.

10. Experimental Result Comparison

In the literature, there are widely used common datasets that are used to test the
performance of different deep models, while other datasets were mainly used to test the
generalization ability of those models for detecting crowd anomaly in video streams. Table 5
compares frame-level AUC scores among miscellaneous methods and the most frequently
used crowd datasets.

Table 5. Frame-level AUC score comparison of miscellaneous methods and datasets. Column-wise
the best numerical result is shown in bold.

Year Models
Various Popular Crowd Datasets

Ped1 [31] Ped2 [31] Avenue [32] Campus [18] UMN [36]

Be
fo

re
20

20

Liu et al. [2] 0.831 0.954 0.849 0.728 -
Hasan et al. [1] 0.750 0.850 0.800 0.609 -

LuoLG [78] 0.755 0.881 0.770 - -
Luo et al. [18] - 0.922 0.817 0.680 -

Nguyen et al. [27] - 0.962 0.869 - -
Ionescu et al. [22] 0.684 0.822 0.806 - -

20
20

WangCYJT [79] 0.834 0.963 0.883 0.766 -
Chen et al. [80] 0.872 0.965 0.873 - -
Dong et al. [81] - 0.956 0.849 0.737 -
Fan et al. [82] 0.949 0.922 0.834 - -

Nawaratne et al. [83] 0.752 0.911 0.768 - -
Wang et al. [84] 0.867 0.991 0.899 - -

WuLLSS [85] 0.824 0.928 0.855 - -
Yang et al. [86] 0.935 0.937 0.832 - -
Zahid et al. [87] 0.585 0.789 0.750 0.940 -
Zhou et al. [88] 0.839 0.960 0.860 - -
Doshi et al. [89] - 0.978 0.864 0.716 -
Pang et al. [90] 0.720 0.830 - - 0.993
Roy et al. [91] 0.850 0.975 0.870 0.810 0.997
Wu et al. [92] 0.840 0.924 - - 0.993
Ji et al. [93] 0.840 0.980 0.780 - -

Lu et al. [94] 0.863 0.962 0.858 0.779 -
Ramachandra et al. [95] 0.860 0.940 0.872 - -

Tang et al. [96] 0.830 0.960 0.840 0.72 -
Almazroey et al. [97] 0.937 0.833 0.875 - -
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Table 5. Cont.

Year Models
Various Popular Crowd Datasets

Ped1 [31] Ped2 [31] Avenue [32] Campus [18] UMN [36]

20
20

Wu0S [98] 0.830 0.960 0.870 - 0.890
Lee et al. [99] - 0.966 0.900 0.762 0.996

Prawiro et al. [100] 0.840 0.960 0.860 - -
Song et al. [101] 0.905 0.907 0.892 0.700 -
Yan et al. [102] 0.750 0.910 0.796 - -

20
21

Sun et al. [103] 0.902 0.910 0.889 0.922 -
Xia et al. [104] 0.880 0.966 0.922 - 0.970

Feng et al. [105] - 0.970 0.860 0.777 -
Zhang et al. [106] - 0.954 0.868 0.736 -

Wu et al. [107] 0.885 0.988 0.847 0.728 -
Vu et al. [108] 0.850 0.960 0.920 0.937 -
Mu et al. [109] 0.952 0.947 0.897 0.921 -

LiLS [110] 0.853 0.955 0.891 0.740 -
LiCL [111] 0.905 0.929 0.835 - 0.980

Cai et al. [112] - 0.968 0.873 0.742 -
Saypadith et al. [113] 0.853 0.957 0.868 0.730 -

Doshi et al. [26] - 0.972 0.864 0.709 -
Luo et al. [114] - 0.922 0.835 0.696 -

Gutoski et al. [115] 0.719 0.893 0.847 - 0.992

20
22

Zhong et al. [3] 0.826 0.977 0.889 0.707 -
Chang et al. [116] - 0.967 0.871 0.737 -
Esquivel et al. [117] 0.710 0.870 0.830 0.870 -

Park et al. [118] - 0.960 0.850 0.720 -
Doshi et al. [119] - 0.970 0.887 0.736 -

Li et al. [120] 0.812 0.971 0.866 0.782 -
Hao et al. [121] 0.825 0.969 0.866 0.738 -

Zhang et al. [13] 0.836 0.959 0.852 0.727 -
Alafif et al. [122] 0.828 0.957 - - 0.981
Shao et al. [123] 0.776 0.949 0.853 0.717 -
Zou et al. [124] - 0.973 0.872 0.727 -

Zhou et al. [125] - 0.974 0.926 0.749 -
Hu et al. [126] 0.807 0.853 0.810 - -

Zhang et al. [127] 0.942 0.929 0.805 0.803 0.988
Wang et al. [128] 0.880 0.890 0.870 - -

Liu et al. [129] - 0.981 0.898 0.738 -
Feng et al. [130] 0.836 0.908 0.813 - -
Cho et al. [131] - 0.992 0.880 0.763 -
ParkLCL [132] - 0.958 0.854 0.724 -
Le et al. [133] - 0.974 0.867 0.736 -
Liu et al. [28] 0.851 0.966 0.865 - -

20
23

AE-Unet (Ours) 0.848 0.902 0.825 0.734 0.930
AEcUnet (Ours) 0.862 0.934 0.863 0.761 0.965
AEnUnet (Ours) 0.872 0.957 0.871 0.774 0.977
AEcnUnet (Ours) 0.888 0.971 0.874 0.782 0.976
AEaUnet (Ours) 0.875 0.969 0.887 0.780 0.980
AEcaUnet (Ours) 0.918 0.989 0.916 0.798 0.987

From Table 5, it is notable that our method could not demonstrate an outright accu-
racy score. However, from Table 5, it is hard to notice the best performative method as
an individual method could not achieve an absolute better performance. For example,
Mu et al. [109], Cho et al. [131], Xia et al. [104], Zahid et al. [87], and Roy et al. [91] achieved
the best AUC scores of 0.952, 0.992, 0.922, 0.940, and 0.997 from UCSD-Ped1 [31], UCSD-
Ped2 [31], CUHK-Avenue [32], ShanghaiTech-Campus [18], and UMN [36], respectively.
Unambiguously, considering experimental results in Table 5, it is very hard to find that one
algorithm is better than its alternatives. Usually, the nonparametric statistical analysis can
be used for superiority measure [134], but all models were not tested against always the
same five datasets in Table 5. Henceforth, based on the chosen datasets by the authors of
various models in Table 5, mainly for statistical analysis, we can divide the tabular data in
Table 5 into six following groups:
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G1 Methods of this group were tested against the datasets of UCSD-Ped1 [31], UCSD-
Ped2 [31], CUHK-Avenue [32], ShanghaiTech-Campus [18], and UMN [36] or the
methods existed before 2020 (i.e., Table 6).

G2 Methods of this group were tested against the datasets of UCSD-Ped2 [31], CUHK-
Avenue [32], and ShanghaiTech-Campus [18] (i.e., Table 7).

G3 Methods of this group were tested against the datasets of UCSD-Ped1 [31], UCSD-
Ped2 [31], and CUHK-Avenue [32] (i.e., Table 8).

G4 Methods of this group were tested against the datasets of UCSD-Ped1 [31], UCSD-
Ped2 [31], CUHK-Avenue [32], and ShanghaiTech-Campus [18] (i.e., Table 9).

G5 Methods of this group were tested against the datasets of UCSD-Ped1 [31], UCSD-
Ped2 [31], CUHK-Avenue [32], and UMN [36] (i.e., Table 10).

G6 Methods of this group were tested against the datasets of UCSD-Ped1 [31], UCSD-
Ped2 [31], and UMN [36] (i.e., Table 11).

The frame-level failure score of AUC (fAUC) is defined by Equation (24) as:

f AUC = 1− AUC. (24)

Table 6. The fAUC scores of G1. Column-wise the best numerical result is shown in bold.

Models
Obtained fAUC Scores from Different Datasets Mean of fAUC Scores

Ped1 [31] Ped2 [31] Avenue [32] Campus [18] UMN [36] Arithmetic Geometric Harmonic

Zhang et al. [127] 0.0580 0.0710 0.1950 0.1970 0.0120 0.1066 0.0717 0.0400
Roy et al. [91] 0.1500 0.0250 0.1300 0.1900 0.0030 0.0996 0.0488 0.0127
Liu et al. [2] 0.1690 0.0460 0.1510 0.2720 - 0.1595 0.1337 0.1054
Hasan et al. [1] 0.2500 0.1500 0.2000 0.3910 - 0.2478 0.2327 0.2195
LuoLG [78] 0.2450 0.1190 0.2300 - - 0.1980 0.1886 0.1782
Luo et al. [18] - 0.0780 0.1830 0.3200 - 0.1937 0.1659 0.1401
Nguyen et al. [27] - 0.0380 0.1310 - - 0.0845 0.0706 0.0589
Ionescu et al. [22] 0.3160 0.1780 0.1940 - - 0.2293 0.2218 0.2153

AE-Unet (Ours) 0.1520 0.0980 0.1750 0.2660 0.0700 0.1522 0.1372 0.1233
AEcUnet (Ours) 0.1380 0.0660 0.1370 0.2390 0.0350 0.1230 0.1009 0.0801
AEnUnet (Ours) 0.1280 0.0430 0.1290 0.2260 0.0230 0.1098 0.0819 0.0577
AEcnUnet (Ours) 0.1120 0.0290 0.1260 0.2180 0.0240 0.1018 0.0735 0.0512
AEaUnet (Ours) 0.1250 0.0310 0.1130 0.2200 0.0200 0.1018 0.0719 0.0482
AEcaUnet (Ours) 0.0820 0.0110 0.0840 0.2020 0.0130 0.0784 0.0457 0.0254

Table 6 presents the fAUC scores of G1 group with related evaluation. Although many
methods are related to this group, rigorous statistical analysis is very difficult to perform.
For example, the method of Nguyen et al. [27] was only tested on two datasets, whereas the
method of Zhang et al. [127] was tested on five datasets. Thus, instead of using rigorous
statistical analysis, for evaluation we use arithmetic, geometric, and harmonic means only.
The method of Zhang et al. [127] presented the best performance from UCSD-Ped1 [31],
whereas AEcaUnet (Ours) demonstrated the best performance from UCSD-Ped2 [31] and
CUHK-Avenue [32]. The method of Roy et al. [91] showed slightly better performance
from UMN [36]. However, methods of Zhang et al. [127], Roy et al. [91], and AEcaUnet
(Ours) showed approximately the same performance from ShanghaiTech-Campus [18].
Nevertheless, the overall performance of AEcaUnet (Ours) is better than that of either
Roy et al. [91] or Zhang et al. [127]. Explicitly, by referring to Table 6, AEcaUnet (Ours)
seemingly showed the best performance from G1.

For G2, G3, G4, and G5, on the other hand, it is not show any direct indication of supe-
riority. As they contain necessary and sufficient different data, we perform nonparametric
statistical analysis to measure the superiority among models.

11. Nonparametric Statistical Analysis

Friedman test [135] and its derivatives (e.g., Iman-Davenport test [136]) are commonly
referred to as one of the most popular nonparametric tests for multiple comparisons [137].
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The mathematical equations of Friedman [135], aligned Friedman [138], and Quade [139]
tests can be found in Quade [139] and Westfall et al. [140]. While Friedman test [135]
takes measures in preparation for ranking of a set of algorithms with performance in
descending order, both aligned Friedman [138] and Quade [139]) tests can give us additional
information. On the other hand, Nemenyi [141] test has a unique advantage of having
an associated plot to demonstrate the results of fair comparison. If the distance between
algorithms is less than the Nemenyi [141] post hoc critical distance, then there is no
statistically significant difference between them. Usually, confidence limits of 90% or 95%
can be used to support the claims on the superiority of models. However, we perform
Friedman [135], aligned Friedman [138], and Quade [139] tests for average rankings as well
as Nemenyi [141] post hoc critical distance diagram (CDD) for validating fair comparisons.

11.1. Average Ranking of G2

By viewing of fAUC values in Table 7, it is clear that Cho et al. [131], Zhou et al. [125],
and Zahid et al. [87] showed the best performance from the datasets of UCSD-Ped2 [31],
CUHK-Avenue [32], and ShanghaiTech-Campus [18], respectively, in their associated ex-
perimental setups. In addition, Vu et al. [108], AEcaUnet (Ours), and Cho et al. [131]
obtained the best fAUC arithmetic, geometric, and harmonic means, respectively. The
tests of Friedman [135], aligned Friedman [138], and Quade [139] have been applied to the
fAUC scores in Table 7 for obtaining the average ranking of each model. The obtained
average ranking results have been recorded in Table 7 (right part) too. The average ranks
obtained by each method in the Friedman [135] test were considered Friedman statistic
(distributed according to chi-square with 40 degrees of freedom) of 140.663182 along with
computed p-value of 0.0000000001. The average ranks obtained by each method in the
aligned Friedman [138] test were considered the aligned Friedman statistic (distributed
according to chi-square with 40 degrees of freedom) of 126.3223 along with computed
p-value of 0.000000000137. The average ranks obtained by each method in the Quade [139]
test were considered Quade statistic (distributed according to F-distribution with 40 and
200 degrees of freedom) of 3.123448 along with computed p-value of 0.000000075521.

From the Friedman [135] test, AEcaUnet (Ours) obtained the first best rank with the
score of 03.3333, whereas Vu et al. [108], Cho et al. [131], and Zhou et al. [125] obtained
the second, third, and forth best ranks with the scores of 06.5000, 07.3333, and 07.5833,
respectively. Similarly, from the aligned Friedman [138] test, AEcaUnet (Ours) achieved
the first best rank with the score of 17.3333, whereas Vu et al. [108] obtained the second
best rank scoring of 30. From the Quade [139] test, AEcaUnet (Ours) secured the first best
rank with the score of 4.0476, whereas Vu et al. [108] obtained the second best rank having
score of 8. On the average of ranking, in group G2, our proposed method AEcaUnet (Ours)
outperformed its alternative methods e.g., Vu et al. [108], Cho et al. [131], Zhou et al. [125],
Roy et al. [91], Mu et al. [109], Wu et al. [107], Zahid et al. [87], and etc.

Table 7. Multiple comparison test for G2 using fAUC. Column-wise the best numerical result is
shown in bold.

Models

Experimental Results Analysis Statistically Analysis of Experimental Results

fAUC Scores from Datasets Mean of fAUC Scores Average Ranking

Ped2 [31] Av. [32] Cam. [18] Arithmetic Geometric Harmonic Fr. [135] A. Fr. [138] Q. [139]

WangCYJT [79] 0.0370 0.1170 0.2340 0.1293 0.1004 0.0753 17.6667 105.0000 17.4286
Dong et al. [81] 0.0440 0.1510 0.2630 0.1527 0.1204 0.0905 30.9167 176.5833 29.9048
Zahid et al. [87] 0.2110 0.2500 0.0600 0.1737 0.1468 0.1181 33.3333 192.1667 28.8571
Doshi et al. [89] 0.0220 0.1360 0.2840 0.1473 0.0947 0.0533 19.7500 117.9167 21.2857
Roy et al. [91] 0.0250 0.1300 0.1900 0.1150 0.0852 0.0567 09.3333 054.0000 09.5238
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Table 7. Cont.

Models

Experimental Results Analysis Statistically Analysis of Experimental Results

fAUC Scores from Datasets Mean of fAUC Scores Average Ranking

Ped2 [31] Av. [32] Cam. [18] Arithmetic Geometric Harmonic Fr. [135] A. Fr. [138] Q. [139]

Lu et al. [94] 0.0380 0.1420 0.2210 0.1337 0.1060 0.0792 21.5000 122.5000 20.5238
Tang et al. [96] 0.0400 0.1600 0.2800 0.1600 0.1215 0.0862 32.6667 180.8333 32.1190
Lee et al. [99] 0.0340 0.1000 0.2380 0.1240 0.0932 0.0688 13.5000 085.8333 14.4286
Song et al. [101] 0.0930 0.1080 0.3000 0.1670 0.1444 0.1285 33.8333 195.1667 33.2381
Sun et al. [103] 0.0900 0.1110 0.0780 0.0930 0.0920 0.0911 16.3333 090.8333 17.2619
Feng et al. [105] 0.0300 0.1400 0.2230 0.1310 0.0978 0.0667 17.5833 101.5833 17.3095
Zhang et al. [106] 0.0460 0.1320 0.2640 0.1473 0.1170 0.0906 28.5000 164.1667 28.2857
Wu et al. [107] 0.0120 0.1530 0.2720 0.1457 0.0793 0.0321 17.6667 108.0000 19.7143
Vu et al. [108] 0.0400 0.0800 0.0630 0.0610 0.0586 0.0562 06.5000 030.0000 08.0000
Mu et al. [109] 0.0530 0.1030 0.0790 0.0783 0.0756 0.0728 12.0000 056.0000 13.9048
LiLS [110] 0.0450 0.1090 0.2600 0.1380 0.1084 0.0851 21.8333 134.0000 21.5952
Cai et al. [112] 0.0320 0.1270 0.2580 0.1390 0.1016 0.0698 19.1667 123.0000 18.9048
Doshi et al. [26] 0.0280 0.1360 0.2910 0.1517 0.1035 0.0645 24.0000 136.1667 24.7857
Zhong et al. [3] 0.0230 0.1110 0.2930 0.1423 0.0908 0.0537 16.0000 097.1667 18.5238
Chang et al. [116] 0.0330 0.1290 0.2630 0.1417 0.1038 0.0717 21.8333 131.1667 21.7619
Esquivel et al. [117] 0.1300 0.1700 0.1300 0.1433 0.1422 0.1411 31.1667 180.0000 28.1905
Park et al. [118] 0.0400 0.1500 0.2800 0.1567 0.1189 0.0851 31.1667 175.8333 31.0238
Doshi et al. [119] 0.0300 0.1130 0.2640 0.1357 0.0964 0.0653 17.1667 104.3333 18.3571
Li et al. [120] 0.0290 0.1340 0.2180 0.1270 0.0946 0.0645 14.1667 085.5000 14.0000
Hao et al. [121] 0.0310 0.1340 0.2620 0.1423 0.1029 0.0689 21.5000 129.8333 21.3095
Zhang et al. [13] 0.0410 0.1480 0.2730 0.1540 0.1183 0.0862 30.5000 173.6667 30.4048
Shao et al. [123] 0.0510 0.1470 0.2830 0.1603 0.1285 0.1002 35.0000 192.1667 34.8095
Zou et al. [124] 0.0270 0.1280 0.2730 0.1427 0.0981 0.0610 19.2500 117.5833 19.9524
Zhou et al. [125] 0.0260 0.0740 0.2510 0.1170 0.0785 0.0536 07.5833 060.4167 09.3095
Zhang et al. [127] 0.0710 0.1950 0.1970 0.1543 0.1397 0.1235 32.0000 182.0000 28.6190
Liu et al. [129] 0.0190 0.1020 0.2620 0.1277 0.0798 0.0453 09.2500 068.5833 10.6667
Cho et al. [131] 0.0080 0.1200 0.2370 0.1217 0.0610 0.0218 07.3333 056.3333 08.7143
ParkLCL [132] 0.0420 0.1460 0.2760 0.1547 0.1192 0.0875 31.5000 175.3333 31.1905
Le et al. [133] 0.0260 0.1330 0.2640 0.1410 0.0970 0.0603 17.9167 115.4167 18.6429

AE-Unet (Ours) 0.0980 0.1750 0.2660 0.1797 0.1658 0.1525 38.5000 230.3333 37.0000
AEcUnet (Ours) 0.0660 0.1370 0.2390 0.1473 0.1293 0.1126 30.3333 180.1667 28.4286
AEnUnet (Ours) 0.0430 0.1290 0.2260 0.1327 0.1078 0.0847 21.2500 125.7500 20.6190
AEcnUnet (Ours) 0.0290 0.1260 0.2180 0.1243 0.0927 0.0638 12.0000 077.5000 11.9762
AEaUnet (Ours) 0.0310 0.1130 0.2200 0.1213 0.0917 0.0657 12.1667 069.5000 12.8810
AEcaUnet (Ours) 0.0110 0.0840 0.2020 0.0990 0.0571 0.0278 03.3333 017.3333 04.0476

11.2. Validation of Fair Comparisons for G2

Figure 18 depicts the Nemenyi [141] post hoc critical distance diagrams at the level of
significance α = 0.05 using fAUC scores in Table 7. Hereby, we define the hypothesis as
“the difference is significant”. From Figure 18, it is noticeable that the distance between the
hypothesis of AEcaUnet (Ours) vs. Zhang et al. [13] is |31.1667− 3.3333| = 27.8334 (heavy
pink line), which is greater than the Nemenyi [141] post hoc critical distance of 26.242
(heavy red line) at α = 0.05 (i.e., 95% confidence limit). Consequently, they are statistically
significant as their distance difference excesses by a numerical value of |27.8334− 26.242| =
1.5914. Similarly, another 19 hypotheses on the differences of this G2 group are statistically
significant, as their distance differences are greater than 26.242 at 95% confidence limit.
Yet, other hypotheses on the differences of this G2 group are not statistically significant
as their distance differences are less than 26.242. For example, the hypothesis on the
difference of Mu et al. [109] vs. AE-Unet (Ours) is not statistically significant as their
distance difference lacks by a numerical value of more than |26.242 + 11.8333− 37.5| =
0.5753. However, the performance of the method of AEcaUnet (Ours) is remarkably
different from AEcUnet (Ours), Zhang et al. [13], Dong et al. [81], Esquivel et al. [117],
Park et al. [118], ParkLCL [132], Zhang et al. [106], Tang et al. [96], Zahid et al. [87],
Song et al. [101], Shao et al. [123], and AE-Unet (Ours). On the same ground, the models
of Vu et al. [108], Cho et al. [131], and Zhou et al. [125] are remarkably different from
Shao et al. [123] and AE-Unet (Ours) only. Henceforth, in group G2 at confidence limit
of 95%, AEcaUnet (Ours) outperforms Vu et al. [108], Cho et al. [131], Zhou et al. [125],
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Liu et al. [129], Roy et al. [91], and etc., which also agrees with the average ranking of
aligned Friedman [138] and Quade [139] shown in Table 7.

Figure 18. Nemenyi [141] post hoc critical distance diagram for α = 0.05 using fAUC scores in Table 7
for G2.

11.3. Average Ranking of G3

Observing fAUC values in Table 8, it is clear that Mu et al. [109], Wang et al. [84], and
Xia et al. [104] showed the best performance for the datasets of UCSD-Ped1 [31], UCSD-
Ped2 [31], and CUHK-Avenue [32], respectively, in their associated experimental setups.
Moreover, AEcaUnet (Ours) obtained the best fAUC arithmetic and geometric means from
our experimental setup, whereas Wang et al. [84] the best fAUC harmonic mean. The tests
of Friedman [135], aligned Friedman [138], and Quade [139] have been applied to the fAUC
scores in Table 8 for obtaining the average ranking of each model. The obtained average
ranking results have been recorded in Table 8 (right part) too. The average ranks obtained
by each method in the Friedman [135] test were considered Friedman statistic (distributed
according to chi-square with 45 degrees of freedom) of 185.858927 along with computed
p-value of 0.000000000001. The average ranks obtained by each method in the aligned
Friedman [138] test were considered aligned Friedman statistic (distributed according to
chi-square with 45 degrees of freedom) of 180.364336 along with computed p-value of
0.000000000091. The average ranks obtained by each method in the Quade [139] test were
considered Quade statistic (distributed according to F-distribution with 45 and 225 degrees
of freedom) of 6.597079 along with computed p-value of 0.0000000001.

From the Friedman [135] test, AEcaUnet (Ours) achieved the first best rank with
the score of 2.5, whereas Wang et al. [84] and Xia et al. [104] obtained the second and
third best ranks by securing scores of 4.8333 and 6.8333, respectively. Similarly, from the
aligned Friedman [138] test, AEcaUnet (Ours) gained again the first best rank with the
score of 12.3333, whereas Wang et al. [84] and Xia et al. [104] obtained the second and
third best ranks by securing scores of 31.3333 and 36.6667, respectively, and etc. From
the Quade [139] test, AEcaUnet (Ours) secured the first best rank with the score of 2.8571,
whereas Mu et al. [109], Wang et al. [84], and AEcnUnet (Ours) obtained other successive
best ranks, and etc. While simple average failed to show the superiority, AEcaUnet (Ours)
obtained the first best result from the Friedman [135], the aligned Friedman [138], and
the Quade [139] tests. Statistically, among all samples of experimental results in group
G3 (Table 8), the method of AEcaUnet (Ours) outperformed its alternative methods (e.g.,
Wang et al. [84], Mu et al. [109], Xia et al. [104], and etc.).
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Table 8. Multiple comparison test for G3 using fAUC. Column-wise the best numerical result is
shown in bold.

Models

Experimental Results Analysis Statistically Analysis of Experimental Results

fAUC Scores from Datasets Mean of fAUC Scores Average Ranking

Ped1 [31] Ped2 [31] Av. [32] Arithmetic Geometric Harmonic F. [135] A. F. [138] Q. [139]

WangCYJT [79] 0.1660 0.0370 0.1170 0.1067 0.0896 0.0721 18.8333 112.3333 21.3810
Chen et al. [80] 0.1280 0.0350 0.1270 0.0967 0.0829 0.0678 12.7500 077.5833 12.8571
Fan et al. [82] 0.0510 0.0780 0.1660 0.0983 0.0871 0.0780 19.0000 122.8333 14.0000
Nawar. et al. [83] 0.2480 0.0890 0.2320 0.1897 0.1724 0.1532 41.8333 253.1667 41.9524
Wang et al. [84] 0.1330 0.0090 0.1010 0.0810 0.0494 0.0233 04.8333 031.3333 06.3333
WuLLSS [85] 0.1760 0.0720 0.1450 0.1310 0.1225 0.1133 35.1667 207.1667 36.5714
Yang et al. [86] 0.0650 0.0630 0.1680 0.0987 0.0883 0.0806 20.4167 122.7500 16.4524
Zahid et al. [87] 0.4150 0.2110 0.2500 0.2920 0.2797 0.2691 46.0000 273.1667 46.0000
Zhou et al. [88] 0.1610 0.0400 0.1400 0.1137 0.0966 0.0782 25.5000 146.6667 26.1429
Roy et al. [91] 0.1500 0.0250 0.1300 0.1017 0.0787 0.0552 13.6667 087.5000 14.2381
Ji et al. [93] 0.1600 0.0200 0.2200 0.1333 0.0890 0.0493 22.0833 136.0833 19.7143
Lu et al. [94] 0.1370 0.0380 0.1420 0.1057 0.0904 0.0738 19.6667 114.5000 18.6667
Rama. et al. [95] 0.1400 0.0600 0.1280 0.1093 0.1024 0.0949 24.8333 150.8333 25.6190
Tang et al. [96] 0.1700 0.0400 0.1600 0.1233 0.1029 0.0808 30.0833 167.0833 30.7143
Almaz. et al. [97] 0.0630 0.1670 0.1250 0.1183 0.1096 0.1005 27.5000 154.8333 25.7619
Wu0S [98] 0.1700 0.0400 0.1300 0.1133 0.0960 0.0778 23.7500 139.4167 25.6190
Prawiro et al. [100] 0.1600 0.0400 0.1400 0.1133 0.0964 0.0781 24.5000 144.8333 24.9286
Song et al. [101] 0.0950 0.0930 0.1080 0.0987 0.0984 0.0982 20.8333 119.5000 20.9762
Yan et al. [102] 0.2500 0.0900 0.2040 0.1813 0.1662 0.1499 41.2500 247.7500 41.5238
Sun et al. [103] 0.0980 0.0900 0.1110 0.0997 0.0993 0.0989 21.8333 122.3333 21.9762
Xia et al. [104] 0.1200 0.0340 0.0780 0.0773 0.0683 0.0593 06.8333 036.6667 08.0000
Wu et al. [107] 0.1150 0.0120 0.1530 0.0933 0.0595 0.0304 10.0833 059.7500 07.4048
Vu et al. [108] 0.1500 0.0400 0.0800 0.0900 0.0783 0.0679 12.5000 076.0000 15.0000
Mu et al. [109] 0.0480 0.0530 0.1030 0.0680 0.0640 0.0607 08.0000 046.3333 06.2857
LiLS [110] 0.1470 0.0450 0.1090 0.1003 0.0897 0.0785 18.0833 104.7500 19.8095
LiCL [111] 0.0950 0.0710 0.1650 0.1103 0.1036 0.0978 27.3333 156.6667 24.2857
Sayp. et al. [113] 0.1470 0.0430 0.1320 0.1073 0.0941 0.0797 22.5000 131.5000 22.7143
Gutoski et al. [115] 0.2810 0.1070 0.1530 0.1803 0.1663 0.1543 40.7500 243.5833 42.2619
Zhong et al. [3] 0.1740 0.0230 0.1110 0.1027 0.0763 0.0510 13.4167 081.0833 16.3571
Esq. et al. [117] 0.2900 0.1300 0.1700 0.1967 0.1858 0.1762 43.5000 255.6667 44.4762
Li et al. [120] 0.1880 0.0290 0.1340 0.1170 0.0901 0.0635 21.8333 128.1667 23.7857
Hao et al. [121] 0.1750 0.0310 0.1340 0.1133 0.0899 0.0660 21.1667 124.6667 22.8810
Zhang et al. [13] 0.1640 0.0410 0.1480 0.1177 0.0998 0.0805 28.4167 158.7500 28.7143
Shao et al. [123] 0.2240 0.0510 0.1470 0.1407 0.1189 0.0972 33.6667 198.6667 35.2857
Hu et al. [126] 0.1930 0.1470 0.1900 0.1767 0.1753 0.1739 42.3333 251.0000 42.2857
Zhang et al. [127] 0.0580 0.0710 0.1950 0.1080 0.0929 0.0823 24.9167 142.5833 20.0000
Wang et al. [128] 0.1200 0.1100 0.1300 0.1200 0.1197 0.1194 30.4167 170.4167 29.4286
Feng et al. [130] 0.1640 0.0920 0.1870 0.1477 0.1413 0.1344 38.2500 229.5833 37.3810
Liu et al. [28] 0.1490 0.0340 0.1350 0.1060 0.0881 0.0689 17.7500 112.2500 17.7143

AE-Unet (Ours) 0.1520 0.0980 0.1750 0.1417 0.1376 0.1333 37.1667 222.6667 35.6667
AEcUnet (Ours) 0.1380 0.0660 0.1370 0.1137 0.1077 0.1010 28.9167 166.2500 28.7381
AEnUnet (Ours) 0.1280 0.0430 0.1290 0.1000 0.0892 0.0773 17.1667 099.1667 16.7143
AEcnUnet (Ours) 0.1120 0.0290 0.1260 0.0890 0.0742 0.0584 08.2500 053.0833 07.7619
AEaUnet (Ours) 0.1250 0.0310 0.1130 0.0897 0.0759 0.0611 09.5833 055.5833 10.0000
AEcaUnet (Ours) 0.0820 0.0110 0.0840 0.0590 0.0423 0.0261 02.5000 012.3333 02.8571

11.4. Validation of Fair Comparisons for G3

Figure 19 depicts the Nemenyi [141] post hoc critical distance diagrams at the level
of significance α = 0.10 using both experimental and mean fAUC values in Table 8.
From Figure 19, it is noticeable that the hypothesis on the difference of AEcaUnet (Ours)
vs. Shao et al. [123] is statistically significant. Similarly, another 61 hypotheses on the
differences of this G3 group are statistically significant, as their distance differences are
greater than 28.3372 at 90% confidence limit.
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Figure 19. Nemenyi [141] post hoc critical distance diagram for α = 0.10 using fAUC numerics in
Table 8 for G3.

While the performance of the methods in group G3 are remarkably different from
their alternatives, and AEcaUnet (Ours) is on top of the list. Clearly, the performance
of the method of AEcaUnet (Ours) is remarkably different than that of Shao et al. [123].
On the other hand, the performance of the methods of Wang et al. [84], Xia et al. [104],
Mu et al. [109], and others is not remarkably different than that of Shao et al. [123] at
confidence limit of 90%. Explicitly, in group G3 at confidence limit of 90%, the method
of AEcaUnet (Ours) outperformed its alternatives (e.g., Wang et al. [84], Xia et al. [104],
Mu et al. [109], and etc.). This also agrees with the average ranking of aligned Fried-
man [138] and Quade [139] in Table 8.

11.5. Average Ranking of G4

Observing fAUC values in Table 9, it is clear that Zhang et al. [127], AEcaUnet (Ours),
Vu et al. [108], and Zahid et al. [87] showed the best performance for the datasets of
UCSD-Ped1 [31], UCSD-Ped2 [31], CUHK-Avenue [32], and ShanghaiTech-Campus [18],
respectively, in their associated experimental setups. Moreover, Mu et al. [109] obtained
the best fAUC arithmetic mean from their experimental setup, whereas AEcaUnet (Ours)
obtained the best fAUC geometric and harmonic means. The tests of Friedman [135],
aligned Friedman [138], and Quade [139] have been applied to the fAUC values in Table 9
for obtaining the average ranking of each model. The obtained average ranking results
have been recorded in Table 9 (right part) too. The average ranks obtained by each method
in the Friedman [135] test were considered Friedman statistic (distributed according to
chi-square with 25 degrees of freedom) of 95.531136 along with the computed p-value of
0.00000000001. The average ranks obtained by each method in the aligned Friedman [138]
test were considered the aligned Friedman statistic (distributed according to chi-square with
25 degrees of freedom) of 86.675237 along with the computed p-value of 0.000000009964.
The average ranks obtained by each method in the Quade [139] test were considered Quade
statistic (distributed according to F-distribution with 25 and 150 degrees of freedom) of
3.380389 along with the computed p-value of 0.000001997843. From the Friedman [135] test,
AEcaUnet (Ours) gained the best rank with the score of 2.8571, whereas Mu et al. [109],
Vu et al. [108], AEcnUnet (Ours), and AEaUnet (Ours) obtained the second, third, fourth,
and fifth best ranks with the scores of 4.7143, 5.6429, 7.1429, and 8.2143, respectively.
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Table 9. Multiple comparison test for G4 using fAUC. Column-wise the best numerical result is
shown in bold.

Models

Experimental Results Analysis Statistically Analysis of Experimental Results

fAUC Scores from Datasets Mean of fAUC Scores Average Ranking

Ped1 [31] Ped2 [31] A. [32] Cam. [18] Arithmetic Geometric Harmonic F. [135] A.
F. [138] Q. [139]

WangCYJT [79] 0.1660 0.0370 0.1170 0.2340 0.1385 0.1139 0.0872 12.7143 091.8571 13.3571
Zahid et al. [87] 0.4150 0.2110 0.2500 0.0600 0.2340 0.1904 0.1438 22.1429 151.1429 20.5000
Roy et al. [91] 0.1500 0.0250 0.1300 0.1900 0.1237 0.0981 0.0671 08.2857 055.1429 09.0357
Lu et al. [94] 0.1370 0.0380 0.1420 0.2210 0.1345 0.1131 0.0885 12.1429 086.8571 11.8214
Tang et al. [96] 0.1700 0.0400 0.1600 0.2800 0.1625 0.1321 0.0983 19.9286 129.6429 19.6250
Song et al. [101] 0.0950 0.0930 0.1080 0.3000 0.1490 0.1301 0.1181 16.7857 110.7857 15.5000
Sun et al. [103] 0.0980 0.0900 0.1110 0.0780 0.0943 0.0935 0.0927 08.5000 053.9286 08.3929
Wu et al. [107] 0.1150 0.0120 0.1530 0.2720 0.1380 0.0871 0.0391 09.7143 070.1429 11.0714
Vu et al. [108] 0.1500 0.0400 0.0800 0.0630 0.0833 0.0742 0.0666 05.6429 034.0714 07.0536
Mu et al. [109] 0.0480 0.0530 0.1030 0.0790 0.0708 0.0675 0.0644 04.7143 026.7143 05.3214
LiLS [110] 0.1470 0.0450 0.1090 0.2600 0.1402 0.1170 0.0951 13.2857 093.0000 13.2321
Sayp. et al. [113] 0.1470 0.0430 0.1320 0.2700 0.1480 0.1225 0.0968 16.1429 106.8571 15.6786
Zhong et al. [3] 0.1740 0.0230 0.1110 0.2930 0.1503 0.1068 0.0649 12.6429 087.7857 14.8571
Esq. et al. [117] 0.2900 0.1300 0.1700 0.1300 0.1800 0.1699 0.1618 22.0000 143.7143 20.5000
Li et al. [120] 0.1880 0.0290 0.1340 0.2180 0.1422 0.1123 0.0771 12.5000 091.5000 13.5179
Hao et al. [121] 0.1750 0.0310 0.1340 0.2620 0.1505 0.1175 0.0812 15.5714 105.5714 16.3393
Zha. et al. [13] 0.1640 0.0410 0.1480 0.2730 0.1565 0.1284 0.0978 18.7143 124.0000 18.6071
Shao et al. [123] 0.2240 0.0510 0.1470 0.2830 0.1763 0.1476 0.1163 21.8571 142.8571 21.9643
Zha. et al. [127] 0.0580 0.0710 0.1950 0.1970 0.1302 0.1121 0.0960 12.7143 089.0000 11.6786

AE-Unet (Ours) 0.1520 0.0980 0.1750 0.2660 0.1728 0.1623 0.1523 22.2857 149.4286 21.1429
AEcUnet (Ours) 0.1380 0.0660 0.1370 0.2390 0.1450 0.1314 0.1181 17.5000 118.3571 16.0357
AEnUnet (Ours) 0.1280 0.0430 0.1290 0.2260 0.1315 0.1125 0.0925 11.7857 081.3571 11.6607
AEcnUnet (Ours) 0.1120 0.0290 0.1260 0.2180 0.1212 0.0972 0.0715 07.1429 055.1429 07.3393
AEaUnet (Ours) 0.1250 0.0310 0.1130 0.2200 0.1222 0.0991 0.0746 08.2143 057.2143 08.4821
AEcaUnet (Ours) 0.0820 0.0110 0.0840 0.2020 0.0947 0.0625 0.0333 02.8571 022.4286 03.4643

The method of AEcaUnet (Ours) ranked as the first from both aligned Friedman [138]
and Quade [139] tests. On the average, in group G4, AEcaUnet (Ours) outperformed its
alternative methods, e.g., Mu et al. [109], Vu et al. [108], AEcnUnet (Ours), AEaUnet (Ours),
Sun et al. [103], Roy et al. [91], Wu et al. [107], etc.

11.6. Validation of Fair Comparisons for G4

Figure 20 depicts the Nemenyi [141] post hoc critical distance diagrams at the level of
significance α = 0.10 using fAUC values in Table 9.

Figure 20. Nemenyi [141] post hoc critical distance diagram for α = 0.05 using fAUC scores in Table 9
for G4.

From Figure 19, it is noticeable that the hypothesis on the difference of AEcaUnet
(Ours) vs. Zhang et al. [13] is statistically significant. Likewise, another 14 hypotheses on
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the differences of this G4 group are statistically significant, as their distance differences are
greater than 14.3905 at 95% confidence limit. In group G4, the performance of the methods
of AEcaUnet (Ours), Mu et al. [109], and Vu et al. [108] are statistically significant at α = 0.05
from their alternatives. Clearly, the performance of the method of AEcaUnet (Ours) is
remarkably different than that of Zhang et al. [13]. Yet, the performance of the methods of
Mu et al. [109] and Vu et al. [108] is not remarkably different than that of Zhang et al. [13]
at confidence limit of 95%. Explicitly, in group G4 at confidence limit of 95%, the method
of AEcaUnet (Ours) outperformed its alternatives (e.g., Mu et al. [109], Vu et al. [108], and
etc.). This also agrees with the average ranking of aligned Friedman [138] and Quade [139]
in Table 9.

11.7. Average Ranking of G5

By adjudging fAUC scores in Table 10, it is clear that Zhang et al. [127], AEcaUnet
(Ours), Xia et al. [104], and Roy et al. [91] showed the best performance for the datasets
of UCSD-Ped1 [31], UCSD-Ped2 [31], CUHK-Avenue [32], and UMN [36], respectively,
in their associated experimental setups. Moreover, AEcaUnet (Ours) obtained the best
fAUC arithmetic and geometric means from our experimental setup, whereas Roy et al. [91]
achieved the best fAUC harmonic mean. However, the tests of Friedman [135], aligned
Friedman [138], and Quade [139] have been applied to the fAUC values in Table 7 for
obtaining the average ranking of each model. The obtained average ranking results have
been recorded in Table 7 (right part) too. The average ranks obtained by each method in the
Friedman [135] test were considered Friedman statistic (distributed according to chi-square
with 11 degrees of freedom) of 44.428571 along with computed p-value of 0.000006. The
average ranks obtained by each method in the aligned Friedman [138] test were considered
the aligned Friedman statistic (distributed according to chi-square with 11 degrees of
freedom) of 44.071296 along with the computed p-value of 0.000007061196. The average
ranks obtained by each method in the Quade [139] test were considered Quade statistic
(distributed according to F-distribution with 11 and 66 degrees of freedom) of 4.098057
along with computed p-value of 0.000136314342. From the rigorous statistical point of view,
AEcaUnet (Ours) gained the best rank with the score of 1.8571 using the Friedman [135]
test, whereas Roy et al. [91], AEaUnet (Ours), and Xia et al. [104] obtained the second, third,
and fourth best ranks with the scores of 3.7857, 4.2143, and 4.7143, respectively. Using
the aligned Friedman [138] test, AEcaUnet (Ours) attained the best rank with the score of
8.7143. Considering the Quade [139] test, AEcaUnet (Ours) also obtained the best rank with
the score of 2.1429.

Table 10. Multiple comparison test for G5 using fAUC. Column-wise the best numerical result is
shown in bold.

Models

Experimental Results Analysis Statistically Analysis of Experimental Results

fAUC Scores from Datasets Mean of fAUC Scores Average Ranking

Ped1 [31] Ped2 [31] A. [32] UMN [36] Arithmetic Geometric Harmonic F. [135] A.
F. [138] Q. [139]

Roy et al. [91] 0.1500 0.0250 0.1300 0.0030 0.0770 0.0348 0.0103 03.7857 26.0714 04.6071
Wu0S [98] 0.1700 0.0400 0.1300 0.1100 0.1125 0.0993 0.0839 09.6429 63.2143 09.6071
Xia et al. [104] 0.1200 0.0340 0.0780 0.0300 0.0655 0.0556 0.0477 04.7143 28.7143 04.8929
LiCL [111] 0.0950 0.0710 0.1650 0.0200 0.0877 0.0687 0.0496 07.5714 48.1429 07.0357
Gut. et al. [115] 0.2810 0.1070 0.1530 0.0080 0.1373 0.0779 0.0277 08.4286 57.4286 08.1786
Zha. et al. [127] 0.0580 0.0710 0.1950 0.0120 0.0840 0.0557 0.0334 05.9286 39.6429 05.6250

AE-Unet (Ours) 0.1520 0.0980 0.1750 0.0700 0.1237 0.1162 0.1087 11.1429 75.1429 10.9286
AEcUnet (Ours) 0.1380 0.0660 0.1370 0.0350 0.0940 0.0813 0.0686 09.0000 60.0000 08.7857
AEnUnet (Ours) 0.1280 0.0430 0.1290 0.0230 0.0808 0.0636 0.0486 06.7143 43.8571 06.6429
AEcnUnet (Ours) 0.1120 0.0290 0.1260 0.0240 0.0728 0.0560 0.0430 05.0000 31.0000 04.9643
AEaUnet (Ours) 0.1250 0.0310 0.1130 0.0200 0.0723 0.0544 0.0404 04.2143 28.0714 04.5893
AEcaUnet (Ours) 0.0820 0.0110 0.0840 0.0130 0.0475 0.0315 0.0208 01.8571 08.7143 02.1429
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11.8. Validation of Fair Comparisons for G5

The methods in G5 show statistically significant performance difference at both α =
0.05 and α = 0.10. Figure 21 depicts the Nemenyi [141] post hoc critical distance diagrams at
the level of significance α = 0.10 (i.e., 90% confidence limit) using fAUC scores in Table 10.

Figure 21. Nemenyi [141] post hoc critical distance diagram for α = 0.10 using fAUC scores in
Table 10 for G5.

From Figure 21, it is noticeable that the hypothesis on the difference of AEcaUnet
(Ours) vs. Gutoski et al. [115] is statistically significant. Similarly, another eight hypotheses
on the differences of this G5 group are statistically significant, as their distance differences
are greater than 5.8396 at 90% confidence limit. The performance of the method of AEcaUnet
(Ours) is remarkably different than that of Gutoski et al. [115], AEcUnet (Ours), Wu0S [98],
and AE-Unet (Ours). Nevertheless, the performance of the method of Roy et al. [91]
is not remarkably different than that of Gutoski et al. [115] and AEcUnet (Ours) at a
confidence limit of 90%. Consequently, at confidence limit of 90% AEcaUnet (Ours) is a
better performative method than Roy et al. [91]. Explicitly, in group G5 at confidence limit
of 90%, AEcaUnet (Ours) outperformed Roy et al. [91], AEaUnet (Ours), Xia et al. [104],
AEcnUnet (Ours), Zhang et al. [127], etc. This also agrees with the average ranking of
aligned Friedman [138] and Quade [139] in Table 10.

11.9. Average Ranking of G6

By perceiving fAUC values in Table 11, it is clear that Zhang et al. [127], AEcaUnet
(Ours), and Roy et al. [91] showed the best performance for the datasets of UCSD-Ped1 [31],
UCSD-Ped2 [31], and UMN [36], respectively, in their associated experimental setups.
Moreover, AEcaUnet (Ours) obtained the best fAUC arithmetic mean of 0.0353 from ex-
perimental setup, whereas Roy et al. [91] obtained the best fAUC geometric and harmonic
means. The tests of Friedman [135], aligned Friedman [138], and Quade [139] have been
applied to the fAUC scores in Table 11 for obtaining the average ranking of each model.
The obtained average ranking results are recorded in Table 11 (right part). The average
ranks obtained by each method in the Friedman [135] test were considered Friedman
statistic (distributed according to chi-square with 13 degrees of freedom) of 44.871429 along
with the computed p-value of 0.000022. The average ranks obtained by each method in the
aligned Friedman [138] test were considered the aligned Friedman statistic (distributed
according to chi-square with 13 degrees of freedom) of 43.121293 along with the computed
p-value of 0.000042872968. The average ranks obtained by each method in the Quade [139]
test were considered Quade statistic (distributed according to F-distribution with 13 and 65
degrees of freedom) of 1.536464 along with the computed p-value of 0.000155833749. From
the rigorous statistical point of view, AEcaUnet (Ours) obtained the best rank with the score
of 2.1667 using the Friedman [135] test, whereas Roy et al. [91] the second best rank with
the score of 3.1667. Using the aligned Friedman [138] test, AEcaUnet (Ours) obtained the
best rank with the score of 9.6667. Considering the Quade [139] test, AEcaUnet (Ours) also
secured the best rank with the score of 2.3810.
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Table 11. Multiple comparison test for G6 using fAUC. Column-wise the best numerical result is
shown in bold.

Models

Experimental Results Analysis Statistically Analysis of Experimental Results

fAUC Scores from Datasets Mean of fAUC Scores Average Ranking

Ped1 [31] Ped2 [31] UMN [36] Arithmetic Geometric Harmonic F. [135] A. F. [138] Q. [139]

Roy et al. [91] 0.1500 0.0250 0.0030 0.0593 0.0224 0.0079 03.1667 20.5000 04.1905
Wu et al. [92] 0.1600 0.0760 0.0070 0.0810 0.0440 0.0185 07.5000 45.3333 08.0000
Wu0S [98] 0.1700 0.0400 0.1100 0.1067 0.0908 0.0751 11.7500 67.9167 11.8571
Xia et al. [104] 0.1200 0.0340 0.0300 0.0613 0.0497 0.0422 07.5000 38.0000 07.2857
LiCL [111] 0.0950 0.0710 0.0200 0.0620 0.0513 0.0402 07.8333 41.1667 06.8571
Gutoski et al. [115] 0.2810 0.1070 0.0080 0.1320 0.0622 0.0218 10.0000 57.8333 10.2857
Alafif et al. [122] 0.1720 0.0430 0.0190 0.0780 0.0520 0.0367 08.9167 50.2500 09.1667
Zhang et al. [127] 0.0580 0.0710 0.0120 0.0470 0.0367 0.0262 04.2500 25.9167 03.7381

AE-Unet (Ours) 0.1520 0.0980 0.0700 0.1067 0.1014 0.0966 12.7500 75.4167 12.1905
AEcUnet (Ours) 0.1380 0.0660 0.0350 0.0797 0.0683 0.0589 10.5000 60.6667 10.0476
AEnUnet (Ours) 0.1280 0.0430 0.0230 0.0647 0.0502 0.0400 08.0833 42.0833 07.9762
AEcnUnet (Ours) 0.1120 0.0290 0.0240 0.0550 0.0427 0.0353 05.3333 28.6667 05.4286
AEaUnet (Ours) 0.1250 0.0310 0.0200 0.0587 0.0426 0.0332 05.2500 31.5833 05.5952
AEcaUnet (Ours) 0.0820 0.0110 0.0130 0.0353 0.0227 0.0167 02.1667 09.6667 02.3810

11.10. Validation of Fair Comparisons for G6

Figure 19 depicts the Nemenyi [141] post hoc critical distance diagrams at the level of
significance α = 0.10 using fAUC scores in Table 8.

Figure 22. Nemenyi [141] post hoc critical distance diagram for α = 0.10 using fAUC numerics in
Table 11 for G6.

From Figure 22, it is noticeable that the hypothesis on the difference of AEcaUnet
(Ours) vs. Gutoski et al. [115] is statistically significant. Likewise, another six hypotheses on
the differences of this G6 group are statistically significant, as their distance differences are
greater than 7.5355 at 90% confidence limit. The performance of the method of AEcaUnet
(Ours) is significantly better than that of Gutoski et al. [115], AEcUnet (Ours), Wu0S [98],
and AE-Unet (Ours). Nevertheless, the performance of the method of Roy et al. [91] is not
statistically significant than that of Gutoski et al. [115] and AEcUnet (Ours) at confidence
limit of 90%. Consequently, at confidence limit of 90% AEcaUnet (Ours) performs better
than Roy et al. [91]. Explicitly, in group G6 at confidence limit of 90%, AEcaUnet (Ours)
outperformed Roy et al. [91], Zhang et al. [127], etc. This also agrees with the average
ranking of aligned Friedman [138] and Quade [139] in Table 11.

In summary, the aforementioned rigorous statistical analysis on groups G1, G2, G3,
G4, G5, and G6 shows the ranking measures of Table 5 and the method of AEcaUnet (Ours)
takes place on the top of the ranking of each group. This shows that AEcaUnet (Ours) (i.e.,
a skip connected autoencoder with attention block U-Net) possesses the ability to extract
high-quality features from the available videos, and also it confirms a certain degree of
augmentation of the reconstruction error gap.
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11.11. Limitation of Our Framework

Although some of our proposed models demonstrated their superiority among many
methods and various popular datasets statistically, they did not achieve an individual and
the best experimental scores from any dataset from Table 5. The types of anomalies in
dissimilar scenarios are not identical. Our entire frame based evaluation can preserve the
complete appearance of target objects in video frame. Our models justify using entire frame
based anomaly score whether a video frame belongs to a normal event or an abnormal
event, but it does not detect the location of abnormal events on the frame.

11.12. Future Work

Fundamentally, our rpNet is a natural extension of video classification-based on CNNs.
Recently, it is demonstrated by evidence that a pure transformer-based architecture can
outperform its convolutional counterparts in image classification [142]. The transformer
does not process the input in order, sequentially, but in parallel. For each element, the
transformer integrates information from the other elements via self-attention. It can better
capture long range contextual relationships in video. The vision transformer (ViT) is a
successful application of a transformer in computer vision. In future, we wish to aug-
ment our generalized architecture by incorporating the ViT technologies with extracting
spatiotemporal tokens from the input video, which would be then encoded by a series
of the ViT layers. Moreover, we used Sigmoid activation function where the output is
guaranteed between 0 and 1, but Sigmoid activation is tough. Nevertheless, ViT does not
need any Sigmoid or Tanh activation. The ViT performs very favorably over CNNs only if
the dataset for pretraining is sufficiently large [143]. For example, an experimental setup of
Dosovitskiy et al. [143] claimed that under 100 million images the accuracy of the variants
of ResNet [60] (e.g., ResNet50x1 (BiT) and ResNet152x2 (BiT)) was better than that of the
ViT. Yet, the accuracy of those variants did not improve as the number of samples grew
from 100 million images to 300 million images. Conversely, the ViT performed positively
and hence it outperformed all of its convolutional counterparts considering 300 million
images [143]. In short, the bigger the datasets are, the greater the power of the ViT over
CNNs is. However, to obtain a huge crowd dataset (e.g., 300 million frames or more) is still
a challenging task in computer vision.

12. Conclusions

We proposed six deep models from a generalized architecture by fusing several alter-
natives of prediction and reconstruction networks to detect anomaly in video efficiently.
The fusion of networks guaranteed a certain degree of augmentation of the reconstruction
error gap. Experiments on five benchmark datasets demonstrated the potential of our
models, and the detailed discussion verified their effectiveness to detect abnormal video
events. Some of our models showed promising results within their ability to extract good
quality of features. By confirming improved error gap and extracting better quality of
features from the available videos, our proposed AEcaUnet demonstrated its superiority in
statistically, and the statistical results were based on the experimental results of miscella-
neous methods and several most popular crowd datasets. We noticed that a skip connected
autoencoder with attention block U-Net can extract high-quality features needed for video
anomaly detection. A statistical analysis of the results needs a higher confidence limit
to support its claims. We applied the confidence limits of 90% and 95% to support the
claims on the superiority of our models. In general, most of our proposed models are more
performative and sophisticated than the existing ones (e.g., Liu et al. [2], Nguyen et al. [27],
Zhong et al. [3], Zhang et al. [13], Liu et al. [28], and etc.), and henceforth, they can be
applied in complex and realistic situations.
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