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Abstract: We present a generalized mathematical model and algorithm for the multi-cavity
self-mixing phenomenon based on scattering theory. Scattering theory, which is extensively used
for travelling wave is exploited to demonstrate that the self-mixing interference from multiple
external cavities can be modelled in terms of individual cavity parameters recursively. The
detailed investigation shows that the equivalent reflection coefficient of coupled multiple cavities
is a function of both attenuation coefficient and the phase constant, hence propagation constant.
The added benefit with recursively model is that it is computationally very efficient to model
large number of parameters. Finally, with the aid of simulation and mathematical modelling, we
demonstrate how the individual cavity parameters such as cavity length, attenuation coefficient,
and refractive index of individual cavities can be tuned to get a self-mixing signal with optimal
visibility. The proposed model intends to leverage system description for biomedical applications
when probing multiple diffusive media with distinct characteristics, but could be equally extended
to any setup in general.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In the case of self-mixing interferometry (SMI) (also know as optical feedback interferometry
(OFI), the electromagnetic radiation emitting from the laser is forced to reflect back to its own
cavity after reflection from an external (vibrating) target. The change in round trip time from the
coupled external cavity changes the emission phase and frequency. This frequency modulated
reflected radiation beat with the emanating field inside the laser’s cavity to give rise to self-mixing
interference causing modulation of output optical power (OOP) and forming interference fringes.
These fringes are detected photodiode to get self-mixing signal (SMS) [1–3].

Authors in [1,2,4] explained SMI phenomenon using coupling between electric field and
carrier density in the compound cavity, where first cavity is the laser’s cavity and second formed
by laser’s facet and the external target. The general SMI field equation is obtained by adding
the external feedback field to the standard lasing field. In this model, the equivalent reflection
coefficient of the compound cavity is a function of reflection coefficients of the cavity boundaries
(i.e., laser facet and the remote external target). Though, the model could be extended to multiple
cavities by consequently adding the reflection term from each cavity [1]. This brings on added
complexity and steady state solution becomes complex to obtain.

Approaches based on three mirror cavity is well explained by [5–8]. This model is based on
principle that - by placing the (vibrating) external target in front of laser, an additional external
cavity is formed. By periodically vibrating remote external target, the optical path difference
(OPD) between the laser facet and the target changes, this in turn modifies the equivalent reflection
of the laser facet and hence the OOP is also modulated. Again, this model is based solely on
the reflection coefficients of the boundaries of the cavities, i.e., laser’s facet (forming the laser
cavity) and the target (forming additional external cavity).
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SMI has been widely used for measurement from physical quantities - displacement [9],
velocity [10,11], distance [11], vibration [12], imaging [13], acoustic detection and imaging [14]
to name a few. Recently it has found its application in biophotonics such as pulse wave detection
[15,16], and variety of other applications summarized well in [17].

Despite the exponential growth of SMI as non-contact, and non-destructive testing, theoretical
background targeting biophotonics applications where the laser has to interact with multiple
cavities filled with diffusive media having different reflection coefficient, attenuation coefficient
and refractive index is not explained well. These parameters are particularly important for sensing
biological samples e.g. system on chip, in vitro and/or in vivo biosensing, and also equally well
desirable for industrial applications. So far in the current state of the art most of the models
consider (a) single external cavity and (b) phase of the reflected field but not the attenuation of
the electromagnetic field in individual cavities. The attenuation of the optical field in the external
cavity, among many others, are important parameter as they determine the fringe visibility of the
SMS and ultimately enable its detection. The dependence of the attenuation coefficient of the
material forming the external cavity (cavities) and the reflection coefficient at the boundaries is
important, in particular, in the case of diffusive materials which need to be characterized. So far,
they have not been taken into account while explaining SMI phenomenon. Unlike, reflection
from rigid body, where the reflection is considered to come from a point on the reflecting target,
this does not hold true while considering diffusive media. In this case, reflection from multiple
particles has to be taken into account. Multiple particles reflect electromagnetic radiation incident
from laser differently due to its motion resulting in complex signal composing of many individual
SMS due to each particle. In this regard, authors in [18,19], proposed a model to explain the
multi scattering phenomenon from diffusive target, its implication on SMS and how to retrieve
the individual velocity component of flowing particle in diffusive media. However, again the
attenuation of the incident laser beam as it propagates through different media such as glass
substrate, and channel is not taken into account. Taking attenuation into account in the model,
this could benefit in tuning the laser emission power and/or different other parameters (described
in detail in subsequent sections) to get optimal SMS resulting in improved velocity estimation of
the particles. To overcome these limitations, we propose generalized multi-cavity SMI based on
scattering theory.

Scattering matrix theory is widely used in describing the travelling wave in electrical networks
with multiple impedance mismatch. The scattering matrix (S matrix) relates the amplitude of the
reflected and incident waves at any interface, while transmission matrix (T matrix) relates the
fields of one side of the interface to the other. Both matrices are equivalently used depending upon
the desired analysis of the parameters under study. It has widely been used, e.g., in microwave
circuits [20]. The same concept may be applied to explaining the optical wave propagation in
the laser, and OF as well. It was first used by Wang et al. for analysis of interferometric and
ring lasers [21]. Lau et. al. used it to describe a three junction triangular ring wave guide laser
[22]. [23] analysed scattering loss in DFB lasers due to the presence of the grating. Coldren et al.
used S and T matrix both to determine the equivalent reflection and transmission coefficients in
groove coupled lasers, and two section coupled resonator systems [24,25].

In this paper, starting with basics of scattering theory in sec. 2, sec. 3 exploits scattering
theory to determine modified equivalent reflection coefficient of coupled cavity in terms of both
attenuation coefficient and phase constant (propagation constant) for single external cavity (SMI
with single external cavity). Further, detail mathematical formalization is used to deduce standard
equation of equivalent reflection coefficient [1,26] from the proposed model. The detailed joint
effect of the reflection, attenuation coefficients, and their contribution to the resonance under
optical feedback is then studied. Next, in sec. 4, utilizing the cascade properties of S and T
matrix, the effect of OF from a single external cavity is extended to situations where multiple
cavities are involved (multi cavity SMI). It is shown by just changing the boundary conditions
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in a recursive way, the optimal condition for the effective coupling of the reflected optical field
from multiple cavities in terms of individual cavity parameters such as cavity length, attenuation
and reflection coefficients, or losses is presented. With the aid of mathematical background
and simulation, it is demonstrated that the parameters of laser and the individual cavities can
be tuned to obtain maximal SMS with higher fringe visibility. Further, in sec. 5, the concept
is generalized, and algorithm is presented to obtain equivalent coefficient of the laser facet in
presence of OF from N external cavity (generalized N cavity SMI). Finally, a conclusion in sec.
6 ends the chapter. The major contributions presented in this article are as follows:

1. We extend the scattering theory to SMI with one external cavity. We demonstrate that
the equivalent reflection coefficient is a function of propagation constant i.e. attenuation
coefficient and phase constant both (contrast to only phase constant as defined in compound
cavity model [1,2,26]). Further we demonstrate mathematically that our proposed model
based on scattering theory is a generalised laser equation in presence of SMI and reduces to
standard lasing equation as described in [26] (Eq. 9.1) and [1] (appendix) when attenuation
coefficient is equated to zero.

2. We demonstrate that the proposed scattering theory for OF can be extended to multiple
cavities. The formalisation based on scattering theory is recursive and multiplicative such
that the N external cavities can be expressed in terms of individual cavities i = 1, 2 · · ·N−1.
Based on this, we define the equivalent reflection coefficient of laser cavity in presence
of two external cavities (one laser cavity plus two external cavities), and then present a
general equation of equivalent reflection coefficient of laser facet in presence of N external
cavities which to our knowledge has not been demonstrated before. Further exploiting
the general description, we demonstrate that how the scattering theory enables to tune
individual cavities parameters to get optimal SMI with optimal fringe visibility.

2. Basics of scattering theory

In general, for a two port system like the one shown in Fig. 1(a), the reflected and incident field are
related the to scattering coefficient, given by S and T matrices. S matrix, gives the transmission
and reflection coefficient are determined in a single measurement. s11 and s21 (first column) give
information about the reflection and transmission coefficient for a field incident from the left and
s22 and s12 (second column) give information about the reflection and transmission coefficient
for a field incident from the right. Similarly, T matrix relates the quantity on the left side (the
forward wave) of the port to the quantity on the right side (the backward wave). Mathematically
S and T matrices is given by [21,23–25]. The detailed derivation can also be found at [27]

S matrix :
⎡⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
r t′

t −r

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
a1

b2

⎤⎥⎥⎥⎥⎦ ; T matrix :
⎡⎢⎢⎢⎢⎣
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where r and t are the reflection and transmission coefficients at interface 1; and t′ is the
transmission coefficient at interface 2.

For the basic case of transmission in lossless medium without discontinuities (Fig. 2(a)), the S
and T matrix are given by [21,23–25]

S matrix :
⎡⎢⎢⎢⎢⎣
b1
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⎡⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
e−jβl 0

0 ejβl
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⎤⎥⎥⎥⎥⎦ (2)

where β and l are respectively the phase constant and the cavity length. It should be noted
that, since the media does not have discontinuities, the coefficients sij ∈ S and tij ∈ T related to
reflection are set to zero in Eq. (1).
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(a) (b)

Fig. 1. Formalization of scattering matrix. (a) Wave propagation through medium of
different refractive index. (b) Conversion to two port system.

Lossless Media Laser cavity

(a) (b)

Fig. 2. Schematic diagram to obtain S and T matrix for different media. (a) Lossless and
continuum media; (b) laser cavity with gain and attenuation.

Similarly, for the laser cavity (Fig. 2(b)) the associated loss (α), gain (g) and confinement
factor (Γ) are introduced and the S and T matrix

S matrix :
⎡⎢⎢⎢⎢⎣
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3. Scattering theory applied to laser under optical feedback

In this section, the S/T matrix (relating the forward and backward field at an interface) is used to
find the equivalent reflection coefficient of the laser facet in the presence of an external cavity
formed by a target placed at distance L from laser. Further we relate the equivalent reflection
coefficient to the optical output power (OOP) emitted from laser in presence of OF.

3.1. Equivalent reflection coefficient

Referring to Fig. 3, at interface 2, using S matrix,⎡⎢⎢⎢⎢⎣
b3
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In the external cavity (between interface 2 and 3), using Eq. (3),⎡⎢⎢⎢⎢⎣
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At interface 3, using Eq. (1), it reduces to⎡⎢⎢⎢⎢⎣
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(a) (b)

Fig. 3. Scattering theory applied to the analysis of OF. (a) Schematic diagram of the fields
due to external target placed at a distance L from the laser. (b) Concept of equivalent cavity.

Using the new boundary conditions, b6 = 0, as no beam enters the cavity system from behind
the target

b5 = r3a5 (7b)

a6 = t3a5 (7c)

Putting the value of b4 (from Eq. (6)) in Eq. (5), we get

b3 = r2a3 + t2b5ejβ1Le−α1L (8)

using b5b4 from Eq. (7b)
b3 = r2a3 + t2r3a5ejβ1Le−α1L (9)

putting value of a5b4 from Eq. (6) yields

b3 = r2a3 + t2r3a4ej2β1Le−2α1L (10)

using a4b4 from Eq. (5), we get

b3 = r2a3 + t2r3(t2a3 − r2b4)ej2β1Le−2α1L (11)

b3 = r2a3 + t22r3a3ej2β1Le−2α1L − t2r3r2b4ej2β1Le−2α1L (12)

placing the value of t2b4b4 from Eq. (5) and r2
2 = 1 − t22b4 gets to the expression

b3 = r2a3 − r3r2b3ej2β1Le−2α1L + r3a3ej2β1Le−2α1L (13)

b3(1 + r2r3ej2β1Le−2α1L) = a3(r2 + r3ej2β1Le−2α1L) (14)

req2 =
b3
a3
=

r2 + r3ej2β1Le−2α1L

1 + r2r3ej2β1Le−2α1L (15)

=
r2 + r3e−2(α1−jβ1)L

1 + r2r3e−2(α1−jβ1)L
(16)

=
r2 + r3e−2γ1L

1 + r2r3e−2γ1L (17)

where γ1 = α1 − jβ1 is propagation constant of the field in the medium forming the external cavity
and req2 is the equivalent reflectivity at interface 2 resulting from the external target placed at
distance L (Fig. 3). Although the equation for equivalent reflection coefficient derived in Eq. (17)
looks different in presence of attenuation coefficient and phase constant (propagation constant),
this is the similar to standard equation obtained by different authors such as [26] (Eq. 9.1) and
[1]. Putting the value of attenuation coefficient (α = 0), Eq. (17) can be re-written in terms of
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coupling coefficient, κ as proposed by [1,26]. The detail derivation of standard equations from
Eq. (17) is derived in Appendix A.

In particular, referring to Fig. 3 and considering the general case where air is the medium in
the external cavity formed by the second laser facet and the target, simulation are carried out
to determine how the external parameters such as loss in external cavity (α1L) and reflection
coefficient of remoter target (r3) affect the intrinsic properties of laser (equivalent reflection
coefficient). From Fig. 4(a), it is observed that increasing the value of loss in external cavity
(α1L), the equivalent reflection coefficient of laser in presence of OF, req2 in general decreases.
However, there exists a particular value of α1L, (in this case it is 6× 10−4 ), for which a resonance
is reached and req2 is minimal. Beyond this value, req2 increases again. It is also observed that
for all the values of losses in the external cavity (α1L), a minimal equivalent reflection coefficient
is attained when the reflection coefficient of the external target is equal to that of the laser facet
(r3 = r2).
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Fig. 4. Effect of the external cavity on the laser parameters. (a) Effect of loss in the external
cavity (α1L) on the equivalent reflectivity of laser under OF (req2); (b) optical power emitted
under OF normalized to total power of solitary laser (without OF). Simulation parameters
r1 = r2 = 0.54, power output from solitary laser is unity (1 mW), power output from laser in
presence of OF is obtained from Eq. (18), provided that req2 (defined in Eq. (17), is used
(instead of r2). In the absence of OF, P02/P0 = 0.5 (obtained by putting r1 = r2 in Eq. (18)).
Simulation parameters - λ = 692 nm, L = [0.2, 0.06, 0.12, 0.18] m.

3.2. Optical output power

Another concerned parameter is the optical output power (OOP). Let P0 be the total power
emitted by the laser, P01 be the power out of the mirror having reflection coefficient r1 (left
surface in Fig. 3), and P02 power leaving the mirror with a reflectivity r2 (the right surface, in
Fig. 3). Obviously P0 = P01 + P02. The fraction of total power emitted from right surface is
given by Eq. (18) [2,26–28].

P02
P0
=

(1 − r2
2)

(1 − r2
2) +

r2
r1
(1 − r2

1)
(18)

Let us assume that the optical power output from laser is unity (1 mW). Although, laser
has unequal reflection coefficient such that the emission is from one facet only. However
for illustration purpose, we consider equal reflection coefficient here. Under this assumption,
(r1 = r2 = 0.54), the power emitted from the laser P02 is halved i.e. 0.5 mW (obtained by putting
r1 = r2 in Eq. (18). Simulation is carried under similar conditions to determine the effect of OF
on and losses in the laser emission. Figure 4(b) shows the effect of OF on the power emitted by
the laser, taking into account the losses in the external cavity (α1L) at different values of external
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reflection coefficient (r3). In short, the power emitted under OF (P′
02) is obtained by replacing r2

in Eq. (18), with the req2 value defined in Eq. (17). Unlike the results obtained in the case of req2,
increasing the losses in the external cavity (α1L) brings on the increase in the power emitted by
laser under OF (P′

02), which increases until a resonance is reached (in this particular case, at α1L
= 6 × 10−4). Beyond that value, the emitted power starts to degrade. It is also observed that in all
of the cases, the maximal optical power emitted from the laser under feedback takes place when
the external reflection coefficient equals the laser facet reflection coefficient i.e. when r3 = r2.
Thus, by engineering the experimental conditions, the amount of losses in the external cavity and
the reflection coefficient of the target, the conditions for laser emission under feedback can be
optimized using the theory being proposed.

From Eqs. (16) and (17) backed by simulations, important conclusions are summarized below:

• Unlike [1,26] where the equivalent reflection coefficient (req2) is dependent upon the
reflection coefficient of the external target r3, the phase constant β1, the physical length
L of the external cavity, and reflection coefficient of laser facet r2, Eqs. (16) and (17)
demonstrate that the equivalent reflection coefficient (req2) is dependent upon attenuation
coefficient α1 as well thus the total loss incurred in the external cavity.

• Since the attenuation constant α1 is a frequency dependent value, so will be the equivalent
reflection coefficient, which will also vary with the frequency emission from the laser.

• For the total loss in external cavity and the reflection of the remote target, there exist a
resonance condition where the equivalent reflection coefficient of laser facet is minimum
and the optical output power (OOP) is maximal. Thus by tuning the loss ( external cavity
length), and the reflection coefficient of external target, the desired OOP emitted from
can be achieved. Further since attenuation coefficient of medium is frequency dependent,
the laser frequency emission can also be tuned to achieve desired OOP. The ability to
tune the external parameters and/or parameter of laser to get desired OOP has profound
implications in the use of bio-medical applications where the media is diffusive with
different attenuation coefficient, reflection coefficient and refractive index.

Further, the strong dependence of req2 and P′
02 on the external parameters (L, n1) is the basis of

self-mixing based. For instance, if the optical path between the laser and the external reflective
target is modulated periodically by changing the physical length (L) (keeping the refractive index
of the medium that forms the cavity constant) (Fig. 3), then the equivalent reflection coefficient
req2 (Eq. (17)) is also modulated periodically introducing the well-know modulation of emitted
power P′

02. Figure 5 further explains this effect. The physical length of the external cavity L is
modulated (Lext(t) = L + Lext0cos(2πft)) such that the peak modulation is Lext0 = 3λ, making the
cavity length in the range Lext(t) ∈ L+Lext0. Such a modulation gets encoded in the optical power
output of the laser, and is easily retrieved by processing such a power signal. In the absence of OF,
as mentioned above, the power emitted from the laser is P02 = 0.54 mW and is a constant value
(shown by dash line Fig. 5). However, in presence of OF and when the described modulation of
optical path is introduced, it is no longer a constant and follows the modulation in OOP, being
maxima or minima for each λ/2 change in phase gives rise to one fringes [10]. The appearance
of six fringes for an induced displacement of 3λ (Fig. 5) is similar to that obtained from the
standard equation of self-mixing for displacement measurement (Ps = cos(4πLext(t)/λ)) [10]. In
addition to this information, the effect of r3 in the SMS in terms of peak-to-peak value (pp) and
fringe width is also presented. It is observed that at low r3 = 0.1, the SMS is still weak and has a
low pp value with wider fringes. At r3 = r2 = 0.54, a resonance is reached so the pp value of
SMS increases drastically while the fringes are radically narrowed enabling easy and precise
fringe detection through signal processing. This can also be interpreted as the laser has reached
its maximal finesse. Finally, by detuning r3=0.7, the SMS starts to degrade and widens again.
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The observation of the resonance related to OF is coherent with Fig. 4(b), where a resonance in
emitted optical power occurs when r3 = r2.
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Fig. 5. Basic mechanism for the OF-based sensor. Modulation of OPL causes the modulation
of emission power P′

02, which would have been constant without modulation of OPL (P02).
With the increase in r3, the laser emission power increases and a resonance is reached
when r3 = r2. Simulation parameters: Lext0 = 3λ; r1 = r2= 0.54; n1=1; λ = 692 nm;
α1 = 0.005/m.

4. Laser with optical feedback from multiple cavities

So far, in the previous sections scattering was used to analyze the detailed response of the laser
to OF from a single external cavity. The effect of reflection coefficient of the external target
on the laser emission was shown in Fig. 5. Further, it was demonstrated that the resonance in
laser emission is reached when the reflection coefficient of external target is close to that of
laser facet. In this section, the same concept is extended to two external cavities with different
cavity parameters, a situation relatively common when working with some transparent media,
for instance in lab-on-chip applications, different area related to bio-photonics where diffusive
media with different absorption and refractive index is encountered.

The different fields emanating from the two cavities are shown in Fig. 6(a). The setup is an
extended version of the case of the external cavity just analyzed (Fig. 3). In the presence of a
second external cavity (enclosed by interfaces 3 and 4), a set of additional new fields appear.
The parameters that describe the second external cavity are designed as g2, β2,α2, n2, where all
the parameters have the same physical meaning of those listed in Table 1. Since, the S matrix
for interface 1 to 3 is exactly the same presented in Eqs. (5), (6) and (7a) for the previous case
analyzed, they are not repeated again.

Furthermore, in the second external cavity, defined by interfaces 3 and 4, the S matrix is given
by ⎡⎢⎢⎢⎢⎣

b6

a7

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

0 ejβ2L2e−α2L2

ejβ2L2e−α2L2 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
a6

b7

⎤⎥⎥⎥⎥⎦ (19)

Finally, at interface 4 ⎡⎢⎢⎢⎢⎣
b7

a8

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
r4 t4

t4 −r4

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
a7

b8

⎤⎥⎥⎥⎥⎦ (20)
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(a) (b) (c)

Fig. 6. Scattering theory for multi cavity optical feedback. N = 2 number of external cavity
is simplified to single cavity in N = 2 recursive steps. (a) Field propagation in forward and
backward direction under optical feedback from two external cavities. (b) Intermediate step
converting two external cavity to one external cavity. (c) Converting the two cavities in (b)
to a single cavity.

Table 1. List of relevant parameters involved in explaining laser dynamics
in presence of OF.a

Description Symbol

length of the laser cavity l

length of external cavity L

reflection coefficient at interface 1, 2, and 3 r1, r2, and r3

confinement factor Γ

laser gain per unit length g

attenuation coefficient of material that form active region of laser α

attenuation coefficient of material that form the external cavity α1

laser emission frequency ω

phase constant of field in laser cavity β

phase constant of field in the external cavity β1

refractive index of the material forming the first cavity n1

refractive index of the material forming the second cavity n2

aInterface 1 and 2 form the laser cavity and interfaces 2 and 3 form the external cavity in
Fig. 3.

Using boundary condition, b8 = 0
b7 = r4a7 (21)

a8 = t4a7 (22)

using the boundary condition b8 = 0 (as no light enters the system from behind interface 4),and
substituting b7 from Eq. (21) in Eq. (19), enables to further solving Eqs. (19) and (7a) to get,

req3 =
b5
a5
=

r3 + r4ej2β2L2e−2α2L2

1 + r3r4ej2β2Le−2α2L2
(23)

=
r3 + r4e−2γ2L2

1 + r3r4e−2γ2L2
(24)

where γ2 = α2 − jβ2 is propagation constant of the medium forming the second external cavity,
r4 is the reflection coefficient at interface 4. (after loss α2L2 has occurred) of the material in the
second cavity, and rreq3 is the equivalent reflection coefficient at interface 3 resulting from the
external target placed at distance L1 (Fig. 6(b)). Now the problem of the two external cavities gets
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reduced to the case of the single external cavity previously explained using Eq. (17), provided
that r3 in Eq. (17) is replaced by req3 (Eq. (24)). It is evident that the procedure proposed enables
a setup with N external cavities which can be similarly converted into a single S matrix in N
iterative steps. This observation is similar to the one in [23] when explaining scattering effects in
DFB lasers.

Hence the overall equivalent reflection coefficient for the two external cavities is given by

r′eq2 =
r2 + req3e−2γ1L1

1 + r2req3e−2γ1L1
. (25)

The use of the scattering matrix has thus enabled to reduce the laser cavity and the two external
cavities with different optical properties to a single characteristic equation for the laser operation,
which when solved describes the response of the laser under the considered conditions.

4.1. Use case: Optimal design of multi cavity setup using scattering theory

One potential application of scattering theory could be to determine the optimal intermediate
cavity length to get the maximal output power from the laser under OF in setups with multiple
cavities. As an example, considering Fig. 6(a), assume the first external cavity (between interface
2 and 3) is filled with air, and the second external cavity (between interface 3 and 4) is filled
with water or some solution under test (e.g., biological samples with media of different optical
properties).Under these conditions, the optimal intermediate cavity length which attains the
maximum optical power emitted from the laser is desirable, which corresponds to the minimal
equivalent reflection coefficient. Simulations are carried out in MATLAB to see the effect of the
external cavities on the performance of the laser, and presented in Fig. 7. Keeping the second
cavity parameters constant at α2L2=5 × 10−3, n2=1.33 and r4=0.54, an optimal value of total
losses α1L1=5 × 10−4 is obtained in the intermediate cavity for which the equivalent reflection
coefficient is minimal (7(a)) and the power emitted from the laser is maximized 7(b). Detuning
the loss from this value causes significant degradation in OOP.
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Fig. 7. Comparison between the (a) equivalent reflection coefficient calculated using
scattering theory and (b) power emitted from laser P′

02 in the cases of single (solid) and
double (dashed) external cavities.

Further, two different conditions are studied: the response of the laser away from resonance
(r3 ≪ r2) and its response near resonance (r3 ≊ r2). The former case is depicted in Fig. 8(a).
The total loss in the intermediate cavity is kept fixed α1L1= 5 × 10−4, and r3 is set to 0.14, which
in this case is the Fresnel reflection coefficient at the air (n1 = 1) - water (n2 = 1.33) interface).
Then, the losses in the second external cavity α2L2 are varied in order to study its effects on the
emitted power. Since for most of the cases, α2 is a known value, basically varying loss is limited
to varying the length of the second external cavity. It is observed that with an increase in r4, the
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power output from the laser under OF normalized to the power of the free-running laser decreases
drastically and the rate of decrease increases with the decrease in the total losses in the second
external cavity (which, known α2, is understood as a reduction in length of the second external
cavity). For the latter case, corresponding to the behaviour of the laser close to resonance, all the
parameters are set as in the former case just described, provided that r2 ≊ r3 = 0.5 (Fig. 8(b)). It
is observed that the response of the laser can be divided in three regions. For the region r4<r3,
with an increase in r4 the optical power output from laser increases, and its slope also increases
with the decrease in total losses (α2L2) in the second external cavity. This means that, in this
region, the shorter external cavity (with less losses) yields more power from the laser under
feedback as compared to the free running laser at constant r4 (unlike the previous case, where the
optical power decreased with r4). This is well illustrated by an example. Keeping α2L2 = 0.025
(red curve), increasing r4 from 0.2 to 0.4, ratio of powr in SMS to solitary laser emission power
increase from 0.6 to 0.7 as compared to 0.5 to 0.6 for the case when α2L2 = 0.1 (green curve). In
the region r4 ≊ r3 (more specifically r4 ≊ r3 ≊ r2 ), the power output is maximal, although for
different losses (α2L2) in the external cavity, resonance is reached at different r4 values. This is
an important conclusion as far as it states that the laser, under feedback from multiple cavities,
presents a resonance condition dependent upon the losses in the second external cavity and its
reflection coefficient. This result could be used to find the optimal second external cavity length
for the most effective coupling of the light into the laser when under multiple cavity experiments,
yielding an improved power output. This is particularly interesting in the case of highly diffusive
samples under test where the power degrades with depth. Finally, the resonance for higher losses
is obtained for r4>r3, and the power drastically falls down. Since, the slope of the power curve
decreases with the increase in losses in the second external cavity, so when at high r4, it is
desirable to work with larger cavity lengths, or higher loss, (at constant reflection coefficient) to
optimize power output form the laser.
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Fig. 8. Effect of second external cavity on power emission from laser according to scattering
theory (a) away from resonance conditions (b) close to resonance conditions.

To complete the analysis of the double cavity case, it is desirable to study the fringe visibility
of the SMS under different conditions. To do so, the parameters of both cavities are kept the same
to those in Fig. 8 and the SMS corresponding to a target motion of 3λ is obtained. The amplitude
of SMS is recorded for each target reflection coefficient r4. Figure 9 shows the plot of amplitude
of SMS as a function of r4 at different external cavity loss conditions. For the case α2L2 = 0.025,
when r4 = 0.1, the SMS has a very low peak to peak value, resulting in fringes with reduced
visibility and easily covered by noise in detection. Inset (b) in Fig. 9 shows the entire self-mixing
waveform under this conditions. However, increasing r4 to 0.6 (in close vicinity to resonance),
makes the amplitude of the SMS to increase drastically. Inset (a) in Fig. 9 shows the complete
waveform obtained in these conditions and it improvement when compared to inset (b). It is
clear that tuning of the parameters associated with individual cavities (such as loss, cavity length
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and reflection coefficient) can very significantly improve the SMS and fringe visibility can be
maximized, and the SMS can be detected in presence of disturbances like speckle or different
types of noise.
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Fig. 9. SMS as a function of losses in external cavities and external reflection coefficient.

Thus conclusion drawn here is that

1. Each cavity parameters (loss, length and reflection coefficient) interact with one other in a
way that there is a resonance condition for which the total loss in minimal and SMS power
and fringe visibility is maximal. By tuning them, optimal experimental conditions can be
achieved to get high fringe visibility of SMS.

2. With increase in loss in the cavity, the resonance shifts to higher value of reflection
coefficient of the target to maintain the same SMS power and fringe visibility. This is
better explained with an example - suppose we want the power to be 0.8. Then if the loss
in external cavity is 0.025 (red), the reflection coefficient needs to be 0.48. Further, if the
the loss in ext cavity is increased to 0.1 (green), the reflection coefficient needs to be 0.55.

5. Generalized scattering theory for N external cavities

Following sec. 3. (Eq. (17)), sec. 4. (Eq. (24)) and using mathematical induction, we can
generalize the equivalent reflection coefficient of laser and OOP for N external cavities, given by
Algorithm 1. Exploiting the matrix multiplication and recursive nature of scattering theory, we
can extract the equivalent reflection coefficient and OOP at each individual interface as well.

6. Conclusion and discussion

The scattering theory, described using S and T matrices, is used as an effective tool to describe
and characterize the effect of different external parameters in the performance of a solitary laser,
of a laser with an external cavity under optical feedback, and of a laser with an external cavity
with a vibrating target. The formalism enabled to include the effect of losses in every external
media involved in the laser power output. It was shown that the expressions obtained can be used
to describe the coupling of the optical field back into the laser cavity, and how the experimental
setup provides some degrees of freedom which enable to optimize it in order to arrange an SMS
with maximized visibility, given the parameters of the laser are known.

Beyond the very relevant result of quantifying the optimal arrangement for a single cavity
self-mixing setup, a further strength of the method lies in the fact that N cascaded multiple
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cavities can be explained extending the method in a recursive manner in N steps, calculating a
final equivalent reflection coefficient. Further, such a multiple cavity model takes into account
all the related external cavity parameters involved, including reflection coefficient, length, and
losses all at once, including a explicit description of the effects of each individual cavity. In the
case of OF with two cavities, the losses in each individual cavity were analyzed in detail, a case
which usually is neglected elsewhere. It was quantified how losses or length in each external
cavity affect the parameters of the other, and the overall response of the laser emission. Thus, a
tuning is necessary between all the parameters to optimize the response, and scattering theory has
proven to be an effective tool to model the overall response. However, analysis require accurate
values of the external and internal cavity parameters to get reliable results, and the tuning gets
more complex with the increase in the number of cavities. To address this, a simulation model of
the experiment or digital twin can be leveraged to find the related relevant parameters and then
use them in experiments in real world could be one among many other methods. This type of
hybrid digital twin based approach has been already exploited by Zhao et al. in estimating the
velocity of particles in diffusive media [18,19]. A further final conclusion is the behavioural
complexity of single and multiple cavity systems under OF, which tremendously complicates
the repeatability of the experimental conditions, a fact which is well known when working with
self-mixing systems in the lab for accurate amplitude measurements.

Though, scattering theory proposed here explains the complexity of optical feedback and its
effect in attaining a stable configuration when using multi-cavity self-mixing laser sensors, there
are numbers of parameters in each cavity to be tuned to get optimal OOP. Because of recursive,
cascaded and matrix operations involved, the model based on scattering theory could be extended
to take the phase of reflection coefficient and laser emission polarization into account. Further,
future work includes the experimental verification; developing a Deep neural network model to
study the effect of laser and individual cavity parameters; and modify the proposed scattering
theory to the diverse use case such as modelling multiple scatter from diffusive media [18,19].

Algorithm 1. Generalized scattering theory for N external cavities.

A. Derivation of standard laser equation under OF from scattering theory

In this appendix, we demonstrate that the equivalent reflection coefficient as derived from
scattering theory (Eq. (17)) is a general form. It can take different forms under different
assumptions. For example, equating the attenuation coefficient in Eq. (17) to zero, the equivalent
reflection coefficient as described in [1,26] can be attained.
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Equating attenuation coefficient in Eq. (17) to zero and re-writing it as follows

req2 =
r2 + r3e2β1L + r2

2r3ej2β1L − r2
2r3ej2β1L

1 + r2r3e2β1L (26)

It should be noted that the addition of the last two terms in the numerator of Eq. (26) cancels
each other, so effectively it is the same as Eq. (17). Further, the first and third terms, and the
second and fourth term are grouped, resulting in

req2 =
r2(1 + r2r3ej2β1L) + r3(1 − r2

2)e
j2β1L

1 + r2r3ej2β1L
(27)

= r2 +
r3(1 − r2

2)e
j2β1L

1 + r2r3ej2β1L
(28)

using κ = (1 − r2
2)r3/r2 [26] and t22 = 1 − r2

2

req2 = r2 +
κr2ej2β1L

1 + r2r3ej2β1L (29)

Using Euler’s formula ejθ = cos(θ) + jsin(θ), and considering that the reflection coefficient
is a real quantity (i.e., ignoring the imaginary part of Eq. (29)); r2<1 and r3<1, their product
r2r3<<1; the maximum value of cos(θ) is 1, so the condition r2r3cos(2β1l)<<1 holds true,
Eq. (29) reduces to

req2 = r2 + κr2cos(2β1L) (30)

= r2(1 + κcos(2β1L)) (31)

Equation (31) is exactly the same obtained in [1,26]. Thus it is evident that the Eq. (17) is the
equivalent reflection coefficient that takes different forms as derived by different authors [1,26]
under different conditions.
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