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ABSTRACT Recently, unmanned aerial vehicles (UAVs) have attained considerable attention for providing
reliable and cost-effective communication due to the flexibility of deployment and line of sight (LoS)
propagation. Efficient UAV path planning is one of the key aspects that need to be addressed to minimize
energy consumption and satisfy the rate requirements of the user. Thus, in this work, we propose a novel
framework that utilizes the modified Particle Swarm Optimization (PSO) algorithm for UAV path planning
to support the rate requirements of the user. In the proposed framework, the problem of joint path planning
and energy consumption is formulated to improve the instantaneous sum rate of the user. In order to
solve the formulation, the proposed framework involves two steps. Initially, the line of sight probability
is used to obtain an optimal destination location at which the UAV is in LoS with the user and offers the
required downlink rate. Following that, the modified PSO is used to find the most energy-efficient path
from the source to the destination. Through experiments, we show that the proposed framework provides a
three-dimensional (3D) path in a complex environment, and has the ability to avoid obstacles in the path.
In addition, it minimizes energy consumption and travel time and improves the user rate as compared to the
state-of-the-art methods. Finally, the performance of the proposed framework is tested in three different
scenarios and shows that the proposed method performs better than the state-of-the-art methods in all
scenarios.

INDEX TERMS Energy consumption, line of sight (LoS) propagation, obstacle avoidance, path planning,
particle swarm optimization (PSO), unmanned aerial vehicles (UAVs).

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) have been proposed for a
wide range of applications that include surveillance, map-
ping, tracking, and search operations [1], [2]. Due to the
flexibility of deployment, UAVs are used to collect data
from remote locations. The recent availability of low-cost
UAVs drives the usage of multiple UAVs for the same. Thus,
efficient methods of decentralized sensing and cooperative
path planning are necessary to leverage the capabilities of
the group of UAVs [3]. Hence, reliable and reasonable path
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planning can ensure the safety of the UAV and also the
success of the mission in a complex environment. However,
there are many constraints for UAV path planning that include
limited resources and restrictions on flight altitude. In low
altitudes, there are various obstacles in the environment such
as buildings, trees, and hills. Due to the large state space,
path planning for UAVs is more complicated than the path
planning of robots [4]. Moreover, the huge number of action
states makes the process of path planning complex and slowly
converging. Due to the limited sensor capacity, the UAV can
only attain very limited information on the local environment.
This makes it difficult for the UAV to select the optimum
path. In addition to that, in large environments, the path
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planning algorithm might have to estimate a huge number of
steps which might lead to significant delays. These are some
major challenges of path planning for UAVs in a complex and
dynamic environment.

To tackle these challenges, nature-inspired approaches are
being adopted nowadays due to their capability to explore the
global optimum path in complex environments. Algorithms
such as cuckoo search [5], genetic algorithm [6], particle
swarm optimization (PSO) [6], [7], artificial bee colony [8],
and ant colony optimization [9] are highly effective in dealing
with UAV dynamic constraints and limitations. Among these
approaches, PSO is a population-based algorithm that has two
key properties of swarm intelligence such as cognitive and
social coherence [10]. These properties enable each particle
in the swarm to search for the solution based on its own
experience and the swarm’s experience. Thus, PSO is capable
to reach the global solution in a short time with a stable con-
vergence than other nature-inspired algorithms. In addition
to this, PSO is less sensitive to initial conditions and more
adaptable to changes in the objective functions [11]. It is
also easier to adopt various environmental structures by using
acceleration coefficient and weight factors [12].

Motivated by the above discussion, in this paper, we pro-
pose a novel framework that utilizes the modified Particle
SwarmOptimization (PSO) algorithm for UAV path planning
to support the rate requirements of the user. The major con-
tributions of the proposed work are as follows:

• Wepropose a novel framework for UAV path planning in
order to provide the user with downlink services.We for-
mulated the problem as a joint optimization problem in
terms of path planning and energy consumption, with the
user’s required sum rate as a constraint.

• The line of sight probability is used to find an optimal
destination location where the UAV is in LoS with the
user and can provide the required downlink rate.

• The modified PSO algorithm is used to find the most
energy-efficient path from the source to the destination.

• The framework’s performance is evaluated in three sce-
narios: i) Scenario I considers a 2D space where the
height of the UAV is constant throughout the journey till
the target point; ii) Scenario II deals with a 3D space
where the UAV starts from the ground and reaches the
target at a height h with obstacles with less height in
the vicinity of the UAV flight path; and iii) Scenario III
deals with the same 3D scenario as scenario II alongwith
the presence of much longer obstacles in the path of the
UAV. This is to evaluate the performance of the proposed
algorithm in the presence of obstacles.

• Through experimental results, we show that the pro-
posed framework provides a three-dimensional (3D)
path in a complex environment, and has the ability to
avoid obstacles in the path. In addition, it minimizes
energy consumption, travel time and improves the user
rate as compared to the state-of-the-art methods. Finally,
the performance of the framework is tested in three
different scenarios.

The remainder of the paper is organized as follows. The
related works are discussed in Section II. The system model
and problem formulation are described in Section III. The
proposed particle swarm optimization method is elaborated
in Section IV. The performance of the proposed method is
evaluated in Section V. Finally, Section VI provides conclud-
ing remarks with possible future works.

II. RELATED WORKS
Reference [13] explores the construction of an integration
and genetic algorithm (GA)-based path planning algorithm
for an autonomous UAV in target coverage problems. The ini-
tial approach involves employing a classical GA. To address
altitude limitations to prevent unsafe paths that could lead
to terrain surface collisions, three different approaches are
integrated into the initial population phase of the genetic
algorithm. In [14], another PSO-based framework named
Sparrow Particle Swarm Algorithm (SPSA) has been pro-
posed for UAV path planning. It improves path initialization,
updates discoverer positions, and emphasizes the start-end
line’s influence to reduce the blind search. Adaptive variable
speed escapes enhance the target to reach deadlocked areas,
while adaptive oscillation optimization minimizes path fluc-
tuations. Simplification and interpolation with cubic splines
improve path smoothness, making it suitable for real flight
trajectories. The improved SPSA demonstrates fast conver-
gence, better search results, and avoidance of local optima.
A survey on 3D path planning algorithms for UAVs has
been presented in [15] that classified the path planning
algorithms into five classes such as node-based algorithms,
Bio-inspired algorithms, mathematical model-based algo-
rithms, sampling-based algorithms, and multi-fusion-based
algorithms [15]. A survey on the computational intelligence
(CI) methods has been presented in [16] for UAV path
planning. This survey presents an overview of different CI
path planning methods with a focus on time domain-based
methods such as offline and online for both 2D and 3D
environments [16]. In [17], a survey on UAV path planning
algorithms that includes Artificial Potential, RRT, D-Star,
Voronoi, Dijkstra, A-Star, and Neural Network has been
presented with a focus on the applications such as dis-
aster management, communication networks, and general.
It has been mentioned that among the UAV path planning
algorithms 67% focused on UAV path planning for gen-
eral applications, 22% focused on disaster management, and
only 11% focused on communication networks. Finally, the
authors have recommended a holistic IoT-powered UAV-
based smart city management system, that integrates all the
smart city components, for addressing earthquakes, disasters,
and bush fire [17]. A novel optimization algorithm namely a
multi-frequency vibrational genetic algorithm (mVGA) has
been proposed in [18] for UAV path planning in two different
3D environmental models such as city and sinusoidal. The
proposed mVGA algorithm emphasizes local random and
global random diversity as the newmutation application strat-
egy and diversity variety. Further, the initial population phase

70354 VOLUME 11, 2023



A. Sonny et al.: Autonomous UAV Path Planning Using Modified PSO for UAV-Assisted Wireless Networks

of the algorithm uses the Voronoi diagram and Clustering
method concepts. Finally, it has been shown in [18] that the
mVGA algorithm results in a reduced computational time
when compared to three other genetic algorithms.

PSO plays a crucial role in UAV path planning due to its
effectiveness in addressing optimization problems [7]. When
compared with other path planning algorithms, the PSO
algorithm has several advantages. Firstly, it has a fast con-
vergence speed compared to other optimization algorithms,
making it suitable for real-time path-planning applications.
Secondly, it is a global optimization algorithm that can
search for the optimal path in a large search space, making
it effective for complex path-planning problems. Thirdly,
the PSO algorithm is a robust algorithm that can handle
noisy fitness functions and dynamic environments, making
it suitable for real-world applications. Next, it has a simple
structure and is easy to implement, making it accessible for
researchers and practitioners with limited resources. Finally,
it can be easily adapted to different types of path-planning
problems by changing the fitness function or adjusting the
acceleration coefficients, making it a versatile algorithm.
These above-mentioned advantages make PSO algorithm
a powerful and simple tool for path-planning applications,
especially in robotics, unmanned aerial vehicles, and mobile
robots. Inspired by these advantages, a spherical vector-based
particle swarm optimization (SPSO) approach is proposed
in [19]. The path length-based cost function formulated is
to convert the path planning into an optimization problem
that incorporates all the constraints for a feasible and safe
operation of the UAV. It is developed on the relationship
between UAV intrinsic motion components and the search
space. An improved PSO algorithm specifically designed
for real-time UAV path planning is proposed in [20]. The
proposed algorithm incorporates a Chaos strategy to prevent
particles from converging to local optima, while the Dijkstra
algorithm is employed to enhance the path quality. A path
planning approach that considers the dynamic properties of
the UAV and the complexity of a real 3D environment is
presented in [6]. They have used a combination of two nonde-
terministic algorithms such as Genetic Algorithm (GA) and
PSO, to solve the complexity and longer computation time.
Another improved PSO algorithm called GBPSO is proposed
in [21] to enhance the performance of three-dimensional path
planning for fixed-wing UAVs. The GBPSO algorithm aims
to improve both the convergence speed and searchability of
particles by incorporating a competition strategy into the
standard PSO framework. In this approach, during the par-
ticle evolution process, the competition strategy optimizes
the global best solution. This is achieved by considering
the two candidates’ global best paths. The first candidate
path is obtained by selecting the optimal path found through
a single waypoint selection approach, guided by a set of
segment evaluation functions. The second candidate path is
generated based on the particle as an integrated individual,
representing an optimal trajectory from the start point to the

flight target. Reference [22] introduces a method for address-
ing the path planning problem for unmanned aerial vehicles
(UAVs) operating in adversarial environments, which include
radar-guided surface-to-air missiles (SAMs) and unknown
threats. The approach takes into account the SAM lethal
envelope and radar detection for SAM threats, as well as
LOS calculations for unknown threats, to compute the path
planning cost. To find an optimal path, an improved PSO
algorithm is adopted along with preprocessing steps. The
preprocessing steps involve generating a Voronoi diagram
and using the Dijkstra algorithm to obtain an initial path
for the multi-swarm PSO algorithm. The multi-swarm PSO
algorithm employs multiple swarms with sub-swarms to bal-
ance exploration and exploitation. A three-dimensional path
planning algorithm for UAV formation using an enhanced
PSO approach is proposed in [23]. The objective of this
work is to improve the speed and optimality of the automatic
path planner. Hence, it incorporated several improvements
to the PSO algorithm. Firstly, a chaos-based Logistic map is
employed to enhance the initial distribution of particles, lead-
ing to better exploration of the solution space. Additionally,
the commonly used constant acceleration coefficients and
maximum velocity are replaced with adaptive linear-varying
ones. This adaptation allows the coefficients to adjust during
the optimization process, resulting in improved solution opti-
mality.

However, the PSO algorithm does have a few limitations.
The performance of PSO can be highly sensitive to the choice
of its parameters, such as the acceleration coefficients and the
inertia weight. Opting parameter tuning techniques, such as
grid search, genetic algorithms, or other optimization meth-
ods, can be employed to find suitable parameter values for
a specific problem [24]. Additionally, PSO can sometimes
converge to a suboptimal solution prematurely, especially
when dealing with complex and multimodal problems. This
happens when particles cluster around a local optimum,
preventing the exploration of other potential regions in the
search space. Introducing diversity maintenance techniques
such as adding random perturbations to particle positions can
be a solution to this premature convergence problem [25].
When dealing with high-dimensional optimization problems
or if particles in the swarm are large, PSO becomes compu-
tationally expensive. The computational cost of evaluating
the fitness function for each particle will be directly pro-
portional to the size of the search space. To mitigate this,
parallelization techniques can be employed, where multi-
ple particles can be evaluated concurrently using parallel
computing resources. Additionally, various dimensionality
reduction techniques can be applied to reduce the number of
variables. Another drawback of PSO is it can get trapped in
local optimas, especially in complex problems with multiple
local optima and a single global optimum. Using popula-
tion diversity measures and restart strategies can increase
the chances of escaping local optima and finding better
solutions [26].
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FIGURE 1. An illustration of the UAV path planning and downlink
transmission.

Here, to establish a reliable communication link between
the UAV and the user, the normal PSO algorithm set the target
position at an LoS point from the user. This is not essential in
most of the cases which leads to unwanted energy and time
consumption by the UAV. Hence, in this work, we propose
a modified PSO framework for UAV path planning in order
to provide the user with a reliable downlink service even
before reaching the LoS point with the user. It utilizes the
LoS probability to find an optimal destination location where
the UAV is in LoS with the user and can provide the required
downlink rate. The proposed modified PSO algorithm checks
whether the required rate is achieved after each particle
update as the stopping condition. In PSO, typically the target
fitness value represents the distance to the target position
or proximity to obstacles. By adopting this modified target
fitness value, the algorithm minimizes the energy consump-
tion, and travel time of the UAV and improves the user
rate as compared to the state-of-the-art methods. A detailed
description of the proposed approach is given in the following
sections.

Table 1 describes the important notations used in this
paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a UAV-assisted wireless network scenario
wherein, a UAV is deployed to offer downlink services to a
user as shown in Fig. 1. Here, we define the start point as the
point at which the UAV collects the data and the endpoint is
the point at which there is LoS UAV-user downlink. Further,
an urban scenario with multiple obstacles such as trees, build-
ings, and hills is considered in the UAV path. A flight path X
is represented by several intermediate points through which
the UAVflies. Each of these nodes corresponds to a path node
in the proposed PSO search map with coordinates (xi, yi, zi).
In order to establish an ideal communication link between
the UAV and the user, the target point of the UAV should be
at the LoS point. Instead of setting the target position at a
Line of Sight (LoS) point from the user, a modified point is
estimated here. This modification aims to provide the user
with a reliable downlink service even before reaching the
LoS point. The modified approach takes into account the
LoS probability to determine an optimal destination location

TABLE 1. Summary of important notations used in this work.

where the UAV is within a reliable distance from the user and
can deliver the required downlink rate. Here, we assume the
UAV is flying with a constant speed and then the objective is
a simplified line planning problem [7]. When a new position
in x and y dimension is selected, the algorithm updates the
z position by one unit forward. This converts the whole
3D path planning into a simple 2D one. We assume that
the UAV moves with a constant speed ν. Next, we present
the modeling of the environment that contains multiple
obstacles.
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FIGURE 2. Environmental model.

A. ENVIRONMENT MODEL
In UAV path planning, themain challenge is to ensure the safe
operation of a UAV in a dynamic and complex environment.
Major threats are caused by obstacles, such as trees, hills, and
buildings, present in the terrain of UAVflight.Modeling these
obstacles is a challenging task in path planning. To simplify
the modeling process and computation complexity, we adopt
the model proposed in [7]. In [7], each obstacle k is assumed
to be a cylinder or a square obstacle as shown in Fig. 2a.
The cylinder projection has the center coordinate Ck and
radius Rk as shown in Fig. 2b and the square projection
has center coordinate Ck and a side length of ak as shown
in Fig. 2c. When a new position in x and y dimension is
selected, the proposed path planning framework replans the
new position in case the selected position appears to be
the obstacle position. The algorithm takes into account the
presence of square obstacles and dynamically checks their
boundaries to ensure safe and efficient path planning. If the
planned path intersects with the boundaries of the obstacles,
the algorithm triggers a replanning process to find an alter-
native path that avoids the obstacles. This feature enhances
the algorithm’s ability to navigate through environments with
square obstacles effectively. Nevertheless, this algorithm was
specifically developed for urban areas with a higher concen-
tration of buildings. Its effectiveness and efficiency in rural
areas remain unexplored and require further investigation.

B. TRANSMISSION MODEL
In this model, the downlink between the UAV and the user
can be regarded as air-to-ground communication. The LoS
and Non-Line-of-Sight (NLoS) conditions are assumed to
be encountered randomly. For the UAV-user link, the LoS

probability is given by [27]

PLoS (θt ) = b1

(
180
π
θt − ζ

)b2
(1)

where, θt = sin−1(h(t)/d(t)) is the elevation angle between
the UAV and the user at time instant t. h(t) and d(t) denote the
height of the UAV from the ground and UAV-user distance,
respectively. Furthermore, b1 and b2 are constant values
reflecting the environmental impact, and ζ is also a constant
value which is determined by using the antenna and the envi-
ronment parameters. With PLoS being the LoS probability,
NLoS probability is given by PNLoS = 1 − PLoS . Following
the free-space path loss model, the channel’s power gain
between the UAV and user at time instant t is obtained as

g(t) = K−1
0 d−α(t)[PLoSµLoS + PNLoSµNLoS ]−1 (2)

where, K0 = (4π fc/c)2, α is the path loss exponent, µLoS
and µNLoS are the attenuation factors corresponding to LoS
and NLoS links, respectively. Further, fc denotes the carrier
frequency and c represents the speed of the light. Finally, the
distance from the UAV to the user at time t is defined as

d(t)

=

√
h2(t) + [xUAV (t) − xuser (t)]2 + [yUAV (t) − yuser (t)]2

(3)

The received signal-to-noise ratio (SNR) at the user is
obtained as

0(t) =
p(t)g(t)
σ 2 (4)

where, σ 2
= BN0 with N0 denoting the power spectral

density of the additive white Gaussian noise (AWGN). Fur-
ther, p(t) and g(t) denote the transmit power of the UAV
and channel gain between the UAV and the user. Since we
consider only one UAV-user link, we avoid the consideration
of interference. The instantaneous rate achieved by the user
at time t, r(t), is expressed as

r(t) = B log2

(
1 +

p(t)g(t)
σ 2

)
(5)

C. LINE-OF-SIGHT COMMUNICATION
LoS communication is communication between transceiver
pairs with a direct path. The presence of obstacles and terrains
in the path causes the diffraction, reflection, and refraction of
the signal which reduces the signal strength and makes the
path non-LoS. Thus, the LoS paths provide higher throughput
as compared to NLoS paths. Thus, one should focus on pro-
viding the LoS path for a transceiver pair for better throughput
performance [28].

D. PATH REPRESENTATION
The objective of the algorithm is to determine a 3D path
comprising multiple nodes for a UAV, starting from a
ground location and reaching a destination in the sky. This
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path-planning process takes into account varying heights.
To simplify and optimize the path, this research adopts a
modeling approach as explained in [7]. For each particle i
in the algorithm, the initialization of Vi and Xi is performed,
followed by the calculation of the corresponding fitness
value fi. At each step, the algorithm compares the current
fitness value fi with the previous value fi−1 and updates
it accordingly. When the global position condition is met,
a new node denoted as 9g is created, and the algorithm
continues. Whenever a new node 9g is established with its
corresponding coordinates (xn+1, yn+1), the UAV’s height
is incrementally increased by a fixed value until it reaches
a height hn+1. Consequently, the UAV’s new location is
updated as (xn+1, yn+1, hn+1). This approach effectively sim-
plifies the original 3D path planning problem into a 2D
problem. Additionally, the algorithm evaluates the global
position conditions and the PLoS condition. If both the global
position conditions and the PLoS condition are satisfied, the
goal position is updated to become the endpoint of the path.

E. PROBLEM FORMULATION
Before planning the path, one should focus on finding the
endpoint. In this work, the endpoint is the point at which the
UAV is in LoS with the user so as to provide the required rate.
As can be seen from Fig. 1, point B is the optimal end point at
which we get the maximum rate at the user. All the traditional
path planning algorithms are designed to find the optimum
path to the point B which is located directly above the user at
a height h. However, it will increase the total distance traveled
by the UAV which further increases the energy consumption
and travel time. Thus, to balance the energy consumption and
rate requirements of the user, we find an optimal region over
which the UAV is still in LoS with the user which is obtained
by using (1). Let rs denote the radius around point B within
which the UAV is in LoS with the user and offers the required
rate. For example, point D in Fig. 1 is the endpoint that is the
nearest point to the source and is within rs to optimal endpoint
B.

From the above discussion, we propose a new fitness func-
tion whose objective is to minimize the energy consumption
at the UAV which is defined as

f = argmin
PLoS

E (6)

s.t. PLoS ≥ τ (6a)

dij < radius(Obsj) (6b)

τ > 0, dij ≥ 0 (6c)

where E is given by

E = Epath + Ecurve (7)

Further, the first constraint in (6a) denotes that the probability
of LoS should be greater than a threshold τ and the second
constraint defined in (6b) is the condition to avoid the obsta-
cles in the UAV path.

Here, E is the total energy required by the UAV for the
entire flight. τ is the minimum threshold for PLoS to satisfy

the rate requirement of the user. Here, the UAV path planning
has been formulated as a constrained optimization problem
with the fitness function containing the traveling distance and
risk with three constraints: height, angle, and limited slope of
the UAV. The maximum value of τ will be obtained at the
optimal endpoint B which is vertically above the user at a
height h. Epath is the energy consumed for all paths and Ecurve
indicates the extra energy required for the UAV for turning an
angle and climbing a height. Among Epath and Ecurve, Epath
is proportional to the distance flown by the UAV. Thus, the
proposed framework is focusing on minimizing Epath while
maximizing the sum rate and throughput. The expressions of
Epath and Ecurve, respectively, are obtained as

Epath

= E0
s−1∑
i=1

√
(xi − xi+1)2 + (yi − yi+1)2 + (zi − zi+1)2 (8)

and

Ecurve = E1
s−1∑
i=1

µ0 ∗ (1 + cosθe) + E2
s−1∑
i=1

|1Z | (9)

Here, xi, yi, and zi denote x, y, and z coordinates, respectively,
of node i. s denotes the total number of intermediate nodes
taken by the UAV to reach the endpoint and E0 is the energy
scaling factor which is defined as the energy required by the
UAV to fly a unit distance. µ0 is the turning angle coefficient
and θ represents the angle between two lines that are adja-
cent to each other [14]. The variation in height between two
adjacent nodes is represented by |1Z |. The fitness function is
performed by cubic spline interpolation and the summation is
performed for each slice of the fitness. This is similar to the
energy expenditure in the real-time scenario.

IV. PROPOSED PSO BASED APPROACH
Particle Swarm Optimization (PSO) is an approach for find-
ing solutions for problemswhich can be represented as a point
in an S-dimensional solution space. In PSO, the term ‘‘parti-
cles’’ refers to the population which is having negligible mass
or volume points in the solution space and is subjected to the
updations in velocity and position towards a better mode of
behavior.

In path planning, the swarm of particles represents a set
of candidate paths from the starting position to the target
position while avoiding obstacles. The algorithm iteratively
updates the position and velocity of the particles in the swarm
based on their current position and velocity. The position
of each particle represents a candidate path, and the fitness
function evaluates its quality based on factors such as distance
and obstacle proximity. The algorithm updates each particle’s
position and velocity based on the best solution found by
itself and the swarm. The swarm gradually explores the search
space, improving the quality of paths until an optimal solution
is found. The particle with the best fitness value represents
the best path from the starting position to the target position
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while avoiding obstacles. PSO algorithm uses the collective
behavior of the swarm to find an optimal path, making it a
useful tool for autonomous navigation in robotics, unmanned
aerial vehicles, and mobile robots.

This algorithm is initialized by generating a population of
random particles (X1,X2,X3, · · · ,XS ) which are uniformly
distributed in the search space. In path planning, the swarm of
particles represents a set of candidate paths from the starting
position to the target position while avoiding obstacles. The
position and velocity of the ith particle is represented by
Xi = (xi1, xi2, xi3, · · · , xiS ) and Vi = (vi1, vi2, vi3, · · · , viS ),
respectively. At each iteration, the best position (pbest) of the
ith particle and the best position of the population (gbest)
is determined as 9i = (ψi1, ψi2, ψi3, · · · , ψiS ) and 9g =

(ψg1, ψg2, ψg3, · · · , ψgS ), respectively. The new velocity and
position of each particle are then updated as

V k+1
i = wV k

i (t) + c1r1(9i − X ki ) + c2r2(9g − X ki ) (10)

and

X k+1
i = 9k

i + V k+1
i (11)

respectively. Here, i = 1, 2, · · · ,M and k = 1, 2, · · · ,K
where, M denotes the population size and K is the iteration
number. Inertia weight is represented by wwhich takes either
a constant or a dynamically changing value [30]. This param-
eter regulates the exploration capacity of the search space.
Hence, it is recommended to set a higher value initially such
as 0.9 so that it allows the particles to move faster in the
direction of the global optimum. After achieving the global
optimum, the values can be decreased to 0.4 to limit the search
capacity of the search space. Thus, the algorithm shifts from
an exploratory mode to an exploitative mode. c1 and c2 are
the learning factors whose value is 2. r1 and r2 denote the
random numbers generated uniformly at random from 0 to 1.
The velocity and position of the particle are initialized based
on the following constraints

−vmax ≤ vid ≤ vmax (12)

and

xmin ≤ xid ≤ xmax (13)

where vmax is the maximum allowed velocity that a particle
can attain to keep the maximum global exploration ability
of PSO in control. The inertia weight w maintains the bal-
ance between the global and local exploration abilities of
PSO. This parameter decides the converging properties of
the PSO in terms of optimality and speed. xmin and xmax are
the lower and upper boundary values of the solution space.
A problem-dependent predefined fitness function is used to
calculate the performance of each particle in the solution
space. At each iteration, every particle tries to attain fitness
and moves toward the direction which satisfies the fitness
function.

TABLE 2. Comparison of PLoS and achievable rate at various UAV
locations.

A. PROPOSED MODIFIED PARTICLE SWARM
OPTIMIZATION ALGORITHM
The objective of the proposed PSO algorithm is to estimate
the nearest endpoint at which the user is in LoS with UAV
so as to satisfy the required rate. The LoS probability, PLoS ,
defined in (1) is used to check the LoS communication link.
Table 2 presents the achievable rate at different locations of
the UAV. It is observed from Table 2 that the deviation of the
achievable rate is 3% from the maximum when PLoS is 0.83.
Thus, the proposed PSO algorithm checks after each particle
update whether the required rate is achieved. In path planning,
the fitness function of normal PSO typically considers factors
such as distance to the target position, proximity to obstacles,
and smoothness of the path. When PSO iterates to find the
best position for a node and the point 9g satisfies the PLoS
criteria, the algorithm sets 9g as the new endpoint for UAV
and evaluates the rate of the user from this location. Usually,
the closing criterion of the PSO algorithm is the target fitness
value. In path planning, the fitness value can represent the
distance between the optimal path and the target position
or the number of obstacles avoided. Here, in this proposed
approach, we check whether the corresponding PLoS satisfies
the criteria of less than 3 % rate loss at each updation of
9g. This considers the closing criteria of our modified PSO
algorithm. To analyze the robustness of the proposed work,
we tested the algorithm with three different scenarios. Fig. 3
shows the block diagram of the proposed PSO algorithm
for all the scenarios. A detailed description of these three
scenarios is given in the following section.
Scenario I: In this scenario, we consider that the UAV is

already at a height of h at the start point and the proposed
algorithm needs to find the optimal path to the endpoint which
is considered to be at the same height. Since the altitude of the
UAV is constant, the path-planning environment becomes a
2D space. Here, we consider 12 different obstacles present
on the plane at different heights greater than h. Since the
UAV is already at height h, the algorithm only deals with
(x, y) coordinates of the obstacles in the vicinity of the UAV.
Hence, for choosing the next best position of the swarm 9g,
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FIGURE 3. Block diagram of the proposed path planning.

Algorithm 1 Proposed PSO Algorithm for UAV Path
Planning in Scenario I.
Input: vmax , vmin, goal, origin, solution space
Output: Optimized path for UAV

1 InitializeM , S,K ,w, τ ;
2 for particles do
3 Initialize Vi and Xi of particles;
4 Calculate fitness fi;
5 Set 9i = fi;
6 end
7 Set 9g = fi;
8 for Iterations do
9 for Particle i do
10 Update Vi and Xi ;
11 Calculate fitness fi;
12 if fi < 9i−1 then
13 9i = fi;
14 end
15 end
16 if 9i < 9g and PLoS ≥ τ then
17 9g = 9i;
18 Set goalnew= 9g;
19 break;
20 end
21 if 9i < 9g then
22 9g = 9i;
23 nodenew= 9g;
24 end
25 end
26 Return 9g

the algorithm checks whether the point is inside any obstacles
so as to change the path. The algorithm directs the UAV until
the new location 9g satisfies the PLoS condition. Once the
condition is satisfied, the algorithm sets 9g as the endpoint
at which there is LoS between UAV and the user. Algo. 1
describes the details of the proposed algorithm for scenario I.

Algorithm 2 Proposed PSO Algorithm for UAV Path
Planning in Scenario II
Input: vmax , vmin, goal, origin, solution space
Output: Optimized path for UAV

1 InitializeM , S,K ,w, τ , ht=0;
2 for particles do
3 Initialize Vi and Xi of particles;
4 Calculate fitness fi;
5 Set 9i = fi;
6 end
7 Set 9g = fi;
8 Set Zeq=0;
9 for Iterations do
10 for Particle i do
11 Update Vi and Xi ;
12 Calculate fitness fi;
13 if fi < 9i−1 then
14 9i = fi;
15 end
16 end
17 if 9i < 9g and PLoS ≥ τ then
18 9g = 9i;
19 Set goalnew= 9g;
20 break;
21 end
22 if 9i < 9g then
23 9g = 9i;
24 nodenew= 9g;
25 Calculate Zeq
26 end
27 ht .append= Zeq
28 end
29 Return goalnew and ht ;

Scenario II: The second scenario is a 3D environment
where the initial position of the UAV is assumed to be on
the ground. Hence, in this case, the algorithm tries to plan
a 3D path for the UAV from the ground (start point) to the
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Algorithm 3 Proposed PSO Algorithm for UAV Path
Planning in Scenario III
Input: vmax , vmin, goal, origin, Solution Space
Output: Optimized Path for UAV

1 InitializeM , S,K ,w, τ ;
2 for particles do
3 Initialize Vi and Xi of particles;
4 Calculate Fitness fi;
5 Set 9i = fi;
6 end
7 Set 9g = fi;
8 Set Zeq=0;
9 for Iterations do
10 for Particle i do
11 Update Vi and Xi ;
12 Calculate the fitness fi;
13 for Obstacles j do
14 Calculate the distance dij between fi and

Obsj center;
15 if dij < radius(Obsj) then
16 break;
17 end
18 end
19 if fi < 9i−1 then
20 9i = fi;
21 end
22 end
23 if 9i < 9g and PLoS ≥ τ then
24 9g = 9i;
25 Set goalnew= 9g;
26 break;
27 end
28 if 9i < 9g then
29 9g = 9i;
30 nodenew= 9g;
31 Calculate Zeq
32 end
33 ht .append= Zeq
34 end
35 Return goalnew and ht ;

endpoint which is in the sky. As this involves 3D path plan-
ning, the height also varies during path planning. To simplify
the process and make the path a smooth one, this work adopts
the modeling approach defined in [7]. Each time a position
is decided, the algorithm increases the height of the UAV
by a fixed amount. This approach will still simplify the 3D
path planning problem into a 2D one. The pseudo-code for
this approach is given in Algo. 2. For each particle i, the
algorithm will initialize Vi and Xi and calculates the fitness
value fi. At each point, the algorithm checks whether the fi is
less than the previous fitness fi−1 and updates fi accordingly.
It also checks for global position conditions along with the
PLoS condition. If the global position condition is satisfied,

TABLE 3. Simulation parameters [14].

9g becomes a new node and the algorithm continues. If both
global position conditions along with the PLoS conditions are
satisfied, the algorithm will update the goal position as the
endpoint.
Scenario III: The third scenario is similar to Scenario II,

however, we consider the presence of obstacles in the path.
The proposed approach tries to detect the obstacle at each
step to avoid collision for the UAV. The pseudo-code for
this approach is given in Algo. 3. At each iteration, while
estimating the local best location (9i) of the particles, the
algorithm checks whether there is an obstacle present at
that location. This is done by calculating dk and Rk from
Fig. 2a. If dk is less than Rk , the proposed algorithm esti-
mates the possibility of a collision at the next location.
In order to avoid the collision, every 9i that is located inside
the obstacles is discarded and avoided being updated as
the global best position even if it satisfies all the required
conditions.

V. PERFORMANCE EVALUATION
In this section, we provide the experimental results corre-
sponding to the proposed framework for all the scenarios.

A. EXPERIMENTAL CONDITIONS
For all scenarios, we consider a geographical area of 2000 ×

2000m2. For scenario I, we consider (50, 50, 800) as the start
point of the UAV, and the user is placed at (1950, 1950, 800).
The experimental conditions for scenario II are similar to
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FIGURE 4. An illustration of the optimal path obtained by the proposed approach and SPSA in scenario I. Here, circle and square markers on
the plot represent the steps the UAV takes.

TABLE 4. Locations and radii of all the obstacles considered for all the
scenarios.

the conditions defined in [14]. In this scenario, the start
point of the UAV is (50, 50, 0), and the user is located
at (1950, 1950, 0). The environmental conditions for sce-
nario III are similar to scenario II except that the user is placed
at (1650, 1900, 0). Table 3 lists all parameter values consid-
ered for experimental results. Table 4 provides the locations
of the obstacles and their heights for all the scenarios.

B. PERFORMANCE MEASURES
1) ENERGY CONSUMPTION
With λ being the amount of energy consumed for a UAV fly
over a unit distance, the total energy consumed for traveling
a distance d is obtained as

Epath = λ · d (14)

2) TRAVEL TIME
The total time taken for traveling a distance d with a speed ν
is obtained as

τ =
d
ν

(15)

C. EXPERIMENTAL RESULTS
The optimum path obtained using the proposed approach and
SPSA in the scenario I is demonstrated in Fig. 4. Fig. 4a
illustrates the 2D view of the path and Fig. 4b demonstrates
the 3D path of the UAV. It is clear from Fig. 4b that the
proposed framework reduces the total path traveled by the
UAV without much compromising on the achievable rate at
the user. This results in reduced energy consumption, distance
traveled, and travel time. Table 5 shows the total energy con-
sumption, distance traveled, and the time taken for the travel
for all the algorithms. It is observed from Table 5 that the total
energy consumed, distance traveled, and time taken by the
UAV, with the proposed framework, are 1881.78 Joules (J),
2512.39 meters (m), and 54.61 seconds (s), respectively.
Further, the total energy consumed, distance traveled, and
time taken by the UAV, with SPSA, are 2065.91 J,
2758.22 m, and 59.96 s, respectively. Thus, it can be con-
cluded that the proposed framework outperforms SPSA in the
scenario I.

The optimum path obtained using the proposed approach
in scenario II is demonstrated in Fig. 5. Fig. 5a illustrates the
2D view of the path and Fig. 5b demonstrates the 3D path of
the UAV. It is clear from Fig. 5b that the proposed framework
reduces the total path traveled by the UAV without much
compromising on the achievable rate at the user. This results
in reduced energy consumption, distance traveled, and travel
time. Table 5 shows the total energy consumption, distance
traveled, and the time taken for the travel. It is observed from
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TABLE 5. Performance evaluation of the proposed approach and SPSA in terms of energy consumption, distance traveled, travel time, and rate.

FIGURE 5. An illustration of the optimal path obtained by the proposed approach and SPSA in scenario II. Here, circle and square markers on the
plot represent the steps the UAV takes.

FIGURE 6. An illustration of the optimal path obtained by the proposed approach and SPSA in scenario III. Here, circle and square markers on the
plot represent the steps the UAV takes.

Table 5 that the total energy consumed, distance traveled,
and time taken by the UAV, with the proposed framework,
are 1419 J, 1895 m, and 41.19 s, respectively. Further, the
total energy consumed, distance traveled, and time taken
by the UAV, with SPSA, are 2012 J, 2687 m, and 58.41 s,
respectively. Thus, it can be concluded that the proposed
framework outperforms the SPSA in scenario II.

The optimum path obtained using the proposed approach
in scenario III is demonstrated in Fig. 6. Fig. 6a illustrates the
2D view of the path followed and Fig. 6b demonstrates the 3D
path followed by the UAV. It is clear from Fig. 6b that the pro-
posed framework reduces the total path traveled by the UAV
without compromising the achievable rate at the user. This
results in reduced energy consumption, distance traveled, and
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FIGURE 7. An illustration of (a) sum rate, (b) energy consumption, (c)
distance saved, and (d) time saved at different locations of the user in
Scenario II.

FIGURE 8. An illustration of (a) sum rate, (b) energy consumption, (c)
distance saved, and (d) time saved at different locations of the user in
Scenario III.

delay. Table 5 shows the total energy consumption, distance
traveled, and the time taken for the travel. It is observed from
Table 5 that the total energy consumed, distance traveled, and
time taken by the UAV, with the proposed framework are
1649.94 J, 2202.8 m, and 47.88 s, respectively. Further, the
total energy consumed, distance traveled, and time taken by
the UAV, with the conventional approach, are 2012 J, 2687 m,
and 58.41 s, respectively. Thus, it can be concluded that the
proposed framework outperforms the conventional one for
scenario III.

FIGURE 9. The comparison of the cost obtained at each node of the
optimum path for different iterations in scenario II.

FIGURE 10. The comparison of the cost obtained at each node of the
optimum path for different iterations in scenario III.

Figs. 7a, 7b, 7c, and 7d show the variation of sum rate,
energy consumption, distance traveled, and time of travel
with respect to different locations of the user for the proposed
algorithm with endpoint chosen to be D and B in scenario II.
It is observed from Figs. 7b, 7c, and 7d that by choosing
the destination point as D the energy consumption, distance
traveled, and time of travel are less in comparison to when
we choose the destination point as B. However, the sum rate
achieved is comparable when choosing both destinations.

Figs. 8a, 8b, 8c, and 8d show the variation of sum rate,
energy consumption, distance traveled, and time of travel
with respect to different locations of the user for the proposed
algorithm with endpoint chosen to be D and B in scenario III.
It is observed from Figs. 8b, 8c, and 8d that by choosing the
endpoint as D the energy consumption, distance traveled, and
time of travel are less in comparison to when we choose the
endpoint as B. However, the sum rate achieved is comparable
when choosing both destinations.

Figs. 9 and 10 show the distribution of cost for different
paths followed during different iterations in scenario II and
scenario III, respectively. The cost value is estimated by
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FIGURE 11. Comparison of X &Y -coordinate Vs Time for various UAV
velocities for scenario II.

FIGURE 12. Comparison of X &Y -coordinate Vs Time for various UAV
velocities for scenario III.

calculating the distance between the coordinates of a path
node and the target point. The selection of the next path node
also depends on this cost criteria. The selection criteria for
each path node (particle) in the PSO algorithm are based
on the concept of fitness evaluation. The fitness function is
defined based on the specific problem or objective being opti-
mized. Here, we utilize the LoS probability to find an optimal
destination location where the UAV is in LoS with the user
and can provide the required downlink rate. The proposed
modified PSO algorithm checks whether the corresponding
PLoS satisfies the criteria of less than 3 % rate loss at each
updation of 9g where 9g is the new path node for UAV. This
considers the cost criteria of our modified PSO algorithm.
If the cost at a particular node is larger than its previous
one, it is assumed that the particular node location is not
estimated in an optimal way. By proceeding from one path
node to the next, the algorithm is always trying to converge
with minimum cost.

In Figs. 11 and 12, the variation of the path of UAV
in x and y direction with respect to time is depicted for
scenarios II and III, respectively. As the proposed approach
tries to estimate the minimum distance path, the path nodes
will be always in a straight line with respect to time for a
constant velocity. Hence, we tried to analyze the nature of
the selection of nodes by the proposed approach for different
random velocities in a predefined range.

The mean, worst, optimal, and standard deviation values of
the cost function, averaged over 1000 iterations for different
algorithms, are given in Table 6. It is observed from Table 6
that the CSO algorithm has the worst convergence effect for
the given scenario in path planning. It is also noticed that
as the number of iterations increases, the convergence effect
is getting better for DE, PSO, and SSA algorithms. Finally,
it is shown that the proposed approach is outperforming other

TABLE 6. The performance comparison of the proposed algorithm with
existing ones in terms of mean, worst, optimal, and standard deviation.

FIGURE 13. The performance comparison of the proposed algorithm with
existing ones in terms of fitness values.

FIGURE 14. Performance evaluation of the proposed algorithm for
different scenarios in terms of fitness value.

algorithms in terms of the lowest cost value due to the optimal
conditions we applied in the proposed PSO approach. The
corresponding graph is given in Fig. 13. Further, the variation
of fitness value for the proposed algorithm with endpoints
B and D is depicted in Fig. 14 for scenarios II and III. The
effect of the obstacle avoidance approach on the optimum
value of various attributes such as energy, distance, time, and
rate are plotted and compared. In the end, it is obvious that
the obstacle avoidance part is adding some distance to the
planned path of the UAV in order to avoid collisions. For a
better illustration, time and rate attributes are scaled up and
scaled down, respectively, and plotted in Fig. 14.

VI. CONCLUSION AND FUTURE WORK
In this work, a novel framework has been proposed that
utilizes the modified Particle Swarm Optimization (PSO)
algorithm for path planning of UAV in order to deliver the
data to a user at the required rate. Here, a joint problem
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has been formulated in terms of path planning and energy
consumption in order to improve the instantaneous sum rate
of the user. Further, the line of sight probability has been
incorporated to satisfy the rate requirements of the user. It has
been shown through simulations that the proposed framework
reduces the energy consumption, distance traveled, and time
of travel in addition to providing the required rate when com-
pared to other methods in three different scenarios. We have
also shown that the fitness value is less for the proposed work
when compared to other works. In the future, we plan to eval-
uate the performance of multi-UAV and multi-user systems.
Further, we will explore the effectiveness and efficiency of
the PSO algorithm in rural areas.
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