IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 27 June 2023, accepted 9 July 2023, date of publication 13 July 2023, date of current version 24 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3295212

== RESEARCH ARTICLE

Edge-Distributed Fusion of Camera-LiDAR for
Robust Moving Object Localization

JOSE AMENDOLA', AVEEN DAYAL 2,
LINGA REDDY CENKERAMADDI“2, (Senior Member, IEEE), AND AJIT JHA™

! Department of Engineering Sciences, University of Agder, 4879 Kristiansand, Norway
2Department of Information and Communication Technology, University of Agder, 4879 Kristiansand, Norway

Corresponding author: Ajit Jha (ajit.jha@uia.no)
This work was supported in part by the Senter for Forskningsdrevet Innovasjon (SFI) Offshore Mechatronics Project under Grant 237896;

and in part by the Indo-Norwegian Collaboration in Autonomous Cyber-Physical Systems (INCAPS) Project through the International
Partnerships for Excellent Education, Research and Innovation (INTPART) Program, under Grant 287918.

ABSTRACT Object localization plays a crucial role in computational perception, enabling applications
ranging from surveillance to autonomous navigation. This can be leveraged by fusing data from cameras and
LiDARs (Light Detection and Ranging). However, there are challenges in employing current fusion methods
in edge devices, while keeping the process flexible and modular. This paper presents a method for multiple
object localization that fuses LIDAR and camera data with low-latency, flexibility and scalability. Data is
obtained from 360° surround view four cameras and a scanning LiDAR distributed over embedded devices.
The proposed technique: 1) discriminates dynamic multiple objects in the scene from raw point clouds,
clusters their respective points to obtain a compact representation in 3D space; and 2) asynchronously fuse
the centroids with data from object detection neural networks for each camera for detection, localization,
and tracking. The proposed method meets above functionalities with low-latency fusion and increased field
of view for safer navigation, even with intermittent flow of labels and bounding boxes from models. That
makes our system distributed, modular, scalable and agnostic to the object detection model, distinguishing
it from the current state-of-art. Finally, the proposed method is implemented and validated in both indoor
environment and publicly available outdoor KITTI 360 data set. The fusion occurs much faster and accurate
when compared with traditional non-data driven fusion technique and the latency is competitive with other
non-embedded deep learning fusion methods. The mean error is estimated to be & 5 cm and precision of
2 cm for indoor navigation of 15 m (error percentage of 0.3%). Similarly, mean error of 30 cm and precision
of 3 cm for outdoor navigation of 35 m on KITTI 360 data set (error percentage of 0.8%).

INDEX TERMS Sensor fusion, LiDAR, object localization, embedded system.

NOMENCLATURE f’l."k Image frame captured by k-th camera
€yne Time duration of a step for frame . connected at j-th device at a given instant i.
synchronization. in D-th point from cloud frame captured from /-th
CXY Set of 2D plane projections of all centroids. LiDAR connected to j-th device at instant i.
Ci Set of cluster centroids at instant i. Do 2D point representation of o-th object w.r.t
7T Set of tracks at instant i. . LiDAR coordinate frame.
ai:’l Compact representation obtained from sil sé’l Point cloud frame captured from /-th LiDAR
b{‘k Compact representation obtained from fjl:’k. connected to j-th device at instant i.
t Translation for k-th camera w.r.t. world frame.
The associate editor coordinating the review of this manuscript and w 3D world point in the homogeneous co-ordinate
approving it for publication was Wei Wei . system.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
VOLUME 11, 2023 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

73583

https://orcid.org/0000-0001-6792-9170
https://orcid.org/0000-0002-1023-2118
https://orcid.org/0000-0003-1435-9260
https://orcid.org/0000-0003-0618-7454

IEEE Access

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

X 3D world point in the k-th camera

homogeneous co-ordinate system.

Ofilter Z-axis variance theshold for cluster removal.

assoc, Boolean indicator of new centroid association
with o-th object.

C Number of image channels.

Ovyerlay 2D plane projections of overlayed point.

Cq Centroid of g-th cluster.

Co Class code of o-th object.

d Object detection.

dpeighbor ~ Threshold distance for DBSCAN algorithm.

H Height of image in pixels.

i Instant at frame capture.

id, Unique identification of the o-th object.

j Embedded device identification.

k Camera identification.

l LiDAR sensor identification.

Lioxel Lateral voxel size of octree map.

My Intrinsic calibration matrix for k-th camera.

N, Total number of cameras.

N; Total number of LiDAR sensors.

N, Total number of point in a point cloud frame.

Neiuster Minimum number of dense points in a cluster
DBSCAN algorithm.

Ndense Number of neighbors of a dense point for
DBSCAN algorithm.

O; Octree map from point cloud at instant i.

p'gc Transformed centroid from g-th cluster from
the LiDAR coordinate frame to the coordinate
frame of the k-th camera.

plg.lm Pixel projection of centroid from g-th cluster.

P k-th camera transformation matrix.

rl.'f d Detection Bounding Box of d-th detection from
k-th camera at instant i.

Ry Rotation matrix for k-th camera frame w.r.t.
world frame.

t Track of o-th object.

ufﬁ d Detection object class code number of d-th
detection from k-th camera at instant i.

w Width of image in pixels.

I. INTRODUCTION

Localizing moving objects is a crucial task in computational
perception, with applications ranging from surveillance to
autonomous navigation. Accurate object localization serves
as a foundation for tasks like target pursuit, behavior tracking,
and obstacle avoidance. This task, among others, directly
benefits from the fusion of different sensor modalities. The
combination of 3D LiDARs and cameras are a very common
combination since they complement each other [1], [2]. 3D
LiDARs provide a depth map of environments, but fail to pro-
vide color and other semantic relevant information. In turn,
RGB cameras provide offer rich information but do not pro-
vide any direct spatial information on the objects [3], [4].

73584

Traditionally, both LiDARs and cameras are fused at
early stage, by mapping of all 3D points into pixel space
before further downstream tasks. This approach, however,
relies on a very precise calibration and also in the align-
ment of frames from both sensors. Lately, there has been
an increase in proposals for deep learning-based image and
point cloud fusion that obtain labels and 3D location of
objects [5]. Many of the fusion proposals require training and
deployment of computationally expensive neural networks on
high-performance hardware. These models typically demand
a large amount of training data, fixed number of sensors, and
inference can occur away from the input data source. That
hinders their application to domains that require localization
of objects to be performed in edge and computation con-
strained devices.

Recent advances in high-performance embedded compu-
tation hardware and deep learning algorithms allowed tasks
like object classification, detection, localization, and tracking
to be performed in embedded platforms (e.g. NVIDIA Jet-
son [6], [7], Raspberry Pi [8]). However, their computation
power can not support the burden of deep learning meth-
ods fusing inputs from multi-modal sensors. Also, buffering
inputs such as point clouds and multiple images is memory-
intensive. The small form factor and rich hardware interfaces
of edge devices, on the other hand, enable networking and dis-
tributed computation capabilities. They allow for the modular
and flexible implementation of the aforementioned function-
alities through the use of connected individual embedded
devices.

Scaling the number of sensors and leveraging the strengths
of each sensor modality can improve performance in tasks
such as object localization, but pose a challenge to imple-
mentation on embedded systems. That entails breaking down
complex functionalities into small chunks on different ded-
icated hardware components. When connected, embedded
computing modules with limited capabilities can also be
used; it allows easy and partial replacement of malfunctioning
modules; and it also enables more dynamic and redundant
sensor arrangements. Communication among sensors and
computing modules in larger platforms such as self-driving
cars, for example, can introduce latency and noise. Interme-
diate processing nodes on the edge may be able to reduce the
length of raw data transmission. However, they can introduce
network latency and makes it difficult to bridge the gap
between modularity and time efficiency.

A system that perceives all its surroundings is needed
for safer navigation, specially in cases such as collabora-
tive robotics, where mobile platforms work in tandem with
humans. While fusing sensors for surround view adds value
for safety, it also adds computational cost. The necessity
of having flexible and modular systems to process several
sensors, summed up with the challenge of distributing the
pipeline over constrained devices pose the motivation to this
work. It addresses the limitations of existing approaches by
proposing an edge-distributed fusion system for robust mov-
ing object localization. We aim to overcome the challenges

VOLUME 11, 2023

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

IEEE Access

of processing camera and LiDAR data in real-time on dis-
tributed edge devices with constrained computational power.
By leveraging the strengths of both sensor modalities, our
approach aims to improve robustness and flexibility of object
localization in dynamic scenarios.

To differentiate our work from the state-of-the-art,
we introduce a modular and flexible implementation using
two connected embedded devices. Further, four cameras and
one LiDAR are employed in independent, unsynchronized
computation pipelines. The system is able to detect, classify
and track the position of moving objects in a 360° field
of view with simplified 2D points. It is suitable to con-
strained computing settings in dynamic environments, where
the platform should move in all four directions. Applica-
tion examples could involve autonomous navigation for load
transporting and inspection in industrial spaces with presence
of humans, where perception of environment is required in all
four directions.

The significance of our work lies in bridging the gap
between LiDAR-camera fusion and modular, distributed
edge computing. By optimizing the use of available com-
putational resources, our approach enables real-time object
localization, without relying on high-performance hard-
ware or synchronization among sensors in a monolitic
setting.

The summary of our contributions is listed as follows:

1) Hardware architecture: We propose an architecture
combining more than one embedded device for fusing
data from multiple sensors of different modality for
real world applications. The architecture is designed in
a way to create a distinct abstraction between sensors
interface at one embedded device, and data fusion on
the other one. This separation has added advantages
to make system generalized, modular, and scalable.
We demonstrate experimentally, backed by quantita-
tive analysis, that this architecture has lower latency
without compromising the localization task.

2) Distributed and asynchronous processing pipeline: The
algorithms allow efficient network transmission and
also fusion of unsynchronized data. The capacity of
localizing objects becomes agnostic to the pretrained
object detection model.

3) Finally, we demonstrate the concept experimentally by
connecting four cameras and a LIDAR to more than one
embedded device forming a network. We then imple-
ment the algorithms distributed over them for object
detection, localization, and tracking multiple objects
both in indoor and on publicly available data. The
proposal is also validated with a hardware-in-the-loop
simulation using an autonomous driving public dataset.

This paper is structured as follows: Sec. II summarizes the
related work followed by problem formulation in Sec. III.
Sec. IV presents the proposed method in detail; Sec. V
describes the set-up adopted for the experiments followed by
results in Sec. VI. Finally, Sec. VII presents conclusion and
future directions.

VOLUME 11, 2023

Il. RELATED WORK

Image processing algorithms have become well mature over
the last years after the development of deep learning based
techniques [9], [10], [11]. However, information occurs in
2D space and the important depth information required for
localization tasks is not provided. Also, they do not work
in dark or limited lighting conditions. Not so commonly,
some attempts to estimate 3D object localization from 2D
images can be found in the literature [12], but those are highly
dependent on the training data distribution. To overcome
the limitations, LiDAR sensors offer a dense point cloud of
the environment and is considered a complement to vision
sensors [13]. While cameras give a rich visual representation
in 2D, point clouds give the location of objects in 3D as
well as more information about shape and occupancy. In turn,
deep learning methods for obtaining their location and labels
solely from point clouds [14], [15], [16] are computationally
expensive and require enormous training data, which might
not be easy to obtain.

Sensor fusion can be categorized in three different types:
early fusion, deep fusion and late fusion. In early fusion,
data is combined before any individual processing or feature
extraction step. In deep fusion, neural networks are used
to directly process inputs, where complex relationships are
learned and fusion can occur in many states with latent
representations. In late fusion, each sensor’s data is pro-
cessed independently using sensor-specific algorithms [17],
[18]. After processing and feature extraction, the outputs
are combined or fused at a later stage. Also, it is possible
to classify sensor fusion methods as model-driven or data-
driven. In the first case a prior model is adopted, i.e.; the
motion model of an object being tracked. Data-driven meth-
ods rely on training in a dataset to perform downstream task
from sensors inputs, so all deep fused methods are neces-
sarily data-driven. Some works, such as [19], can perform
late fusion and combine both data-driven and model-driven
approaches.

Some perception tasks also fuse data from radio frequency
processing. Authors [18] proposed passive radio frequency
and infrared signals (PRF-PIR) for human identification and
activity recognition (HIAR). However, the classes used in
their identification tasks is limited to humans, they present a
limited field of view and interference from adjacent electronic
devices.

In object localization, early fusion traditionally translates
into overlaying the RGB image with a point cloud after coor-
dinate transform, yielding 3D points cropped by a bounding
box or semantic mask [20], [21], [22], [23]. That demands
a high precision calibration among sensors and require large
memory for processing data along the task.

Many of the state-of-art works in object localization use
deep fusion, where neural networks sequentially produce and
merge intermediate features from clouds and RGB images
to perform object localization [24], [25], [26], [27], [28].
However, they present several setbacks: They require pow-
erful computation and joint training in multi-modal datasets;

73585

IEEE Access

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

They rely on sensors synchronization and their complexity
is intractable as the number of input sensors grow. Further,
the annotations and their output use complete 3D bounding
boxes to represent objects, adding unnecessary complexity
for applications requiring only a point representation of their
position.

Moving towards computing-constrained embedded appli-
cations, most of the literature focuses only on simple tasks
such as object detection and recognition using only one
device [7], [29], [30]. The work [31] proposed fusion of cam-
era and radar for tracking vehicles in a road in a distributed
architecture. However, they were limited to simulation only
and required sensor frame synchronization.

Our work performs late fusion, having unsynchronized
independent pipelines. Since it relies on a pre-trained object
detection model and does not assume any motion model, out
solution can be categorized as data-driven, with the benefit of
requiring only image training data and not LiDAR data.

lll. PROBLEM FORMULATION

The need of a large number of sensors from different modal-
ities (both for complementary and redundancy) in embedded
systems yield the need of embedded units to work together
for accommodating the computation involved in perception
tasks. Under this perspective, we revisit the simple perception
task of tracking the position of moving objects to propose a
modular and flexible system that accounts for communication
among devices. Unlike other proposals [32], [33], this paper
assumes that such task can be accomplished on the edge
even with sensors connected to different and not synchronized
embedded devices. .

Referring to Fig. 1, let sé’l denote a point cloud frame
captured from I" LiDAR (I € {1,2,3...N;}) connected to
embedded device j € {1,2,3...Ny} during the experiment
at a given instant i. sﬁ’l contains all 3D points obtained from

{pinn 1°

Vi, j, I and N, is the number of points

the scene in a given frame. Mathematically, sffl
where pii e R3,
contained in the frame. Similarly, fJ *is an image frame
captured by acamerak € {1, 2, 3, ... N.} connected at dev1ce
j € {1,2,3...Ng} at a given instant i. Each element fj ’
ZW>HXC s a 3D matrix representing an RGB image w1th
width, height and channel W, H and C respectively.

We consider real-world navigation that occurs in a 2D
plane, where objects navigate in 2D plane (as they do not
fly off the ground). For further efficient planning, the final
perception task is simplified so as to estimate the minimum
distances of objects projected in the ground plane. Thus,
for every moving object of interest, we aim to obtain a set
of labels u,; and reference points p,; € R? Vi, which
represent the object position in the ground plane.

As illustrated in Fig. 2, sensors are connected to interface
devices. The data acquired from them needs to be transmitted
to the fusion device. It’s desirable to obtain a compact form of
important information at the interface device so it can be sent
efficiently to the fusion device. Mathematically, that means

73586

N, points

FIGURE 1. lllustration of the convention adopted. In the example, camera
k = 4 and LiDAR | = 1 are connected to device j = 1, sending frames
sequentially.

LIDAR ,_, IIII
1=2 —~
- |||I ““
B

k=13 West

! Camgra 0
outh fl d II II ui Do,

Camera Bi* Uy
>
cEast Noi rth =1 Interface Fusion
2T$ra Camera devices device

FIGURE 2. Schematic diagram of embedded devices for sensor interface
and for fusion respectively as well as the data flow. s’ represents the

point cloud frame from LiDAR / connected to device j at instant 7, £k the

camera frame from camera k connected to device j at instant i, ' the
compact representation obtained from pre-processing point cloué frame

from LiDAR / connected to device j at instant i, b’ *" the compact
representations obtained from pre- processing |mage frame from camera
k connected to device j at instant i. u, ; represents a given object label
and p,, ; its position on the ground plane.

to acquire data from different modalities (s’ and f] ") and to
obtain: (a) representations from clouds a’ ! R3XN ", with
Ny < N, Vj,1,iand (b) representations from images b] €
RW'xB’ XC ,withB' < B,W < Wand C' < CVj,k,i.

IV. PROPOSED METHOD

In this section we describe in detail the method proposed.
First, we give an overview of the system (Subsec. IV-A);
We then show the approximated camera calibration method
adopted (Subsec. IV-B); The algorithms adopted in each
computation node are described from Subsec. [V-C to IV-E

A. OVERVIEW

We demonstrate the modularity and distributed computation
across units by using two distinct embedded devices and
five sensors — four cameras and the LiDAR. All sensors are
connected to first embedded device (a.k.a interface device)
and fusion occurs in the other one (a.k.a. fusion device). Even
though sensors are connected to the same device, each sensor
has its data processed independently, so, without any loss
of generality, we are able to emulate the same conditions as
if the computation was distributed among different interface
devices with even more limited capacity.

VOLUME 11, 2023

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

IEEE Access

North Camera East Camera South Camera West Camera Lidar
e N e T e Y e N fommmmm e '
| Interface Interface Interface Interface T Bes]
: Node Node Node Node = i
' I/ |Res ./’ |ReB ./’ RGB I/’ |ReB v 3'“:
- Image ‘Image Image ‘Image Displacement POINt |
| Device A: Object Object Object. Object Cantrold cloud |
! Interface Detection Detection Detection Detection i !
' Node Node Node Node 1
' '
; (|| [|[(|| L o
T e ’ e 4? E

! entroids from)
| Boxes + Boxes + Boxes + Boxes + displacement;
| bels Labels Labels clusters !
[

i

'

'

'

'

Device B:
Fusion
\

FIGURE 3. General architecture: Different pipelines with distributed
nodes across two embedded devices. Data from cameras and LiDAR are
preprocessed separately at a interface module and sent asynchronously
to be fused at a fusion module.

The general distributed architecture with sensors integra-
tion and functionalities is illustrated in Fig. 3. All the five
sensors are connected to a single device (Interface device).
Data of different modalities (image and point cloud) is
continuously collected. In the interface device, data com-
ing from each sensor flows through individual pipelines,
where software modules (nodes) extract the compact rel-
evant representation of the scene from the each of four
cameras (object labels and bounding boxes) and the LiDAR
(displacement cluster centroids) simultaneously. Then those
are exchanged through network messages in a publisher-
subscriber scheme. The messages are sent to the second
embedded device (fusion device) over network, where data
fusion occurs and the compact representation of the scene is
reconstructed. For the sake of simplicity, we omit the device
Jj identification superscript from further variables.

Objects are identified using labels obtained in the cam-
era pipelines, which also yield bounding boxes to be used
along with the output from LiDAR pipeline for localization.
To avoid dependency on multi-modal datasets and complex
models at the LIDAR pipeline, we adopted a non-supervised
approach based on comparison of two sequential point
cloud frames, denoted as displacement centroid calcula-
tion (Subsec. IV-D). Obtaining a compact representation
from images is quite straightforward due to availability
of pre-trained detection models. Once the bounding boxes
and labels are obtained (Subsec. IV-C), the points obtained
from the cloud pipeline are overlayed by the bounding box
(Subsec. IV-E). That is only possible due to the preceding
calibration process described in Subsec. IV-B. The result of
overlay is sent for updating tracks or creating new ones. The
tracks are also updated in the absence of overlays, relying
only on the output of clouds. A more detailed diagram with
algorithms and data flow is depicted in Fig. 4.

B. CALIBRATION

Before fusing information from the sensors, it is crucial to
calibrate them - four cameras with respect to one other and
then each camera with respect to the LiDAR — to achieve a
representation in the same coordinate frame. Camera k maps
3D world points to 2D image given by (1), where x; € R? is

VOLUME 11, 2023

a 2D image in homogeneous co-ordinate system, w € R* is a
3D world point in the homogeneous co-ordinate system, and
P e R3*4 is the camera matrix given by (2), where M, is the
intrinsic parameter. Ry, is the rotation and # is the translation
of camera frame with respect to world frame respectively,
together forming the extrinsic matrix.

X = Prw (D
Py = My[Ri |t])

While extrinsic calibration ([Ri|tx]) maps the 3D world
co-ordinate to camera co-ordinate, intrinsic calibration (M})
maps the camera co-ordinate to image plane. For extrinsic
calibration, the LiDAR sensor coordinate frame is adopted as
reference. Thus, both the pose of LiDAR coordinate frame
and the cameras is found with respect to a chosen calibration
target, so the final transform matrix between each camera and
the LiDAR is obtained. A board with four circular blob with
known center, diameter and the position of each blob in world
co-ordinate was used as the calibration target. Circular holes
are detected by Circle Hough Transform algorithm; the target
position with respect to the camera is then obtained using
SolvePnP algorithm [34]. The transformation matrix between
the LiDAR and the center of the target board was estimated
by the procedure in [22], [23], and [35]. This is a well-known
calibration technique because circular blobs present features
that (a) are very distinguishable and can be easily identified in
images by computer vision algorithms and, at the same time,
(b) provide the disparity in depth that can be capture by the
point clouds from LiDARs.

For intrinsic calibration, checkerboard was used as ref-
erence and the coefficients are obtained by identifying its
target corner points, implementing the method based on [36].
For simplification purposes, the calibration is performed for
north camera only. We also take advantage of the geometrical
disposition of all cameras (as each camera is perpendicular
to one other) and use the extrinsic matrix obtained for north
camera. We rotate it in 90° in the plane sequentially for
estimating the extrinsic matrix for other cameras.

C. OBJECT DETECTION

Referring to Fig. 3, four computing nodes in the interface
module receive streams images from the 4 cameras and
each of them perform object detection. This work proposes
a system that is agnostic to the type of object detection,
so any pre-trained detection model can be adopted, making
the localization available to whichever classes the detection
model can detect. We assume that the model does not create
redundant bounding boxes for the same object in the image,
so there will be no intersection among them.

In this work, we adopted the SSD (Multibox Single
Shot Detector) architecture [37]. This neural architecture is
well-known in the literature for inference speed performance.
It was optimized for running on the embedded device [38] and
trained in the COCO (Common objects in Context) public
dataset [39]. Each camera k object detection node contains
a SSD detection model. If one or more detections are present

73587

IEEE Access

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

Cloud frame s5; Displacement

with points3 Centroid (Alg.1) “GCentroids
Pin ER Ci,g e R3
— =
R(}B{B frames Detections
K WXHXC k k
fi€ez {ria ufa)

Bounding boxes

I k =1 Object Detection Tic,d € R*
k=2) P

0 . Labels uf; € N

= k=3 !

(]

Y k=4 (SSD)
Interface : Fusion
Device Device

Fusion (Alg.2)

Overlay
(Alg.3) Overlayed centroid ~ Gentroid-
S projected on plane
XY € R2 Tra_ck.
N\ overlay Association
S% (Alg.4+5)
z N
NI I ‘1‘\ .

{ . Label
L

Tracks of objects containing
label u, € N and
position p,, ; € R?

FIGURE 4. Data flow and algorithms. Cluster centroids are obtained from displacement in point clouds (Alg. 1).
For each camera, bounding boxes and labels are obtained for every detection (Subsec. IV-C). After an
approximate synchronization is performed (Alg. 2), the closest centroid overlayed by a bounding box is
projected in the ground plane (Alg. 3) and can create or update tracks (Alg. 4). Non-overlayed centroids can also

be used to update nearby existing tracks (Alg. 5).

for a given instant i, a set containing information tuples
{r{f d» uf 41 of each detection d from that camera is sent. For
each tuple, rl.]f 4 € R* contains the center cordinates, height
and width of the bounding box and an object class code
number uf 4 € N (Shown in Fig. 4). In the absence of
detections for a given image frame, no message is published.

SSD is fast but not so accurate, outputting intermittent
detections. It was purposely chosen as object detector to prove
the ability of the system to locate objects even when it fails
to detect an existing object for a given frame (demonstrated
in Sec. V). Although detecting object classes is essential in
the proposed task, the tracking process in this work can be
performed also in the absence of a detection message, hence
increasing the reliability of the overall system.

D. DISPLACEMENT CENTROID CALCULATION

The overall scheme of displacement cluster formation is illus-
trated by Fig. 5 and Alg. 1. Similar to sending the entire
image of the scene captured by four cameras, sending the
complete point cloud captured by LiDAR from one platform
to another is unfeasible in terms of network latency, com-
putational cost and memory requirements. Hence, a more
compact representation must be obtained from processing
point clouds. The key idea behind each cloud frame process-
ing is 3D background filtering, by subtracting points referring
to static portion of the scenario. A given point cloud frame
s;_1 is stored while processing of next point cloud frame s;.
When s; arrives at the processing node, an octree map for
previous frame s;_; is generated. Octrees are a quite com-
pact volume occupancy representation based on voxels [40].
Considering a voxel as a cube, its lateral size is established
by a parameter /,ye;. Once the octree from §;_1 is generated,
the original points are removed from the structure and the
current points from s; are inserted in the octree structure.
By design, this data structure allows a quick verification if
a given voxel is occupied or not by any point. If the voxel
was previously empty for s;—; and became occupied by one

73588

Frame s;_; Frame s; New occupied voxels Cluster
d points centroid
15 target -1 Hl »
g 1 clisplacemer, 1] r +

New occupied
voxels

Empty Voxels

FIGURE 5. Displacement cluster scheme: Points from previous frame
stored as octree(left); The points from the current frame mapped to the
stored octree and displacement points selected (middle); Clustering
(right).

of the current points of s;, those points are considered as
displacement and selected. If there is no previous frame,
the complete point cloud is considered as the displacement
and that enables the system to track stationary objects at
initialization.

The next step is to cluster the displacement points. The
density-based clustering method DBSCAN was adopted [22].
It associates points to a cluster given the number of neighbor
points within a threshold distance dyeighpor. A region around
a point is considered dense and can potentially start a cluster
if there are at least ngep5 neighbors. The minimum number
of grouped points Ny required to form a cluster can
be adjusted, so smaller associations will be considered as
outliers. Due to the laser projection pattern, the ground and
other planes that do not have their normal vectors pointed
towards the LiDAR sensor will have a lower density of points.
As they are not relevant for the task, the algorithm conve-
niently treat them as outliers. Other emerging points due to
sensor imprecision are also discarded.

Even with noise removal, objects that were previously
shadowing floor regions can allow ground emerging points
as they move and those can still mistakenly be treated as a
displacement cluster. To remove that artifact, a filter is applied
by evaluating the variance of the cluster in the Z direction
(orthogonal to the ground plane). If the value is smaller than
a threshold o, the cluster is discarded. After obtaining

VOLUME 11, 2023

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

IEEE Access

Algorithm 1 Displacement Centroid Calculation

Algorithm 2 Fusion

Input: Previous point cloud frame s;_1, Current Point cloud
Frame s;
Output: Displacement Centroids C;
: O; < Octree map from s;_1
: O; <— Remove all points from s;_1 (Keep tree structure)
: D <« {§ > Set of displacement points
: Ci < ¥ > Set of displacement centroids
: for each p; , € s; do
vp < Find the voxel corresponding to p; , in O; >
Check for each point if the voxel in the octree exists
if v, = ¢ then
D < D Up;, > If not found, add it as a displace-
ment point
9: end if
10: end for
11: G < Apply DBSCAN clustering on points in D and
retrieve the set of clusters
12: forg e {1,2,...,|G|} do
13: ¢y < Calculate centroid of cluster g
14: 0,4, < Variance of cluster over the Z axis
15. if Ogz > Ozfiler then
16: Ci < CiUcg > Only add centroids from clusters
with variance in Z axis higher than threshold (X:
front, Y: left, Z: up)
17: end if
18: end for
19: Store s;
20: return C;

oA L S I S R

the clusters, their centroids ¢, are calculated and sent to the
fusion platform, being grouped as a set C;.

E. FUSION

The fusion process is described in described in Alg. 2.
The messages containing detections from cameras (bounding
boxes and labels) are transmitted asynchronously according
to the deep learning model output. The messages containing
the displacement centroids (obtained from Alg. 1) are used
as a reference for trying to match detection messages to a
given point cloud frame. Further, a buffer stores the maximum
number of messages from each topic (detection from 4 cam-
eras plus displacement centroids). All messages contain the
timestamp of the data acquired by the corresponding sensor
of the pipeline. A detection message is matched to a centroid
message only if the timestamp difference between both is
smaller than a threshold &gy, In case there is more than one
timestamp match between the centroid message and detection
messages from a given camera, the shortest time difference
message is considered.

Once the displacement centroids and object detection are
matched, they proceed to the overlay (Alg. 3), where each
centroid ¢, is transformed from the LiDAR coordinate frame
to the coordinate frame of the camera p’[f, corresponding to the

VOLUME 11, 2023

Input: Centroids from current cloud frame C;, Tracks from previous
frame 7;
Output: Updated tracks 7;41
1: 'H <« ¥ > Store new created tracks to be added at the end
2: 7 <« () > Stores temporarily the existing tracks as they get
updated by associations
3: D <« Retrieve detections within time span €y, from all cam-
eras > Each element of D consist of a tuple (r a0 “]:i, ;) referring
to a detection d coming from camera k
: CXY 2D plane projections of all centroids in C;
:ford € {1,2...|D|} do
Y <« Overlay(C;,rs’i) > Alg.3

e A A

ov‘e)gfly
if Coverlay # NULL then
H, T « OverlayedAssociation(c{fvym ay’ rgﬂ-, ”]:l,i’ T) >
Alg.4
. X XY XY
9: & <C - {Coverlay}
10: end if
11: end for

12: T < OnlyCloudAssociation(7, CX¥) > Alg.5
13: Set assoc, = False Yo € {1,2...|7T]}

14: 7;+1 «~TUH

15: return 74|

detection using the matrices obtained during calibration (Sub-
sec. IV-B). Then, the centroid is projected on the camera plane
and sub sequentially, their corresponding pixel coordinates
are obtained. The centroids that lie inside of the bounding box
from detection are said to be overlayed and then selected. Due
to the assumption of no intersection among boxes, points are
overlayed by only one bounding box each. Then, 2D ground
projection of centroid poyeriqy that has minimum distance to
the sensor is chosen.

F. CENTROID-TRACK ASSOCIATION

Object tracking is the task of taking an initial set of object
detections and re-identifying them as they move around
the scenario [41]. Tracking involves associating detections
at a given time with the instance previously tracked. This
association is often approached as a global minimization
problem [42]. In our context, the focus is continuously
localizing the objects in the field of view by providing 2D
reference points and labels even in the absence of object
detection from camera. Hence,we employ a simplified associ-
ation scheme. In this context, tracking is also used to re assign
labels to reference points p, when they are not overlayed by
any detection bounding box.

Both data overlay and tracking are explained in Alg. 4.
Each track 7, is consisted by a tuple {id,, c,, po, assoc,}. The
variable id, is the unique identification of that object, ¢, refers
to its C identified by the object detection module, p,, is the
two dimensional point that represents the object with respect
to the LiIDAR coordinate frame projected in the ground plane.
The variable assoc, is a support boolean flag that indicates if
the track was associated with a new incoming centroid at a
given association step.

73589

IEEE Access

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

Algorithm 3 Overlay

Algorithm 4 Overlayed Association

Input: Bounding box r§ for a detection d obtained from
camera k, Centroids C

Output: 2D projection of closest overlayed centroid UVYH@,
. XY
1: Ci)(verlay <0

2: L < (> Overlayed centroids projected on ground plane

3. ¥T; <« Retrieve extrinsic calibration matrix between
LiDAR and camera k

4: M < Retrieve intrinsic calibration matrix for camera

5: forge{1,2...]C|} do
pg k7. cg > pf, € R3 is the centroid in the camera
k coordinate frame

7: p‘g’xel « M- p’;, > pglxel € N2 is the centroid projected
in the pixel space of camera k

g if p’g‘,[Z] > 0 and pglxel inside "5 > Check if centroid is
ahead of the camera (Z axis pointing out from lens) and
if corresponding pixel lies inside bounding box then

9: cy? <« 2D ground projection of centroid cg

10: L« LU C?Y

11: end if

12: end for

13: aerrlay < ¥ e L with minimum distance to sensor
g |

14: return CvKerlay

In case there has been a fusion of displacement centroids
(previously obtained from Alg. 1) and detections, the result-
ing overlaid point is projected on the ground plane and
considered. If it is located within a threshold distance poyeriay
from a current track with the same label of the detection,
the fused point is matched to the track and the centroid is
associated with the track point. In case any overlaid closest
point is not associated with any track, a new track is created.
Even though we do not assume any prior motion model for
the objects, we use the assumption that the objects will not
move further than this threshold value between frames.

Although tracks are only created through fusion, they
can be updated by pure centroids in the absence of object
detection matching a given point cloud, which improves the
reliability of the system. As described in Alg. 5, the update
occurs if the distance between the projected centroid and the
track is lower than a threshold ppurecioud. The absence of
detection increases the risk of mismatches, so we assign a
lower value to Ppurecioud- We assume that objects will not be
closer than this value to each other.

V. EXPERIMENTS
The setup implementation' uses four RGB cameras, scanning
Ouster LiDAR (image and point cloud), and two embedded

IThe code used in the platforms is available on

https://github.com/jamendola/sur_fus_loc.git

73590

Input: Centroids from current cloud frame Uerrlay, Bound-
ing Box r?, Detection label uy, Tracks from previous

frame 7
Output: Updated tracks 7
1: H < @ > New tracks to be created

: telosest <— Track with closest p, to onerlay
Y

2

3: if uciosesr = g and || overlay Pelosest || < Poverlay then

4 Pelosest < Cfvirlay > Updates closest track position
with X0 if the labels from track and detection are
equal and distance is shorter than threshold
Set track ¢ .jyses: @S associated

else
tnew = {idnew, Ud, C’fvyerlays assocpeyw = True}
H <~ HU thew

end if

10: return H, 7T

i

Algorithm 5 OnlyCloudAssociation

Input: Tracks 7, Left centroids projected on plane C*Y

Output: Updated tracks 7°
1: foroe{l,2...|7]} do
2: if assoc, = False > Not associated then
3 XY <« plane projected centroid from CX¥ with

closest ’
minimum distance to p,

4 if ||po, — CXYsest” < Ppurecloud then
5: Po < Celosest

6: end if

7 end if

8: end for

devices (Nvida Jetson Xavier AGX) via local area network
(LAN) connection. This is demonstrated in Fig. 6. The
NVIDIA Jetson AGX Xavier modules contain 8 CPU cores,
GPU with 512 NVIDIA CUDA cores and 64 Tensor cores
and RAM memory of 32 GB. They have additionally a pro-
prietary hardware accelerator (NVDLA) for deep learning
convolution operations. The four cameras having 95° field
of view each and the resolution of image 1280 x 720 are
arranged to face in north, east, south and west direction. They
are connected to one embedded device through a dedicated
MIPI-CSI 2 interface. The images are streamed at 30 fps. The
Ouster LiIDAR (OS-1-64) [43] is configured with a horizontal
resolution of 512 points and vertical resolution of 64 rings. Its
precision varies according to the range: 0.3 - 1 m: 4+ 0.7 cm,
1-20m: =4 1cm, 20 -50 m: £ 2 cm. It is connected to inter-
face Jetson through Ethernet and stream data points from the
complete surround view at 20 Hz. The LiDAR is placed on top
of the cameras so its center intersects with the focus lines of
the four cameras. The sensor system is mounted on a mobile
platform [44] so the cameras are disposed equidistantly to
cover the complete surround view.

VOLUME 11, 2023

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

IEEE Access

FIGURE 6. Proposed experimental setup.The mounting remains static and
is placed on a suspended base for the experiments.

Idet_n/detections

gscam_driver_val fenfimage_raw d

gscam_driver_val i faw d Idet_s/detections
i raw .

gscam_driver_v4l1 o Idet_} ‘

cloud_prep ploudiprep
los_nodellidar_pack os_cloud_node/node/points

os_node os_cloud_node

FIGURE 7. Software architecture. Arrows represent messages exchanged
in a publisher-subscriber scheme.

Jetson A /. Jetson B

As shown in Fig. 7, the software architecture is based
on computing nodes using the open source Robot Operat-
ing System (ROS) [45]. The implementation was performed
using Python, C++, frameworks NVIDIA TensorRT and
Point Cloud Library (PCL). Each computing node receives
and sends messages through Transmission control protocol
(TCP). Messages are sorted according to a topic, so pub-
lisher nodes can communicate with subscriber nodes. The
cameras are integrated with ROS through Gstreamer library
(gscam_driver_v4l nodes). Each node instance publishes
images as messages of a ROS topic. Each topic is uniquely
identified according to the camera producing the images
and there is a different instance of the ROS node of type
detectnet. For each of the camera topics, the respective
model receives a raw image, rescales it to 300 x 300 reso-
lution and performs object detection. Point clouds are also
pre-processed on the interface jetson on edge. The LiDAR
driver is wrapped by os_node ROS node and packets con-
taining measurements for small azimuth blocks are sent to

VOLUME 11, 2023

FIGURE 8. Left side and Right side of the area used for the experiments
and reference path markers. The path in “T” shape to be followed by the
target objects is partially shown in the picture in blue dashed lines. The
sensor can be seen in bottom right with a distance of 1.5 m from each
line of the path and remains static as the targe object moves through
the path.

os_cloud_node node. It accumulates and organizes points,
sending messages that represent a point cloud for the com-
plete 360° view. Once a given point cloud frame is sent to
node cloud_preprocess and processed, a much more reduced
number of points is published and sent to fusion_mot node at
fusion jetson. A more detailed specification of the ROS topics
is listed below:

o /c*/image_raw: Header(identification and timestamp)
+ RGB Image Matrix with shape 1280 x 720 of 1 byte
(RGBS encoding)

o /os_node/lidar_packets: Header(identification and
timestamp and data layout) + Buffer of 6464 bytes
containing data from 16 azimuth measurement blocks.

« /os_cloud_node/points: Header(identification and
timestamp and data layout) + 51264 elements array
containing coordinates X,Y,Z, intensity, noise, range and
ring

« /cloud_preprocess/centroids: = Header(identification
and timestamp) + variable buffer containing sequence
Xyz point coordinates (32 bit floats)

o /det_*/detections: Header(identification and times-
tamp) + array of composed data containing bounding
box width,height,center x and center y (64 bit float) and
class id (integer)

The complex functionalities needed for perception are
divided and implemented in small chunks on the dedicated
hardware platform and then integrated together (Fig. 3).
This architecture adds the advantage that the embedded
system with limited computation capabilities can also be
used as the total work is divided among the distributed sys-
tems. Further, having a distributed architecture for sensor
fusion and perception in navigation platforms allows easy
and partial replacement of malfunctioning modules. It also
allows more dynamic and redundant sensor arrangements.
In larger platform such as self-driving cars, for exam-
ple, communication among sensors and computing modules
can present latency and noise. Thus, intermediate process-
ing nodes on the edge could reduce the expanse of raw
data-transmission.

73591

IEEE Access

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

FIGURE 9. Different sides of the larger area used for detecting multiple
objects. The sensor setup stays static in the middle of the open area as
the target objects should freely move around it.

A. INDOORS EXPERIMENTS

To evaluate the proposed methodology (Alg. 1-5) with real
self-conducted experiments, we adopted the scenarios shown
in Fig. 8 and 9. Even though objects can move freely around
the surround view system, markers were placed on the floor
of the first scenario (Fig. 8) to establish a reference path for
further error calculations. The second scenario (Fig. 9) has a
larger space to accommodate more than one object of interest
at a larger distance from the sensors.

B. OUTDOORS PUBLIC DATASET EXPERIMENTS

To evaluate the algorithm in an outdoor environment with
sensors embedded in a moving platform and also perform
comparative analysis, we further performed experiments
through a simulated environment using the KITTI-360 pub-
lic dataset [46], where data was streamed through ROS in
Hardware-in-the-loop style. For the scenario considered, the
point clouds captured by a Velodyne HDL-64E LiDAR,
images from cameras point forwards (1408 x 376 resolution)
and pointing sideways (1400 x 100 resolution) were used. All
imaged were rectified and re-scaled to 300 x 300 resolution
when passed to detection models. To ensure that only moving
objects and new objects entering the LiDAR field of view are
captured, we relied on the localization information provided
by the dataset and adopted the global fixed coordinate frame
as reference when transforming the pixels and point clouds.

VI. RESULTS

A. INDOOR EXPERIMENTS

1) SINGLE OBJECT TRACKING

For the indoor experiments,” the parameters adopted are
listed in Table 1.

The first experiment was conducted by having a person to
walk over the reference path established by markers in the
room as shown in Fig. 8. For brevity, the path was established
to use three of the four cameras from the surround system for
fusion. During the experiment, the person could freely rotate
the body or turn his head as long as its center could keep
on the path. The system was set so only objects classified

2The hyper parameters were tuned for the scenarios and their impact is
discussed in Sec. VII.

73592

TABLE 1. Experiment parameters.

Parameter) Description Value

Ppurecioud Association threshold for cloud | 0.3 m
only

Poverlay | Association threshold for overlay | 0.5 m
with detection

- Association threshold for overlay | 2
with detection

€sync Synchronization threshold 0.1s

lyozel Voxel size 0.1m

dneighvor | Maximum neighbor distance for | 0.05 m
DBSCAN

Ndense Minimum number of neighbors for | 5
cluster assignment

Nejyster | Minimum number of points in a | 10
cluster

O filter | Z axis variance threshold for cluster | 0.01
filtering

Person

X

Tr§‘jectory :

FIGURE 10. Trajectory of the reference point (geen lines) along with point
cloud obtained through Alg. 1-5. The coordinate system is defined by the
LiDAR on the setup, as illustrated by the red, green and blue arrows.

as a person were tracked. The sequence of track points were
then compared with the reference lines. The experiment was
repeated three times, acquiring 100 frames each time, with
the person walking along the lines with an average speed
of 2 km/h. Fig. 10 illustrates the display of the trajectory
of a track point along with the original point cloud of the
scenario.

Fig. 11 shows the trajectory of the track point evolving
as the person of interest is captured by different cameras.
It shows the detection bounding box covering the person
totally (Fig. 11A, blue shaded area), partially (Fig. 11B, blue
shaded area) or even absent across the trajectory (Fig. 11C).
Still, the track point (correspondingly in Fig. 11D, E, F)
could be successfully updated for all the situations. That
demonstrates the ability of the system to compensate for
failures in pipelines from camera and detection by using only
information from LiDAR.

VOLUME 11, 2023

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

IEEE Access

West camera

East camera

| West camera | | North camera | | North camera

FIGURE 11. View of cameras and LiDAR point cloud for person. Camera
images (A,B,C) with the respective point cloud correspondence (D,E,F) for
person as object of interest. Detection occurring in both west (A) and
north (B) cameras overlaying centroids for updating the track. East
camera (C) without detection and only centroid is used for update.

3.0

—=-- Point Trajectory)
— Reference

4 % Overlay

Displacement centroid only

N
w

g
=}
L

Lidar y coordinates (m)
5 &

=
w

0.0 - T T T T T
-4 -3 -2 -1 0 1
Lidar x coordinates (m)

FIGURE 12. Trajectory corresponding to a person walking over the
reference path. The arrows indicate the sequence of the trajectory and
different symbols indicate point updates from overlayed (star) and
non-overlayed centroids (circles) using for updating the track.

The trajectory points obtained are compared to the refer-
ence path and is shown in Fig. 12. The points obtained by
updating the tracks are depicted by different scatter symbols
to discriminate between: a) updates by centroids overlayed
with detections (stars) and b) pure displacement cloud cen-
troids in the absence of detection (circles). Points represented
by circles demonstrate once more (as claimed earlier) that
tracking would not be possible relying on detections coming
from the SSD (or camera) at every frame. It is possible
to see that the trajectory occurs in ‘zig-zags’. That reveals
the pattern of walking, where each step has the points of
alternating legs as displacement points to be associated with
the track. Head turns and body rotations also occurred on the
horizontal portion of the path and cause displacement points
to be captured. The mean error in distance between each track
point and the path over navigation of 15.1 m is estimated to

VOLUME 11, 2023

FIGURE 13. Camera images (A,B,C) with the respective point cloud
correspondence (D,E,F) for a chair as object of interest. A: Even though
the object can be seen from east camera, no detection occurs and the
non-overlayed centroid updates the track. B: Detection occurs in north
camera and centroid is overlayed. C: Detection fails again for north
camera and centroid is not overlayed.

be 5.4 cm (mean error percentage = 0.3 %) and precision
of £2.2 cm.

A second random object whose label is within the COCO
dataset (chair) was chosen for an experiment. A rotating
chair was used to make a contrast as compared to human
in first experiment. As illustrated in Fig. 13, SSD fails to
detect the chair correctly. Still, the system is able to keep
tracking it. The trajectory and reference path are plotted in
Fig. 14. Differently from the person, the trajectory does not
present an evident ‘zig-zag’ pattern (as all the points on the
chair are fixed, unlike the human where different parts move
in different direction). Similar to the previous case, the exper-
iment was repeated three times, also acquiring 100 frames
each time, with the chair being moved at an average speed of
2.5 km/h. The mean error over navigation of 15 mis estimated
to be 4.9 cm (mean error percentage = 0.3 %) and precision
of £3 cm respectively. The algorithm shows similar results
independent upon the type of object.

2) SIMULTANEOUS MULTIPLE OBJECT TRACKING

After finding the accuracy (given by mean error) of the
proposed methodology, finally, a qualitative experiment
was further performed to demonstrate the functionality of
surround view multiple object tracking. In the experiment
(in the environment shown in Fig. 9) four individuals walk
randomly around the field of view of each camera. Fig. 15
shows that the system can track all targets even at further dis-
tances. This last experiment demonstrated that the system not
only tracks an object of interest across the different camera
regions, but also can track more than one object simultane-
ously. It is important to notice that the objects started being

73593

IEEE Access

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

3.0

==~ Point Trajectory

—— Reference

2.54 * Overlay

Displacement centroid only

154

101

Lidar y coordinates (m)

o°
w

—3‘.0 —2‘.5 —Z'AO —1’,5 —1‘,0 —0‘.5 0.‘0
Lidar x coordinates (m)

FIGURE 14. Trajectory corresponding to a chair being towed over the
reference path. The arrows indicate the sequence of the trajectory and
different symbols indicate point updates from overlayed and
non-overlayed centroids used for updating the track.

TABLE 2. Mean values obtained for indoor experiments.

Point Cloud acquisition (s) 0.051 +0.001
Displacement centroids calcula- | 0.132 4 0.004
tion (s)

Centroids transmission (s) 0.003 +0.002
Image Streaming (s) 0.030 £0.001
Detection processing and trans- | 0.020 4 0.002
mission (s)

Fusion and track update (s) 0.002 +0.001
Error - Chair (m) 0.049 £ 0.03
Largest Error Value - Chair (m) 0.09

Error - Person (m) 0.054 £0.02
Largest Error Value - Person (m) 0.09

tracked in the four different sides because of the presence of
four cameras covering all the surroundings.

The larger area available also allowed the individuals to be
at a further distance, revealing that the system is able to track
objects as long as the displacement point clouds representing
them do not become too sparse and are filtered off.

The number of centroids sent from the interface platform
to the fusion platform did not exceed 15 points once the first
frame was sent, which enables very low transmission latency
(compared to sending the entire scene from four camera
and/or LiDAR). Table 2 summarizes the average latency and
errors for each relevant stage in the system pipeline. For cal-
culating the latency values, 600 frames from both cases were
used. If we consider the LIDAR and cloud processing pipeline
as the bottleneck for fusion, the total time taken from data
acquisition until fusion and track update takes approximately
190 ms and the computation time takes 0.14 ms. The trans-
mission of data between the two platforms showed relatively
lower latency (0.01 s), with values that are significantly lower
when compared to computation time.

Further, preliminary trials revealed that running all nodes
in one single Jetson computing platform, without the point
cloud preprocessing and performing overlay of all points in

73594

FIGURE 15. Four people walking around the system each one around a
different direction. North camera is pointed in the direction of green axis.
East camera is pointed in the direction of red axis. A: Camera images
showing each person in each field of view. B,C: The respective trajectories
of each individuals evolving over time.

the caused system crashes due to memory and processing lim-
itations. That reassures the need of a networked architecture
with processing at the edge for embedded fusion of multiple
Sensors.

B. OUTDOORS PUBLIC DATASET EXPERIMENTS

The proposed method was implemented on publicly available
dataset KITTI 360. Fig. 16 illustrates the distance estimation
of a vehicle passing by the platform in a road. Given that the
scenario adopted has cars passing by the platform on its left
side, we considered two situations: using images only from
left-frontal camera of the car set-up (Base model), and also

VOLUME 11, 2023

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

IEEE Access

TABLE 3. Use cases for ablation studies.

Case Base A B C D E
(Proposed)
p 5.0 5.0 1.0 10.0 5.0 5.0
Lyozel 1.0 0.5 1.0 1.0 1.0 1.0
Detection| Mobile{ Mobile{ Mobile{ Mobile{ Incep- | Mobile-
model net net net net tion net
Cameras | Frontal{ Frontal{ Frontal{ Frontal{ Frontal{ All
left left left left left

FIGURE 16. lllustration of experiments performed on KITTI-360
dataset [46]. The green line below represents the track of the car detected
in the top image, displayed in the ego-vehicle coordinate frame.

using all cameras (Proposed model) for make the detailed
comparison. The base, ablation and proposed cases are shown
in Table 3.

For the base model (first column in Table 3) hyperparame-
ters adopted for KITTI-360 dataset [46] were the same from
Table 1, with the exception of voxel size and association
thresholds which were set t0 Lyoxer = 1.0 m, Ppurecionda =
Poverlay = p = 5.0 m to adapt the algorithm to a highly
dynamic scenario. Other use cases (case A-D in Table 3)
were defined for ablation purposes, including the change
of detection backbone from Mobilenet to Inception-v2 [47].
Finally, the proposed model with hyper parameters and all
four cameras and LiDAR is described in case E in Table 3.

Table 4 shows the results for the experiments with
KITTI-360 dataset with total distance traversed by ego-
vehicle of 35 m. In every case, the experiment was performed
four times. It is evident that using the simulated environment
of a road demonstrated that the algorithm is also able to
perform detections when the platform is mounted in a moving
vehicle. Even though the proposed algorithm together with
surround view setup (case E) shows an error slight higher
than the base case, the difference is not much representative
in practical terms and also Case E was able to detect an
additional vehicle which the rest of the cases (in Table 3)
failed to detect. The implication is that the proposed surround

VOLUME 11, 2023

310 Track 1 Ground Truth «
Track 2 Ground Truth
— —— Base
E Case A Direction Ego /
300 1 i
;: Case D vehicle Target
) —— CaseE / captured
*‘a‘ with only
c | front
§ 290 / camera
]
8 Direction
= 280 / target vehicles
Qo
=}
© 270
Target
captured using
m

28’60 28‘65 = 2”8“7‘0“= 28‘75 28‘80 28‘85 28‘90 28‘95
Global coordinate X(m)

FIGURE 17. Localization of two vehicles captured using different cases
and their track ground truths on KITTI-360 dataset [46] (Cases B,

C ommitted for brevity). An additional car was only detected in Case E
due to the extra cameras that captured it in lateral view.

view set up together with the proposed algorithm is suitable
for safer navigation.

Adding up detections from a surround view using all
cameras (Case E) has errors comparable to other cases with
one camera (Base model, and cases A-D), but brings the
advantage of the increased field of view for safer navigation.
Notably, the front camera somehow failed to detect the second
vehicle, possibly due to change in lightning or shadowing.
In turn, the lateral camera captured it, as seen in Fig. 17.

The larger error values and their variance can be explained
by the shape of the target objects. For simplification, the
ground truth values considered were the center of bounding
boxes. Due to the nature of the algorithm, which captures
the closest displacement centroid, there will always be an
error that is proportional to the distance between the center
of the car and the extremities captured by the algorithm.
Considering the safety aspect, the algorithm always cap-
tures the closer extremities and underestimate the distance
to the objects, which is favourable from the safety point
of view. The slight higher latency is caused by the larger
amount of points captured by the displacement detector,
once we have a moving platform in a highly dynamic
scenario.

The threshold tuning was proven necessary, specially
with the higher speed of target objects and the ego-vehicle.
A smaller value of p = 1 (Case B) did not suffice to
capture the moving centroids when detection failed and the
tracks could not be properly updating, generating a higher
error in localization. Using a smaller voxel size (lyoxe; = 0.5,
Case A) did not have a significant impact on the error,
but caused smaller variance once smaller displacements
began to be captured, smoothing out the track. On the other
hand, it demanded a slightly computational effort and larger
transmission latency due to the more generated centroids.
Switching the detection model by another one with Incep-
tion v2 backbone (Case D) did not cause any significant
changes in error or latency. Any differences in detection effi-
ciency were compensated by association of centroids without
detection.

73595

IEEE Access

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

TABLE 4. Results for base case, ablation cases that include change in parameters, cameras and backbone and proposed case, obtained in KITTI-360

dataset [46].

Case Base A B C D E @roposeay
Displacement centroids calculation | 0.1624+ | 0.174+ | 0.159+ | 0.16 & | 0.161 + | 0.159 =+
(s) 0.007 | 0.003 0.006 0.006 0.006 0.004
Centroids transmission (s) 0.003+ | 0.0074 | 0.003+ | 0.004+ | 0.003 + | 0.003 +
0.002 0.004 0.002 0.002 0.003 0.003
Detection processing and transmis- | 0.021+ | 0.020£ | 0.021£ | 0.021£ | 0.024 + | 0.022 +
sion (s) 0.001 0.002 0.001 0.001 0.003 0.001
Fusion and track update (s) 0.0024+ | 0.0024 | 0.002=+ | 0.002+ | 0.002 + | 0.010 +
0.001 0.001 0.002 0.002 0.001 0.004
Error (m) 0.303+ | 0.289+ | 6.471+ | 0.385+ | 0.361 + | 0.311 +
0.057 0.031 4.02 0.041 0.086 0.038
Largest Error Value (m) 0.642 0.745 12.74 0.552 0.647 0.703

TABLE 5. Comparison with early fusion-based method for object
localization.

Other | This
[22] paper
(Ours)
Displacement centroids calculation | n.a. 0.1594
(s) 0.004
Points/Centroids transmission (s) 0.2014 0.003+
0.05 | 0.003
Detection processing and transmis- | 0.0214 0.0224
sion (s) 0.001 | 0.001
Fusion and track update (s) 1.8824 0.0104
0.042 | 0.004
Error (m) 1.5754 0.3114
0.939 | 0.038
Largest Error Value (m) 2.613 | 0.703

C. COMPARISON WITH OTHER METHODS

To compare our proposed method, we further implemented
an early fusion algorithm that is widely used in the literature
as reference. Fusing data from LiDAR and camera before
performing any other downstream tasks is a very traditional
method present not only for object localization, but in several
other domains [13], [22], [23]. It overlays each 3D point
from LiDAR complete point cloud in the image pixel space,
so each 3D point is mapped to its corresponding image pixel.
We implemented the reference algorithm by using the same
distributed hardware and detection pipelines, but transmitting
all points from point cloud to the fusion embedded device
instead of extracting and sending only displacement cen-
troids. The mapping in pixel space occurred for the complete
point cloud in this case.

Using KITTI-360 dataset, we measured the fusion time for
both cases (reference and our work) and further measured
the error of object point positions by considering the ground
truth center of 3D bounding boxes offered for the dataset.
The results are shown in Table 5. It is possible to see the
huge disparity in error due to the lack of centroid association

73596

TABLE 6. Comparison with other deep learning fusion works for object
localization.

Authors MV3D | AVOD | Beacons| This
[24] [25] [32] paper

(Ours)

Embedded No No Yes Yes

> 1 comput- | No No No Yes

ing device

Joint multi- | Yes Yes No No

modal

training

Sensors 2 2 2 5

Asynch. No No No Yes

Fusion

Time (ms) 360 80 200 142
(Indoor
4 per-
son)/167
(KITTI-
360
[46])

in the baseline algorithm. It also demanded much higher
transmission time because of the size of the unprocessed
point cloud. The comparison revealed the advantages of our
proposal in relation to the other algorithm.

It is worth pointing out that other state-of-art works are
incompatible with distributed processing because of large
monolic deep learning models and also report their results
on public datasets with metrics combining average inter-
section over union for bounding boxes and classification
accuracy (which is not the case here). Since our proposal
accounts for distributed edge architecture, an independently
pre-trained image detection model and outputs a simplified
point representation, a suitable comparative implementation
of those works becomes unfeasible. However, we provided a
more global comparative table with state-of-art deep learning
based models in Table 6. Even though some of those archi-

VOLUME 11, 2023

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

IEEE Access

tectures provide additional information (3D bounding box
of objects), our proposal is faster than state-of-art solutions.
This is attained by exploiting the computing capabilities
of individual devices in distributed fashion and minimal
transmission latency between them.

VII. CONCLUSION AND DISCUSSION

We presented a method for multiple object localization by
asynchronously fusing data of different modality and dimen-
sions, obtained from four cameras and a scanning LiDAR
distributed over embedded devices.

We addressed the challenge of flexibiliy in the
LiDAR-camera fusion by imposing a clear separation
between sensor interface and fusion. We eliminated the need
of synchronization and accurate calibration among sensors
by using only displacement centroids from point cloud and
association with point tracks. Notably, our system maintains
object tracking even in the presence of camera pipeline failure
or intermittent streaming.

Our methodology bridged the gap between real-time
fusion of the sensors and distributed computing, by allow-
ing transmission of only detection information and compact
representation from the point clouds.

The fusion time results obtained in a highly dynamic
dataset (167 ms) demonstrated that our work is compet-
itive with large monolithic fusion architectures, with the
advantage of distribution over constrained edge devices. The
robustness against object detection intermittency, along with
location accuracy of =~ 6 cm, reveal that the system is
compliant with safety. The solution could be easily inte-
grated with real-time planning, control and navigation for
autonomous systems in open areas. Specifically, our pro-
posal suits applications where collision must be avoided
in all four directions, such as industrial plants, human
populated areas or automated warehouses. The distributed
nature of the system is also well-suited for in-vehicle
networking.

Looking ahead, future work should focus on expanding
the capabilities of our system, such as using other sensor
modalities, experimenting in different weather conditions.
Also, the direction orthogonal to the navigation plane can be
further considered for expanding the applications in domains
with depth navigation.

REFERENCES

[1] T. Kim, S. Lim, G. Shin, G. Sim, and D. Yun, “An open-source low-
cost mobile robot system with an RGB-D camera and efficient real-time
navigation algorithm,” IEEE Access, vol. 10, pp. 127871-127881, 2022.

[2] F. Rovira-Mds, V. Saiz-Rubio, and A. Cuenca-Cuenca, “Augmented per-
ception for agricultural robots navigation,” IEEE Sensors J., vol. 21, no. 10,
pp. 11712-11727, May 2021.

[3] Y. Lee and W. You, “EBAT: Enhanced bidirectional and autoregressive
transformers for removing hairs in hairy dermoscopic images,” IEEE
Access, vol. 11, pp. 14225-14235, 2023.

[4] H. Wang, H. Wu, Q. Hu, J. Chi, X. Yu, and C. Wu, “Underwater image
super-resolution using multi-stage information distillation networks,”
J. Vis. Commun. Image Represent., vol. 77, pp. 1047-3203, May 2021.

[5] X. Zhao, P. Sun, Z. Xu, H. Min, and H. Yu, “Fusion of 3D LiDAR and
camera data for object detection in autonomous vehicle applications,”
IEEE Sensors J., vol. 20, no. 9, pp. 4901-4913, May 2020.

VOLUME 11, 2023

[6]

[7]

[8]

[9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

H. A. Abdelhafez, H. Halawa, K. Pattabiraman, and M. Ripeanu,
“Snowflakes at the edge: A study of variability among NVIDIA Jetson
AGX xavier boards,” in Proc. 4th Int. Workshop Edge Syst., Anal. Netw.,
Apr. 2021, pp. 1-6.

B. Yan, L. Xiao, H. Zhang, D. Xu, L. Ruan, Z. Wang, and Y. Zhang,
“An adaptive template matching-based single object tracking algorithm
with parallel acceleration,” J. Vis. Commun. Image Represent., vol. 64,
Oct. 2019, Art. no. 102603.

D. J. Norris, Beginning Artificial Intelligence With the Raspberry Pi.
Barrington, NH, USA: Apress, 2017.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ““You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779-788.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. 18th Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer,
vol. 9351, 2015, pp. 234-241.

K. He, G. Gkioxari, P. Dollér, and R. Girshick, ‘“Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980-2988.
Z.Qin,J. Wang, and Y. Lu, “MonoGRNet: A geometric reasoning network
for monocular 3D object localization,” in Proc. AAAI Conf. Artif. Intell.,
vol. 33, Jan. 2019, pp. 8851-8858.

M. Jindal, A. Jha, and L. R. Cenkeramaddi, “Bollard segmentation and
position estimation from LiDAR point cloud for autonomous mooring,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5700909.

Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3D point clouds: A survey,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 43, no. 12, pp. 4338-4364, Dec. 2021.

R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “PointNet: Deep
learning on point sets for 3D classification and segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 77-85.
Y. Zhou and O. Tuzel, “VoxelNet: End-to-end learning for point cloud
based 3D object detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 4490-4499.

J. Nie, J. Yan, H. Yin, L. Ren, and Q. Meng, “A multimodality fusion
deep neural network and safety test strategy for intelligent vehicles,” IEEE
Trans. Intell. Vehicles, vol. 6, no. 2, pp. 310-322, Jun. 2021.

L. Yuan, J. Andrews, H. Mu, A. Vakil, R. Ewing, E. Blasch, and J. Li,
“Interpretable passive multi-modal sensor fusion for human identification
and activity recognition,” Sensors, vol. 22, no. 15, p. 5787, Aug. 2022.
M. P. Muresan, I. Giosan, and S. Nedevschi, ““Stabilization and validation
of 3D object position using multimodal sensor fusion and semantic seg-
mentation,” Sensors, vol. 20, no. 4, p. 1110, Feb. 2020.

M. Lu, C. Hsu, and Y. Lu, “Image-based system for measuring objects on
an oblique plane and its applications in 2-D localization,” IEEE Sensors
J., vol. 12, no. 6, pp. 2249-2261, Jun. 2012.

C. Zou, B. He, M. Zhu, L. Zhang, and J. Zhang, ““Scene flow estimation by
depth map upsampling and layer assignment for camera-LiDAR system,”
J. Vis. Commun. Image Represent., vol. 64, Oct. 2019, Art. no. 102616.
A. Jha, D. Subedi, P. Lgvsland, I. Tyapin, L. R. Cenkeramaddi, B. Lozano,
and G. Hovland, “Autonomous mooring towards autonomous maritime
navigation and offshore operations,” in Proc. 15th IEEE Conf. Ind. Elec-
tron. Appl. (ICIEA), Nov. 2020, pp. 1171-1175.

D. Subedi, A. Jha, I. Tyapin, and G. Hovland, “Camera-LiDAR data
fusion for autonomous mooring operation,” in Proc. 15th IEEE Conf. Ind.
Electron. Appl. (ICIEA), Nov. 2020, pp. 1176-1181.

X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D object
detection network for autonomous driving,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 6526-6534.

J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint 3D
proposal generation and object detection from view aggregation,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 1-8.

Z. Zhang, Z. Liang, M. Zhang, X. Zhao, H. Li, M. Yang, W. Tan, and
S. Pu, “RangeLVDet: Boosting 3D object detection in LIDAR with range
image and RGB image,” IEEE Sensors J., vol. 22, no. 2, pp. 1391-1403,
Jan. 2022.

S. Pang, D. Morris, and H. Radha, “CLOCs: Camera-LiDAR object candi-
dates fusion for 3D object detection,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2020, pp. 10386-10393.

Z. Huang, C. Lv, Y. Xing, and J. Wu, “Multi-modal sensor fusion-
based deep neural network for end-to-end autonomous driving with scene
understanding,” [EEE Sensors J., vol. 21, no. 10, pp. 11781-11790,
May 2021.

73597

IEEE Access

J. Amendola et al.: Edge-Distributed Fusion of Camera-LiDAR for Robust Moving Object Localization

[29] D. S. Breland, A. Dayal, A. Jha, P. K. Yalavarthy, O. J. Pandey, and
L. R. Cenkeramaddi, “‘Robust hand gestures recognition using a deep CNN
and thermal images,” IEEE Sensors J., vol. 21, no. 23, pp. 26602-26614,
Dec. 2021.

[30] T. Sun, W. Pan, Y. Wang, and Y. Liu, “Region of interest constrained
negative obstacle detection and tracking with a stereo camera,” IEEE
Sensors J., vol. 22, no. 4, pp. 3616-3625, Feb. 2022.

[311 Y. Fu, D. Tian, X. Duan, J. Zhou, P. Lang, C. Lin, and X. You,
“A camera—radar fusion method based on edge computing,” in Proc. IEEE
Int. Conf. Edge Comput. (EDGE), Oct. 2020, pp. 9-14.

[32] P. Wei, L. Cagle, T. Reza, J. Ball, and J. Gafford, “LiDAR and camera
detection fusion in a real-time industrial multi-sensor collision avoidance
system,” Electronics, vol. 7, no. 6, p. 84, May 2018.

[33] M. Verucchi, L. Bartoli, F. Bagni, F. Gatti, P. Burgio, and M. Bertogna,
“Real-time clustering and LiDAR-camera fusion on embedded platforms
for self-driving cars,” in Proc. 4th IEEE Int. Conf. Robotic Comput. (IRC),
Nov. 2020, pp. 398-405.

[34] G. Bradski. (2010). OpenCV Tutorial. [Online]. Available: http://www.
opencv.org

[35] O. Sorkine, “Least-squares rigid motion using SVD,” Computing, vol. 1,
no. 1, pp. 1-5, 2017.

[36] Z.Zhang, ““A flexible new technique for camera calibration,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 22, no. 11, pp. 1330-1334, Apr. 2000.

[37] W. Liu, “SSD: Single shot MultiBox detector,” in Proc. ECCV, vol. 9905.
Cham, Switzerland: Springer, Dec. 2016, pp. 21-37.

[38] H. Vanholder. (2016). Efficient Inference With Tensorrt. [Online].
Available: https://on-demand.gputechconf.com/gtc-eu/2017/presentation/
23425-han-vanholder-efficient-inference-with-tensorrt.pdf

[39] T.-Y.Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar,
and C. L. Zitnick, “Microsoft COCO: Common objects in context,”
in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2014,
pp. 740-755.

[40] D. Meagher. (1982). Octree Generation, Analysis and Manipulation.
[Online]. Available: https://apps.dtic.mil/sti/citations/ADA117450

[41] T. Yang, C. Cappelle, Y. Ruichek, and M. El Bagdouri, “Online multi-
object tracking combining optical flow and compressive tracking in
Markov decision process,” J. Vis. Commun. Image Represent., vol. 58,
pp. 178-186, Jan. 2019.

[42] X. Weng, J. Wang, D. Held, and K. Kitani, “3D multi-object tracking:
A baseline and new evaluation metrics,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Oct. 2020, pp. 10359-10366.

[43] (2021). High-Resolution OS1 LiDAR Sensor: Robotics, Trucking, Map-
ping | Ouster. [Online]. Available: https://ouster.com/products/scanning-
lidar/os1-sensor/

[44] (2021). TurtleBot. [Online]. Available: https://www.turtlebot.com/

[45] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: An open-source robot operating system,”
in Proc. ICRA Workshop Open Source Softw., vol. 3, 2009, p. 5.

[46] Y. Liao, J. Xie, and A. Geiger, “KITTI-360: A novel dataset and bench-
marks for urban scene understanding in 2D and 3D,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 45, no. 3, pp. 3292-3310, Mar. 2023.

[47] S.Ioffe and C. Szegedy, “‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448-456.

JOSE AMENDOLA received the Diploma degree
in electrical engineering and the master’s degree
in mechatronics engineering from the University
of Sdo Paulo, Brazil, in 2013 and 2020, respec-
tively. He is currently pursuing the Ph.D. degree
with the University of Agder, Norway. In 2013,
he was a Researcher with the Karlsruhe Insti-
tute of Technology, Germany. He was also a
Software Engineer for test automation, immersive
simulators, and machine learning applications. His
research interests include machine learning, sensor fusion, and perception for
autonomous systems.

73598

AVEEN DAYAL received the bachelor’s degree
in computer science and engineering, in 2020.
He is currently pursuing the Ph.D. degree with the
Department of Artificial Intelligence, Indian Insti-
tute of Technology, Hyderabad. He was a Visiting
Research Student with the Department of Infor-
mation and Communication Technology (ICT),
University of Agder, Grimstad, Norway. His main
research interest includes deep learning methods
for autonomous ground and aerial vehicles.

LINGA REDDY CENKERAMADDI (Senior
Member, IEEE) received the master’s degree in
electrical engineering from the Indian Institute of
Technology Delhi (IIT Delhi), New Delhi, India,
in 2004, and the Ph.D. degree in electrical engi-
neering from the Norwegian University of Science
and Technology (NTNU), Trondheim, Norway,
in 2011.

He is currently the Leader of the Autonomous

: . and Cyber-Physical Systems (ACPS) Research
Group, Umver51ty of Agder, Grimstad, Norway, where he is also a Professor.
He is a Principal Investigator and a Co-Principal Investigator of many
research grants from the Norwegian Research Council. He has coauthored
more than 120 research publications that have been published in presti-
gious international journals and standard conferences. His research interests
include the Internet of Things (IoT), cyber-physical systems, autonomous
systems, robotics and automation involving advanced sensor systems, and
computer vision.

Dr. Cenkeramaddi is a member of ACM and a member of the editorial
boards of various international journals and the technical program com-
mittees of several IEEE conferences. Several of his master’s students have
received the Best Master Thesis Award in information and communication
technology (ICT).

AJIT JHA received the B.Sc. degree in electron-
ics and communication engineering, Bangladesh,
in 2007, the European master’s degree in photonic
networks from Aston University, Birmingham,
U.K., and Scuola Superiore Sant Anna, Pisa, Italy,
in 2012, and the Ph.D. degree from the Technical
University of Catalunya, Barcelona, Spain, and
the Karlsruhe Institute of Technology, Karlsruhe,
Germany, in 2016. From 2016 to 2019, he was with

R various industries related to autonomous vehicles
1nvolved in innovative technologies, such as automotive ethernet, ADAS,
surround view systems, camera mirror systems, and blind sport warning,
to name a few. He is currently an Associate Professor of mechatronics with
the Department of Engineering Sciences, University of Agder, Grimstad,
Norway. He has coauthored more than 20 articles and holds two patents. His
research interests include sensors, sensor fusion, image/signal processing,
ML, ADAS functionalities toward autonomous systems, and the IoT. He was
a recipient of the Erasmus Mundus Master’s Course (EMMC) and Erasmus
Mundus Joint Doctorate (EMJD) funded by the European Union (EU).
In addition, he has been an active reviewer and a member of the technical
program committee of numerous international peer-reviewed journals and
conferences.

VOLUME 11, 2023

