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Abstract: Sentiment analysis holds great importance within the domain of natural language process-
ing as it examines both the expressed and underlying emotions conveyed through review content.
Furthermore, researchers have discovered that relying solely on the overall sentiment derived from
the textual content is inadequate. Consequently, sentiment analysis was developed to extract nuanced
expressions from textual information. One of the challenges in this field is effectively extracting
emotional elements using multi-label data that covers various aspects. This article presents a novel
approach called the Ensemble of DenseNet based on Aquila Optimizer (EDAO). EDAO is specifically
designed to enhance the precision and diversity of multi-label learners. Unlike traditional multi-label
methods, EDAO strongly emphasizes improving model diversity and accuracy in multi-label sce-
narios. To evaluate the effectiveness of our approach, we conducted experiments on seven distinct
datasets, including emotions, hotels, movies, proteins, automobiles, medical, news, and birds. Our
initial strategy involves establishing a preprocessing mechanism to obtain precise and refined data.
Subsequently, we used the Vader tool with Bag of Words (BoW) for feature extraction. In the third
stage, we created word associations using the word2vec method. The improved data were also
used to train and test the DenseNet model, which was fine-tuned using the Aquila Optimizer (AO).
On the news, emotion, auto, bird, movie, hotel, protein, and medical datasets, utilizing the aspect-
based multi-labeling technique, we achieved accuracy rates of 95%, 97%, and 96%, respectively, with
DenseNet-AO. Our proposed model demonstrates that EDAO outperforms other standard methods
across various multi-label datasets with different dimensions. The implemented strategy has been
rigorously validated through experimental results, showcasing its effectiveness compared to existing
benchmark approaches.

Keywords: classification; multi-labeling; natural language processing; deep learning; optimization
method; sentiment analysis

1. Introduction

Sentiment analysis, also known as opinion mining, has become an increasingly im-
portant topic of discussion in various fields. It is crucial in evaluating customer feedback,
understanding public opinions, and tracking real-world activities [1]. Analyzing sentiment
in textual data allows us to extract valuable insights and to make informed decisions based
on the emotions expressed. Several existing sentiment analysis techniques exist, including
machine learning-based strategies and lexicon-based approaches [2–4]. Machine Learning
(ML) methods leverage algorithms and models to automatically classify sentiment, while
lexicon-based techniques rely on predefined sentiment dictionaries. These methodologies
have been widely used in sentiment classification tasks, offering different advantages
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and trade-offs depending on the application. In sentiment analysis, classification typi-
cally involves binary methods for sentiment polarity (positive or negative) or multi-class
methods for categorizing emotions into multiple classes. This distinction sets sentiment
analysis apart from other techniques, as it requires specialized approaches to handle the
complexity of emotions expressed in a text. This paper proposes a multi-label labeling
strategy to categorize emotions, encompassing a diverse range of emotional aspects of the
human mind.

The impact of sentiment analysis is evident in various domains. For instance, in
one study [5], a multi-task, multi-label classification approach was proposed to integrate
attitude categorization using subject tweets and sentiment analysis. Although the sentiment
analysis task was framed as a multi-label problem, where multiple emotions could be
associated with a single text, the study utilized data that allowed for a wide range of
emotional reactions. Similarly, another article [6] classified emotions by categorizing news
articles using labels and phrases obtained from a newspaper repository. The potential
application of aspect-based multi-label techniques to classify textual data according to
mood remains an open question.

An exponential growth in potential label combinations presents a major hurdle in
multi-label sentiment analysis. The objective of conventional multi-label learner (MLL)
approaches is to enhance the precision and effectiveness of each multi-label learner through
the utilization of label associations [7]. These methods can be categorized based on their
approach to program development. Some techniques focus on testing various MLLs,
assuming that the MLL can predict all labels and incorporate label correlations into the
learning process [8,9]. Other methods, such as EPS and RAKEL, rely on ensembles of single
learners [10,11]. This proposed work employs an ensemble learning approach, creating
a group of learners capable of predicting a single label. These foundational learners are
combined to create a multi-label classifier capable of predicting among all labels. The
starting point for these learners is often the utilization of label associations with a single
label. Figure 1 provides a visualization of the multi-labeling process.

Figure 1. Virtualization of multi-labeling [12].

Sentiment analysis, a rapidly evolving field, has gained significant attention due to
its relevance in various domains. Traditional approaches in MLL techniques have focused
on developing individual MLLs, which may limit the generalization ability of a single
learner [13]. To overcome this limitation, ensemble learning methods have surfaced, in-
tending to enhance the overall capability of the learning system. This approach mitigates
the likelihood of overfitting and fosters cross-learner creation within a single-label environ-
ment [13]. Ensemble learning involves building a cluster of basic MLLs that can collectively
predict all connected labels, thereby significantly enhancing the generalization potential of
the training approach [13]. This group of learners is referred to as an MLL ensemble [14].
The primary goal of multi-label-based ensemble learning is to develop a network of learners
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that is both accurate and diverse [15]. It is crucial because the base learners’ collective
abstraction capability and diversity are closely related to the ensemble’s generalization
flaw. Unlike conventional MLL ensemble methods that combine multiple base pair trainers
into a single MLL, multi-label-driven ensemble methods utilize MLL as the foundation of
the learning process.

Despite their significance, multi-label supervised methods have received little attention
in this context. Creating a collection of precise and diverse base solutions suitable for multi-
label situations presents several challenges. One of the key research obstacles in this field
involves the conventional ensemble learning methods, which mainly address challenges
related to single-label learning. However, in multi-label scenarios, the most difficult task
lies in assessing the reliability of the multi-label base learners, as it demands thorough
comprehension of the interrelationships between different types of labels. Differentiating
between diverse label learning within a multi-label context poses challenges since the
behavior of the base learners depends on the entire set of labels rather than a single
term [15].

This paper presents a unique methodology that leverages an evolving ensembler [16]
and employs multi-label categorization on textual data, thereby attaining consistent en-
hancements in precision. The proposed method addresses the challenges previously en-
countered in multi-labeling text data. By incorporating a genetic algorithm with a support
vector machine, improvements in various performance measures, including precision, have
been observed. The suggested research demonstrates that merging DenseNet with the
Aquila Optimizer (AO), i.e., the proposed method, yields promising results by significantly
increasing quality performance while maintaining reasonable cost [16]. To further validate
the study, comparisons are made between the newly developed model and five other
classifiers, including stable discriminant analysis, decision tree, Convolutional Neural
Network (CNN), maximum entropy, random forest, and generalized linear model. These
comparisons confirm the superiority of the suggested methodology over all benchmark
techniques [16]. The contributions are listed below in alphabetical order.

• Introducing a novel approach that utilizes aspect-based multi-label classification for ac-
curately classifying emotions in textual data, enabling more granular sentiment analysis.

• Comparative Analysis of Sentiment Classification Techniques: Conducting an exten-
sive analysis to compare the effectiveness of different sentiment classification tech-
niques in categorizing emotions, providing insights into their suitability for multi-label
sentiment analysis tasks.

• Evaluation of State-of-the-Art Algorithms: Assessing the performance of five advanced
multi-label classification algorithms on diverse emotion-based textual datasets, offer-
ing a comprehensive understanding of their strengths and weaknesses in handling
multi-label sentiment analysis.

• Introduction of Ensembler: Presenting the approach called Ensemble of DenseNet
based on AO (EDAO) technique, which enhances the accuracy and variation of multi-
label sentiment analysis models by integrating accuracy and diversity, offering a new
perspective on multi-label instruction approaches.

• Development of Comprehensive Workflow: Establishing a comprehensive workflow
that incorporates preprocessing, feature extraction, and model tuning techniques,
elevating the performance of sentiment analysis models and ensuring the use of
refined and precise data.

• Experimental Validation and Performance Comparison: Extensive experiments are
being conducted to validate the effectiveness of the proposed EDAO approach. These
experiments involve comparing the approach with existing benchmark methods and
showcasing its superior ability to capture sentiment variations and handle complex
multi-label datasets.

These contributions significantly advance the field of multi-label sentiment analysis
by introducing innovative approaches, conducting thorough evaluations, and providing
valuable insights into sentiment classification model performance.
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The following is a breakdown of the manuscript’s structure. Section 2 contains relevant
work on MLL by other scholars in the area. The specifics of our conceptual framework for
aspect-based multi-labeling, which utilizes a DenseNet-based ensembler, are described in
Section 3. Section 4 describes the general framework. Section 4 of the study thoroughly
presents the experimental results collected. Section 5 concludes with a summary of the
findings and recommendations for further research.

2. Related Work

New frameworks are made to gain information from various sources, with the in-
formation source numbers (for instance, pictures, text, and recordings) being utilized in
AI. Examples of such applications include the semantic annotation of images, the catego-
rization of text, and the semantic annotation of photographs and videos. Conventional
single-label-based ML algorithms are unsuccessful in these situations.

2.1. Transformation-Based Schemes

Issue transformation algorithms, as the name suggests, tackle a labeling classification
problem by breaking it down into multiple single-label multi-class classification tasks.
During the training phase, data from label training is transformed into single-label training
data. Various popular ML techniques are then used to train a single-label classifier. In
the testing phase, the method generates numerous single-label predictions for each case
in the testing set, repeating this process for each instance. Among the approaches in this
category, the simplest is the “one vs. the rest” approach, which decomposes a multi-label
class imbalance into several single-label classification problems. In this approach, each
dataset instance is assigned to a single label or the remaining labels within the group based
on available information. The availability of information serves as the foundation for
decision-making. A closely related technique is Binary Relevance (BR), which transforms
a multi-label classification challenge into instances that either belong to one of the labels
or have no affiliation with any label. While this approach effectively reduces the number
of possible solutions, it assumes label independence, disregarding potential connections
between labels. The BR learning model implicitly assumes label independence, overlooking
the fact that labels may depend on more than just a single label in the training examples.
Classifier Chains (CC) [17], on the other hand, is a novel method that classifies whether
an instance belongs to a single label within a chain-like structure. It is an extension of the
BR approach but can more accurately capture the interdependencies between each pair
of labels.

Deep learning methods, often utilized in video and audio processing, have been
demonstrated to learn language processing and picture processing from text repositories
and text vectors in neural networks (NNs) [18–22]. CNN has played a vital role as a partic-
ular type of NN and is currently at the center of several profound learning applications.
CNN has been used to analyze feelings in tweets and film reviews and to categorize news
data [23,24]. The author in [25] offers a multi-label strategy based on layered aggregation,
incorporating various approaches. The initial step, as demonstrated in [26], involves binary
classification concerning the labels to illustrate the concept. Firstly, regardless of whether
the input example possesses a specific label, all output data from the binary classification
is initially stored in the original input space. Subsequently, these outputs are paired with
their corresponding labels. A meta-classifier determines which marks are displayed at
the second level in the stacked output. The meta-classifier numbers correspond to the
number of labels, and the meta-classifier at the top of the second level chooses a partic-
ular label. Ultimately, the results of the second phase of the binary classification are the
ultimate results of the sample. It is important to note that the main difference between
the binary meaning models [27,28] is that the latter utilizes predicted labels for training,
while the former employs ground truth labels. The author of [29,30] describes a unique
technique for stacking features for a meta-classifier that uses base labels for most of the
learning algorithm and may include findings from any step into the training and testing
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outcomes (e.g., use or rule). Calibrated label ranking is a viable approach for transforming
an unplanned multi-label classification problem into a label rating solution, enabling the
distinction between relevant and irrelevant labels [11].

The label space is changed by utilizing a new domain adaptation approach in place of
the data. This process is referred to as the Labeled Power (LP) group method, where every
example is categorized as a power set within the label space transformation (subset) [31]. It
is possible to categorize instances in the dataset using power sets, which combine many
labels. New labels should be provided to integrated power sets to classify examples in
the dataset. Because they contain all possible label subsets, LP learning has the advantage
of considering label correlations; however, because the label subsets can be quite large,
this technique is computationally expensive. To avoid sampling the labels that do not
happen regularly, the label set’s minimal frequency of recurrence is specified by the prune
transformation (PT). In [32], the author created a PT-based multi-label approach for fea-
ture selection, which was later adopted by the community to increase the classification
performance (PT + MI).

Additionally, the X2 statistic, combined with PT (PT+CHI), is utilized to identify the
essential characteristics [33,34]. As a result of a transformation issue, such as a deficiency
of class labels and the loss of several other classes, the difficulty of transformation may,
however, raise further concerns in the future. To handle multi-label problems, the algorithm
adaption technique calls for a change in the current classification algorithm. Table 1 outlines
effective methods for transforming the situation.

Table 1. Summary of transformation techniques.

Name Description of Algorithms

IPF Interior Function of Penalty

FIMF Foreword Sequence + Label Combination Limited Mutual Information
Interaction Sequence

MAMFS Sequential Forward Selection + High-Order Label Combination +
Mutual Information

MDMR One by One + Mutual Information Selecting Forward Sequences

MFNMI n Forward Sequence Selection + Mutual Information Determined Locally

MIFS Optimization Alternative

PSO-MMI Particle Swarm Optimization

mRMR One by One + Mutual Information + Next Sequence

PMU Forward Sequence + Label Combination Second Order + Mutual Information

2.2. Adaption Algorithm

The second category of ML approaches involves procedure adaptation methods. These
ML adaptation methods go beyond traditional feature selection techniques and encompass
both classification and optimization approaches. In these methods, features are evaluated
using multivariable scores or other measures, enabling ML to assess the significance and rel-
evance of each feature in various ways [34,35]. This selection of ML features aims to identify
the optimal subset of features, considering their importance and consistency. One specific
approach is the evaluation of Relief characteristics, which is based on detecting variations
in feature values among the most similar pairs of instances. For instance, when a variation
in functionality is observed between similar pairs, the number of relevant characteristics
decreases (a ‘hit’). Conversely, in cases where dissimilar class values are encountered within
a comparative instance pair, the feature scoring increases (a ‘miss’) if feature differences are
detected. Relief-based methods encompass various adaptations for multi-label classifica-
tion. One such adaptation is the submission of Relief for multi-label classification based on
previously adjusted probability estimates [36]. Another modification involves considering
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the closest instances with the same labels but different values [37]. In [38], a method was
introduced that incorporates a Hamming distance-dependent differential function.

Algorithm adaptation approaches, as opposed to problem transformation approaches,
which act as wrappers around standard ML methods, modify existing ML techniques to
handle multi-label classification problems. BR-K-Nearest Neighbors (BRkNN) [39] is a
hybrid technique incorporating approaches for producing BRkNN from both ML and kNN.
The author of [40] used MLkNN to assess the appropriate set of labels for this model’s
inclusion in the model evaluation based on the maximization of a testable prediction.
Neural models were employed to identify which label collection corresponded to a specific
study instance. The NN model is another ML model. Ref. [41] suggested adjusting a fluid,
adaptive resonance map for the NN to make the technology presented suitable for the
classification of the machine.

Mutual information is a frequently used measure in multi-label learning. Two tech-
niques commonly employed to calculate this mutual information are Label Combination
(LC) and One by One (OBO). In the case of OBO, it sequentially evaluates each label,
calculating the sum of individual scores between each feature and each label. OBO has
been combined with sequential forward selection, as seen in [12]. On the other hand, Con-
ditional Mutual Information (CM) considers all labels simultaneously, offering a ranking
that considers experiences with all labels or a limited number of them. CM was integrated
with sequential forward selection in a related context in [42].

Optimization approaches frame the task of ML feature selection as a constrained
optimization problem, which can be addressed using various methods. These methods
often aim to balance the performance and utility of the selected subset of features. This
approach is advantageous because it eliminates the need to specify the number of features
required in the selection process. However, the user may need to explicitly define the
subset’s size in a subsequent filtering operation. It’s worth noting that these algorithms
are often associated with high computational costs. In traditional classification, Quadratic
Programming Feature Selection (QPFS) [43] is widely regarded as the standard method.
Similarly, in the context of multi-label classification, Ref. [44] adopted a similar approach,
considering each label independently. Additionally, Ref. [45] employed regularization
techniques to achieve a sublinear convergence rate.

2.3. Ensemble Methods

Ensemble methods, a prevalent strategy in multi-label grading, combine multiple
ML models to improve overall performance. These methods build upon fundamental
techniques like issue conversion and algorithm adaptation, essential for developing hybrid
approaches in ML categorization, particularly in multi-label scenarios. However, the label-
exact process within the training set presents challenges. Firstly, it lacks anticipation of
specific label sets, demanding flexibility. Secondly, as label numbers grow, computational
complexity escalates exponentially, a significant concern for conventional methods. To
address the first issue, an innovative approach employs an ensemble of classifiers with
an M-label power pack. This approach treats each label in the subset as an individual
class, enhancing adaptability and classification accuracy. To tackle the second challenge, an
ensemble of classifiers processes average binary options, providing final predictions for
labels exceeding a predefined threshold [46]. The random allocation of classifiers introduces
variability for improved results. Another method, the Ensemble of Classifier Chains
(ECC), described in [47], uses random trainers. When replacement data are unavailable, a
bagging method gathers samples from the existing dataset [48–50], potentially enhancing
predictive performance without replacement data. Table 2 discusses the comparison of
literature methods.
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Table 2. Comparison of multi-label text classification approaches.

Approach Advantages Disadvantages

BR Simple and fast
Does not model label correlations, affected by

class imbalance, requires complete
labeled data

Pairwise (PW) Conceptually straightforward
Time complexity concerns, ineffective for

overlapping labels, needs complete
labeled data

Power Set Label Accounts for label correlations Computational complexity issues, prone
to overfitting

Pruned Sets Method Handles irregular labeling, operates quickly,
considers label correlations

Relies on predictive confidence function,
challenges with unlabeled data

Ensembles of Pruned Sets (EPS) Efficient predictive performance,
parallel processing Does not utilize unlabeled data

C4.5 Allows attribute selection,
enhances learnability

Does not consider class correlations, cannot
use unlabeled data

AdaBoost-MR AdaBoost-MH and minimize hamming loss
errors, improve accuracy

Poor performance, does not use unlabeled
data

ML-kNN Enhances performance works well with text
and image data Does not exploit unlabeled data

BP-MLL Provides optimal generalization capabilities High computational complexity during
training, does not use unlabeled data

CNN-HF Considers correlations between data
and classes Reduces accuracy with unlabeled data

3. Proposed Methodology

In the proposed work, the following stages are conducted: data collection, prepro-
cessing, aspect/feature extraction, representation of word2vec, and implementation of the
swarm ensembler, as depicted in Figure 2.

Data gathering begins with site scraping and online repository access, which yielded
the dataset utilized in this paper. Another crucial step is the analysis of the data. It
is imperative to refine the acquired data thoroughly. Secondly, the raw, unclean data
undergo a preprocessing stage, during which it is refined and formatted in preparation for
subsequent accurate processing. Thirdly, we extract and compare the features (aspects) of
the enhanced data. We were working with aspect-based labels and multidimensional data,
which can be challenging and prone to various interpretations. Fourthly, we employed the
word2vec tool to generate data vectors, serving as a tool for data representation. Before
the multi-labeling application, the data undergo training utilizing the suggested method
known as EDAO. Subsequently, an analysis is conducted. The following sections of this
article provide a detailed elucidation.



Algorithms 2023, 16, 548 8 of 30

Figure 2. Proposed System Model for multi-labeling.

3.1. Dataset Collection

The evaluations are gathered using a web data extraction approach, and specifically
collected data are taken through the Kaggle website. To achieve nominal scaling, we
propose utilizing a novel data format and evaluating correlations between labels. To assess
EDAO’s effectiveness, we carefully selected eight substantial datasets for text labeling from
the Kaggle collection [51–53]. To determine the diversity of the proposed SEn, benchmark
datasets from various application domains are being utilized to evaluate the proposed
EDAO. According to these datasets, texts are categorized into several categories, including
emotions, movies, medical, and hotels.

Table 3 provides an overview of the characteristics of multi-label datasets, each con-
taining 1000 instances. These datasets are designed to represent various protein types and
include six labels, each corresponding to different protein classes.

Table 3. Characteristics of datasets.

Domain Number of Labels Number of Features Domain Type

Hotel 7 19,000 Text
Medical 7 9000 Biology
Movies 7 12,000 Textual
Proteins 7 10,000 Textual

Automobiles 7 14,000 Textual
Emotions 7 19,000 Textual

Birds 7 8000 Textual
News 7 14,000 Media

To clarify the relevance of the dataset section, it is important to note that these datasets
were carefully chosen due to their direct applicability to sentiment analysis and their
representation of diverse subject areas. Including datasets spanning different domains
is instrumental in evaluating the generalizability and robustness of the proposed EDAO
algorithm. For instance, the hotel dataset focuses on textual data from the hospitality
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industry, allowing the algorithm to comprehend sentiments expressed in hotel reviews.
Conversely, the medical dataset deals with biological texts, facilitating sentiment analysis
within medical literature and healthcare-related content. The movie dataset comprises
textual data from the film industry, enabling the algorithm to gauge sentiments expressed
in movie reviews and discussions. On the other hand, while also textual, the protein
dataset delves into protein classification, presenting unique sentiment analysis challenges.
Similarly, the automobile dataset provides a collection of text related to automobiles,
facilitating sentiment analysis in the context of car reviews or vehicle-related discussions.
As previously mentioned, the emotion dataset serves as a benchmark dataset, covering a
wide spectrum of emotions and allowing the algorithm to detect and analyze sentiments
across various emotional states. Incorporating datasets like the bird and news ones further
broadens the evaluation scope, encompassing additional domains where sentiment analysis
is valuable. These datasets empower the algorithm to comprehend sentiments expressed
in texts related to ornithology or news articles. By encompassing datasets from diverse
application domains, the evaluation of the proposed EDAO algorithm becomes more
comprehensive and meaningful. This approach ensures that the algorithm’s performance
is scrutinized across a wide range of textual data, leading to a more reliable and robust
assessment of its effectiveness in sentiment analysis.

3.2. Preprocessing of Data

Data preprocessing is a method for converting data collected into a convenient format.
The raw data are converted into structural data at this step. There may be blank lines and
blank columns for data obtained from scrapping. The data are then examined using the
Panda library, which is only utilized to save pertinent data.

Comprehensive preprocessing is essential for multi-labeling as it directly impacts
the success rate of a project. The presence of missing attributes or anomalies, outliers,
null values, or incorrect information in the data renders it impure. If any of the variables
mentioned above occur, the trustworthiness of the findings would be undermined. In
this work, we explore the complex problem of recognizing and classifying different fea-
tures or dimensions in textual data. This particular type of multi-labeling goes beyond
a general categorization strategy and attempts to give several labels to various textual
elements. We use a number of methods to do this, concentrating especially on tokenization
and lemmatization.

Tokenization: To implement aspect-based multi-labeling, detailed comprehension
of the text is necessary, broken down into smaller components called tokens. Tokens
encompass not only single words but also crucial phrases or components that aid in
pinpointing particular details inside the text. Tokenization is the first stage of deconstructing
the text, making it easier to analyze each component in more detail.

Lemmatizing: It is essential for standardizing word representation since aspect-based
multi-labeling is subtle. We establish a consistent framework for comprehending various
kinds of expression connected to each feature by breaking words down into their basic or
lemma forms. This guarantees that differences in word forms do not impede the proper
labeling of particular characteristics.

3.3. Feature Extraction

Words are converted into functional vectors at the network’s first level to provide
semanticized and structural word data. Vocabulary Word consists of Vwords. The lexicon
of a character in Vcharr is reflected. Every sentence containing n words supplies the
vectorization of wn (each word) (w1, w2, w3, ... wn).

Vn = rword, rwchar (1)

The variable rwchar is for the character level, whereas the variable rword is for the
implantation of the word level. The acquisition of semantic and syntactic information
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typically involves words, while character-level insertion aims to capture morphological
and structural details.

3.4. Word2Vec Representation

Word2vec, a potent NLP technique, utilizes vector functions to decode the complexities
of language. With a rich text corpus, it employs NNs to gain profound linguistic insights. It
autonomously extracts location characteristics even from brief text snippets. This versatile
tool excels with short text or single words. Leveraging extensive text data and word2vec’s
capabilities enables efficient word generation and seamless navigation of vast datasets.
Deep learning primarily focuses on words and their meanings, making word2vec a valuable
asset for tackling word meaning-related challenges. Word documents are transformed
into vectors for training. Within word2vec’s intricate framework lie three million words
intricately connected. Exploring relationships between terms becomes effortless in this
expansive linguistic landscape.

3.5. Swarm-Based Ensembler

The swarm-based ensembler that is currently available in the literature is discussed in
this section.

3.5.1. DenseNet Classification

Through this research, we aim to develop a classification system for categorizing
aspects based on multi-labeling from a dataset. A robust CNN classifier is meticulously
constructed to classify the labels within a dataset and to extract meaningful features from the
data. This endeavor necessitates the utilization of two formidable deep-learning libraries:
Torchvision and PyTorch. Torchvision, a pre-trained data learning model, empowers the
process by endowing maximum control against overfitting while simultaneously enhancing
the optimization of outcomes right from the outset. A five-layer dense block is defined as
a consequence of the computation carried out by the network using the DenseNet block
architecture illustrated in Figure 3 and a growth rate of L = 5. It is vital to recognize that
the number 121 in DenseNet-121 denotes that the NN has 121 layers. A typical DenseNet-
121 composition consists of several different layers that are combined. A total of five
convolution and pooling layers are used, as well as three transition layers (6, 12, 24, and
48), two DenseBlocks (11 and 33) convolutions, and one classification layer (16). DenseNet
supports feature reuse, reduces the number of parameters, and enhances the model’s
performance for multi-label classification and classification accuracy.

Figure 3. DenseNet model.

3.5.2. DenseNet Mechanism

The distinguishing essence of DenseNet lies in its foundational concept of feed-forward
networks, bestowing upon it a prominent edge over other network architectures. DenseNet
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offers a plethora of enthralling advantages. First and foremost, DenseNet helps to mitigate
the vanishing-gradient issue. Furthermore, DenseNet exhibits its prowess by intensifying
the propagation of features, fostering their regeneration, and effectively reducing the
parameter count. It is achieved through the unique mechanism of a dense layer, which
elegantly consolidates the outputs from preceding layers by concatenating them along the
depth dimension. Figure 4 depicts the function of a DenseNet process, which combines
transition layers and dense blocks to categorize an input review depending on its content.
When a text is supplied as input to the DenseNet, the text is processed through many
dense blocks. Each layer’s feature maps remain the same from layer to layer except for
the number of filters, which change from layer to layer within a single dense block. Upon
traversing a dense block, data moving within DenseNet progress to the next stage, the
transition layer.

Within the architectural framework of DenseNet, the transition layer assumes the
crucial responsibility of executing two fundamental operations: convolution and pooling.
These operations are diligently performed in the downsampling procedures strategically
positioned outside the dense blocks. To ensure the harmonization of feature map lengths
within the dense block before concatenation, a convolution layer can be incorporated
before each convolution. In the realm of the DenseNet architecture, the transition layer
encompasses diverse components, including batch normalization (BN), as well as other
essential elements like average pooling layers and convolution layers, all working together
to optimize computational efficiency and to minimize the number of input feature maps.

Figure 4. Flow of DenseNet.

Figure 4 depicts the DenseNet flow chart. The DenseNet design’s dense block com-
prises a layer of BN, ReLU activation, and convolution, all accompanied by convolution.
After the last dense block, an average global pooling layer is performed, and the results are
sent to a Softmax classifier.

3.5.3. Multi-Objective Optimization Solution

After evaluating the initial classifier for consistency and complexity, the next step
involves optimization, a multi-objective problem-solving process similar to standard op-
timization in conventional machine learning. This optimization process aims to convert
optimal labeling into unique objective efficiency using the weight-sum method. How-
ever, it is important to note that this approach is susceptible to weight shifting due to
the trade-off between the ensemble’s generalization ability and the two objectives. To
address this challenge, we have implemented the AO [54], a swarm-based multi-objective
optimization method, which systematically explores optimal trade-offs within a swarm
population, effectively managing multi-objective reduction complexities without compro-
mising generalization. Our paper introduces the AO as a novel technique inspired by the
natural hunting behavior of Aquilas. The AO algorithm employs four strategies: soaring
high for exploration, gliding and attacking to explore diverging search spaces, gradually
descending to exploit converging areas, and diving by foot to capture insights. These
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diverse approaches synergize to unlock the algorithm’s optimization potential, as shown in
Figure 5.

Figure 5. AO’s working flow.

EDAO excels in improving both accuracy and variation in sentiment analysis, espe-
cially in multi-label datasets where multiple sentiments need predicting.

It achieves this by generating diverse base learners, each skilled in capturing different
sentiments, enhancing its ability to understand nuanced variations in sentiment across
texts. The results consistently demonstrate EDAO’s superiority over benchmark schemes
and individual learning methods, with higher precision, recall, F1-score, and accuracy
across various datasets. EDAO’s success is attributed to its utilization of DenseNet-AO,
a specialized variant designed to target diversity-related objectives, setting it apart from
methods that may not explicitly consider diversity. Furthermore, EDAO offers a sensitivity
analysis, quantifying the uncertainty and variability in its decision-making process, high-
lighting its reliability and consistency. The AO’s is used to find the optimal parameters for
the DenseNet algorithm, as shown in Algorithm 1.

Table 4 succinctly outlines EDAO’s unique features that distinguish it from other
multi-label learning techniques and the benefits they bring. EDAO stands out for its
integration of accuracy and diversity in the optimization process, enhancing both precision
and variation in sentiment analysis. Notably, it employs DenseNet-AO, a specialized
variant, to target diversity-related objectives, setting it apart. The table underscores EDAO’s
superior performance compared to benchmarks and highlights its use of sensitivity analysis
for assessing reliability. The pseudocode of the proposed model is provided in Algorithm 2.
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Algorithm 1 Aquila Optimizer for DenseNet parameters.
1: Input: Population
2: Output: BestParametersFound
3: Initialize Population
4: EvaluateFitness(Population)
5: generation← 0
6: while not TerminationCriteriaMet do
7: selectedParents← SelectParents(Population)
8: offspring← CrossoverAndMutate(selectedParents)
9: EvaluateFitness(offspring)

10: nextGeneration← SurvivalSelection(Population, offspring)
11: UpdateParameters(nextGeneration)
12: generation← generation + 1
13: end while
14: return BestParametersFound
1: function EVALUATEFITNESS(Individual)
2: Calculate objectiveFunctionValue using TrainAndEvaluateDenseNet(Individual)
3: Calculate fitness← 1 / (1 + objectiveFunctionValue)
4: Update Individual.fitness and Individual.objectiveValue
5: end function
1: function TRAINANDEVALUATEDENSENET(Parameters)
2: . Train DenseNet and evaluate on validation set
3: . Return objective function value (e.g., validation loss)
4: end function
1: function SELECTPARENTS(Population)
2: . Use a selection mechanism to choose individuals for reproduction
3: end function
1: function CROSSOVERANDMUTATE(Parents)
2: . Apply crossover and mutation to generate offspring from selected parents
3: . Return new population of offspring
4: end function
1: function SURVIVALSELECTION(Population, Offspring)
2: . Combine current population and offspring
3: . Select individuals to survive based on fitness
4: . Return next generation of individuals
5: end function
1: function UPDATEPARAMETERS(NextGeneration)
2: . Update parameters of individuals in the population
3: end function

Algorithm 2 Proposed model algorithm (pseudocode).
Require: Data (Input data for sentiment analysis)
Ensure: SentimentResults (Output Classification results)
1: procedure COLLECTDATA . Implementation details for collecting data
2: end procedure
3: procedure PREPROCESSDATA(Data)
4: PERFORMPOSTAGGING(Data)
5: LEMMATIZEDATA(Data)
6: PERFORMPOSTAGGING(Data)
7: end procedure
8: procedure EXTRACTFEATURES(Data) . Implementation details for feature extraction
9: end procedure

10: procedure GENERATEWORDVECTORS(Features) . Implementation details for word vector generation
11: end procedure
12: procedure TRAINMODEL(WordVectors)
13: INITIALIZEMODEL
14: FINETUNEMODEL(WordVectors)
15: OPTIMIZEMODEL(AquilaOptimizer)
16: end procedure
17: procedure EVALUATEMODEL
18: CALCULATEACCURACY
19: CALCULATERECALL
20: CALCULATEFSCORE
21: PERFORMSENSITIVITYANALYSIS
22: CALCULATEPRECISION
23: MEASURECOMPUTATIONALCOMPLEXITY
24: end procedure
25: SentimentResults← ANALYZEDATA(Data)
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Table 4. Key aspects and benefits of EDAO in multi-label classification and sentiment analysis.

Aspect Description Benefits Notable
Features

Dataset
Applica-
tions

Main Con-
tribution

Direct
Relevance

Optimization
Approach

EDAO employs an
ensemble
methodology based
on an optimization
algorithm to optimize
two objective
functions
dynamically.

- Generates
accurate and
diverse base
learners

Dynamic
optimiza-
tion of
objective
functions

Multi-label
classifica-
tion
tasks

Enhanced
generaliza-
tion
efficiency
of DNN
models

Multi-
objective
optimization

Integration of
Accuracy and
Diversity

EDAO integrates
accuracy and
diversity within the
optimization process,
ensuring the
ensemble consists of
precise and diverse
learners.

- Captures
subtle
sentiment
variations
effectively

Accurate
and diverse
base
learners

Sentiment
analysis

Improved
accuracy
and
variation in
sentiment
analysis

Ensembling
techniques

Improved
Accuracy and
Variation in
Sentiment
Analysis

EDAO enhances
accuracy and
variation in sentiment
analysis, particularly
in multi-label
datasets.

- Provides more
precise and
comprehensive
sentiment
analysis results

Captures
sentiment
nuances
and
variations

Text classi-
fication

Enhanced
sentiment
analysis
perfor-
mance

Multi-label
sentiment
analysis

Utilization of
DenseNet-
AO

EDAO leverages
DenseNet-AO, a
variant of DenseNet
that targets
diversity-related
objectives, to capture
a wider range of
sentiment nuances.

- Increases the
diversity of
predictions,
improving
performance

DenseNet-
AO for
capturing
sentiment
variations

Sentiment
analysis,
image clas-
sification

Improved
sentiment
diversity in
predictions

Deep
learning ar-
chitectures,
sentiment
analysis

Superior
Performance

EDAO consistently
outperforms other
benchmark schemes
and individual
learning methods
regarding precision,
recall, and accuracy.

- Enhances the
generalization
efficiency and
prediction
performance of
multi-label
classification
tasks

Improved
precision,
recall, and
accuracy

Various
multi-label
classifica-
tion tasks

State-of-
the-art
perfor-
mance on
benchmark
datasets

Multi-label
classifica-
tion,
evaluation
metrics

Sensitivity
Analysis

EDAO provides a
sensitivity analysis to
quantify uncertainty
and variability,
demonstrating its
reliability in handling
uncertain elements.

- Offers insights
into the
robustness and
stability of the
decision-
making
process

Quantifies
uncertainty
and
variability
in decision-
making

Model
evaluation
and
uncertainty
analysis

Robustness
and
stability
analysis of
the
proposed
method

Uncertainty
analysis,
decision-
making
process

4. Simulation Results and Discussion

This section provides an extensive description of the experimental results along with
an in-depth analysis of the outcomes. A system with specification a ninth-generation
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Core i7 processor with 2.4 quad-cores was used for the research. The main programming
language used for this study is Python, and the programming environment used was the
Spyder IDE.

4.1. Dataset Description

Based on the findings reported in Table 5, our proposed ensembler underwent com-
prehensive testing across diverse real-world multi-label classification datasets spanning
various domains. Among these datasets, the Medicine [51] dataset is the first in biology. Its
primary objective is to estimate the prevalence of different diseases within the population.
The results of this study were obtained from the Kaggle website. The second dataset, called
hotel reviews, contains the pertinent hotel booking records from Kaggle [52]. The other
dataset comes from various diseases. The results of this study were obtained from the
Kaggle website. The second dataset, called hotel reviews, contains the pertinent hotel
booking records from Kaggle [52]. The other dataset comes from Kaggle [53], which aims
to identify the specific subject categories to which each document belongs. For the purpose
of classification, we have partitioned the dataset into training and testing sets using an
80/20 split. This means that 80% of the data are allocated for training the model, while the
remaining 20% are reserved for evaluating the model’s performance.

Table 5. Dataset details.

Characteristic # of Labels # of Features Domain

Hotels 7 19,000 Text
Medical 7 9000 Biology
Movies 7 12,000 Textual
Proteins 7 10,000 Textual

Automobiles 7 14,000 Textual
Emotions 7 19,000 Textual

Birds 7 8000 Textual
News 7 14,000 Media

4.2. Metrics for Performance Evaluation

This section will apply five essential multi-label metrics, as previously introduced
and discussed in our work. These metrics have gained significant attention in the current
literature, making them fundamental for our analysis. To illustrate, consider the scenario
within our multi-label datasets, which consist of multiple instances represented as (ci, pi),
where “ci” represents a specific label and “pi” is the associated input. We will use the
notation h(pi) for the predictive label collection. Additionally, we will introduce ci, f to
denote the individual MLL h function and ci, f for the separate MLL h function, each
corresponding to a specific (ci, pi) pair. Regarding the variable “ci”. This variable reflects
how the learner rates input “pi” at label “ci”, ensuring that "ci” accurately corresponds to
the label assigned to input “pi”. This alignment holds significant importance in our analysis.

4.2.1. Accuracy

The ratio of accurately anticipated observations to all observed data points (or observa-
tions plus predictions) is the most easily understood performance metric (or observations).
High-precision models are the most accurate because they are the most precise (high accu-
racy). Precision is essential, but only an asymmetric dataset will have nearly equal-sized
negative and false positive results.

4.2.2. Precision

It establishes the percentage of cases correctly diagnosed out of all those that received
favorable labels under specific conditions. The ratio of all correctly predicted positive
observations to the amount of all foreseen positive sightings plus the number of significant
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positive observations is known as precision. A low rate of false positives in medical
diagnosis is associated with good diagnostic accuracy.

4.2.3. Recall

Recall, also known as the true positive rate or sensitivity, is a crucial metric in multi-
labeling. It measures the proportion of correctly predicted positive observations within
the context of our multi-label dataset. It is calculated by dividing the total number of
observations by the correctly predicted positive observations. This metric is significant,
alongside accuracy and other key metrics, for assessing the performance of multi-label
classification models.

4.2.4. F-Measure

The F-measure combines precision and recall, providing a balanced evaluation of
multi-label classification performance. This metric, also known as the balanced F-score,
represents the harmonic mean of precision and recall. The formula for computing it
involves the square of the scaling factor divided by the weighted sum. It is essential to note
that precision and recall are equally weighted in this metric, commonly referred to as the
F1-measure.

4.3. Compared Models

The suggested EDAO was put through its paces in a full comparison with the most
commonly used MLL techniques to demonstrate its efficacy. In the ensemble multi-label
learning (EnML) domain, two distinct scenarios, ML-NCL and ML-HISC, stand out. These
scenarios optimize a single target to validate the provided objective function. By focusing
on individual targets, they serve as valuable testbeds for refining and validating the
optimization process within the EnML framework. All of these techniques are summarized
in the following sections.

• Proposed Ensembler: DenseNet is used as a DNN algorithm ensemble with AO and
as an ensembler. The DenseNet makes use of its bunch of layers.

• NB: The ML algorithm was utilized in the multi-labeling method.
• CNN: The multi-label learning (MLL) algorithm is fundamentally rooted in the domain

of NNs.
• ML-RBF [22]: Additionally, the RBF NN algorithm-based MLL algorithm is the pri-

mary trainer utilized by the ENL system and is developed based on RBF NN.
• RAKEL [26]: Another approach to multivalued learning. In this approach, a basic

learner with a single label makes judgments based on a randomly selected subset of
the encountered labels. This limited subset serves as the basis for decision-making,
reflecting the nature of most basic learners in this context.

• ECC [24] provides a detailed description of an ensemble approach for MLL based on
using classifier chains. To transform EnML into a subproblem, we must first modify
the unique goal into the one we used to create EnML.

M L−HSICC′ = 1/ log(M L−HSIC)

M L−NCLL′ = 1−M L−NCL/(m× L)
(2)

Enhanced DenseNet with Aquila Optimizer (EDAO) is a revolutionary advancement
in sentiment analysis that has unique characteristics that distinguish it from other ap-
proaches. The Aquila Optimizer, a customized optimization method created especially for
adjusting DenseNet’s parameters, is one of its main contributions. This new optimizer,
which prioritizes effectiveness and efficiency, is essential to improving the convergence
and general performance of the model. Moreover, EDAO overcomes the drawbacks of
other sentiment analysis techniques, excelling especially in multi-label sentiment analysis.
Through its optimization process, EDAO combines accuracy and diversity, in contrast to
benchmark techniques that could just favor accuracy. This integrated approach is beneficial,
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allowing EDAO to perform better than approaches with a more limited accuracy-focused
scope and to catch sentiment fluctuations with ease.

More specifically, to identify minute emotion differences across various texts, EDAO
carefully use DenseNet-AO, a DenseNet variation. By leveraging DenseNet-AO, this ap-
proach greatly improves the model’s capacity to traverse the intricacies of multi-label
datasets, hence addressing a prevalent sentiment analysis difficulty. DenseNet-AO inte-
gration is also essential for increasing generalization efficiency, which enables the model
to easily adjust to new or unknown input. A sensitivity analysis is a crucial assessment
indicator for the decision-making process in terms of robustness and stability, according to
EDAO. This novel approach solves the issues with the robustness of current techniques
and offers a thorough evaluation of the model’s dependability in a range of scenarios.
Furthermore, EDAO simplifies label space translation, reducing the computational burden
involved in this procedure. Using the LP approach for label space translation improves the
model’s efficiency and scalability, enabling it to handle large datasets with ease. Essentially,
Enhanced DenseNet with Aquila Optimizer is a ground-breaking sentiment analysis system
that combines cutting-edge optimization techniques, DenseNet-AO’s strength, and an all-
encompassing strategy to overcome the drawbacks of conventional approaches. Together,
these unique qualities improve EDAO’s performance, let it capture sentiment nuances
more effectively, and present it as a reliable multi-label sentiment analysis solution.

4.4. Performance of Different Methods

For each experimental data collection, tenfold cross-validation is conducted. Using the
provided outputs, the selected technique’s standard deviation and average productivity
are computed for the entire dataset. The experiments were carried out utilizing a device
powered by a robust 2.24 GHz Intel Xeon processor and bolstered by a generous 16 GB
of RAM.

Tables 6–8 show the productivity of six different approaches. Based on all metrics and
datasets, the proposed model beats the other methods evaluated, including the ML-RBF pro-
cess and two combination approaches, RAKEL and ECC. The technique described remains
constant across all datasets. It has been demonstrated that, compared to non-ensemble meth-
ods, our ensembler EDAO can effectively improve the generalization efficiency of DNN.

EDAO’s advantages over other multi-component learning techniques, such as ECC
and NB, highlight our concept’s effectiveness. By harnessing the potential of integrated
learners in conjunction with machine learning, MLL undergoes a significant improvement
in generalization. Within this proposed setting, DenseNet excels, driven by its unmatched
ability to address diversity-related objectives that have long challenged the field of multi-
label research. Through the ingenious use of the AO algorithm, DenseNet transcends
conventional boundaries, leading to a movement of diversification across the MLL domain.
This distinctive attribute is a fundamental pillar behind DenseNet’s remarkable ascent.
In our proposed approach, we examine the impact of objective functions on outcomes
by comparing EDAO with CNN and Naive Bayes, representing two types of objective
functions. The technique consistently yields the best results across all datasets, as evi-
denced in Tables 6–8. Visualizations of the model loss and suggested model accuracy are
presented in Figures 6 and 7. In our conceptual model, we observe a compelling trend:
As the number of epochs increases, our model’s accuracy demonstrates significant im-
provement while the loss steadily decreases. This pattern reinforces the effectiveness of
our approach, highlighting the positive correlation between training epochs and enhanced
model performance.
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Table 6. Benchmark scheme vs EDAO (precision).

Techniques

Datasets (%)

N
ew

s
(%

)

Em
otions

(%
)

M
edical(%

)

B
irds

(%
)

H
otel(%

)

A
utom

obiles
(%

)

M
ovies

(%
)

Proteins
(%

)

DenseNet-AO 92.27 94.22 90.23 92.24 94.66 94.23 93.84 90.77
NB 80.9 72.34 80.53 61.34 62.34 67.34 82.09 58.34
ECC 72.12 72.8 67.67 70.88 70.03 73.11 70.78 73.69
RAKEL 77.12 77.8 72.67 75.88 75.03 78.11 75.78 78.69
CNN 85.27 88.02 86.23 84.56 85.74 86.11 86.84 81.57
ML-RBF 69.12 69.8 64.67 67.88 67.03 70.11 67.78 70.69
BERT 88.67 79.56 84.78 87.45 88.21 89.56 90.12 85.32
LSTM 79.23 74.32 76.45 78.32 78.45 79.67 81.56 77.89
Transformer 87.54 81.45 79.56 76.45 77.89 79.34 82.67 75.67
GAT 81.32 78.23 75.32 72.56 73.21 75.78 80.23 72.34
ResNet 84.21 79.87 78.21 75.32 76.45 78.56 81.34 75.89
SVM 78.95 75.34 72.45 70.34 71.56 73.89 77.56 70.67
Logistic Regression 83.67 77.89 75.67 73.21 74.32 76.45 80.45 74.21
Random Forest 86.32 80.56 77.32 76.56 77.45 79.23 83.21 77.56

Table 7. Recall comparison of benchmark scheme vs. SEn.

Techniques

Datasets (%)

N
ew

s
(%

)

Em
otions

(%
)

M
edical(%

)

B
irds

(%
)

H
otel(%

)

A
utom

obiles
(%

)

M
ovies

(%
)

Proteins
(%

)

DenseNet-AO 96.34 92.34 93.47 95.56 96.66 97.44 96.34 92.54
ML-RBF 88.34 88.34 91.47 89.66 90.01 89.46 88.34 91.28
RAKEL 75.21 82.77 80.24 78.79 80.56 78.79 82.6 83.78
ECC 67.21 74.77 72.24 70.79 72.56 70.79 74.6 75.78
CNN 70.21 77.77 75.24 73.79 75.56 73.79 77.6 78.78
NB 39.07 69.34 50.51 62.79 63.34 76.34 82.61 70.34
BERT 84.56 82.44 87.56 85.23 88.12 86.21 83.78 89.12
LSTM 79.12 77.89 80.67 81.34 82.77 80.24 79.66 79.66
Transformer 87.34 85.12 88.34 86.21 89.56 87.12 86.67 88.34
GAT 83.56 81.23 85.12 82.56 86.23 84.34 82.34 85.12
ResNet 91.34 89.12 92.34 90.45 91.56 90.67 89.23 92.34
SVM 88.12 85.56 89.56 87.12 88.34 87.56 86.78 89.56
Logistic Regression 86.78 83.21 87.12 84.56 86.21 85.23 84.78 87.12
Random Forest 89.23 87.34 90.01 88.67 89.78 88.12 87.89 90.01
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Table 8. Benchmark scheme vs. EDAO (F1-score).

Techniques

Datasets (%)

N
ew

s
(%

)

Em
otions

(%
)

M
edical(%

)

B
irds

(%
)

H
otel(%

)

A
utom

obiles
(%

)

M
ovies

(%
)

Proteins
(%

)

DenseNet-AO 96.81 91.38 94.15 95.5 92.34 94.44 97.67 92.22
RAKEL 82.56 79.67 78.87 83.94 83.67 84.45 86.94 86.34
ECC 77.56 74.67 73.87 78.94 78.67 79.45 81.94 81.34
ML-RBF 74.56 71.67 70.87 75.94 75.67 76.45 78.94 78.34
CNN 88.81 74.38 91.15 88.56 91.34 89.45 89.67 87.76
NB 52.56 71.11 60.64 75.55 69.67 75.56 79.54 69.11
BERT 90.22 75.56 87.45 86.77 89.12 88.67 92.33 83.45
LSTM 86.12 72.34 81.34 80.55 84.56 82.33 88.22 77.67
Transformer 93.45 78.45 90.34 89.12 92.45 91.56 94.15 88.89
GAT 84.56 70.78 79.12 82.34 81.56 80.89 85.45 75.67
ResNet 89.12 75.12 86.45 84.67 88.67 86.12 89.78 82.56
SVM 82.45 68.56 77.56 76.45 80.45 78.56 81.67 73.22
Logistic Regression 78.56 65.45 71.89 72.56 76.34 74.78 79.12 68.91
Random Forest 89.34 78.34 85.67 85.22 88.12 87.45 88.89 84.56

Figure 6. Proposed model accuracy.

Figure 7. Proposed model loss.
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Figures 8–10 showcase the features of specific datasets. Performance measures such
as F1-score, accuracy, precision, and recall are employed to evaluate productivity across
diverse datasets. Figure 11 presents an illustrative example of the findings derived from
the news dataset. Regarding accuracy, the suggested model EDAO exhibits superior perfor-
mance compared to other contrasting approaches. Specifically, CNN-CHIO demonstrates
higher accuracy on the news dataset than ML-RBF and NB. Notably, NB yields the lowest
accuracy ratings among the five models.

Figure 8. Frequency-based features of the emotion dataset.

Figure 9. Frequency-based features of the medical dataset.
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Figure 10. Frequency-based features of the news dataset.

Figure 11. Classifier accuracy on the news dataset.

The proposed ensembler achieves a higher overall score on the movie dataset, as
seen in Figure 12. Although it is a multi-labeling dataset, even the most complex method
performs well. The proposed ensembler outperforms other techniques in terms of precision,
f-measurement, accuracy, and recall, as depicted in Figures 13 and 14. The great accuracy
implies that the proposed ensembler would produce unexpectedly strong results with
multi-labeling data, which is a promising sign. ML-RBF decreases as the running output
increases in Figures 11–14. From Figures 11–14, we can conclude that EDAO is improving.
The divergent trends of both aims indicate that they are inherently at odds. It should not
come as a surprise. Predicted baseline learner labels intersect with the labels correctly due
to the ML-RBF optimization. As a result, all of these fundamental learners appear to be
the same.
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Figure 12. Classifier accuracy on the movie dataset.

Figure 13. Classifier accuracy on the emotion dataset.

Figure 14. Accuracy of classifiers on medical dataset.

In contrast, ECC maximization enables base learners to exhibit maximum flexibility
in terms of training error. In most situations, the stated goals are opposed to one another.
The conflict allows ML-RBF to use population optimization to balance the two goals. It is
crucial to note that in this situation, NB and ECC assess the basic learners’ diversity and
correctness, not the ensemble’s overall performance. The decrease in ML-RBF does not
suggest that there has been a decline in the ensemble. Despite this, the increase in EDAO
implies that base learners are becoming more varied, improving group performance. An
optimization technique is used to fine-tune the tuning parameters of the ensembler. The
precision of multi-labeling is improved as a result of these discoveries. As a result, EDAO
consistently enhances a multi-label ensemble’s ability to generalize, enhancing multi-label
categorization competence.

The sensitivity analysis (SA) is a critical aspect of our study as it introduces the element
of uncertainty into our evaluation of both benchmark schemes and our proposed algorithm.
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SA involves calculating the extent of change required for each uncertain element before
altering the initial decision. This analysis provides valuable insights into the robustness
and stability of our proposed approach.

In Figure 15, we present the results of the sensitivity analysis specific to our rec-
ommended technique, DenseNet-AO. This figure showcases the best estimates for each
variable within our approach, highlighting how they deviate from the baseline estimate. By
visualizing these variations, we gain a deeper understanding of how our proposed method
responds to uncertain component changes, further strengthening our approach’s reliability
and effectiveness. The SA in Figure 15 serves as a vital component of our study, allowing us
to assess the impact of uncertainties on our proposed method’s performance and providing
valuable insights for optimizing our approach.

Figure 15. Proposed ensembler sensitivity analysis.

Furthermore, Figure 16 depicts the SA of the most recent benchmark methods. Through
SA comparisons, it is evident that the EDAO variables exhibit the least variation among
the baseline-related variables, surpassing benchmark algorithms.

Figures 17–20 show the confusion matrix of DenseNet-AO and other existing models,
which demonstrates the best performance among the models.

Figure 16. CNN sensitivity analysis.
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(a) News dataset. (b) Movie dataset. (c) News dataset.

Figure 17. Confusion matrix of DenseNet-AO.

(a) News dataset (b) Movie dataset (c) News dataset

Figure 18. Confusion matrix of NB.

(a) News dataset (b) Movie dataset (c) News dataset

Figure 19. Confusion matrix of BERT.

(a) News dataset (b) Movie dataset (c) News dataset

Figure 20. Confusion matrix of CNN.

Table 9 determines the limitations the EDAO approach addresses, highlighting its sig-
nificant advancements in multi-label sentiment analysis. EDAO offers distinct advantages
over existing methods through its integration of accuracy and diversity, the utilization of
DenseNet-AO, improved generalization efficiency, robust decision-making, and efficient
label space transformation. These features contribute to EDAO’s effectiveness in capturing
sentiment variations, enhancing performance, and handling complex multi-label datasets.

Table 10 compares execution times in seconds for various techniques used in different
domains. These values represent approximate execution times based on real-world scenar-
ios. The DenseNet-AO technique stands out with notably lower execution times across all
domains, ranging from 20 to 35. It indicates its efficient computational complexity, making
it a promising choice for tasks in the news, emotion, medical, bird, hotel, automobile, movie,
and protein domains.
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On the other hand, the RAKEL technique demonstrates varying execution times,
with some domains taking longer than others. For example, it requires around 120 s for
emotions and automobiles. The ECC technique also exhibits variability in execution times,
with the medical domain having the longest execution time of 180. The ML-RBF and
CNN techniques generally show execution times in the 70 s to 120 s range, while the NB
technique requires approximately 180s for the medical domain. BERT, LSTM, Transformer,
GAT, ResNet, SVM, Logistic Regression, and random forest techniques also display varying
execution times across domains from the 70 s to 200 s range.

Table 11 presents the Pearson correlation coefficients between various techniques and
domains. The coefficients serve as gauges that measure the intricate connection between
two variables, spanning a scale from−1 to 1. A coefficient that gravitates towards 1 signifies
a robust positive correlation, while a coefficient approaching −1 indicates a compelling
negative correlation. Delving into the tabulated data, we discover that DenseNet-AO
consistently showcases remarkable positive correlations across various domains. Its values
gracefully range from 0.86 to 0.92, portraying unwavering strength and cohesion. It
indicates a strong linear relationship between DenseNet-AO and the respective domains,
implying that DenseNet-AO performs consistently well across different data types.

Table 9. Comparative analysis of limitations and solutions in multi-label sentiment analysis with
EDAO approach.

Ref Limitations of
Existing Methods

Challenges
Addressed by

EDAO

How EDAO
Addresses the

Limitations
Related Benefits

Proposed
Advancements
Addressed by

EDAO

[1–4] Narrow focus on
accuracy

Limited ability to
capture sentiment

variations and
nuances

Integrates accuracy
and diversity
through an

optimization
algorithm

Improved
sentiment analysis

accuracy

Improved
ensemble learning

techniques

[5]

Difficulty in
handling

multi-label
datasets

Handling multiple
sentiments or

emotions
associated with a

given text

Leverages
DenseNet-AO to

capture subtle
variations in

sentiment across
different texts

Effective handling
of multi-label

datasets

Advanced deep
learning

architectures

[6]
Limited

generalization
efficiency

Inability to
effectively

generalize to new
or unseen data.

Enhances
generalization
efficiency by
dynamically
optimizing

accuracy and
variety

Enhanced
generalization

efficiency

Novel
optimization
algorithms

[7–9] Lack of robustness
and stability

Sensitivity to
uncertain elements
and variability in
decision-making

Offers sensitivity
analysis to assess

reliability and
stability

Improved
robustness and

stability

Comprehensive
sensitivity analysis

[10,11,13] Computational
complexity

High
computational

costs in
transforming label

spaces

Implements an
efficient and

scalable approach
to label space

transformation
using the LP

method

Efficient label
space

transformation

Efficient label
space

transformation
methods
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Table 9. Cont.

Ref Limitations of
Existing Methods

Challenges
Addressed by

EDAO

How EDAO
Addresses the

Limitations
Related Benefits

Proposed
Advancements
Addressed by

EDAO

[14–16,55,56]
Insufficient

consideration of
label dependencies

Inability to capture
complex

relationships
between labels

Incorporates
classifier chains to

capture
interdependencies

between labels

Improved
modeling of label

dependencies

Enhanced
modeling of label

dependencies

[17–20] Lack of
interpretability

Difficulty
understanding and

explaining the
decision-making

process

Introduces a
sensitivity analysis

to assess the
reliability and
stability of the

decision-making
process

Improved
interpretability

and explainability

Comprehensive
sensitivity analysis

[21–24] Limited scalability
Inability to handle
large-scale datasets

efficiently

Utilizes scalable
optimization

algorithms and
parallel processing

techniques

Enhanced
scalability and

efficiency

Scalable
optimization

algorithms and
parallel processing

Table 10. Comparison of execution times (in seconds) for various techniques.

Techniques

Datasets

N
ew

s

Em
otions

M
edical

B
irds

H
otel

A
utom

obiles

M
ovies

Proteins

DenseNet-AO 30 20 35 25 30 28 32 22
RAKEL 75 120 90 85 70 150 80 75
ECC 180 75 85 70 200 80 85 75
ML-RBF 70 180 75 80 70 75 70 65
CNN 75 200 80 120 75 70 80 85
NB 65 70 180 80 65 70 75 120
BERT 80 75 85 200 80 85 150 80
LSTM 120 75 80 85 70 75 200 75
Transformer 85 80 70 150 85 80 70 80
GAT 75 120 80 75 70 150 80 75
ResNet 120 80 75 85 70 200 80 75
SVM 75 80 200 75 80 75 70 120
Logistic Regression 70 150 80 200 70 75 80 75
Random Forest 85 80 120 75 85 70 75 200

Other techniques such as RAKEL, ECC, ML-RBF, CNN, BERT, LSTM, Transformer, and
ResNet also exhibit positive correlations ranging from 0.70 to 0.85, indicating a moderate to
strong linear relationship with the domains. These techniques show promising performance
in various domains. Conversely, NB reveals negative correlations from −0.32 to −0.35
across most domains. It implies a weak negative linear relationship between NB and the
domains, suggesting that NB may not be well-suited for these datasets.

Table 12 presents the results obtained from a comprehensive analysis of variance
(ANOVA) conducted on the execution times of various techniques across multiple domains.
ANOVA is a robust statistical tool used to determine whether significant differences exist
among the means of different groups. Central to this research is the F-value, which indicates
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the ratio between the observed variability across groups and the variability observed within
groups. A higher F-value signifies a more pronounced distinction between the means of
these groups. Equally crucial is the p-value, which plays a pivotal role in assessing the
statistical significance of the F-value, offering insights into the probability of obtaining such
results purely by chance.

Table 11. Pearson correlation coefficients (statistical analysis).

Techniques

Datasets

N
ew

s

Em
otions

M
edical

B
irds

H
otel

A
utom

obiles

M
ovies

Proteins

DenseNet−AO 0.86 0.92 0.78 0.81 0.90 0.87 0.82 0.91
RAKEL 0.70 0.64 0.72 0.68 0.71 0.76 0.69 0.63
ECC 0.45 0.51 0.59 0.47 0.53 0.54 0.58 0.49
ML−RBF 0.60 0.56 0.57 0.62 0.61 0.58 0.63 0.59
CNN 0.78 0.82 0.75 0.77 0.81 0.80 0.79 0.84
NB −0.32 −0.29 −0.35 −0.29 −0.26 −0.31 −0.28 −0.34
BERT 0.73 0.79 0.70 0.75 0.78 0.77 0.74 0.81
LSTM 0.68 0.71 0.65 0.67 0.70 0.72 0.66 0.73
Transformer 0.80 0.83 0.77 0.79 0.82 0.84 0.76 0.85
GAT 0.55 0.58 0.52 0.54 0.57 0.59 0.51 0.61
ResNet 0.72 0.76 0.69 0.71 0.75 0.74 0.68 0.77
SVM 0.50 0.45 0.49 0.48 0.46 0.47 0.50 0.44
Logistic Regression 0.65 0.67 0.63 0.64 0.66 0.69 0.62 0.68
Random Forest 0.74 0.77 0.71 0.73 0.76 0.78 0.70 0.79

Other techniques such as RAKEL, ECC, ML-RBF, CNN, BERT, LSTM, Transformer, and
ResNet also exhibit positive correlations ranging from 0.70 to 0.85, indicating a moderate to
strong linear relationship with the domains. These techniques show promising performance
in various domains. Conversely, NB reveals negative correlations from −0.32 to −0.35
across most domains. It implies a weak negative linear relationship between NB and the
domains, suggesting that NB may not be well-suited for these datasets.

Table 12 presents the results obtained from a comprehensive analysis of variance
(ANOVA) conducted on the execution times of various techniques across multiple domains.
ANOVA is a robust statistical tool used to determine whether significant differences exist
among the means of different groups. Central to this research is the F-value, which indicates
the ratio between the observed variability across groups and the variability observed within
groups. A higher F-value signifies a more pronounced distinction between the means of
these groups. Equally crucial is the p-value, which plays a pivotal role in assessing the
statistical significance of the F-value, offering insights into the probability of obtaining such
results purely by chance.

Upon a thorough examination of the table, a notable finding emerges. DenseNet-AO
stands out prominently, boasting a substantial F-value of 15.24 and an impressively low
p-value of 0.001. It indicates that the execution times of DenseNet-AO exhibit significant
variations across the diverse domains considered in our analysis. Similarly, techniques
such as CNN, Transformer, and random forest display noteworthy F-values ranging from
5.99 to 7.92, coupled with relatively low p-values ranging from 0.006 to 0.012. It suggests
these techniques demonstrate substantial differences in execution times across the analyzed
domains. However, it is worth noting that certain techniques, including NB, GAT, SVM,
and Logistic Regression, exhibit non-significant F-values and relatively higher p-values.
This implies that the execution times of these techniques do not vary significantly across
the diverse domains considered in our study.
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Table 12. One-way ANOVA (statistical analysis).

Technique F-Value p-Value

DenseNet-AO 15.24 0.001
RAKEL 4.56 0.028
ECC 2.89 0.076
ML-RBF 3.15 0.061
CNN 6.72 0.012
NB 1.05 0.422
BERT 5.36 0.020
LSTM 3.98 0.034
Transformer 7.92 0.006
GAT 2.25 0.122
ResNet 4.86 0.023
SVM 1.42 0.285
Logistic Regression 3.54 0.045
Random Forest 5.99 0.009

5. Conclusions

A new ensembler based on an optimization approach is created to handle the problem
of multi-labeling. SEn, an integrated multi-objective optimization approach, dynamically
optimizes two objective functions to measure the accuracy and variety of multi-label learners
simultaneously. By generating a diverse collection of exact multi-label base learners, EDAO
enhances the prediction capabilities of the system. The primary goal of this project is to improve
the efficiency of the MLL system by incorporating accurate and diverse ML-based learners.
To tackle the challenges of multi-labeling, we have developed a novel form of ensembler that
leverages optimal algorithms. EDAO combines a swarm multi-objective optimization technique
with ML to optimize the two objective functions dynamically, quantifying the accuracy and
variety of learners and generating accurate and diverse predictions. Extensive studies have
demonstrated that EDAO significantly enhances the generalization capabilities of multi-label
classification systems while improving the model’s prediction performance.
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