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Inversion-free feedforward hysteresis control using Preisach model

Michael Ruderman

Abstract— We introduce a new inversion-free feedforward
hysteresis control using the Preisach model. The feedforward
scheme has a high-gain integral loop structure with Preisach
hysteresis operator in negative feedback. This allows obtaining
a dynamic quantity which corresponds to the inverse hysteresis
output, as the loop error tends towards zero for a sufficiently
high feedback gain. By analyzing the loop sensitivity function
with hysteresis that acts as a state-varying phase lag, we
demonstrate the achievable bandwidth and accuracy of the
proposed control method. Remarkable fact is that the control
bandwidth is theoretically infinite, provided the Preisach oper-
ator in feedback can be implemented in a way to ensure the C

0

continuous hysteresis output. Numerical control examples with
the Preisach hysteresis model in differential form are presented.

I. INTRODUCTION

Hysteresis phenomena occur in quite different physical

and technical systems, see e.g. [1], and often require an

accurate compensation through dedicated control measures.

From a system and control viewpoint, the hysteresis can be

seen as a multi-valued quasi-static nonlinearity, affected by a

nonlocal memory. The latter implies that some part of the his-

tory of previous states is retained and influences the current

state of the system. Often, the hysteresis appears inside of

more complex dynamic systems, so that the hysteresis output

is not directly measurable for a feedback control. It appears,

for example, with the magnetic flux density in controlled

electromagnets or net electrical charge in piezoelectric ac-

tuators. For systems without hysteresis nonlinearity sensing,

a pure feedforward control, correspondingly compensation,

often seems preferable over some feedback control strategies.

In the control literature, a feedforward hysteresis con-

trol is mostly associated with constructing a model-based

(sometimes also model-free) inverse (or its approximate)

of the hysteresis. Some earlier works on controlling the

unknown hysteresis go back e.g. to [2]. A more recent control

framework with hysteresis compensation was also reported in

[3]. Apart from that, a passivity-based stability and control of

hysteresis were addressed, still in a feedback manner, in [4].

Another alternative compensation approach, which is worth

to be mentioned here since addressing the relevant phase

shift properties of a hysteresis system, was provided in [5].

A mixed recursive algorithm to control the output remnant

of a hysteresis system was presented in [6]. An inverse

multiplicative structure, that is relying on internal model-

based principle, was shown in [7] with use of the Prandtl-

Ishlinskii (see e.g. in [8]) hysteresis model in feedforwarding.
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However, an artificial time-delay was necessary for bypassing

an algebraic loop of the proposed scheme. Multiple works on

hysteresis compensation with feedforward scheme have also

been published in the context of inverse mapping, e.g. [9],

or more generally inverse modeling of hysteresis systems

to be controlled. Due to a variety of (often ad-hoc and

approximative) approaches, and due to our focus on the

Preisach [10] hysteresis model, we will only refer to some of

them. The theoretical conditions for existence and properties

of the inverse Preisach operator were known since [11].

However, to the best of the author’s knowledge, no closed

analytical form of the inverse Preisach operator suitable for

feedforward control has been reported so far. A remarkably

fast computation of the Preisach inverse, targeting the real-

time implementation, was reported e.g. in [12] and in the

multiple following works by the co-authors. The approach

relies on the stored Everett functions and the so-called

Preisach representation theorem, see [13] for detail. Different

iterative inversion schemes, which are equally suitable for a

real-time feedforwarding, were proposed, e.g. allowing also

for an online adaptation in [14], and later in combination

with an additional observation of the recent hysteresis state in

[15]. The latter was also provided in a differential form, see

the work [16], which is also used in the present contribution.

Differing from the approaches mentioned above, we pro-

pose a new type of the inversion-free feedforward hystere-

sis compensation. Because the proposed hysteresis control

scheme is generic, and limited solely to the class of rate-

independent hysteresis that can be captured by the Preisach

operator, no specific application system is addressed ex-

plicitly. Notable possible applications, however, are in the

operation of electromagnets, piezoelectric and magnetostric-

tive actuators, and other electro-magneto-mechanical devices

with a rate-independent hysteresis in the input channel.

The rest of the paper is structured as follows. The basic

problem formulation of a feedforward hysteresis compensa-

tion is given in section II. Here we also provide an approxi-

mate input-output view on the hysteresis behavior in terms of

a harmonic response. In section III, the Preisach hysteresis

operator is described, as far in detail as necessary, also in

the differential form used in the proposed control scheme.

The phase shift properties of the Preisach operator are

elucidated based on the extreme case of a lumped two-point

switching hysteresis. The proposed inversion-free hysteresis

control scheme is introduced in section IV, together with

analysis of the control errors and achievable performance.

The numerical examples of compensating for one convex

and one non-convex hysteresis are given in section V. The

paper is concluded by a discussion provided in section VI.

http://arxiv.org/submit/4876402/pdf


II. FEEDFORWARD HYSTERESIS CONTROL

We consider a generic hysteresis system

y
(

t = τ
)

= f
[

u(0 ≤ t ≤ τ), y0
]

(1)

as a multi-valued nonlinear function f [·], which output at the

time t = τ depends on the recent and previous input values

at t ≤ τ and the initial state y0 ≡ y(t = 0). Without loss

of generality, we assume that u(t) ∈ C0 and y(t) is almost

always piecewise differentiable, except the reversal points

where the sign(u̇) changes. In other words, we do not allow

for stepwise inputs of hysteresis, while the input derivative

does not have to be continuous with respect to time. Recall

that for all input-output pairs (u, y), cf. two examples in Fig.

2 (a) and (b), one can say the system (1) possesses memory

since at any instant t the output y(t) is determined by the

previous evolution of the input function u(t), and not only

the input value at the same time instant, cf. [8].

Now the objective is to design a controller, see Fig. 1,

which will act as a feedforward hysteresis compensator and,

therefore, guarantee for |y(t)− r(t)| < ε, where ε > 0 is the

smallest possible residual control error. In addition, a poten-

tially large control bandwidth is required, that means ε(jω)
remains upper bounded for a bounded angular frequency

ω < ωb. The design of a feedforward controller assumes

that an accurate model of the hysteresis system is available,

while we emphasize that the proposed controller is inversion-

free, i.e. it does not require constructing or approximating

the inverse of (1). Recall that a closed analytic form of the
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Fig. 1. Feedforward control of input-output hysteresis system

inverse of a multi-valued hysteresis function is not always

available, like in case of the Preisach hysteresis operator. At

the same time, feedforward hysteresis compensation may be

required in several applications where a hysteresis output y
appears rather as an internal state and is not available (or

can not be used) during the controlled system operation.

As we focus on a rate-independent hysteresis in the strict

sense (for definition and properties of rate-independence of

hysteresis we reefer to e.g. [8]), the output y depends on

the sequence of the input values but not on the frequency

with which they are proceeded. In other words, the rate-

independent behavior of a hysteresis system is not influenced

by any affine transformation on the time axis. It is also

worth mentioning that a suitable scaling, correspondingly

normalization, of the hysteresis input and output enables

an assumption of the unity domain and range of (1), cf.

Fig. 2. It means that a simple static mapping y(t) = u(t)
would occur when there is no hysteresis. Considering two

illustrative examples, depicted in Fig. 2 for a convex (a),

(c) and non-convex (b), (d) hysteresis, one can recognize

that the output exhibits a state-varying phase shift φ
(

u(t)
)

to a harmonic input process. As originated from an Ancient

Greek word ’hysteresis’, meaning ’lagging behind’, the most

of the phase shifts are of a lag type. That means, a time

integral of the phase shift over a full period has always a

negative sign. At the same time, a transient lead-type phase

shift occurs for the non-convex hysteresis, cf. Fig. 2 (d).
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Fig. 2. Examples of a convex (a), (c) and non-convex (b), (d) hysteresis;
black thin line of input and grey thick line of output in (c) and (d)

In order to analyze the input-output hysteresis properties,

in a more familiar sense of the dynamic system, one can

approximate the hysteresis output response to a harmonic

input u(t) = sin(ωt) as follows

y(t) ≈ ȳ(u0, y0) +A
(

u(t)
)

sin
(

ωt+ φ
(

u(t)
)

)

. (2)

The bias ȳ depends on the initial state of the hysteresis sys-

tem and reveals, this way, a signature of a hysteresis memory.

Generally, one can assume that ȳ is bounded by the main

(major) loop of the hysteresis. Both, the gain factor A(·) and

phase shift φ(·) depend on the instantaneous hysteresis state,

while |A| < κ < ∞ and −π/2 < φ < π/2 can be assumed

without loss of generality. The first assumption is because

the bounded gain follows immediately from the Lipschitz-

continuity of a hysteresis operator (1), cf. [8], while the

corresponding Lipschitz constant is κ = max ∂y/∂u. The

boundedness of the phase shift follows from the input-output

behavior of an elementary hysteresis operator hysteron, as

demonstrated below in section III.

Now we are in the position to introduce the feedforward

control u(t) = g
[

r(t)
]

, so that its serial connection with a

hysteresis system results in y = f
[

g[r], y0
]

→ r. Before

doing it in section IV, we will first describe the Preisach

hysteresis operator, which is assumed for modeling the

hysteresis system and used in the proposed control scheme.

III. PREISACH HYSTERESIS OPERATOR

The scalar Preisach hysteresis model [10], [13] is one

of the most powerful approaches for describing a multi-

valued rate-independent hysteresis mapping in its proper

sense. The Preisach hysteresis operator and its numerous



extensions have been used for several decades (see e.g. in [1])

in magnetism, material science, but also in the control and

system engineering. We will briefly summarize the Preisach

operator, as far as necessary for our developments, while we

refer to the seminal literature [8], [13] for more fundamental

and profound details on mathematical hysteresis operators.

The memory affected multi-valued static map of the

Preisach hysteresis operator is given by

y(t) = H [u(t)] =

∫∫

α≥β

ρ(α, β)h(α, β)[u(t)]dαdβ , (3)

in which the elementary nonlinear operator h[·] (also called

hysteron) captures the spatially distributed internal state

of the corresponding input-output system. The hysteron is

nothing but an amplitude-delayed relay (see Fig. 4 on the

left) which is parameterized by two threshold values α ≥ β.

Upon passing the threshold values, the output of h[u] flips

among the binary states +1 (up state) and −1 (down state),

for u ≥ α and u ≤ β correspondingly. For β < u(t) < α, the

hysteron keeps its previous binary state for ∀ t > ts where ts
is the time of the last flipping, i.e. switching at the threshold

value. The entire Preisach operator is parameterized by the

so-called Preisach density function ρ(α, β), which is defined

over P = {(α, β) | α ≥ β}. The most suitable geometrical

interpretation of P and, correspondingly, state transitions of

the Preisach hysteresis operator is by means of the Preisach

plane (further denoted by P ). The plane is given in the

relative (α, β)-coordinates of the input domain, cf. Figs. 2

and 3. It is worth saying in advance that for a practical

consideration and use of the Preisach hysteresis operator,

both the domain and range of (3) are bounded, so that

umin ≤ (α, β) ≤ umax

and

ymax − ymin = 2

∫∫

P

ρ(α, β) dαdβ.

a

b

a b=

P
+

( )
s

u t

P
-

L

Fig. 3. Preisach plane with switching hysteresis state

At each time instant t, the Preisach plane is divided into

two disjunct subsets, i.e. P (t) = P+(t) ∪ P−(t), which

contain the hysterons in the ’up’ state and ’down’ state

correspondingly. Both subsets are separated by a staircase

interface L, cf. Fig. 3, which represents the instantaneous

memory of the hysteresis system. The interface moves from

bottom to top for u̇ > 0 and from right to left for u̇ < 0,

while the dynamic transformations of L occur by including

the new local extrema and deleting the previous, according

to the wiping-out hysteresis property, cf. [13].

One can easily show that

y(t) =
∫∫

P+

ρ(α, β)dαdβ −
∫∫

P−

ρ(α, β)dαdβ =

=
∫∫

P

ρ(α, β)dαdβ − 2
∫∫

P−

ρ(α, β)dαdβ, (4)

when considering, for instance, a decreasing input. There-

fore, for two consecutive values u(t2) < u(t1) of a mono-

tonically decreasing input ∀ t2 > t1, the output difference

can be obtained, from (4), as

∆y = y(t2)− y(t1) = −2

∫∫

P−(t2)

ρ(α, β)dαdβ +

+2

∫∫

P−(t1)

ρ(α, β)dαdβ = −2

∫∫

Ω

ρ(α, β) dαdβ . (5)

Here Ω ≡ P−(t1) \ P−(t2) is the difference set of the

switching region in P , i.e. where the hysterons flipped down

during the time between t1 and t2. Obviously, the switching

region depends on ∆u = u(t2)−u(t1), and when taking the

limiting value lim∆u → 0 ≡ du one can obtain, without

loss of generality, the differential form of (3) as

dy = 2 sign(u̇)

∫∫

Ω(du)

ρ(α, β)dαdβ . (6)

Note that at the switching time ts, the set Ω(du) coincides

with the most bottom horizontal segment of L for sign(u̇) =
1 and with the most right vertical segment of L for sign(u̇) =
−1, both for a monotonically changing u(t). If the input

direction changes, i.e. the hysteresis operator experiences

a local extremum, then Ω(du) = L
(

u(ts)
)

, cf. Fig. 3.

Integrating (6) with respect to y, one obtains the Preisach

hysteresis output, provided the initial y(0) is known. More

details on this differential form of the Preisach operator, also

in the state-space formulation, can be found in [16].

ab

1

1-

h

u

0 0.5 1
t (-)

-1

0

1
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 h

 (
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Fig. 4. Elementary hysteresis operator hysteron (on the left), and the
corresponding input- and output-value harmonics (on the right)

Before introducing the hysteresis control, let us examine

the phase shift characteristics of a hysteresis operator, cf. (2)

and Fig. 2, based on the input-output behavior of a single

hysteron depicted in Fig. 4. It is evident that the half of



period of the output level coincides with zero-crossing of the

input harmonic. Furthermore, the output switching, where h
crosses zero and has its zero-average, occurs at time instances

of the input peaks. This provides exactly ±π/2 phase shift

between the input and output harmonics of a hysteron, while

the phase sign depends on the initial state of the hysteron

i.e. h(t = 0). We also recall that the h hysteresis loop (as

depicted in Fig. 4 on the left) represents a boundary case of

the Preisach operator H, i.e. with a maximally possible loop

area enclosed by the vertical hysteresis transitions at umax

for ’up’ and umin for ’down’. Note that within the P plane,

this corresponds to the case when all hysterons are located

in the left upper corner (α, β) = (umax, umin). In general,

closer the hysterons are located to the α = β diagonal of the

Preisach plane, lower phase shift is between the input u and

corresponding output h. This allows concluding max |φ| =
π/2, cf. section II and Figs. 2 and 4 (on the right).

IV. INVERSION-FREE HYSTERESIS CONTROL

The proposed inversion-free hysteresis control relies on

an internal model principle and incorporates the high-gain

integral feedback loop which aims controlling the hysteresis

model f̂ [·], see Fig. 5. If the internal model control loop

ˆ ( )f ×

r u

+ -
dK tò

*y

Fig. 5. Proposed feedforward hysteresis control u = g[r]

achieves its goal, i.e. the modeled hysteresis output f̂ :
u(t) 7→ y∗(t) follows the reference r(t) as close as possible,

then the output of the integral regulator, which is

u(t) = K

∫

(

r(t) − y∗(t)
)

dt, (7)

mimics the inverse of the hysteresis map i.e. f̂−1 : y∗(t) ≈
r(t) 7→ u(t). With this simple idea in mind, let us analyze the

bandwidth and accuracy of the hysteresis controller u = g[r],
especially depending on the high-gain value K . Since we are

eager to see how close the internally controlled y∗(t) value

follows the reference r(t), we consider the closed-loop error

e = r − y∗ as the principal measure of accuracy of the

feedforward hysteresis compensator.

Let us first examine the linear case, i.e. without hysteresis,

when a linear static mapping y∗ = Au is in the closed-loop

of the g-compensator. The loop error transfer function is

El(jω) =
e(jω)

r(jω)
=

jω

jω +KA
. (8)

The above is a typical sensitivity function which drops

towards zero as ω → 0. Note that the corner frequency

(KA) can be shifted to the right by increasing the control

gain K , provided the A-factor remains constant, cf. Fig. 6.

When allowing for variations of A(·), that is unavoidable for

hysteresis nonlinearity, cf. (2), the feedback loop remains

stable provided the static A 6= const nonlinearity satisfies

the sector condition, cf. e.g. [17]. At the same time, the

sensitivity function becomes degraded by the low bound

A− = min(A). This should be taken into account when

designing K , while the upper bound A+ = max(A) expands

the control bandwidth, cf. Fig. 6.

10-1 101 103 105
 (rad/sec)

10-4

10-2

100

|E
l|

K=1000, A-=0.1
K=1000, A=1

K=1000, A+=10

Fig. 6. Exemplary closed-loop error transfer function El for the control
gain K = 1000 and feedback variations: A− = 0.1, A = 1, A+ = 10

Now, we expand our above consideration of the error

transfer function to the case of approximating hysteresis in

the loop, cf. (2) and Fig. 5. For the mostly occurring lag-type

phase shift φ (also most sensitive in terms of the stability),

we consider a standard first-order lag transfer function

F (jω) =
y∗(jω)

u(jω)
=

jω/(δω0) + 1

jω δ/ω0 + 1
. (9)

Two parameters, ω0 and δ, are characteristic for approximat-

ing the hysteresis response to a harmonic input. Obviously,

due to the phase shift characteristics of interest, the angular

frequency ω0, at which the phase lag is maximal, coincides

with that of the harmonic input u(jω0). The factor δ scales

10-2 100 102
 (rad/sec)

10-4

10-2

100

|E
h,
°
|

0
=0.1

0
=1

0
=10

Fig. 7. Exemplary closed-loop error transfer function Eh,◦ for the assumed
K = 1000, A = 1, and ω0 = {0.1, 1, 10} rad/sec

the bandwidth of the lagging transfer characteristics around

ω0 and, thus, the phase-lag itself. For the transfer function

(9), the phase lag is always −π/2 < ∠F (jω) < 0. And for

an average phase lag ∠F (jω) = −π/4, which is sufficient

for our qualitative analysis, the δ = 2.5 can be assumed in

the following. Substituting the approximation (2) instead of

f̂(·) into the closed control loop from Fig. 5, one obtains

e(jω)
(

1 +
KA

jω
F (jω)

)

= r(jω)− ȳ. (10)

It becomes evident that two transfer functions, Eh,r(jω) =
e(jω)/r(jω) and Eh,ȳ(jω) = e(jω)/ȳ(jω), can be consid-

ered and analyzed separately and in a similar manner. It is



also worth recalling that ȳ constitutes the bias depending on

the hysteresis memory state, cf. (2). Therefore, only steady-

state or low-frequency range, i.e. ω → 0, are relevant when

analyzing Eh,ȳ(jω). On the contrary, one is focusing on

the frequency range around ω = ω0, with a corresponding

adjustment of the lag transfer function (9), when analyzing

Eh,r(jω). This refers to the reference input r(jω0). Assum-

ing, as before, an exemplary control gain K = 1000 and

A = 1, the frequency response function of Eh,◦ is shown in

Fig. 7 for ω0 = {0.1, 1, 10} rad/sec. Note that the analysis

of Eh,◦ transfer function is equally valid in both cases ◦ =
r ∨ ȳ. It is easy to see, from the labeled black vertical bars,

how the closed-loop error changes depending on the angular

frequency ω0 of the reference signal. It can also be seen

that for a steady-state bias, injected through ȳ, the closed-

loop error goes to zero. Therefore, it becomes conclusive

that with an increasing K-value, assigned with respect to

A− and A+ (both are known from the modeled hysteresis

system), the same upper bound for |e| and, hence, for the

hysteresis compensation error ε, can be guaranteed despite

an increasing ω0. It implies, theoretically, an infinite control

bandwidth, provided an infinite K-gain and an appropriate

modeling of the hysteresis function f̂ are realizable.

V. NUMERICAL EVALUATION

The proposed control is evaluated numerically together

with the hysteresis system plant, both interconnected as

depicted in Fig. 1. The simulated hysteresis system f [·] and

the one involved in the designed control, i.e. f̂ [·], use the

same Preisach hysteresis operator in the differential form, see

section III. The discrete (β, α)-mesh of the 400×400 size is

assumed, that results in a total of 80200 hysterons, cf. [18].

Note that the allocated (β, α)-matrix represents simultane-

ously the parameters space of the Preisach density function

and the state-space of the binary hysterons. This allows for

a memory- and computation-efficient implementation of the

Preisach model, which is equally suitable for (and has been

tested in) a real-time environment. Further details on the

discretized real-time implementation in the differential form

can be found in [15]. The high-gain of the internal model

loop is assigned as K = 6000. This is done with respect to

the input frequency, on the one hand, and the discretization

level of the Preisach operator, on the other hand. Recall that

the latter provokes a finite quantization of y and y∗ and, thus,

violates the theoretical assumption of the hysteresis output

to be piecewise differentiable between two reversal points.

Two Preisach density functions depicted in Fig. 8 are

exemplary taken for evaluation. The first one, shown in (a), is

a uniform distribution of the hysterons with ρ(α, β) = const.
The second one, shown in (b), is a two-dimensional Gaussian

normal distribution N (µ,Σ), which is parameterized by the

mean vector µ and symmetric covariance matrix Σ, both in

the relative (α, β) coordinates. In both ρ-cases, the relative

weights of the hysterons have been assumed so that the

saturated hysteresis has the range ymin,max = {−1, 1},

while the input domain is considered to be of the same

scale −1 ≤ u ≤ 1. Note that the uniform and Gaussian

normal Preisach density functions result in the hysteresis

loops depicted in Fig. 2 (a) and (b), correspondingly.

Fig. 8. Assumed Preisach density function over the discretized (β, α)
plane, (a) uniform distribution, (b) Gaussian normal distribution

First, a ’zigzag’-shaped input reference with a continu-

ously increasing amplitude was applied for both Preisach

density functions. This results in a set of continuously

growing hysteresis loops, which are enveloped inside of each

other. The produced control signal is shown in Fig. 9 in the
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Fig. 9. Control over reference values (above) and output over reference
values (below) of the hysteresis compensation for a zigzag shaped input,
(a) and (c) uniform distribution, (b) and (d) Gaussian normal distribution

(r, u) coordinates, for the uniform in (a) and for the Gaussian

normal Preisach density function in (b), respectively. The

compensated input-output behavior is shown in Fig. 9 in the

(r, y) coordinates, in (c) and (d) correspondingly.

Next, a chirp reference input u = 0.9 sin
(

(2πνt)t
)

, was

applied with a linearly progressing frequency νt between

0.1 and 10 Hz. Note that the reference amplitude was set to

0.9 for not reaching a fully saturated hysteresis state. The

compensation results are shown in Fig. 10, for the uniform



Preisach density function on the left and for the Gaussian

normal Preisach density function on the right. The hysteresis

compensation error ε(ν) is depicted as a function of the

growing reference frequency in (a) and (b). The compensated

input-output behavior is depicted in Fig. 10 in the (r, y)
coordinates, in (c) and (d) correspondingly.
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Fig. 10. Control error ε(ν) (above) and output over reference values
(below) of the hysteresis compensation for a 0.1-10 Hz chirp input, (a) and
(c) uniform distribution, (b) and (d) Gaussian normal distribution

VI. DISCUSSION

This paper proposed an inversion-free feedforward control

of hysteresis systems, based on the internal model princi-

ple and Preisach operator of an arbitrary rate-independent

hysteresis map. The Preisach model, which relies on a

phenomenon-based weighted superposition of multiple ele-

mentary hysteresis operators hysterons, is the most flexible

among the operator-based hysteresis models for shaping

the hysteresis loops and the associated hysteresis memory.

Although the existence of an inverse Preisach operator has

been proven mathematically [11], there is no sound piecewise

continuous and implementable analytical form for it up

to now. Therefore, the proposed alternative inversion-free

feedforward hysteresis compensator, which is based on the

same standard Preisach operator, is advantageous. The single

design parameter, apart from the identified Preisach model

of the hysteresis system to be controlled, is the high-gain

of an integral loop. For identification and adaptation of

the Preisach hysteresis model itself, we refer to the lately

proposed robust online estimator of the Preisach density

function, see [18]. Since the high integral gain is used

for an internal model control loop only and, thus, does

not produce any saturated control actions, its value can be

increased (at least theoretically) towards infinity. This results

in a theoretically infinite bandwidth of the compensator. This

was analyzed in section IV and evaluated with numerical

examples in section V. It was also shown that the upper

bound of the residual control error is growing with 20 dB/dec

in frequency domain of the reference input, cf. Figs. 7

and 10 (a) and (b). However, this fact represents a rather

implementation- and application-related issue. Apart from

a theoretically justified hysteresis compensation error, the

residual error contents in ε(t) (propagated from e(t)), are

of a numerical nature owing to the discretized Preisach

hysteresis operator. Justified, a finite (α, β) mesh produces a

quantized, to say ’staircase’-type, output y∗ of the Preisach

model. As this signal is fed back in a high-gain integral

loop, the associated parasitic side-effects become visible in

the resulted (r, u) mapping, cf. Fig. 9 (a), (b). A possible

solution is increasing the size of (α, β)-mesh with respect to

ω0 and K-gain values or using an y∗-interpolator.
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