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a b s t r a c t

The hybrid photovoltaic-thermoelectric generation system (PVTEG) gives two-fold benefits; firstly, it
efficiently utilizes the available solar energy as it converts both solar irradiance and solar thermal
energy into electricity, secondly, it enhances PV efficiency by reducing the PV module surface
temperature. However, the efficiency of the hybrid PVTEG system is usually low because both PV
and TEG are not highly efficient devices. Under changing environmental conditions, a well-designed
maximum power point tracking (MPPT) controller can enhance the generation efficiency by 10%–15%.
Therefore, this research explores the evolutionary Neural Network based MPPT control technique for
the hybrid PVTEG systems. The snake optimizer optimally tuned weight and biases of the Multilayer
perceptron neural network (MLPNN), which provides fast real-time global maxima (GM) tracking.
Furthermore, to enhance the robustness of MPPT control, PID gains are tuned using the SO algorithm.
Use of the snake optimizer based PID (SOPID) controller with the snake optimizer based neural
network (SOANN) results in stable, accurate and fast MPPT under varying environmental conditions.
The effectiveness of the proposed SOANN MPPT controller is validated by comparing it with PSOANN,
RSANN and GWOANN. SOANN based MPPT controller provides very fast real-time global maxima
(GM) tracking with negligible power oscillations. The SOANN controller extract optimal power with
an average efficiency of 99.928% and tracking time of less than 5ms. Furthermore, an intelligent
data driven based fault detection algorithm is proposed, which do not require any temperature or
irradiance sensors reducing cost of the system. Comparative, simulation, quantitative, and statistical
results second superior performance of SOANN controller in terms of efficiency, tracking time, stability
and fault detection capability under various practical condition.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The consumption of fossil fuels for energy generation is one
f the main reasons for climate change. The increasing energy
xpenditure and the continuous dwindling of fossil fuels have
iverted the attention of the power sector towards different
enewable energy sources like hydroelectric, solar, wind, biogas,
hermoelectric generation, etc. Renewable energy sources are
referred over traditional ones because they are theoretically
nlimited, viable, highly scalable, and without pollution (Baños
t al., 2011).
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Solar energy is amongst the most used renewable energy
sources (Zafar et al., 2021). A solar cell is used to convert so-
lar irradiation into electrical energy. The PV cell works on the
principle of photoelectric effect on the semiconductor materials.
When sunlight falls on a specifically designed semiconductor
solar cell, current starts flowing (Pervez et al., 2021; Moosavi
et al., 2022). PV systems have multiple advantages like minimum
to no operating cost, zero emissions of greenhouse gases, and
low maintenance cost (Shams et al., 2021). However, PV tech-
nology also poses some drawbacks like high installation cost,
low energy generation efficiency, and dependence on weather
conditions (Husain et al., 2018). Another drawback of PV cells is
that an increase in temperature beyond a certain level decreases
the output power (Cotfas et al., 2018).
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.egyr.2023.02.047
https://www.elsevier.com/locate/egyr
http://www.elsevier.com/locate/egyr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2023.02.047&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:naureen.akhtar@uia.no
https://doi.org/10.1016/j.egyr.2023.02.047
http://creativecommons.org/licenses/by/4.0/


K. Khan, S. Rashid, M. Mansoor et al. Energy Reports 9 (2023) 3604–3623

s
e
e
t
o
A
j
d
t
p
n
o
g
o
A

i
e
s
e
e
t
t
e
i
e
m

o
e
l
d
a
(
h
A
T
f
c
s

b
t
T
b
s
a
p
a
o

a
M
b
m
m
c
a
T
t
v
t
M
m

The traditional energy generation through steam usually re-
ults in the wastage of a large amount of heat energy. A thermo-
lectric generator can utilize this wasted heat energy to generate
lectricity and this results in improved efficiency of the genera-
ion system. A thermoelectric generator operates on the principle
f the See beck effect (Pourkiaei et al., 2019; Khan et al., 2022).
ccording to this effect, when two different metals meet at one
unction, voltage is produced if there is a sufficient temperature
ifference between the two junctions. Thermoelectric generation
echnology is used in military, aerospace (Jaziri et al., 2020),
ower generation (Elyamny et al., 2020), and wireless sensor
etworks. TEG is a static device with high reliability and low
perational and maintenance costs. A drawback of thermoelectric
eneration is very low conversion efficiency as compared to the
ther existing renewable energy technologies (Khan et al., 2022;
ljaghtham and Celik, 2020).
The photovoltaic module transforms only a fraction of solar

rradiation into electricity. Most of the valuable solar thermal
nergy is wasted as heat. This heat thermalize the PV cell re-
ulting in a decrease in PV efficiency (Verma et al., 2021). An
fficient scheme is required to deploy this abundant solar thermal
nergy. This can be achieved by the integration PV module with
he TEG system (Sahin et al., 2020). The hybrid photovoltaic-
hermoelectric generation system (PVTEG) gives two-fold ben-
fits; firstly, it efficiently utilizes the available solar energy as
t converts both solar insolation and solar thermal energy into
lectricity, secondly, it enhances PV efficiency by reducing the PV
odule surface temperature (He et al., 2021).
In the past, various research works explored the effectiveness

f the hybrid PVTEG system. The work in Indira et al. (2020)
valuated the performance of different hybrid PVTEG models
ike the One-dimensional and steady-state Thermal model, One-
imensional transient thermal model, Fully Hybridized model,
nd Three-Dimensional model. The research study in Fathabadi
2020) proposed an improved hybrid PVTEG model. A thermosip-
on heat pipe was used to increase the temperature difference.
n MPPT accuracy of 96% was observed for the proposed model.
he work in Shatar et al. (2018) proposed a hybrid PVTEG system
or agricultural use. The integrated PVTEG provided a 3.4% in-
rease in power when compared to the stand-alone photovoltaic
ystem.
The efficiency of the hybrid PVTEG system is usually low

ecause both PV and TEG are not highly efficient devices (At-
ivissimo et al., 2015; Gu et al., 2019; Li et al., 2018, 2014).
he productivity of the hybrid PVTEG system can be increased
y using new materials but it is a very cumbersome process. A
imple way to boost PVTEG efficiency is to choose an appropri-
te MPPT technique. Under varying environmental conditions, a
roper MPPT technique can increase efficiency by 15%. Therefore,
n efficient MPPT algorithm is compulsory for optimizing the
verall performance of the hybrid PVTEG system.
Various MPPT techniques have been explored for both TEG

nd PV systems (Zhang et al., 2022; Yang et al., 2019, 2020). The
PPT methods can be split up into three categories namely math-
ased, intelligent-based (Podder et al., 2019), and learning-based
ethods (Yap et al., 2020). The conventional math-based MPPT
ethods include: perturb and observe (Kamran et al., 2020), Hill
limbing (Jately et al., 2021), ripple correlation control (Sahu
nd Dey, 2021) and fractional open circuit (Hmidet et al., 2021).
hese methods give acceptable results under uniform irradia-
ion conditions. However, when the PV array operates under
arying irradiance conditions, the traditional methods failed to
rack the global maximum. Various swarm intelligence-based
PPT control techniques like Improved Moth Flame (IMFO) opti-
ization algorithm (Khan et al., 2022), Equilibrium optimization
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algorithm (Mansoor et al., 2021), Barnacles Mating optimiza-
tion algorithm (Tariq et al., 2021), and Salp Swarm optimiza-
tion algorithm (Dagal et al., 2022) are available in the literature.
These meta-heuristic algorithms provide model-free optimiza-
tion and have strong global search capabilities but are usually
time-consuming, produce power oscillations and the search is
random.

To overcome the weaknesses of the above-mentioned MPPT
methods, machine learning-based methods can be used. Artifi-
cial neural networks (ANN) can efficiently handle the non-linear
behavior of the hybrid PVTEG module and the uncertainty of
the weather. Also, the non-linear curve fitting ability and the
rapid function approximation of the neural networks make them
a good choice for tracking GMPP (Fathi and Parian, 2021). How-
ever, the training of parameters such as weight & biases of the
ANN is a highly complex non-convex optimization problem. Usu-
ally, deterministic methods are used for neural network training.
However, these gradient-based methods have slow convergence
speed, are highly dependent on initial solutions, and may trap in
local minima resulting in low prediction accuracy (Khan et al.,
2022; Han et al., 2019). Therefore, to overcome the shortcomings
of the traditional training methods, in this work a metaheuristic
Snake Optimizer (SO) (Hashim and Hussien, 2022) algorithm is
used to determine the weight and biases of a multilayer per-
ceptron neural network (MLPNN) which improves the prediction
accuracy of the MLPNN. Table 1 summarizes literature review of
various data driven MPPT techniques.

The literature review clearly shows that research on data
driven control for a PV system is well established but there is
very limited research on data driven MPPT for hybrid PVTEG
systems. Most of the available research work on hybrid PVTEG
system implement conventional or metaheuristic based MPPT
techniques. Therefore, in this research we explored hybrid PVTEG
system as an efficient energy source under varying environmental
conditions by implementing the machine learning-based MPPT
control.

1.1. Contributions and organization:

This paper explores the evolutionary Neural Network based
MPPT control technique for the hybrid PVTEG systems, which
uses a snake optimizer (SO) algorithm to train the neural net-
work. The input dataset consists of 4 features while the output
data consists of a single feature. The input features include hot
junction temperature (T h), cold side temperature (T c ), irradi-
ance (G), and temperature (T ) while reference voltage (VMpp)
and current (IMpp) are the output features. MLPNN is trained
using these input features to predict the reference voltage. This
predicted voltage is given to the PID controller which generates
duty cycle for the operation of the boost converter. The tuning
of the PID controller requires careful handling as it might result
in overshoots and static errors (Mahfoud et al., 2021). Therefore,
PID gains are tuned using the SO algorithm, which enhances the
robustness of the control system. Use of the SOPID controller with
the SOANN algorithm results in a simple, accurate and precise
MPPT controller under varying environmental conditions (see
Fig. 1).

The worthy contributions of this paper are:

• A hybrid PVTEG system is explored as an efficient en-
ergy source under varying environmental conditions by
implementing the machine learning-based MPPT control.

• Snake optimizer optimally tuned weight and biases of the
MLPNN offline, which not only provides fast real-time GM
tracking but also improves the MPPT efficiency.
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Table 1
Literature review.
Reference Technique Summary

Kalogerakis et al. (2020) Q-Learning based method for
Global Maximum Power Point
Tracking (GMPPT)

This research work uses a novel GMPPT method which implements
machine learning algorithm. This method does not rely on the structure of
PV modules or the operating characteristics of PV modules. The response
time of this method is lesser than the traditional algorithms when
subjected to random partial shading conditions. The time taken for
tracking global MPPT is reduced by 80 to 98% when Q-Learning based
GMPPT algorithm is applied.

Mukherjee et al. (2020) Coarse Tree based Regression
Model with and without MPPT
Controller

In this work, forecasting of power generation from photovoltaic system is
done by utilizing machine learning algorithm. Different models like Coarse
Tree based Regression Model and Rational Quadratic Gaussian Process
regression are used with and without MPPT controller for forecasting. It
was observed that without MPPT controller, Coarse Tree model had the
best RMSE value of 167.5 and with MPPT controller, Rational Quadratic
Gaussian model had the best RMSE value of 162.8.

Padmavathi et al. (2021) Regression Controller based
MPPT

This method uses Regression Controller based MPPT in order to counter
the fact that traditional methods used to change the duty cycle for MPPT
like Perturb and Observe (P&O) and Particle Swarm Optimization (PSO) are
greatly affected by partial shading and sudden increase in solar irradiation.
The simulation and hardware results showed that for the case of strong
shading, Regression controller has the best efficiency (99.78%) as compared
to PSO (96.32%) and P&O (95.27%).

Phan et al. (2020) Deep Reinforcement Learning
based MPPT

This work uses two Deep Reinforcement Learning methods like the deep Q
Network (DQN) and Deep Deterministic Policy Grading (DDPG) for tracking
MPP in PV systems and compares its performance with traditional
methods like Perturb and Observe (P&O). It was observed that not only the
tracking speed of proposed methods is better but these methods can also
track MPP under partial shading conditions.

Chou et al. (2019) Reinforcement Learning based
MPPT

In this paper, two reinforcement learning based methods namely Q Table
MPPT and Q Network MPPT are used for MPPT tracking of photovoltaic
systems. The outcomes of these techniques are compared to conventional
Perturb and Observe (P&O) based MPPT. The results clearly indicate that
the reinforcement learning based methods track MPP in almost 5 s as
compared to P&O method which takes about 9 s for the experimental
setup.

Zafar et al. (2022) Feed-forward neural
network-based Flow Direction
Algorithm

In this work, Feed-forward neural network-based Flow Direction Algorithm
was used to harness energy from the thermoelectric generation system.
The performance of the proposed Flow Direction Algorithm was compared
with particle swarm optimization (PSO), Barnacle mating optimization
(BMO) and grey wolf optimization (GWO). The applied algorithm showed
superior performance and achieved an efficiency of 99.89%.

Iskandar et al. (2021) Q-Learning based with FLC Hybrid Type-2 Fuzzy Logic Control with Q-Learning is used for MPPT of PV
system under several irradiance conditions in a hybrid frame work

Gao et al. (2023) Improved Q-learning Divide and Conquer Q-Learning (DCQL) algorithm based Photovoltaic (PV)
array reconfiguration scheme for alleviating the partial shading influence
• PID gains are tuned using the SO algorithm, which en-
hances the robustness of the control system. The proposed
SOPID controller gives a fast transient response with no
voltage oscillation.

• A novel data driven based fault detection algorithm for the
hybrid PVTEG system is proposed, which do not require
any temperature or irradiance sensors reducing cost of the
system.

This paper consists of 5 sections. The PV and TEG modules are
presented in Section 2. The explored MPPT algorithm is described
in Section 3. Section 4 presents simulation results along with the
statistical analysis. Finally, Section 5 concludes the paper with
remarks.

2. Hybrid PVTEG system

2.1. PV modeling

The double diode model (DDM) of a PV cell is illustrated in
Fig. 2. The major components of a double diode model are a
3606
current source, as PV cell basically serves as a current supplying
device, two anti-parallel diodes and two resistances namely Rsh
and Rse. The output current can be defined as:

i = ip − id1

(
e

V+iRse
α1VT1 − 1

)
− id2

(
e

V+iRse
α2VT2 − 1

)
−

V + iRse

Rsh
(1)

id=(iSC−STC + ki∆T )

/⎛⎝e

[
VOC−STC+kv∆T

α1+α2
ρ ∆VT

]
−1
⎞⎠ (2)

ip=
(
ip−STC + kiL (T − TSTC )

) G
GSTC

(3)

where i is the output current and the terminal voltage of the
photovoltaic cell is represented by V , ip is the current produced
by the PV cell due to irradiance G, GN is the irradiance at STC
whereas id1 and id2 are the values of current at which the diode
1 and 2 saturate respectively. VT1 and VT2 are representing the
values of thermal voltage constants of diodes respectively. ki and
kv are short circuit current and open circuit voltage constants
respectively. The DDM can be a single PV cell, module or ar-
ray depending upon the quantity of PV cells linked in series
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Fig. 1. SOANN based MPPT controller for hybrid PVTEG system.
Fig. 2. Double diode model.
Table 2
PV panel (ASEC-310G6M) characteristics.
Electrical parameters Values

Rated power 310.03 W
MPP voltage 35.76 V
MPP current 8.67 A
Short circuit current 9.05 A
Cells in series 72
Open circuit voltage 44.97 V
Dimension (mm) 1956 × 989 × 45

configuration ms and parallel configuration mp respectively (see
able 2).

=mpip − mpid1

(
e

V+
ms
mp iRse

α1msVT1 − 1

)
− mpis

(
e

V+
ms
mp iRse

α2msVT2 − 1

)

−

V +
ms
mp

iRse

ms
mp

Rsh
(4)
S
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2.2. TEG modeling

The thermoelectric generation building block consists of ther-
mocouples which are connected in series configuration. The main
objective of the thermoelectric generator is to convert thermal
energy to electrical energy on the basis of Seebeck effect i.e.; the
temperature difference at the junctions between two different
metals results in a voltage. The electrical equivalent of a ther-
moelectric generator consists of a voltage source with its internal
resistance. If the difference in temperature between the hot and
cold junctions is constant, the open circuit voltage of a particular
module is given as follows:

VTEG = sp−n ∆T = sp−n (Th − Tc) (5)

Where, VTEG is the open circuit voltage, sp−n is the Seebeck
co-efficient and ∆T is the variation in temperature between the
hot junction Th and the cold junction Tc . The Seebeck co-efficient
depends upon the type of the material used for TEG. The Seebeck
co-efficient can be determined as follows:

sp−n = nt (sp − sn) (6)

where nt are the number of thermocouples, sp and sn indicate the
eebeck co-efficient for p-type and n-type thermocouples. The
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w

Fig. 3. TEG system.
Table 3
TEG system parameters (TE-MOD-22W7V-56).
Electrical parameters Values

Resistance 1.1 �

Seebeck coefficient 125 µV/K
Th (◦C) 300
Parallel strings 4
Tc (◦C) 30

voltage, current and output power of thermoelectric generator
can be mathematically expressed as

VTEG =

((
sp − sn

)
× (Th − Tc) × rL
rL − rTEM

)
× nt (7)

I =

(
sp − sn

)
× (Th − Tc)

rL − rTEM
(8)

PTEG = rL ×

(
sp − sn

)2
× (Th − Tc)2

(rL − rTEM )2
× nt (9)

where rL represents the load resistance in Ω and rTEM represents
the internal resistance of TEG (see Fig. 3 and Table 3).

2.3. PVTEG system

The integration of PV with TEG results in a highly efficient
hybrid PVTEG system. The power transformation efficiency of
a hybrid PVTEG system is directly proportional to the power
produced by PV and TEG systems and can be mathematically
represented as follows (N, 2021).

ηpv−teg =
PP + PTEG
G × AP

(10)

here PP = PV panel output power, PTEG = TEG output power and
the area of the PV panel is represented by AP (see Fig. 4).

3. Proposed data driven MPPT controller

This research explores the evolutionary Neural Network based
maximum power point tracking (MPPT) control technique for
the hybrid PVTEG systems, which uses a snake optimizer (SO)
algorithm to train the neural network. The MLPNN is trained
3608
using temperature of the hot junction (Th), temperature of the
cold junction (Tc), irradiance (G), and PV temperature (T ) to pre-
dict the reference voltage (VMPP ) for maximum power extraction
from the hybrid PVTEG system. The predicted Vref is given to
the PID controller which generates duty cycle. Furthermore, PID
gains are tuned using the SO algorithm, which enhances the
robustness of the control system. The SOPID controller with the
SOANN algorithm results in a simple, accurate and precise MPPT
controller under varying environmental conditions.

3.1. Snake Optimizer (SO)

Snake Optimization algorithm is inspired by the mating be-
havior of the snakes which depends upon availability of food
and optimum temperature. Just like most of the optimization
processes, snake optimization consists of two stages named ex-
ploration phase and exploitation phases, the exploration phase
involves the exploration of search area while the exploitation
phase deals with achieving the global optimum. In exploration
the algorithm deals with the searching of food if it is not available
nearby and eating the available food if the temperature is low i.e.;
not suitable for mating while the exploitation phase deals with
the mating process.

3.1.1. Mathematical model and algorithm:
The snake optimizer starts by generating a random population

to start the optimization process. The population at the start of
the process can be generated using the equation given below:

xi = xmin + r × (xmax − xmin) (11)

where xi is the position occupied by the ith individual, r is a
randomly generated number between 0 and 1 while xmin and
xmax are the lower bound and upper bound of the optimization
problem.

The population is divided into two categories, males and fe-
males and the number of males and females are equal i.e.; 50%.
To split the population, we use the two equations given below:

nm ≈ n/2 (12)

nf = n − nm (13)

where n represents the total number of snakes, nm represents
the number of male snakes and n represents the number of
f
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Fig. 4. Hybrid PVTEG system.
m

female snakes. In order to find the best individual, each group is
evaluated and as a result the best male fbest,m, best female fbest,f
and the best food position ffood are obtained. The temperature can
be described using the equation shown below:

Tem = e
(−t)
T (14)

Here, t represents the value of current iteration of temperature
hile T represents the maximum number of iterations allowed.
he food quantity can be calculated utilizing the mathematical
quation given below:

= c1∗ e
(t−T )

T (15)

here, c1 is a constant with a value of 0.5.

3.1.2. Exploration phase
The exploration phase involves searching of food, if the food

quantity is smaller than a specified threshold, the snakes start
looking for food by choosing a location randomly and then update
their position accordingly. The exploration phase can be modeled
as follow:

xi,m (t + 1) = xrand,m (t) ± c2 × Am × ( (xmax − xmin) × rand+

xmin) (16)

In the above equation, xi,m represents the ith position of male
snake, xr and,m indicates the location of the random male, rand is a
andomly chosen number between 0 and 1, c2 is a constant equal
o 0.05 while Am is the ability of the male snake to search for food
nd it can be calculated by the following relationship:

m = e
(−frand,m)

fi,m (17)

Here frand,m is the fitness of the xrand,m and fi,m is the fitness of
ndividual at the ith location in the group consisting of male only.

The exploration phase for the female snakes can be modeled
imilar to the male snakes as follows:

i,f = xrand,f (t + 1) ± c2 × Af × ((xmax − xmin) × rand+ xmin) (18)

In this equation, xi,f indicates the ith female position, xrand,f
represents the location of the random female and Af is the capa-
bility of the female to search for food and it can be computed by
the following relationship:

Af = e
(−frand,f )

fi,f (19)

here frand,f is the fitness of xrand,f and fi,f is the fitness of the
ndividual.

.1.3. Exploitation phase
The exploitation phase deals with the mating process and

actors effecting it. If the quantity of food is greater than the
hreshold and the temperature is also greater than threshold
3609
i.e.; 0.6, meaning the temperature is hot, then the only option
available to the snakes will be moving towards the food. This
option can be modeled mathematically as follows:

xi,j (t + 1) = xfood ± c3 × Tem × rand × (xfood − xi,j (t)) (20)

here, xi,j is the location of any individual, which can either be
male or female, xfood is the location of the best individual mem-
bers of the group while c3 is a constant whose value equals to
2.

If the temperature is colder i.e.; lower than threshold value of
0.6, then the snakes will be either in fight mode or mating mode.
The fighting mode will involve two fights, there will be a fight by
each male to find the best female and conversely each female to
find the best male.

xi,m (t + 1) = xi,m (t) ± c3 × FM × rand × (xbest,f − xi,m (t)) (21)

In the above equation, xi,m represents ith male position, xbest,f
indicates the position of best individual in the female division and
FM represents the fighting ability of the male agent.

xi,f (t + 1) = xi,f (t + 1) ± c3 × FF × rand× (xbest,m − xi,f (t)) (22)

where xi,f represents the ith female position, xbest,m indicates
the position of the best individual in the male division and FF
represents the fighting capability of the female agent.

We can compute the value of FM and FF as follows:

FM = e
(−fbest,f )

fi (23)

FF = e
(−fbest,m)

fi (24)

here, fbest,f indicates the fitness of the best agent of the female
group while fbest,m represents the best agent in the male group
and fi is the fitness agent.

In the mating mode, start of the mating process depends upon
the optimal conditions and there is a probability that the female
will lay eggs that will hatch into new snakes.

xi,m (t + 1) = xi,m (t) ± c3 × Mm × rand × (Q × xi,f (t) − xi,m (t))
(25)

xi,f (t + 1) = xi,m (t) ± c3 × Mf × rand × (Q × xi,m (t) − xi,f (t))
(26)

The above two equations represent the mode of mating for
ale and female snakes, xi,f is the location of the ith individual

in the female group and xi,m is the location of the ith individual
in the male group, Mm and Mf represent the mating ability of the
male and female respectively. We can collect the values of Mm
and Mf as follows:

Mm = e
(−fi,f )
fi,m (27)

M = e
(−fi,m)
fi,f (28)
f
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Fig. 5. Multilayer Perceptron Neural Network.
If the egg hatches, we select the worst male and female and
eplace them.

worst,m = xmin + rand × (xmax − xmin) (29)

xworst,f = xmin + rand × (xmax − xmin) (30)

Here, xworst,m and xworst,f are the worst individual.

.2. Trained multilayer perceptron neural network and SO tuned PID
ontroller

.2.1. Design of MLPNN
Artificial neural network is a machine learning technique,

hich computes the models based on input datasets (Naqa and
urphy, 2015). Like human brains, the artificial neural net-
ork can understand and adjust to new and changing surround-

ngs (Jain et al., 1996). Multi-Layer Perceptron Neural Network
MLPNN) is one of the most widely used neural network models.
eurons (or nodes) are the basic elements of the MLPNN. In
LPNN neurons in a specific layer are associated with neurons
vailable in the previous layer and each connection has a unique
trength or weight as shown in Fig. 5. The neurons available in
he input layer provide input to the neurons in the hidden layer
nd the neurons in the hidden layer act as input signals to the
eurons in the output layer. Neurons existing within the same
ayer are not connected. The activation signal for the pth hidden
ayer neuron is:

p =

m∑
i=1

wpi.xi + bp (31)

here xi = input vector, bp = bias vector and wpi = weight
matrix. If m=input neurons and n = hidden layer neurons wpi can
e written as:

pi =

⎡⎢⎢⎣
w11 w12 · · · w1m
w21 w22 · · · w2m
...

...
. . .

...

wp1 wp2 · · · wnm

⎤⎥⎥⎦ (32)

On the basis of the chosen activation function, the decision
ignal for the pth hidden layer neuron is:

d = ϕ(a ) (33)
p p
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For the sigmoid activation function, decision signal can be
calculated as:

dp =
1

1 + e−ap
(34)

Based on these decision signal, output can be estimated by
using following equation

yt =

n∑
j=1

vtj.dp + bt (35)

Where vtp = output weight matrix and bt = output bias vector.
The purpose of training neural network is to find best weight

and biases to minimize the cost function. The minimization of
the cost function defines the prediction accuracy. In this study,
normalized mean squared error described by Eq. (27) is used as
cost function.

NRMSE =
1

T̃

√ 1
N

N∑
i=1

(Ti − Pi)2 (36)

where Ti and pi are the true and predicted values. T̃ represents
the mean of true value. N represents total number of the data
samples.

3.2.2. Training of MLPNN using SO
Training of parameters such as weights & biases for MLPNN is

a highly complex non-convex optimization problem. Usually, de-
terministic methods are used for neural network training. How-
ever, these gradient-based methods suffer from slow convergence
speed, are highly dependent on initial solutions, and may trap
in local minima resulting in low prediction accuracy. Therefore,
to overcome shortcomings of the traditional training methods, in
this work metaheuristic based SO algorithm is used to determine
weight and biases which not only solves most of the above-
mentioned problems but also improves the prediction accuracy of
the MLPNN. Fig. 6 shows the flowchart for the proposed SOANN
algorithm.

The first step is dataset preparation. The dataset contains
four input features and one output feature. The input features
include hot side temperature, cold side temperature, irradiance,
and temperature while the output feature is the reference voltage
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Fig. 6. Flowchart of SOANN.
Fig. 7. Environmental conditions for case 1.

VMPP ). In this research, approximately 75% of the input data is
sed to train the NN and the remaining 25% is used for valida-
ion purposes. After dataset preparation, the neural network is
nitialized with a single hidden layer. There are no fixed methods
o calculate the hidden layer neurons as it is a random process.
n this work, we determine the number of neurons using the
ormula (Faris et al., 2018).

= 2 × I + 1 (37)

here I represents the number of input features and s shows the
umber of selected neurons.
After initialization, the neural network is loaded with the

raining data, and the SO algorithm is initialized with random
eights, biases, population size, and stopping criteria. We select a
opulation size of 50 and the algorithm stops after 50 iterations.
n each iteration, weights and biases are updated using the SO
lgorithm and are evaluated based on the cost function. After 50
terations, the best weights and biases are used to train the neural
etwork. This whole process repeats 20 times. After 20 runs, the
rained model with the best testing accuracy is used for the MPPT
f the hybrid PVTEG system.
3611
3.2.3. PID controller structure
The output of PID controller in time domain can be calculated

by using Eq. (38)

u (t) = Kpe (t) + Ki

∫
e(t)dt + Kd

de
dt

(38)

where Kp = proportional gain, Ki = integral gain, Kd = derivative
gain. In our case error e(t) could be defined as

e (t) = reference voltage − measured voltage (39)

PID controller compares the feedback measured voltage with
the reference voltage predicted by ANN and produces an error
signal. Based on this error the output signal (i.e., duty cycle of
boost converter) is altered to make the steady state zero.

3.2.4. Snake optimizer based PID controller (SOPID)
PID controller, if not properly tuned gives undesirable over-

shoots, oscillations, and static errors in the nonlinear systems.
Therefore, PID gains are tuned using the SO algorithm, which
enhances the robustness of the control system. The tuning of the
PID controller is modeled as a minimization problem with the
root mean square (RMSE) as the cost function

RMSE =

√∑n
t=1

(
Vref − Vmea

)2
n

(40)

where Vref is the reference voltage predicted by SOANN against
the operating condition and Vmeas is the output voltage at the
terminal of Hybrid PVTEG system. n represents the total number
of samples. In the first iteration weights are randomly initialized.
In each iteration, gains are updated using the SO algorithm and
are evaluated based on the cost function. After 50 iterations the
best values of kp, ki and kd are selected as PID gains. The tuned
PID gains are kp = 0.016, ki = 4, and kd = 0. This optimally tuned
SOPID controller adjusts the operating points of hybrid PVTEG
to extract optimal power by setting the duty cycle of the boost
converter.
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Fig. 8. Power tracking and duty cycle for Case I.
Table 4
Simulation parameters.
Component Value

TEG Module rated power 22 W
PV Module rated power 310.03 W
L 1.39 mH
Cin 18 uF
Cout 520 uF
Switching Frequency (f) 50 kHz
Load 40 �

4. Case studies and results:

In this section, five real-world scenarios are Simulated on a
ATLAB/Simulink software considering a simulation time of 4 s.
he results of the SOANN are compared with RSANN, GWOANN,
nd PSOANN. The first three cases determine the SOANN MPPT
ontroller’s ability to adjust to the varying atmospheric conditions
ike hot junction temperature gradients for TEG, cold junction
emperature gradients for TEG, and irradiance variations for PV.
3612
Case 4 modeled the real-world scenario in which all the input
conditions (Th, Tc , T , G) vary at the same time while case 5 deals
with the load variations. A novel fault detection mechanism is
presented and tested in case 6. The simulation parameters are
presented in Table 4.

4.1. Case I: Hot junction temperature (Th) variations

In Case 1, the performance of the SOANN-based MPPT tech-
nique for a hybrid PVTEG system is evaluated by varying the
hot side temperature (Th) while keeping the other three inputs
namely temperature of the cold junction, irradiation, and PV
temperature constant. The variations occurred after every second.
The variation in the input conditions of the hybrid PVTEG system
is indicated in Fig. 7. Under given input conditions, the global
maximum average power that can be extracted from a hybrid
PVTEG system is 919.42 W. The average power tracked by various
optimization techniques under varying input conditions is used to
evaluate the effectiveness of the various MPPT techniques.

A quantitative summary of the results for case 1 is presented
in Table 5. Fig. 8 indicates the variation in output power and
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Table 5
Summary of results case I.
Technique Avg predicted

voltage
Avg reference
voltage

Avg tracked
power

Avg reference
power

Energy
(W s)

Efficiency
(%)

SOANN 66.43 66.38 918.97 919.42 3676 99.95
RSANN 68.18 66.38 918.125 919.42 3671 99.85
GWOANN 63.15 66.38 914.225 919.42 3656 99.43
PSOANN 64.82 66.38 913.275 919.42 3653 99.33
Fig. 9. (a) Extracted energy for case 1 (b) Reference and predicted voltage comparison.
uty cycle for variation in Th. The results shows that the average
ower tracked by RSANN, PSOANN, GWOANN, and SOANN is
18.125 W, 913.725 W, 914.225, and 918.97 W respectively. The
fficiency of the proposed SOANN is 99.95% which is higher than
9.85% of RSANN, 99.43% of GWOANN, and 99.33% of PSOANN.
he comparison between the predicted voltage and the terminal
oltage is another indicator to gauge the efficiency of the applied
lgorithms. The average voltage predicted by SOANN is 66.43
which is closest to the actual average voltage of 66.38 V.

n comparison, the voltage predicted by RSANN, GWOANN, and
SOANN is 68.18 V, 63.15 V, and 64.82 V respectively. The voltage
ariations are presented in Fig. 9(b). The energy extracted by
arious algorithms is presented in Fig. 9(a). The pictorial and
uantitative results demonstrate the superior performance of the
roposed SOANN algorithm.

.2. Case II: Cold junction temperature (Tc) variations

Case II deals with the variation of cold junction temperature Tc
hile the temperature of the hot junction Th, irradiation (G), and
mbient temperature (T ) are kept constant. For every second, the
emperature of the cold junction is varied as indicated in Fig. 10.
nder these given input conditions, the maximum average power
hat can be extracted is 1091.42 W.

Fig. 11 indicates the output power and duty cycle for dif-
erent optimization techniques. From the figure, it can be seen
hat the average power tracked by SOANN is 1090.71 W fol-
owed by RSANN 1087.14 W, GWOANN 1074.61 W, and PSOANN
084.72 W. The efficiency of SOANN is 99.93% which is far supe-
ior to all other optimization algorithms as indicated in Table 6.
hen the predicted voltage is compared with the actual voltage

.e.; 74.25 V, it can be observed that the voltage predicted by
3613
Fig. 10. Environmental conditions for case 1I.

SOANN is closest to the actual voltage i.e.; 74.43 V while the
voltage predicted by RSANN is 76.37 V, GWOANN is 80.01 V and
PSOANN is 77.52 V (see Fig. 12).

4.3. Case III: Irradiance (G) variations

Case III explores the variation in irradiance while keeping
all other parameters constant. The variation of irradiance w.r.t
time is shown in Fig. 13. The value of the average maximum
power is 1042.95 W. The performance of the prosed system can
be evaluated by comparing average power output of different
algorithms. The Fig. 14 indicates the variation in output power
and duty cycle for variation in irradiation for case III.

The average power tracked by SOANN is 1043.25 W, RSANN
1041.45 W, GWOANN 1036.32 W while PSOANN produces
1030.35 W. The efficiency of SOANN is 99.95% which is better
than other algorithms. The reference voltage prediction of SOANN
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Fig. 11. Power tracking and duty cycle for Case II.
Table 6
Summary of results case II.
Technique Avg predicted

voltage
Avg reference
voltage

Avg tracked
power

Avg reference
power

Energy
(W s)

Efficiency
(%)

SOANN 74.43 74.25 1090.71 1091.42 4361 99.93
RSANN 76.37 74.25 1087.14 1091.42 4347 99.60
GWOANN 80.01 74.25 1074.61 1091.42 4297 98.45
PSOANN 77.52 74.25 1084.72 1091.42 4347 99.38
Table 7
Summary of results case III.
Technique Avg predicted

voltage
Avg reference
voltage

Avg tracked
power

Avg reference
power

Energy
(W s)

Efficiency
(%)

SOANN 72.99 72.24 1042.52 1042.95 4173 99.95
RSANN 74.18 72.24 1041.45 1042.95 4164 99.85
GWOANN 75.84 72.24 1036.32 1042.95 4144 99.36
PSOANN 76.97 72.24 1030.35 1042.95 4120 98.79
v
s

is 72.99 V which is closest to the actual reference voltage of
72.24 V. The comparison with other algorithms is summarized
in Table 7. The energy extracted by the application of SOANN is
4173 W s which is maximum as compared to 4164 W s by RSANN,
4144 W s by GWOANN, and 4120 W s by PSOANN (see Fig. 15)
 T

3614
4.4. Case IV: All input parameters (Th, Tc , G, T )

In case IV, all parameters including solar temperature (T) are
aried and the effects of these variations are observed. The Fig. 16
hows variations of different parameters with respect to time (see
able 8).
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Table 8
Summary of results case IV.
Technique Avg predicted

voltage
Avg reference
voltage

Avg tracked
power

Avg reference
power

Energy
(W s)

Efficiency
(%)

SOANN 61.44 61.42 830.9 831.85 3322 99.88
RSANN 57.03 61.42 824.71 831.85 3299 99.14
GWOANN 54.47 61.42 819.51 831.85 3279 98.51
PSOANN 56.82 61.42 827.72 831.85 3310 99.50
Fig. 12. (a) Extracted energy for case II (b) Reference and predicted voltage comparison.
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Fig. 13. Environmental conditions for case 1II.

The value of the average maximum power is 831.85 W. Power
nd duty cycle variations are shown in Fig. 17. The efficiency of
OANN is 99.88% which is better than 99.14% of RSANN, 98.51% of
WOANN and 99.50% of PSOANN. The reference voltage predic-
ion of SOANN is 61.44 V which is closest to the actual reference
oltage of 61.42 V as compared to 57.03 V by RSANN, 54.47 V by
WOANN and 56.82 V by PSOANN. The comparison is shown in
ig. 18(b).
From the results it can be inferred that the SOANN gives

xcellent results in terms of efficiency, energy extraction and
oltage prediction. From Fig. 18(a) it can be seen that the energy
xtracted by SOANN is 3322 W s which is maximum as compared
o 3299 W s by RSANN, 3279 W s by GWOANN and 3310 W s by
SOANN.

.5. Case V: Step changes in the load

This case is modeled to simulate real-world household or
ommercial load variations. In real-world applications, the load
an change instantly in a random manner. This behavior is em-
lated in this case by considering step changes in the load after
 c

3615
every second. The load is changed from 15 to 10 and then to 5
after every second considering all the input conditions i.e., the
temperature of the hot junction, the temperature of the cold
junction, irradiation, and PV temperature constant. PID controller
if not properly tuned may result in voltage oscillations and large
overshoots at the step transitions of the load. Voltage oscillations
of up to 2.8 V can be observed for the hybrid PVTEG system,
which decreases the robustness of the control system. However,
the proposed SOPID controller reduces voltage fluctuations and
increases the safety of the equipment. Fig. 19 demonstrates the
transient performance of the SOPID controller for load variations.
From the figure, it can be seen that there are no oscillations
and the tracking time is very small. The results demonstrate
the effective transient and steady-state behavior of the SOPID
controller for the dynamic variations in the load.

4.6. Case VI: Fault detection algorithm

In this case, a novel mechanism is proposed to detect abnor-
mal or faulty behavior of the hybrid PVTEG system. To achieve
maximum power, the SOANN algorithm provides two values, one
is VMPP and the other is IMPP If output voltage VT is equal to VMPP ,
t means the system has reached its optimum point. In case of
ault in the hybrid PVTEG system, the value of output current IT
ill be somewhat lower than IMPP and this difference will serve
s a basis of fault detection in our system. The flowchart of the
roposed fault detection mechanism is presented in Fig. 20 (see
able 9).
At the start, our system detects the output voltage of the

ybrid PVTEG system after regular intervals of time namely VT1,
T2 etc. The difference of these measured values is calculated
ontinuously. The difference equal to zero is an indication that
he system is stabilized at maximum power. The SOANN provides
he optimum values of voltage and current predicted by neural
etwork namely VMPP and IMPP . After the system has stabilized
.e., ∆VT = 0, the output voltage of the system VT is then

ompared to the voltage predicted by neural network VMPP . If the
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Fig. 14. Power tracking and duty cycle for Case III.

Fig. 15. (a) Extracted energy for case III (b) Reference and predicted voltage comparison.

3616
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Fig. 16. Environmental conditions for case 4.
Fig. 17. Power tracking and duty cycle for Case IV.
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ifference of these two values is greater than a threshold level,
t is a clear indication that the maximum power point tracking
MPPT) action requires some corrective measures. On the con-
rary, if the difference is smaller than the predefined threshold,
he system output voltage is stable as well as optimum. For the
etection of fault, the value of output current IT is compared with
MPP predicted by the neural network and the difference between
he two values is calculated. If the difference is greater than
 i

3617
redefined threshold, a fault is present in our system otherwise
he system is stable and working perfectly. The fault detection
echanism greatly depends upon the efficiency of the neural
etwork as well as the efficiency of the boost converter connected
etween the system and load. As the efficiency can never be 100%,
herefore we select a threshold value of 0.5 V for voltage and 0.1
for current. A comparison of fault current and IMPP is presented

n Fig. 21 (see Figs. 22, 24 and 25).
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Fig. 18. (a) Extracted energy for case IV (b) Reference and predicted voltage comparison.
Fig. 19. SOPID controller for load variations.
Fig. 20. Proposed Fault detection algorithm.
3618
Fig. 21. Fault current and reference current.

Fig. 22. Fault voltage and reference current.
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Fig. 23. PV-TEG emulator setup connections.
Fig. 24. PV-TEG emulator Hardware Setup.
.7. PV-TEG emulator setup:

Realistic system model TEG acts as a voltage source with
ariable internal resistance (Baños et al., 2011) by operating a
rogrammable DC voltage source as a fixed voltage-controlled
oltage source the physical parameters of the TEG system can
e mitigated, where the controlling voltage acts as a variation
n operating temperature for the emulated TEG system using
rogrammable DC sources with variable resistance. The objective
s to mitigate the dynamic behavior of an equivalent TEG circuit
here a very high temperature can be varied with precision to
est the effective MPPT tracking by the proposed controller. In
ractice, the high temperatures can be achieved in the lab up to
50 ◦Cbut it causes safety issues and non-uniformity alongside

relatively slower transition times. The model parameters shown
in Table 10 are modeled using a datasheet provided by the manu-
facturer. The tolerance level provided by the manufacturer is 10%.
In this study the tolerance of parameters i.e. Voc and Isc are kept
well within 2% of the MPP value.

Principle: As argued in the TEG system modeling section

and established through a literature survey the thermoelectric

3619
generator can be modeled as a voltage source and the internal re-
sistance. Voltage source shows the required open-circuit voltage
(VOC ) and internal resistance (RTEG) can be modeled as a variable
resistor. So, the voltage source in series with the resistance is the
TEG emulator design and tested (Zafar et al., 2021). The model is
verified through comprehensive analysis.

DC sweep analysis verification: The DC sweep analysis for
the proposed layout of the equivalent TEG model shows a result
similar to the proposed by the SAS emulator method in Pervez
et al. (2021). The results confirm the behavior of the TEG is
adequately emulated by this circuit. The I–V and P–V electrical
characteristics performance is given by Fig. 2 as follows showing
effective electrical response as of TEG module HZ-20HV at ∆T =

200 ◦C. SOA-FNN achieves higher power 32.2969 W as compared
to GWO-FNN at 31.0094 and PSO-FNN is achieving the least
power magnitude at 26.0928 W while SOA-FNN is quicker to
track the power well within 160 ms as compared t o the PSO-FNN
and GWO-FNN. The hardware emulator setup comparison further
validates the findings of the results (see Figs. 26 and 27).
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Table 9
Summary of results case VI.
Fault in module Current difference

(A)
Fault detected/Not detected

PV module-1 0.14 Detected
PV module-2 0.18 Detected
PV module-3 0.15 Detected
PV module-4 0.16 Detected
TEG module-1 0.42 Detected
TEG module-2 0.53 Detected
TEG module-3 0.33 Detected
TEG module-4 0.69 Detected
w

Table 10
Specifications of components used for experimental validation.
Components Values

Oscilloscope Tektronix TDS-3052B
Inductor(L) 1 mH
MOSFET IRF730
Output Capacitor (Cin) 1000 uF
Input Capacitor (Cout) 100 uF
Micro-Controller ATmega 2560/328
Diode PHY 10SQ04
Load, (RL) 5,10 �, 300 W
Switching Frequency (f) 61 kHz
Voltage Sensor B25 Voltage Sensor
Current Sensor module ACS172
DC source 2 PS305 Dual channel
DC source 1 MS305-D Dual channel

Fig. 25. Comparison of the experimental results.

.8. Performance analysis

Metaheuristics are a type of optimization algorithm that com-
ines both exploration and exploitation. Exploration is the pro-
ess of discovering areas of the search space that may contain
etter solutions than the current solution. Exploitation is the
rocess of exploiting the best solution found so far and refining
t to find better solutions. To avoid local minima trapping, it is
mportant to ensure that the search space is properly explored,
3620
the search parameters are tuned correctly, and the search proce-
dure is suitable for the problem. The flag direction operator in the
SO algorithm increases the global search capabilities. Due to this
operator SO algorithm efficient explores the entire search space
and avoid local minima trapping. Furthermore, Snake optimizer
is easy to implement with low computational complexity and has
only one tuning parameter i.e., threshold. Also, Snake Optimizer
has the ability to adapt to changes in the problem it is trying
to optimize, making it well suited for dynamic or non-stationary
environments. Therefore, SOANN based MPPT controller provides
very fast real-time global maxima (GM) tracking with negligible
power oscillations. The SOANN controller gives the fastest re-
sponse with an average efficiency of 99.928%. The tracking time is
less than 5 ms and there are negligible oscillations around global
maxima which result in low power loss and high energy output.
The energy extraction by SOANN is 101.04% of the PSOANN for a
simulation time of 4s. Furthermore, to enhance the robustness of
MPPT control, PID gains are tuned using the SO algorithm. Tuning
of PID gain by SO algorithm results in 55% faster response in
comparison to the Ziegler Nicholas based PID tuning techniques.
Use of the snake optimizer based PID (SOPID) controller with the
snake optimizer based neural network (SOANN) results in stable,
accurate and fast MPPT under varying environmental conditions.

Table 11 gives summary of results for all the considered test
cases. Due to fast and stable response SOANN controller achieves
99.92% efficiency and extract highest average power and energy
in comparison to RSANN, GWOANN and PSOANN. The minimiza-
tion of the fitness function is another performance indicator.
SOANN gives lowest cost function value of 0.134 in comparison
to 0.643 by PSO.

4.9. Statistical analysis

Several statistical indicators such as the coefficient of deter-
mination (R2), root mean square error (RMSE) and relative error
(RE) can be used to evaluate the prediction proficiency of vari-
ous algorithms. These indicators are described by the following
equations:

RMSE =

√∑n
t=1 (yt − pt)2

n
(41)

RE =

n∑
t=1

⏐⏐⏐⏐yt − pt
yt

⏐⏐⏐⏐ (42)

R2
= 1 −

∑n
t=1 (yt − pt)2∑n
t=1

(
yt − yj

)2 (43)

here yt and pt represent true and predicted values. yt = mean
value and n = number of samples.

The higher values of RE and RMSE mean poor prediction
accuracy while higher value of R2 indicate better accuracy. Table 7
describes these indicators. SOANN is ranked first in terms of accu-
racy as it gives the highest value of R2 and lowest values of RMSE
and RE. RSANN, GWOANN and PSOANN are ranked second, third
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Fig. 26. Simulation setup.
Fig. 27. Fitness function converge curve for various ANN models.
Table 11
Summary of results for considered test cases.
Technique Avg tracked power Avg energy extraction Avg efficiency Cost function

SOANN 970.77 3883.05 99.927 0.134555
RSANN 964.72 3844.12 99.43 0.170783
GWOANN 961.165 3844.66 98.93 0.301262
PSOANN 963.92 3857.71 99.25 0.64328
Table 12
Statistical indicators for various training models.
Technique Training Testing Cost function

RE RMSE R2 RE RMSE R2

PSOANN 0.0959 32.5220 0.8278 0.2318 107.9345 0.5259 0.64328
RSANN 0.0157 11.8303 0.9835 0.0886 55.6747 0.9081 0.170783
GWOANN 0.0170 13.6071 0.9657 0.1065 61.2748 0.8890 0.301262
SOANN 0.0049 8.3396 0.9918 0.0642 32.7880 0.9665 0.134555
and fourth in terms of prediction performance. The minimization
of the fitness function is another indicator of prediction accu-
racy. Fig. 23 shows the fitness function convergence for various
training models. Table 12 shows the qualitative comparison.

5. Conclusion

Modern energy system is moving towards the era of hybrid
ower generation and control. To combat global warming and
ake the renewable cost effective the power density and ef-

iciency of existing systems has to be improvised. One of the
ost cost-effective models is combination of PV and TEG that
omplement drawbacks of each other increasing operational effi-
iency of hybrid models. In this research, machine learning based
OANN MPPT controller is explored to extract maximum power
3621
from the hybrid PVTEG system and the results are compared with
GWOANN, RSANN and PSOANN controllers. Simulink environ-
ment is used to study, model and analyze SOANN based Hybrid
PVTEG system. The SOANN controller gives the fastest response
with an average efficiency of 99.928%. The tracking time is less
than 5 ms and there are negligible oscillations around global
maxima which result in low power loss and high energy output.
The energy extraction by SOANN is 101.04% of the PSOANN for a
simulation time of 4s. Also, an intelligent and cost-effective fault
detection mechanism is proposed which can efficiently detect
faults in any module of the hybrid PVTEG system. Simulations,
quantitative and statistical results confirms that the SOANN based
controller gives fast-tracking time, high efficiency, high stability
and very accurate fast detection capability.
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