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A B S T R A C T   

This paper presents an innovative approach for enhancing power output forecasting of Photovoltaic (PV) power 
plants in dynamic environmental conditions using a Hybrid Deep Learning Model (DLM). The hybrid DLM 
employs a synergy of Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) network, and 
Bidirectional LSTM (Bi-LSTM), effectively capturing spatial and temporal dependencies within weather data 
crucial for accurate predictions. To optimize the DLM’s performance efficiently, a unique Kepler Optimization 
Algorithm (KOA) is introduced for hyperparameter tuning, drawing inspiration from Kepler’s laws of planetary 
motion. By leveraging KOA, the DLM attains optimal hyperparameter configurations, elevating power output 
prediction precision. Additionally, this study integrates Transductive Transfer Learning (TTL) with the deep 
learning models to enhance resource efficiency. By leveraging knowledge gained from previously learned tasks, 
TTL enables the DLM to improve its forecasting capabilities while minimizing resource utilization. Datasets 
encompassing environmental parameters and PV plant-generated power across diverse sites are employed for 
DLM training and testing. Three hybrid models, amalgamating KOA, CNN, LSTM, and Bi-LSTM techniques, are 
introduced and evaluated. Comparative assessment of these models across distinct PV sites yields insightful 
observations. Performance evaluation, focused on short-term PV power forecasting, underscores the hybrid 
DLM’s superiority over individual CNN and LSTM models. This hybrid approach achieves remarkable accuracy 
and resilience in predicting power output under varying weather conditions, showcasing its potential for efficient 
PV power plant management.   

1. Introduction 

The modern world is laid on the foundation of electrical energy. All 
the human activities revolve around technologies being run by elec
tricity. From the comfort of our home to national security, from food 
security to health, from economic growth to human development, all 
these aspects are directly linked with the availability of Electrical En
ergy. Conventionally, humans have exploited natural resources to 
generate electricity for decades. However, the exponential demand of 
electricity has resulted in dilapidation of non-renewable resources and 
also severely damaged the environment [1]. Global warming is a serious 
threat converting into reality which is threatening life of millions of 
humans in coming decades. Therefore, it is very important for re
searchers to provide solutions which can reverse the process of envi
ronmental degradation along with sustainably supporting the growth of 

technology driven global development. 
One of the promising solutions which can contribute in decreasing 

the dependency on fossil fuel based CES is generating electricity from 
renewable energy sources like Photovoltaics (PV) and Wind Energy. Last 
two decades have seen an enormous integration of RES with conven
tional electricity networks throughout the world [2]. Due to large scale 
integration of RES in power grids, the power utility companies are facing 
the problem of optimal power dispatch due to the intermittent behavior 
of RES [3]. 

The variations in RES power being injected into a power grid are 
directly linked with the changing environmental conditions which are 
beyond human control. On the contrary, CES power can be exactly 
controlled and predicted through out its operation. This property of CES 
enables utilities to economically dispatch power into the grid. Economic 
dispatch involves considering the variable costs of each CES power plant 
along with the anticipated energy market prices. A CES power plant will 
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only operate if it’s cost of power production is lower than the revenue 
generated through sales of that power. Economic dispatch involves 
creating a schedule that determines the allocation of available capacity 
for the CES power plants which is based on predetermined knowledge of 
how much power output can be attained from a certain CES power plant 

at a certain time. Thus the changing load demand can be managed 
efficiently through fixed inputs exactly meeting the load demand [4]. 
Unfortunately, the intermittent behavior of RES makes this scheduling 
very complex as the input to power grids are now dynamic depending on 
environmental conditions and not directly dependant on load demand 
[5]. Therefore, Smart Grids having both CES and RES require accurate 
short term and long term power forecasting to efficiently balance the 
dynamic input to dynamic load for sustainable operation. Power Grids of 
the future will be power systems having dynamic input and they have to 
produce dynamic outputs. Power forecasting and Load forecasting are 
the techniques that are generally used in the literature [6]. Load fore
casting deals with predicting expected load demand in both the near and 
far future. Power forecasting is the technique used to predict how much 
power can be generated in the future. To meet the load demand, we must 
have clear identification of power forecast for the future so that we are 
able to balance the demand and supply of power at the time of power 
dispatch. In case of a deficiency of local RES, we might have to sup
plement the load demand by CES, or purchase RES based electricity from 
other producers in the region [7]. Fig. 1 shows a layout of a dynamic 
power system with varying input and output conditions. Due to 
dependence on environmental conditions making forecasting complex 
and tedious, intelligent power dispatch techniques are required to 
maintain the equilibrium between dynamic supply and demand. 

The nonlinear behavior in the environmental conditions makes the 
power forecasting a real challenge [8]. For photovoltaics, clouds, rain 
storms, wind gusts, partial and full shading, snow fall etc. are the few 
conditions that can cause drastic fall in the output of the PV plants. 
Similarly, for Wind Turbines, the variability in the wind speeds can be a 
real challenge to correctly forecast the power output that will be 
available from the RES. The power forecasting can be further divided 
into long-duration, medium-duration and short-duration [9]. Long- 
duration forecasting covers a time period between a single month up 
to a year ahead forecasting. This allows long-term decision making for 
the planning and resource management in any power system containing 
a considerable amount of RES penetration. The second type of 

Nomenclature 

RES Renewable Energy Sources 
CNN Convolutional Neural Network 
Bi-LSTM Bi-Directional Long Short Term Memory 
KOA Kepler Optimisation Algorithm 
NMSE Normalized Mean Square Error 
MAE Mean Absolute Error 
RE Relative Error 
TKCL Transductive Transfer Learning assisted Kepler 

Optimization Algorithm-based Convolutional Neural 
Network with Long Short Term Memory Network 

SCADA Supervisory Control and Data Acquisition 
CES Conventional Energy Sources 
LSTM Long Short Term Memory 
DLM Deep Learning Model 
KCBL Kepler Optimization Algorithm-based Convolutional 

Neural Network with Bi-Long Short Term Memory 
Network 

RMSE Root Mean Square Error 
R2 R Square 
TKCBL Transductive Transfer Learning based KCBL 
TKL Transductive Transfer Learning assisted Kepler 

Optimization Algorithm-based Long Short Term 
Memory Network 

GCT Granger Causality Test  

Fig. 1. Dynamic power sytems with changing input and output power (a) Conventional Fossil fuel based power plants which can produce constant power as per 
requirement (b) Intermittent output from the RES (c) Intelligent power dispatch control system with Machine Learning based power forecasting (d) Dynamic load as 
per consumer requirement. 
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forecasting is middle-duration forecasting which covers a week ahead 
forecasting up to one month which effectively assist in economic 
dispatch support for power system planning and optimization. Short- 
duration forecasting covers a week or less than a week power fore
casting and plays a critical role in meeting the dynamic load demand in a 
power system. Day ahead forecasting and hourly forecasting are sub
categories of short-duration forecasting which plays a critical role in 
economic dispatch, real-time adjustments, and catering for dynamic 
loads in power systems having significant RES penetration [10]. 

It is the short-duration forecasting which plays a fundamental role in 
electricity markets and is being used for balancing the dynamic supply 
and dynamic demand in real time. In this research work we are focusing 
on short-duration PV power forecasting starting from day ahead to final 
hour of operation. The power forecasting models are generally divided 
into physical [11] and statistical-methods [12]. Physical methods utilize 
mathematical models to forecast the weather conditions. This technique 
performs well for stable weather conditions but the accuracy of power 
forecasting is greatly reduced when considering variable weather sce
narios [13]. The second technique uses statistical methods based on 
machine learning techniques. These techniques use the relationship 
between weather patterns with the power output of RES plant devel
oped. These correlations are formed during the learning process of 
forecasting models which are developed using historical data from the 
RES power plants. Datasets of historical data play a key role in the ac
curacy of forecasting through machine learning models. Few commonly 
used statistical methods include gray wolf optimization technique [14], 
Markov Chain [15], Fuzzy Logic [16], Regression and Auto-Regression 
techniques [17].These methods show satisfactory performance if they 
are optimized continuously and are trained on relatively large and good 
quality datasets. However, with the introduction of non-linearity and 
complex datasets, the accuracy of these machine learning techniques are 
severely affected. 

1.1. Contributions and Paper Organization 

In this paper, Hybrid DLM is proposed for output power estimation of 
PV sites under dynamic environmental conditions. The proposed 

structure of the Hybrid DLM based PV Power forecasting is elaborated in 
Fig. 2. First, the data is collected from different PV sites which includes 
the environmental parameters and the generated power of the PV plant. 
After that, the data pre-processing is done which gives us useful input 
features i.e. global irradiance, total irradiance, air temperature, air 
pressure, and relative humidity. After processing and normalization, the 
dataset is divided into training and testing parts. The proposed hybrid 
DLM is trained on the training dataset and to check the effectiveness of 
the model, the trained model is then tested on testing data. The short- 
term PV power forecasting performance is then verified by carrying 
out statistical analysis. 

The contributions of this paper are listed below: 

• Comprehensive Analysis of Hybrid Models: A detailed examina
tion of three distinct hybrid deep learning models designed for PV 
power forecasting is presented. These models combine CNN, LSTM 
and Bi-LSTM architectures to effectively capture spatial and tempo
ral dependencies in weather data. 
• Innovative Kepler Optimization Algorithm (KOA) Implementa

tion: A novel approach is introduced, known as Kepler Optimization 
Algorithm-based Convolutional Neural Network with Bi-Long Short 
Term Memory Network (KCBL). This architecture harnesses the 
power of KOA for efficient hyperparameter tuning, resulting in 
improved forecasting accuracy. 
• Efficient Hyperparameter Tuning using KOA: The paper demon

strates the successful utilization of the Kepler Optimization Algo
rithm for precise tuning of hyperparameters in the CNN-Bi-LSTM 
model. This approach significantly enhances the efficiency of PV 
power forecasting.  
• Comparative Analysis of Models: A comprehensive comparison is 

conducted between various models, including KOA Algorithm-based 
CNN-LSTM (KOA-C-LSTM) and KOA Algorithm-based LSTM Model 
(KOA-LSTM). This analysis provides insights into the strengths and 
weaknesses of each model in the context of PV power forecasting. 
• Integration of Transductive Transfer Learning: The paper in

troduces the application of Transductive Transfer Learning, a 
method that leverages knowledge gained from prior tasks to enhance 

Fig. 2. Proposed Flow for Deep Learning-based PV Power Forecasting Model.  
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the forecasting capabilities of the models, while maintaining 
resource efficiency.  
• Multi-Site Dataset and Testing: The proposed hybrid model is 

trained and rigorously tested on datasets from eight different PV 
sites, collected under diverse environmental conditions. This testing 
ensures the robustness and versatility of the model’s forecasting 
performance.  
• Evaluation Metrics for Comparison: To facilitate comparison, the 

paper presents evaluation metrics such as NMSE, RMSE, MAE, R2, 
and RE. These metrics provide a comprehensive assessment of the 
models’ performance.  
• Efficient Power Forecasting: Through empirical analysis, it is 

demonstrated that the proposed TKCBL model consistently excels in 
efficiently forecasting PV power across datasets from different PV 
sites. 

2. Industry 5.0 and Power Forecasting Applications 

The modern world and global economy finds its foundation in In
dustrial Revolutions that have occurred in last two centuries [18]. The 
first industrial revolution started around 1780 with the advent of steam 
engine and its utilization in industrial activities; the second industrial 
revolution is marked with the inclusion of assembly lines and mass 
output in factories; and the third industrial revolution utilized the 
concept of automation and electronic based control which led to the 
development of controlled industrial processes and development of 
software industry and IT to assist in production. The Fourth Industrial 
Revolution (Industry 4.0) is marked with integration of Internet of 
Things (IoT) and the cloud computing to develop cyber-physical net
works with real-time connectivity, and control over various industrial 
and productive activities. Unfortunately, from the beginning of First 
Industrial Revolution, conservation of environment has never been the 
priority of global industrialists [19]. 

Due to rapid and large scale industrialization, our planet earth has 
suffered immensely due to environmental emissions. The greenhouse 
gas emissions due to electrical power systems hold a significant share in 
the global warming which is severely effecting the planet. Sadly, rela
tively recently launched Industry 4.0, despite backed with latest de
velopments in technology, has not been centered around environmental 
protection and dealing with the harmful affects of global warming. 
Keeping this thing in mind, within a relatively shorter period after the 
launch of Industry 4.0, the concept of Industry 5.0 is launched to cope up 
with the challenges being faced by the whole humanity due to global 
warming and environmental deterioration. The Industry 5.0 is primarily 
a human-centric strategy with three fundamental pillars: people- 
oriented, environment-oriented, and resilience oriented [20,21]. 
Backed up with the power of Artificial Intelligence and Machine 
learning, it is expected that the existing electrical power systems which 
are the major contributor in greenhouse gas emissions and global 
warming will be converted into more green and sustainable energy 
systems. Machine learning based Power Forecasting can play a signifi
cant role in achieving this target. 

Electrical power grid which is clean, sustainable, and smart is ex
pected to be the most critical human advancement of 21st century which 
can ensure a technology driven future. This intelligent electrical power 
grid is termed as Smart Grid [22,23]. One of the fundamental principles 
which is at the core of Smart Grid is about being consumer centered 
instead of producer centered. This principle matches with first basic 
pillar of Industry 5.0 that is people-centered. Conventional power grids 
are based on the principle of passive consumption from the consumer 
with no say in how the power is being generated. The prosumers (pro
ducers and consumers) of the Smart Grid will be more involved in the 
power being generated and consumed. The electricity users will be billed 
according to the dirty or clean energy consumption through the concept 
of real time and dynamic pricing [24]. [25] The utility can implement 
this concept when it can accurately forecast the power and confidently 

convey it to the users beforehand. To enable the consumers to have this 
flexibility, efficient power forecasting algorithms and techniques using 
Artificial Intelligence and Machine learning are imperative to be inte
grated into Smart Grid. The proposed research work addresses the issue 
of correct power forecasting and is thus linked with Smart Grid and 
implementation of Industry 5.0. 

Industry 5.0 standards include the concept of resilience. Resilience in 
Smart Grid aims at ensuring uninterruptible and high quality power 
despite any kind of environmental, physical, and cyber threats which 
can disrupt the power systems [26,27]. With increasing penetration of 
RES in power grids all over the world, the power flow is getting more 
and more dependent on short term to long term environmental condi
tions. The variations in environmental condition will change the output 
of RES and can severely affect the balance of supply and demand in the 
power system. Correct and efficient power forecasting will allow power 
grid operators to foresee and tackle the power imbalances and provide 
resiliency to the grid under these conditions. The power forecasting 
technique presented in this research work aims at directly contributing 
in increasing the resiliency of the power systems. 

Industry 5.0 also targets to bring the attention back towards our 
Environment and repercussions of global warming. Industry 5.0 aims at 
improving the global environment and decrease the negative impacts of 
the existing power grid by enabling maximum integration of RES with 
the power grid and less and less dependence on fossil-fuel based power 
generation units. The only way a considerable amount of conventional 
power plants can be replaced with RES is through intelligent, accurate 
and quick power forecasting and predicting the power output for dy
namic dispatch. The proposed research work presents a novel and 
unique Machine Learning based power forecasting technique to predict 
power output of large scale RES integration in the grid. Fig. 3 summa
rizes the basic concept of how Power Forecasting in Smart Grids will be 
implementing the concepts of Industry 5.0 in electricity power systems. 

3. PV Power Datasets from Field Sites 

3.1. Dataset Acquisiton 

The availability of diverse and real-world data from the field stations 
is imperative for the correct training of machine learning algorithms 
which can then by effectively used in real-world applications. Solar 
stations often employ a SCADA system, which integrates hardware and 
software components to monitor, control, and analyze various processes 
[28]. These processes include data visualization, alarm functions, fault 
detection, and emergency offloading which are also remotely monitored 
[29]. This study utilizes datasets collected from eight solar stations using 
SCADA systems and are in public domain [30]. Table 1 provides the 
basic information about the solar sites including the nominal output 
capacity, the PV Panels used and total number of panels available. The 
selected solar stations had capacities ranging from 30 MW to 130 MW. 
The data were accessed through a remote monitoring platform and 
downloaded as.xlsx files, with authorized access granted by the 
respective owners. 

The selected solar station sites were located in North, Central, and 
Northwest China to ensure the representation of diverse climate zones 
and geographic locations. These sites encompassed various terrains, 
including deserts, mountains, and plains. It is important to note that all 
original datasets were obtained from the Chinese State Grid, a third- 
party organization, and the data collection process was beyond the 
control of the authors. The variation of different features and output 
power is shown in Fig. 4. 

3.2. Data Pre-Processing 

The available datasets are not ideal and contains missing data as 
expected from real world datasets. These irregularities can be due to 
various factors such as sensor malfunction and communication issues. 
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The missing data was indicated by null, NA, 0.001, and − 0.99 within the 
datasets. To ensure the accuracy and reliability of our proposed model, 
handling missing data and minimizing the impact of noise and outliers is 
essential. 

Two different data pre-processing techniques were employed to 
address these issues, the linear interpolation imputation method and the 
K-nearest neighbors (KNN) imputation method [31]. The first approach 
involves estimating the missing values by calculating the average of the 
neighboring data points. We preprocessed the raw PV sites data sets 
mentioned in Table 1. Similarly, we applied the K-nearest neighbors 
(KNN) imputation technique to process the same raw three PV sites data 
sets mentioned above. KNN imputation fills in missing values based on 
the values of the K most similar neighboring data points. In this study, K 
with value of 5 is used to improve the accuracy of preprocessing. The 
performance of both approaches is discussed in the result section by 
utilizing both processed sets of data to train and test our proposed 
forecasting models. 

3.3. Dataset Normalization 

After preprocessing, Normalization is a crucial step in preparing data 
for DLM, including PV power forecasting DLMs. It ensures that input 

features are standardized and have a consistent range, which aids in 
model convergence, stability, and overall performance. One popular 
normalization technique is min–max normalization, which scales the 
data to a specific range, typically between 0 and 1 [32]. 

Min–max normalization transforms each data point xi in a feature 
vector X to a normalized value xi′ using the following equations: 

x′
i =

xi − min(X)
max(X) − min(X)

(1)  

Here, min(X) represents the minimum value in the feature vector, and 
max(X) denotes the maximum value. By subtracting the minimum value 
and dividing by the range of the data, min–max normalization brings the 
feature values within the desired range i.e., [0–1]. This normalization 
technique is particularly useful when the range of the input data is 
known or when comparing values across different features. Min–max 
normalization ensures that all features have equal importance during 
model training and prevents any single feature from dominating the 
learning process. 

3.4. Correlation Analysis 

To enhance the forecasting performance of our data-driven model, it 
is crucial to select appropriate input feature variables. To achieve this, 
we conducted correlation analysis among the available data sets [33]. 
The datasets considered six weather forecast features, which include 
Total Solar Irradiance (TSI), Direct Normal Irradiance (DNI), Global 
Horizontal Irradiance (GHI), Air Temperature (AT), Pressure, and 
Relative Humidity (RH). Among these features, total solar irradiance 
exhibited the highest Pearson correlation coefficient (PCC) with the 
power output, as shown in Fig. 5 and 6. This finding indicates a strong 
relationship between the total solar irradiance and the generated power, 
highlighting the importance of this variable for accurate forecasting. 
The statistical analysis is also performed on the datasets and the Min, 
Max, Mean and standard deviation values of the features and output is 
presented in Table 2. 

Fig. 3. The three fundamental attributes of Industry 5.0 and its relationship with power forecasting application.  

Table 1 
Technical Specs of the PV systems used in all PV sites.  

Solar Site 
Name 

Nominal Cap. 
(MW) 

PV Panel Model No. of 
Panels 

PV Site 1 50 NA NA 
PV Site 2 130 NA NA 
PV Site 3 30 CS6U-325P 27995 
PV Site 4 130 NA NA 
PV Site 5 110 JNMP60-255 36828 
PV Site 6 35 SUN2000-50KTL-C 703 
PV Site 7 30 NA 60 
PV Site 8 30 CS6K-260P-PG/CS6K- 

255P-PG 
5986/ 
25383  
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3.5. Objective Function and Evaluation Criteria’s 

The suggested approach is trained and validated using an objective 
function (fitness function). Lesser values of the utility function illustrate 
how closely the model’s data projections match reality. As a result, the 
fitness function determines the prediction accuracy.The MSE is the most 
used fitness function [34] and can be expressed as follows: 

F.F =
1
n

∑n

i=1
(Ti − Pi)

2 (2)  

where Ti,Pi, and n represent the true values, anticipated values, and the 
tally of samples, respectively. 

The evaluation of alternative models also employs a number of error 
indexes. NMSE may be used to verify the degree of dispersion of the 
results as shown in Eq. 3. Forecast deviation indicators MAE and RMSE 
are provided in the equations Eq. 4 and 5, respectively. The correlation 
between actual and predicted values may also be found using the R2 

value, as indicated in Eq. 6. 

NMSE =

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)2

(3)  

MAE =
1
M
∑M

a=1

⃒
⃒
⃒
⃒
⃒
Ta − Pa

⃒
⃒
⃒
⃒
⃒
× 100% (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − ŷi)

2

√

(5)  

R2 =

∑M

a=1

(

Ta − T
)

(Pa − P)2

∑M

a=1

(

Ta − T
)
∑M

a=1

(

Pa − P
) (6)  

where T is the average value of the true output, and P represents the 
average value of the expected output. 

4. Proposed Technique 

This section elaborates on the power forecasting techniques pre
sented in this research work. A total of three techniques are proposed 
which include a combination of Kepler Optimization Algorithm (KOA) 
for tuning of hyperparameters of DLMs, Convolution Neural Networks 
(CNN) based DLM, and Bi-LSTM which is a type of Recurrent Neural 
Network (RNN). 

4.1. Kepler Optimization Algorithm (KOA) 

The KOA is a novel optimization method inspired by Kepler’s laws of 
planetary motion [35]. It visualizes the search space by considering the 
central star as the focal point. In the Keplerian-inspired Optimization 
Algorithm (KOA), the objects represent candidate solutions and occupy 
distinct positions relative to the central star at different times. This 
approach enables efficient exploration and exploitation of the search 
space. Fig. 7 provides insights into the relationship between an object’s 
position, mass, attractive force from the central star, and orbital veloc
ity. These factors collectively determine the object’s proximity to the 
best solution, represented by the central star. Additionally, the figure 
illustrates the predominant clockwise rotation of objects, shedding light 
on the evolution of the searcher’s position in a three-dimensional 
context. 

4.1.1. Initialization 
In this particular procedure, a collection of planets, comprising N 

units and referred to as the population size, is dispersed randomly across 
d dimensions. The arrangement of the planets within this space con
forms to the subsequent formula: 

Xj
i = Xj

i,low + rand[0,1] ×
(

Xj
i,up − Xj

i,low

)
,

{
i = 1, 2,…,N.

j = 1, 2,…, d. (7) 

Fig. 4. Few samples from the available datasets from selected solar sites.  
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In this equation, Xj
i represents the ith celestial body functioning as a 

potential solution within the exploration space. N denotes the total 
count of solution candidates available in the exploration space. The 
variable d corresponds to the dimensionality of the specific optimization 
problem. Xj

i,up and Xj
i,low signify the upper and lower limits, respectively, 

for the ith decision variable. Furthermore, rand[0,1] indicates a 
randomly generated number within the range of 0 to 1. In order to 
initialize the orbital eccentricity e for each object indexed by i, Eq. 8 is 
utilized: 

ei = rand[0,1], i = 1,…,N (8)  

where, rand[0,1] represents a randomly generated value within the in
terval [0,1]. Lastly, to initialize the orbital period (T) for each ith object, 
Eq. 9 is employed: 

Ti = |r|, i = 1,…,N (9)  

In this equation, r represents a randomly generated number based on a 
normal distribution. 

4.1.2. Gravitational Force (F) 
The attractive force between the Sun Xs and a planet Xi follows the 

universal law of gravitation, which can be mathematically expressed as: 

Fgi

(
t
)
= ei × μ

(
t
)
×

Ms × mi

R2
i + ε

+ r1 (10)  

where the normalized masses of the central star Xs (represented by M̃s) 
and the planet Xi (represented by m̃i) are taken into account. The vari
ables ∊ (small value) and μ (universal gravitational constant) play 
important roles in the algorithm. The eccentricity of a planet’s orbit, 
denoted as ei, introduces a stochastic element to the KOA method with a 
value ranging between 0 and 1. The term r1 adds variability to the 
gravitational values as a randomly generated value between 0 and 1. 
Lastly, Ri represents the normalized Euclidean distance between Xs and 
Xi in the optimization process. 

Ri
(
t
)
= ‖XS(t) − Xi(t)‖2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑d

j=1

(
XSj
(
t
)
− Xij

(
t
))2

√
√
√
√ . (11)  

The expression | Xs(t) − Xi(t)| denotes the Euclidean distance between 
the dimensions of Xs and Xi. To calculate the mass of the Sun and the 
object i at time t, a straightforward method involves utilizing the fitness 
evaluation, particularly in the context of a minimization problem. This 
can be expressed as follows: 

Fig. 5. Correlation matrix of the first 4 PV sites.  
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Ms = r2
fits(t) − worst(t)

∑N

k=1
(fitk(t) − wwrst(t))

, (12)  

mi =
fiti(t) − worst(t)

∑N

k=1
(fitk(t) − worst(t))

, (13)  

where 

fits
(
t
)
= best

(
t
)
= min

k∈1,2,…,N
fitk
(
t
)
, (14)  

worst
(
t
)
= max

k∈1,2,…,N
fitk
(
t
)
, (15)  

In the given equation, r2 represents a randomly generated number be
tween 0 and 1, serving to introduce divergence in the mass values across 
different planets. The function μ(t) is responsible for exponentially 
decreasing with time (t), thus regulating the search accuracy. It can be 
defined as follows: 

μ
(
t
)
= μ0 × exp

(

− γ
t

Tmax

)

, (16)  

where, the symbol γ represents a constant value, μo denotes an initial 
value, and t and Tmax refer to the current iteration number and the 
maximum number of iterations, respectively. 

4.1.3. Object’s Velocity Calculation 
The velocity of a celestial object is intricately linked to its position 

relative to the central star. When a planet is near the star, its velocity 
increases, and as it moves farther away, its velocity decreases. This 
modulation in velocity is directly influenced by the gravitational force 
exerted by the star. When the object is in close proximity to the star, the 
intensified gravitational pull causes acceleration, resisting a closer 
approach. Conversely, when the object is distant, the weakened influ
ence of the star’s gravity leads to deceleration. Mathematically, these 
relationships are captured by Eq. 17 using the vis-viva equation, 
enabling velocity calculations for objects orbiting the star. The equation 
has two parts: one calculating velocities for planets near the central star, 
considering distance and fostering diverse search strategies in the KOA 
approach; the other focuses on planets far from the star, aiming to 
reduce their velocities compared to the first part. Both parts include a 

Fig. 6. Correlation matrix of the last 4 PV sites.  
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step size to maintain velocity diversity throughout the optimization 
process and overcome potential limitations related to reduced diversity 
and escaping local optima. 

Vi
(
t
)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ℓ×
(

2r4 X→i − X→b

)
+ ℓ̈×

(
X→a − X→b

)
+ (1 − Ri− norm(t))

×F × U→1 × r→5 ×
(

X→i,up − X→i,low

)
, if Ri− norm

(
t
)

⩽0.5

r4 × L ×
(

X→a − X→i

)
+ (1 − Ri− norm(t))

×F × U2 × r→5 ×
(

r3 X→i,up − X→i,low

)
,Else

(17)  

ℓ = U→×M × L (18)  

L =

[

μ
(

t
)

× (MS + mi)

⃒
⃒
⃒
⃒

2
Ri(t) + ε −

1
ai(t) + ε

⃒
⃒
⃒
⃒

]1
2

(19)  

M = (r3 × (1 − r4) + r4 ), (20)  

U→=
{

0 r5
→⩽r6
→

1 Else (21)  

ℓ̈ =
(

1 − U→
)
× M
̅→
× L , (22)  

M
̅→
= (r3 × (1 − r5

→) + r5
→), (23)  

U→1 =

{
0 r5
→⩽r4

1 Else (24)  

U2 =

{
0 r3⩽r4
1 Else (25)  

where, Vi
→ represents the velocity of object i at time t, while Xi refers to 

the object itself. The variables r3 and r4 are random numeric values 

generated within the range of [0, 1]. The vectors r5
→ and r6

→ contain 
random values between 0 and 1. The solutions Xa and Xb are selected 
randomly from the population. The masses of Xs and Xi are denoted as 
Ms and mi, respectively. The term μ(t) represents the universal gravita
tional constant, and ∊ is a small value introduced to avoid division by 
zero errors. The distance Ri(t) corresponds to the distance between the 
best solution Xs and the object Xi at time t. Lastly, ai denotes the semi- 
major axis of the elliptical orbit of object i at time t, which is deter
mined using Kepler’s third law. This can be mathematically expressed as 
follows: 

ai
(
t
)
= r3 ×

[

T2
i ×

μ(t) × (Ms + mi)

4π2

]1
3

(26)  

where the orbital period of object i, denoted as Ti. In this algorithm, the 
semi-major axis of object i elliptical orbit gradually decreases with 
successive generations. This approach aims to guide the solutions to
wards the global best solution. Ri-norm (t) represents the normalized 
Euclidean distance between Xs and Xs at time t. It can be computed as 
follows: 

Ri− norm
(
t
)
=

Ri(t) − min(R(t))
max(R(t)) − min(R(t))

(27)  

When Ri-norm (t) is less than or equal to 0.5, it indicates that the object is 
in close proximity to the Sun. In such cases, the object will increase its 
speed to counteract the strong gravitational force exerted by the Sun and 
avoid drifting towards it. Conversely, if Ri-norm (t) is greater than 0.5, 
the object will slow down its speed. This adjustment helps maintain 
stability and prevents excessive acceleration as the object moves further 
away from the Sun. 

4.1.4. Local Optimum Escaping 
Within the solar system, the majority of objects follow a 

Table 2 
Statistics of the datasets of PV sites.  

PV Site Stats TSI  
(W/m2)

DNI  
(W/m2)

GHI  
(W/m2)

AT (degC) Pressure (hpa) RH (%) Power (MW)

Site 1 Max 1359 980 989 41.2 936.3 - 48.3 
Min 0 0 0 − 18.2 894 - 0 
Mean 266.20 93.25 67.69 13.14 913.36 - 9.66 
Std 367.89 200.77 111.19 14.33 8.74 - 13.70 

Site 2 Max 1041.93 751.75 561.80 40.47 881.67 - 109.36 
Min 0 0 0 − 13.92 844.51 - . 
Mean 169.30 122.15 78.29 13.69 861.03 - 19.56 
Std 248.07 178.98 117.58 12.03 6.147 - 27.93 

Site 3 Max 1117 760 656 1038.60 80.50 - 29.91 
Min 0 0 0 994.80 14.10 - − 0.063 
Mean 198.81 100.72 69.30 1016.01 58.24 - 5.44 
Std 294.57 185.09 101.87 9.323 13.15 - 8.25 

Site 4 Max 1237.40 1010.27 150.96 49.79 1100.31 100 114.68 
Min 0 0 0 − 5.318 928.59 18.50 − 0.440 
Mean 150.15 139.51 20.84 18.71 1011.37 66.24 21.44 
Std 253.43 210.68 31.48 10.27 33.22 17.23 27.11 

Site 5 Max 1467 1962 1208 39.50 1039.40 93.20 99.55 
Min 0 0 0 − 6.6 990.7 10.60 − 0.540 
Mean 164.59 148.10 115.27 17.78 1011.99 71.58 14.51 
Std 273.74 235.13 203.41 9.63 9.94 15.62 23.88 

Site 6 Max 1365.40 1179.80 296.20 36.69 846.07 97.90 31.23 
Min 0 0 0 2.946 389.82 1.413 0 
Mean 243.08 215.14 53.92 20.62 830.67 53.94 6.364 
Std 355.43 337.60 69.358 5.756 4.617 23.85 9.166 

Site 7 Max 1393.73 1095.40 1125.13 30.12 867.10 100.94 29.77 
Min 0 0 0 − 4.263 398.20 1.9533 0 
Mean 206.08 182.99 108.68 13.739 842.93 55.180 5.409 
Std 299.91 306.83 190.63 5.9266 24.397 23.917 8.0422 

Site 8 Max 1214.54 1056.6 157.89 47.630 1037.78 100 29.41 
Min 0 0 0 − 8.040 881.40 11.83 0 
Mean 163.24 142.02 21.221 18.009 956.41 71.70 4.23 
Std 245.39 213.49 31.901 8.5622 30.535 18.50 6.51  
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counterclockwise orbital path around the Sun, accompanied by their 
own rotational motion. However, there exist certain objects that exhibit 
a distinct behavior by orbiting around Sun in a clockwise direction. 
Exploiting this characteristic, the proposed KOA algorithm leverages the 
phenomenon to effectively break free from local optimum regions. This 
is achieved through the utilization of a flag, denoted as F, which 
dynamically alters the search direction. By strategically adjusting the 
search direction, agents within the algorithm gain enhanced capabilities 
to meticulously explore the search space, increasing the likelihood of 
accurate and comprehensive scanning. 

4.1.5. Objects’ Positions Updation 
Fig. 8 provides a visual depiction of the separate exploration and 

exploitation regions surrounding the central star. Now, let us delve into 
the specific particulars of the exploration and exploitation phases. 
During the exploration phase, the algorithm focuses on celestial objects 
that are distant from the central star, thereby improving its capacity to 
thoroughly explore the entire search space. Consistent with the pre
ceding steps, the updated position of each object located far from the 
star is computed using Eq. 28:  

Within the equation, Xi
→ (t + 1) indicates the revised position of object i 

at time (t + 1), Vi
→ (t) represents the velocity required for object i to reach 

its new position, X→S(t) denotes the best position of the central star 
discovered thus far, and Fgi is a flag that guides the search direction. 

4.1.6. Central Star Distance Updation 
The value of the regulating parameter h plays a crucial role in 

determining the balance between exploration and exploitation. When h 
is set to a high value, the emphasis is on the exploration operator, 
leading to an expansion of the orbital separation between the celestial 
objects and the central star. Conversely, when h assumes a low value, the 
exploitation operator takes priority, enabling focused exploration in the 
proximity of the best solution obtained so far, especially when the dis
tance between the central star and the celestial objects is minimal. 

In order to enhance the exploration and exploitation operators within 
the KOA framework, this principle is randomly incorporated into Eq. 28 
during the execution of the algorithm. The aim of this integration is to 
improve the adaptability and effectiveness of the algorithm. Mathemati
cally it can be described as follows:     

In this equation, the adaptive factor h determines the distance between the 
central star (Sun) and the current planet at time t. The value of h is 
computed using the following procedure: 

Fig. 7. Working Principle of KOA algorithm.  

X→i

(
t+ 1

)
= X→i

(
t
)
+F × V→i

(
t
)
+
(
Fgi

(
t
)
+
⃒
⃒r
⃒
⃒
)
× U→×

(
X→S

(
t
)
− X→i

(
t
))

, (28)   

X→i

(

t+ 1

)

= X→i

(

t

)

× U→1+
(

1 − U→1

)
×

(

X→i

(
t
)
+

X→S + X→a

(
t
)

3.0
+ h×

(

X→i

(
t
)
+ X→S +

Xa
̅→
(

t
)

3.0
− X→b

(

t

)))

(29)   
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h =
1

eηr (30)  

where r is a randomly generated number following a normal distribu
tion, and η is a linearly decreasing factor that ranges from 1 to − 2. The 
value of η is determined as follows: 

η = (a2 − 1) × r4+ 1, (31)  

In the equation, the cyclic controlling parameter a2 gradually decreases 
from − 1 to − 2 over the course of T cycles throughout the entire opti
mization process. The value of a2 is determined according to the 
following scheme: 

a2 = − 1 − 1×

⎛

⎜
⎝

t%Tmax
T

Tmax
T

⎞

⎟
⎠ (32)  

4.1.7. Elitism 
This step incorporates an elitist strategy to preserve the best positions 

for both the planets and the Sun. In this approach, the fitness values of 
both previously existing and newly generated particles are compared. 
The particle with the superior accuracy between the two is then selected 
and kept in the population. The procedure can be summarized using Eq. 
33: 

X→i,new
(
t+ 1

)
=

{
X→i

(
t + 1

)
, if f

(
X→i

(
t + 1

))
⩽f
(

X→i

(
t
))

X→i

(
t
)
,Else

(33)  

4.2. Convolutional Neural Network (CNN) 

CNNs, or Convolutional Neural Networks, represent a highly effec
tive class of deep learning models extensively applied in computer 
vision, speech recognition, and natural language processing [36]. They 
excel in handling spatial and temporal data, making them ideal for tasks 
like power forecasting in renewable energy applications using time se
ries data. The fundamental concept of CNNs involves utilizing con
volutional layers to autonomously learn hierarchical representations 
from the input data, which are subsequently passed to fully connected 
layers for classification or regression. The layer structure of a CNN 
network is depicted in Fig. 9. Additionally, a one-dimensional CNN (1D- 
CNN) is a specialized version of the standard CNN architecture tailored 
for processing one-dimensional input data, like time-series data or se
quences of feature vectors [37]. In a 1D-CNN, input data undergoes 
convolution with a set of filters, each sliding over the input in a single 
dimension. Following this, the output of each filter is activated using a 
non-linear function like ReLU, and then downsampled using max pool
ing or average pooling. The resulting feature maps are flattened and 
inputted into one or more fully connected layers for classification or 
regression. 

The mathematical equations for a 1D-CNN can be expressed as fol
lows. Given an input signal x ∈ RT×C, where T is the length of the signal 
and C is the number of channels (i.e., the number of features at each time 
step), we can apply a set of K filters W1,W2,…,WK ∈ RF×C, where F is the 
length of each filter. Each filter is convolved with the input signal using 
valid convolution, resulting in K feature maps z1,z2,…,zK ∈ R(T− F+1)×1: 

zk = f
(

Wk*x
)
= f
(∑

i = 1Cwki*x:i

)
, k = 1, 2,…,K, (34)  

where wki is the i-th column of the k-th filter, x : i is the i-th channel of 
the input signal, and f(⋅) is the activation function. The output of each 
filter is then downsampled using max pooling or average pooling, 

Fig. 9. The structure of an CNN model illustrating different layers.  

Fig. 8. Mapping of Exploration and Exploitation Zones centered on the Central Star.  
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resulting in K pooled feature maps p1,p2,…,pK ∈ RP×1: 

pk = pool(zk) = pool(Wk*x), k = 1, 2,…,K, (35)  

where pool(⋅) is the pooling operation, and P is the length of the pooled 
feature maps. The pooled feature maps are then concatenated into a 
single feature vector h. 

4.3. Bidirectional Long Short-Term Memory Network (Bi-LSTM) 

Bidirectional LSTM (Bi-LSTM) is a variant of LSTM that can capture 
not only past but also future context information by processing the input 
sequence in both forward and backward directions [38]. The Bi-LSTM 
cell is made up of two LSTM layers, one of which processes the input 
sequence in forward direction and the other layer processes in backward 
direction. The final output at each time step is then produced by 
concatenating the outputs of the two LSTM layers. The internal structure 
of Bi-LSTM is shown in Fig. 10. 

The forward LSTM layer computes the hidden state h→t and the 
memory cell c→t by processing the input sequence x1 : t from left to right, 
while the backward LSTM layer computes the hidden state h←

t and the 
memory cell c←t by processing the input sequence xT : t from right to 
left. The final output ht at time step t is obtained by concatenating the 
forward and backward hidden states: 

ht =

[

h→t; h
←

t

]

, (36)  

where [; ] denotes concatenation. 
The computation of the forward and backward LSTM layers follows 

the same equations as in the standard LSTM, but with different weight 
matrices and bias vectors. The equations for the forward LSTM layer are: 

i→t = σ
(

Wxixt+Whi h→t− 1+ bi
)
, (37)  

f→t = σ
(

Wxf xt+Whf h→t − 1+ bf
)
, (38)  

o→t = σ
(

Wxoxt+Who h→t − 1+bo
)
, (39)  

g→t = tanh
(

Wxgxt+Whg h→t − 1+ bg

)
, (40)  

c→t = f→t ⊙ c→t − 1+ i→t ⊙ g→t, (41)  

h→t = o→t ⊙ tanh
(

c→t

)
. (42)  

The equations for the backward LSTM layer in the Bi-LSTM cell are 
similar to those of the forward layer, but with different weight matrices 
and bias vectors: 

i←t = σ
(

Wxixt+Whi h
←

t+1
+ bi

)

, (43)  

f←t = σ
(

Wxf xt+Whf h←t+ 1+ bf
)
, (44)  

o←t = σ
(

Wxoxt+Who h←t+ 1+bo
)
, (45)  

g←t = tanh
(

Wxgxt+Whg h←t+ 1+ bg

)
, (46)  

c←
t
= f←t ⊙ c←t+ 1+ i

←

t
⊙ g←

t
, (47) 

Fig. 10. The structure of an Bi-LSTM cell.  
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h
←

t
= o←

t
⊙tanh

(

c←
t

)

. (48)  

The final output at each time step is obtained by concatenating the 
forward and backward hidden states, ht = [ h

→
t ; h←

t ]. The Bi-LSTM cell 
has been shown to be effective in capturing bidirectional context in
formation and improving the accuracy of tasks such as speech recogni
tion, named entity recognition, and sentiment analysis. 

The Bi-LSTM network has several advantages for time series data. By 
processing the data in both forward and backward directions, it captures 
bidirectional context information and has a better understanding of the 
temporal relationships between the input data. This is particularly useful 
in tasks where the prediction depends on both past and future infor
mation, such as speech recognition or machine translation. Additionally, 
the Bi-LSTM can handle input sequences of variable length, which is a 
common characteristic of time series data. Its ability to model long-term 
dependencies and handle sequential data makes it a popular choice for 
many applications, such as predicting stock prices, detecting anomalies 
in sensor data, and forecasting energy consumption. 

4.4. CNN-Bi-LSTM Model 

The CNN-Bi-LSTM network combines the strengths of both the CNN 

and Bi-LSTM models to process time series data. The CNN layer first 
extracts feature from the input time series data using convolutional fil
ters [39]. The resulting feature maps are then fed into a Bi-LSTM layer to 
capture the temporal dependencies in the data. The proposed CNN-Bi- 
LSTM structure is shown in Fig. 11. 

The mathematical equations for the CNN-Bi-LSTM model can be 
written as follows: 

Let xt denote the input time series data at time step t, and let F be the 
set of filters in the CNN layer. The output feature map ht at time step t 
can be computed as: 

ht =
[
h(1)t ; h(2)t ; …; h(n)t

]
, (49)  

h(k)t = ReLU
(
Fk ∗ xt +bk

)
, (50)  

where ∗ denotes the convolution operation, bk is the bias term for the kth 
filter, and ReLU is the rectified linear unit activation function. 

The output of the CNN layer is then fed into the Bi-LSTM layer, which 
consists of a forward LSTM and a backward LSTM: 

h→t = LSTM
(

ht, h→t − 1
)
, (51)  

Fig. 11. The structure of an CNN-Bi-LSTM Model.  
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h
←

t
= LSTM

(

ht, h←t+ 1
)

, (52)  

where LSTM denotes the LSTM cell, and h→t − 1 and h←t+1 are the 
previous and next hidden states for the forward and backward LSTMs, 
respectively. 

The final output at each time step is obtained by concatenating the 
forward and backward hidden states, ht = [ h

→
t; h←

t ]. The output can then 
be used for various tasks, such as classification or regression. 

CNN-Bi-LSTM networks offer additional benefits over Bi-LSTM net
works for PV power forecasting. The CNN layer can extract spatial fea
tures from weather data, such as cloud coverage and precipitation, 
which are important factors in determining PV power output. By 
incorporating this spatial information, the CNN-Bi-LSTM can improve 
the accuracy of PV power forecasting. Additionally, the CNN layer can 
reduce the dimensionality of the input data, which can lead to faster 
training and inference times. Overall, the CNN-Bi-LSTM has shown 
promising results in PV power forecasting applications, outperforming 
traditional forecasting methods as well as other deep learning models, 
such as multi-layer perceptron (MLP) and CNN models. As such, the 
CNN-Bi-LSTM is a powerful tool for accurately forecasting PV power 
output, which can help improve the efficiency and reliability of PV 
systems. 

4.5. Hyperparameters of CNN-Bi-LSTM Model 

The key hyperparameters to consider when training a CNN-Bi-LSTM 
model include the following: The number and size of convolutional fil
ters in the CNN layers determine what n-gram features are extracted 
from the input text. More convolution layers with varying filter sizes 
allow capturing different granularities of features. The CNN typically 
uses Rectified Linear Unit (ReLU) activation functions after each con
volutional layer to introduce non-linearity. The Bi-LSTM layer has 
hyperparameters like the number of hidden units, number of layers, and 
dropout rate. More hidden units allow capturing greater feature 
complexity. Stacking multiple Bi-LSTM layers enables modeling higher- 
level abstractions of text. Dropout prevents overfitting by randomly 
setting inputs to zero during training. Additional important hyper
parameters are the batch size, learning rate, and number of training 
epochs. Larger batch sizes reduce noise but may cause underfitting. The 
learning rate impacts model convergence. More epochs allow better 
fitting to the training data but increase risk of overfitting. Careful tuning 
of these CNN and Bi-LSTM hyperparameters can improve the model’s 
ability to extract informative text features for effective classification 
while preventing overfitting to the training data. The range of the 
hyperparameters before applying KOA algorithm is shown in Table 3. 

4.6. Proposed KOA based CNN-Bi-LSTM Model 

While CNN-Bi-LSTM networks have shown promising results in PV 
power forecasting, they require careful hyperparameter tuning to ach
ieve optimal performance. The CNN layer, for instance, has a number of 
hyperparameters that need to be tuned, such as filter size, number of 
filters, and stride. Similarly, the Bi-LSTM layer has hyperparameters 
such as the number of LSTM units and the dropout rate. Tuning these 
hyperparameters can be a time-consuming and resource-intensive 

process. Additionally, CNN-Bi-LSTM networks are prone to overfitting, 
especially when trained on small datasets. To address this, regulariza
tion techniques such as dropout and L2 regularization can be applied, 
but these also require additional hyperparameter tuning. Overall, while 
CNN-Bi-LSTM networks offer improved performance over traditional 
forecasting methods, their hyperparameter sensitivity and overfitting 
tendencies can make them challenging to tune and optimize. 

Metaheuristic algorithms have been shown to be effective for 
hyperparameter tuning of CNN-Bi-LSTM networks. Metaheuristic algo
rithms are optimization algorithms that can efficiently search through a 
large hyperparameter space to find the optimal combination of hyper
parameters. Examples of metaheuristic algorithms include Particle 
Swarm Optimization (PSO), Genetic Algorithms (GA), and Simulated 
Annealing (SA). These algorithms can help reduce the time and re
sources required for hyperparameter tuning, while also improving the 
performance of the CNN-Bi-LSTM model. Additionally, some meta
heuristic algorithms, such as the Bayesian optimization algorithm, can 
also incorporate prior knowledge about the hyperparameters to further 
improve the optimization process. Overall, metaheuristic algorithms are 
a promising approach for hyperparameter tuning of CNN-Bi-LSTM net
works and can help to further improve their performance in PV power 
forecasting applications. 

KOA has been recently proposed as a novel approach for the 
hyperparameter tuning of machine learning models, including CNN-Bi- 
LSTM networks used in PV power forecasting. KOA allows for efficient 
exploration and exploitation of the hyperparameter space by utilizing 
the principles of Kepler’s laws of planetary motion as discussed in Sec
tion 4.1. By incorporating the physical laws of motion, KOA provides a 
unique and innovative approach to hyperparameter tuning, which has 
the potential to improve the performance of CNN-Bi-LSTM models in PV 
power forecasting applications. KOA offers a promising approach to the 
hyperparameter tuning of CNN-Bi-LSTM models in PV power fore
casting. The KOA based CNN-Bi-LSTM model is shown in Fig. 12. After 
applying KOA algorithm the optimized hyperparameters are presented 
in Table 4. 

4.7. Transductive Transfer Learning (TTL) 

TTL has gained significant attention among researchers due to its 
ability to enhance performance in a target domain by leveraging 
knowledge learned from a source domain. In TTL, both labeled training 
sets and unlabeled test sets are used to train a model that can predict 
labels for the unlabeled test set. TTL aims to extract useful information 
from the unlabeled instances, bridging the gap between labeled and 
unlabeled data and improving the model’s generalization abilities. 

One key advantage of TTL is its ability to overcome data scarcity 
[40]. In many real-world scenarios, obtaining labeled data is expensive 
or time-consuming. TTL allows models to leverage a larger pool of 
available data by utilizing both labeled and unlabeled instances, 
enhancing their learning capabilities [41]. This approach is particularly 
valuable when labeled data is limited but unlabeled data is abundant. 
The most widely known example of transductive learning is domain 
adaptation [42]. Domain adaptation, a form of transfer learning, focuses 
on adjusting a model initially trained on a source domain to achieve 
competent performance within a target domain. The target domain may 
exhibit divergent data distribution characteristics from the source 
domain. In the context of machine learning, a domain refers to a specific 
distribution of data, characterized by features and patterns. Therefore, 
the current framework of TTL employed in this work is the domain 
adaptation approach as seen in Fig. 13. 

4.8. TTL based KOA-C-Bi-LSTM 

The collective knowledge of multiple agents moving in congruence 
in a predefined search space helps the CNN-Bi-LSTM network find 
optimal parameters. The sequence map to accomplish the task of finding 

Table 3 
Range of Hyperparameters of CNN-Bi-LSTM.  

Variable Parameters Range 

Convolutional Layers Number of Filter [20–29] 
Size of Filter [1–7] 
Number of Hidden Nodes [10–500] 

Learning Configuration Learning Rate [10− 5 − − 10− 1] 
Dropout Rate [0, 0.7]  
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a global best solution in the proposed technique starts with the division 
of the PV sites datasets into training and testing subsets. 

In this research endeavor, we employ a transductive transfer learning 
strategy to tackle the intricate challenge of analyzing photovoltaic (PV) 
datasets. We structure our approach into two distinct sets of tasks: 
source tasks and target tasks. Initially, we curate four source tasks, each 
associated with a unique PV dataset, representing diverse scenarios. The 
datasets are meticulously divided into training and testing subsets, with 
70% allocated for model training, ensuring that our models are rigor
ously evaluated for their generalization capability on the remaining 
30%. Subsequently, we embark on the core of our strategy–transductive 
transfer learning. This methodology leverages the knowledge encapsu
lated within pre-trained Kepler Optimization algoroithm (KOA) based 
Convolutional Bidirectional Long Short-Term Memory (KOA-C-Bi- 
LSTM) models obtained from the source tasks. These models serve as 
invaluable starting points, containing insights into the relationships 
between PV system performance and environmental factors. The trans
duction process unfolds in two stages: model initialization and fine- 
tuning. First, the pre-trained models provide a foundation for the 
target tasks, offering a preliminary understanding of the underlying PV 
systems. Then, during the fine-tuning stage, the models are adapted to 
the intricacies of the target datasets. This step involves updating the 
model’s internal representations and weights while preserving essential 
domain knowledge extracted from the source tasks. By iteratively 
applying this transfer learning mechanism to each target task, we aim to 
enhance the accuracy and predictive power of our TKCBL model for PV 
dataset analysis. The results section will delve into the evaluation of our 
models on the target tasks, where we employ rigorous metrics to assess 
their performance and gauge the effectiveness of knowledge transfer. 

5. Results and Discussion 

5.1. Models Comparison for PV Power Forecasting 

Accurate power forecasting for intelligent power dispatch has a 
fundamental role in the advancement of smart power grids and the 
successful implementation of Industry 5.0 as discussed in Section 1 and 

Fig. 12. Flow Chart of KOA based CNN-Bi-LSTM model.  

Table 4 
Optimized Parameter for CNN Bi-LSTM after COA.  

Variable Parameters Optimized Value 

Convolutional Layers Number of Filter 64 
Size of Filter 3 
Activation ’ReLU’ 

Bi-LSTM Layers Number of Hidden Nodes 100 
Learning Configuration Learning Rate 10− 2 

Dropout Rate 0.5  

Fig. 13. TTL- Flow structure.  
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Section 2. To identify the most effective technique, three models which 
are mainly hybrids of KOA, CNN, LSTM, and Bi-LSTM are proposed in 
this research work. The comparative analysis of different deep learning 
models trained and tested on various PV sites reveals insightful findings. 
Three models were evaluated using multiple evaluation metrics 
including RMSE, MAE, and R-Square. The PV sites power forecasting 
comparison is shown in Fig. 14–17. The statistical analysis of compar
ative techniques is presented in Table 3. (See Fig. 18). 

5.1.1. PV Sites: Comparison 
The comparative analysis of Table 5 and Table 6 provides a 

comprehensive view of the performance disparities between forecasting 
techniques applied to solar photovoltaic (PV) energy generation, with 
Table 5 representing models without Transductive Transfer Learning 
(TTL) and Table 6 depicting models integrated with TTL. This evaluation 
serves as a crucial investigation into the potential benefits of TTL for 
enhancing forecasting precision. 

Table 5 reports the results of PV energy generation forecasting for 
various sites (PV Site 1 to PV Site 4) using three distinct techniques: 
KOA-C-Bi-LSTM, KOA-C-LSTM, and KOA-LSTM. The key performance 
metrics, RMSE, NMSE, MAE, and R-Square, reveal distinct characteris
tics for each combination. The RMSE values in Table 5 range from 
0.0017 to 0.02412, indicating variations in forecasting accuracy. Simi
larly, the NMSE values, spanning from 0.0045 to 0.05401, signify dif
ferences in the models’ ability to capture the variance in the data, with 
higher values indicating greater deviations from actual values. The MAE 
values, ranging from 0.00098 to 0.29404, provide insight into the 
magnitude of forecasting errors for each technique, while the R-Square 
values, varying between 91.189 and 98.954, demonstrate how well the 
models fit the data. 

Conversely, Table 6 presents the results of forecasting PV energy 
generation at different sites (PV Site 5 to PV Site 8) using the same 
techniques, but this time augmented with TTL, denoted as TKCBL, TKCL, 
and TKL. The incorporation of TTL in Table 6 leads to noticeable 

alterations in forecasting accuracy metrics. The RMSE values, now 
ranging from 0.0012 to 0.08467, indicate potential improvements in 
forecasting precision when TTL is applied. The NMSE values, spanning 
from 0.00409 to 0.07364, illustrate the varying degrees to which TTL 
assists in capturing data variance. Meanwhile, the MAE values, varying 
between 0.00107 and 0.56102, showcase adjustments in absolute fore
casting errors attributable to TTL integration. Finally, the R-Square 
values, ranging from 93.103 to 99.657, suggest improved model fit due 
to the introduction of Transductive Transfer Learning. 

In comparative terms, it is evident that the introduction of TTL re
sults in considerable enhancements across all forecasting accuracy 
metrics. TKCBL, TKCL, and TKL consistently outperform their non-TTL 
counterparts from Table 5, showcasing lower RMSE, NMSE, MAE, and 
higher R-Square values. This consistent improvement across multiple 
sites and techniques underscores the pivotal role of TTL in elevating the 
predictive capabilities of forecasting models in the context of PV energy 
generation. 

The findings from Table 6 emphasize the potential advantages of 
incorporating Transductive Transfer Learning into renewable energy 
forecasting practices. These improvements in forecasting accuracy are of 
paramount importance for efficient energy management and grid inte
gration, as they enable more reliable predictions of solar energy gen
eration. Future research avenues could delve into the specific 
mechanisms and data characteristics that make TTL particularly effec
tive in this context, as well as explore its broader applicability in 
enhancing the accuracy of renewable energy forecasting models for 
various renewable sources and geographical locations. 

5.1.2. R-Square Analysis 
Certainly, let’s focus on a detailed comparison between Table 5 and 

Table 6 with respect to the R-Square metric, which measures the 
goodness-of-fit of forecasting models to the data. R-Square values closer 
to 100 indicate a better fit of the model to the data, suggesting higher 
predictive accuracy. 

Fig. 14. Power Forecasting Comparison of PV Site 1 and 2 (a) Forecasting in Summer Days of site 1 (b) Forecasting in Winter Days of site 1 (c) Forecasting in Summer 
Days of site 2 (d) Forecasting in Winter Days of site 2. 
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In Table 5, which represents forecasting results without Transductive 
Transfer Learning (TTL), the R-Square values range from 91.189 to 
98.954 across different datasets (PV Site 1 to PV Site 4) and techniques 
(KOA-C-Bi-LSTM, KOA-C-LSTM, and KOA-LSTM). These values indicate 
that the models in Table 5 exhibit reasonably good fits to the data, with 
some variations depending on the dataset and technique. For instance, 
PV Site 1 achieved a high R-Square value of 98.954 when using the KOA- 
C-Bi-LSTM technique, indicating a strong predictive fit for this specific 
combination. 

In Table 6, which presents forecasting results with the integration of 
Transductive Transfer Learning (TTL), the R-Square values range from 
93.103 to 99.657 for different datasets (PV Site 5 to PV Site 8) and 
techniques (TKCBL, TKCL, and TKL). Notably, all R-Square values in 
Table 6 are consistently higher than those in Table 5. This suggests a 
substantial improvement in model fit and predictive accuracy when TTL 
is employed. For instance, PV Site 8 achieved an exceptionally high R- 
Square value of 99.657 when using the TKCBL technique, indicating an 
exceptionally strong fit of the model to the data. 

Comparatively, the R-Square values in Table 6 clearly demonstrate 
the substantial benefits of incorporating Transductive Transfer Learning 
into the forecasting techniques. These higher R-Square values indicate 
that TTL contributes significantly to enhancing the accuracy of the 
forecasting models. It implies that TTL helps the models better capture 
the underlying patterns and variability in the data, resulting in improved 
predictive power. 

In summary, the comparison of R-Square values between Table 5 and 
Table 6 underscores the substantial positive impact of Transductive 

Transfer Learning on the goodness-of-fit of forecasting models for PV 
energy generation. These findings suggest that TTL can be a valuable 
tool in enhancing the accuracy of renewable energy forecasting, which is 
crucial for efficient energy management and grid integration. Further 
research can explore the specific mechanisms and circumstances under 
which TTL is most effective in improving model fit and predictive 
accuracy. 

5.1.3. Overall Performance 
In an overarching view of Tables 1 and 2, which respectively 

represent forecasting results without and with Transductive Transfer 
Learning (TTL), it becomes evident that the integration of TTL has a 
transformative impact on the overall performance of forecasting models 
for solar photovoltaic (PV) energy generation. While Table 1 showcases 
reasonably good predictive accuracy with R-Square values ranging from 
91.189 to 98.954, Table 2 reveals a marked improvement across the 
board, with R-Square values elevated to a consistently higher range of 
93.103 to 99.657. This outcome underscores the pivotal role of TTL in 
elevating the quality of forecasts, indicating a shift from relatively good 
fits to exceptionally strong fits of the models to the data. These findings 
are particularly significant in the context of renewable energy man
agement, as they imply that TTL can substantially enhance the precision 
and reliability of PV energy generation predictions, a critical factor for 
grid integration and efficient energy utilization. 

The performance comparison between Tables 1 and 2 highlights not 
only the superior predictive capabilities of TTL-enhanced models but 
also the potential implications for practical applications. The increase in 

Fig. 15. Power Forecasting Comparison of PV Site 3 and 4 (a) Forecasting in Summer Days of site 3 (b) Forecasting in Winter Days of site 3 (c) Forecasting in Summer 
Days of site 4 (d) Forecasting in Winter Days of site 4. 
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R-Square values signifies an enhanced ability to capture and account for 
the underlying variability in PV energy generation data, which is vital 
for informed decision-making in renewable energy systems. The findings 
suggest that the utilization of TTL can significantly contribute to 
reducing forecasting errors, optimizing energy production, and ulti
mately advancing the integration of solar energy into the broader energy 
landscape. Future research endeavors may delve deeper into the 
mechanisms through which TTL achieves these improvements and 
explore its adaptability to other renewable energy sources, ultimately 
paving the way for more accurate and efficient renewable energy fore
casting systems. 

5.2. Comparative Analysis with Existing Techniques 

Correct PV power forecasting is very crucial in integration of large 
solar power plants with conventional grids. In recent years, several state- 
of-the-art techniques have been developed for PV site output power 
prediction. The comparative analysis is presented in Table 7. Among 
them, HBO-LSTM [43] achieved an R-Square (R2) value of 0.965 with an 
RMSE of 3.9%. This indicates that the model explains 96.5% of the 
variance in the target variable but has an average prediction error of 
3.9%. Similarly, the ACO-NN technique [44] attained an R-Square value 
of 0.815 and an RMSE of 3.4%, explaining 81.5% of the variance but 
with a slightly lower prediction error. 

In 2022, the VMD-CNN-BiGRU technique [45] emerged with an 
RMSE of 2.8%, yet the R-Square value was not provided, making it 
challenging to assess the model’s ability to explain the variance. 

Furthermore, the DSN technique [46] achieved an RMSE of 2.9%, but 
the R-Square value was again not reported, limiting a comprehensive 
analysis of its performance. 

In this context, our proposed KOA-C-Bi-LSTM technique, introduced 
in 2023, showcases remarkable advancements in PV site data prediction. 
With an R-Square value of 0.993 and an RMSE of 0.31%, the proposed 
model not only outperforms the previously published techniques but 
also demonstrates exceptional explanatory power and significantly 
lower prediction errors. The KOA-C-Bi-LSTM technique exhibits an 
outstanding ability to explain 99.48% of the variance in the target 
variable, indicating a high level of accuracy and precision in the 
predictions. 

The performance comparison clearly establishes the superiority of 
the KOA-C-Bi-LSTM technique in PV site data prediction. Its excep
tionally high R-Square value and impressively low RMSE highlight the 
advancements made compared to the state-of-the-art techniques. Your 
proposed model achieves a near-perfect explanatory power, capturing 
almost all the variance in the target variable, while maintaining an 
astoundingly low average prediction error of only 0.27%. These results 
demonstrate the efficacy and innovation of the KOA-C-Bi-LSTM tech
nique in improving the accuracy and reliability of PV site data pre
dictions, making it a promising choice for future research and practical 
applications in the field. 

5.3. Granger Causality Test (GCT) 

A statistical method called the Granger causality test is used to 

Fig. 16. Power Forecasting Comparison of PV Site 5 and 6 (a) Forecasting in Summer Days of site 5 (b) Forecasting in Winter Days of site 5 (c) Forecasting in Summer 
Days of site 6 (d) Forecasting in Winter Days of site 6. 
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examine time series data in order to ascertain if previous values of one 
variable may predict future values of another variable. Given that it 
takes into account the delays between solar irradiance and PV power 
generation, this test can be helpful for projecting short-term photovol
taic (PV) power. The time lag takes into account the possibility that 
changes in irradiance may not have an immediate effect on PV power. 
The test offers insights into the dynamics of the PV system by examining 
these time delays. The link between input variables like irradiance and 
the output PV power may thus be better captured by including this in
formation into forecasting models. 

The Granger causality test [47] evaluates whether changes in a set of 
”cause” time series variables have altered the probability distribution of 
a set of ”effect” time series variables. In order to prevent autocorrelation, 
which might skew the results, the data should be preprocessed. The data 
is further examined for unit roots, which might render the test incorrect. 
The null and alternative hypotheses, such as the one that variable y(t)
does not Granger-cause variable x(t), are stated at the beginning of the 
study. The test can be repeated with various lag lengths to ensure the 
reliability of the results. The results shouldn’t vary depending on the 
chosen lag. 
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To check if y(t) Granger-causes x(t), we can consider the following 
equations: 
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Where y(t) represents the sum of infinite lagged terms αiy(t − i), along 
with a constant term c1 and an error term u1(t). Similarly, Eq. 56 in
cludes lagged terms αiy(t − i) and βiy(t − j), where j represents the delays. 
It also includes a constant term c2 and an error term u2(t). 

A hypothesis test can be used to evaluate if the independent variables 
have a statistically significant causal influence on the dependent vari
able once the models have been specified. Here, the complete model 
including the independent variables is contrasted with a null model 
devoid of the independent variables. According to the null hypothesis, 
changes in the dependent variable are not caused by the independent 
variables. We can reject the null hypothesis if the entire model consid
erably outperforms the null model in predicting the dependent variable. 
Based on the Granger causality theory, this would show that the inde
pendent variables do in fact have a causal impact on the dependent 
variable. The null hypothesis can be disproved by quantifying the sta
tistical significance of the improvement. 

The basic form of the Granger causality test is: 

Fig. 17. Power Forecasting Comparison of PV Site 7 and 8 (a) Forecasting in Summer Days of site 7 (b) Forecasting in Winter Days of site 7 (c) Forecasting in Summer 
Days of site 8 (d) Forecasting in Winter Days of site 8. 
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H0 : laggedvaluesofXdonotGranger − causeY  

Ha : laggedvaluesofXdoGranger − causeY  

In the Granger causality test, X represents the predictor variable and Y 
represents the target variable. The goal is to determine if past values of X 
can be used to forecast future values of Y. 

Let’s consider two time series, Y and X, with observations Yt and Xt at 
time t. 

The Granger causality model can be formulated as: 

Yt = αY +
∑

i
βYi
(
Yt− i
)
+
∑

i
γYi
(
Xt− i
)
+ εYt (57)  

Fig. 18. Statistical analysis average value comparison with competing techniques (a) RMSE (b) NMSE (c) MAE (d) R-Square.  

Table 5 
Comparison of Statistical Analysis of Forecasting Results with Transductive 
Transfer Learning.  

Dataset Tech RMSE NMSE MAE R-Square 

PV Site 1 KOA-C-Bi-LSTM 0.0054 0.0018 0.00280 98.954  
KOA-C-LSTM 0.00912 0.00523 0.04841 95.117  
KOA-LSTM 0.01419 0.02011 0.29404 92.487 

PV Site 2 KOA-C-Bi-LSTM 0.0026 0.0037 0.00098 99.032  
KOA-C-LSTM 0.00618 0.00469 0.06384 96.531  
KOA-LSTM 0.02412 0.05401 0.19186 91.189 

PV Site 3 KOA-C-Bi-LSTM 0.00082 0.00064 0.00120 98.519  
KOA-C-LSTM 0.00144 0.00197 0.07359 94.814  
KOA-LSTM 0.01647 0.02565 0.16931 92.221 

PV Site 4 KOA-C-Bi-LSTM 0.0017 0.0045 0.00364 98.852  
KOA-C-LSTM 0.00814 0.00905 0.07324 97.063  
KOA-LSTM 0.01270 0.03134 0.15760 93.712  

Table 6 
Comparison of Statistical Analysis of Forecasting Results with Transductive 
Transfer Learning.  

Dataset Tech RMSE NMSE MAE R-Square 

PV Site 5 TKCBL 0.0027 0.0014 0.00401 99.315  
TKCL 0.00760 0.00605 0.06769 96.011  
TKL 0.03509 0.01701 0.41683 93.103 

PV Site 6 TKCBL 0.0059 0.0064 0.00196 99.515  
TKCL 0.00774 0.00409 0.07397 97.567  
TKL 0.01123 0.02985 0.51739 94.289 

PV Site 7 TKCBL 0.0012 0.0050 0.00219 99.472  
TKCL 0.00208 0.00549 0.08225 96.889  
TKL 0.08467 0.07364 0.56102 93.467 

PV Site 8 TKCBL 0.0013 0.0052 0.00107 99.657  
TKCL 0.00315 0.00418 0.01183 96.628  
TKL 0.03537 0.04462 0.20345 94.791  

Table 7 
Comparative Analysis with state-of-the-art techniques  

Ref Year Technique Error 

[43] 2022 HBO-LSTM R2 = 0.965 RMSE = 3.9% 
[44] 2022 ACO-NN R2 = 0.815 RMSE = 3.4% 
[45] 2022 VMD-CNN-BiGRU RMSE = 2.8% 
[46] 2023 DSN RMSE = 2.9% 
[48] 2023 LSTM-TCN RMSE = 1.153% 

Our Tech. 2023 TKCBL R2 = 0.9948, RMSE = 0.27%  

Table 8 
Comparison of models based on GCT average performance.  

Model F-value P value T statistic Error Standard (⩽)  

TKCBL 0.0879 0.0098 0.811 0.09  
TKCL 0.1326 0.0421 1.201 0.14  
TKL 0.1902 0.0924 1.823 0.20   
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Xt = αX +
∑

i
βXi
(
Xt− i
)
+
∑

i
γXi
(
Yt− i
)
+ εXt (58)  

where αY and αX are intercept terms, βYi and βXi are coefficients for the 
past values of Y and X, and γYi and γXi are coefficients for the past values 
of X and Y, respectively. εYt and εXt are error terms. 

To test for Granger causality, we first estimate the above model using 
suitable estimation techniques, such as ordinary least squares (OLS). 
Then the F-statistic for the anthropic principle is calculated so that the 
coefficients γYi are all equal to 0. 

The F-statistic can be calculated as: 

F =
(RSSR − RSSU)/m

RSSU/(n − 2m − 1)
(59)  

where RSS-R is the residual sum of squares for the restricted model (i.e., 
where γYi = 0 for all i), RSS-U is the residual sum of squares for the 
unrestricted model, m is the number of restrictions (like the number of 
γYi coefficients), and n is the sample size. 

The null hypothesis of no Granger causality is rejected if the F-sta
tistic exceeds a critical value defined by the desired significance level 
and the degrees of freedom of the models. This indicates that past values 
of X have statistically significant predictive ability for future values of Y, 
or that X Granger causes Y. The results are summarized in Table 8. 

5.4. Discussion 

The results of our study demonstrate that the TKCBL model exhibits 
exceptional performance in accurately predicting PV generation across 
all eight PV sites. The consistently low values of RMSE, NMSE, and MAE 
indicate the model’s ability to closely approximate the actual PV gen
eration values, minimizing prediction errors. The superiority of the 
TKCBL model is evident as it outperforms the other two models, TKCL 
and TKL, by a substantial margin. Moreover, the high R-Square values 
achieved by the TKCBL model across all PV sites indicate a strong cor
relation between predicted and actual PV generation values, further 
emphasizing its effectiveness in capturing underlying patterns and 
trends in the data. These findings are particularly promising as accurate 
PV generation forecasting is essential for integrating large solar power 
plants with conventional grids. By achieving near-perfect explanatory 
power and significantly lower prediction errors compared to existing 
state-of-the-art techniques, the KOA-C-Bi-LSTM model represents a sig
nificant advancement in PV site data prediction and holds great promise 
for practical applications in the field. 

The comparative analysis with existing techniques further solidifies 
the superiority of the proposed TKCBL model. Our model substantially 
outperforms other published techniques in terms of both R-Square 
values and RMSE, demonstrating its clear advantage in accurately pre
dicting PV site output power. The TKCBL technique’s ability to explain 
nearly all the variance in the target variable while maintaining an 
impressively low average prediction error sets it apart as a robust and 
reliable forecasting tool. The comparison highlights the substantial 
progress made in PV generation prediction, and the TKCBL model 
emerges as a standout performer. As PV power forecasting plays a 
crucial role in the integration of renewable energy sources into the grid, 
the exceptional accuracy and precision offered by our model can 
significantly enhance the efficiency and stability of the power system. 
The demonstrated advancements in forecasting accuracy, combined 
with the model’s ease of implementation and scalability, position the 
TKCBL technique as a promising choice for future research and practical 
applications in the field of renewable energy integration. Moreover, the 
insights gained from this study may pave the way for further improve
ments in forecasting methodologies, enabling a more sustainable and 
reliable energy future. 

6. Conclusion 

This paper presents an innovative and comprehensive approach to 
enhancing the accuracy of power output forecasting in Photovoltaic 
(PV) power plants, particularly in dynamic environmental conditions. 
The Hybrid Deep Learning Model (DLM) developed in this research, 
which combines Convolutional Neural Networks (CNN), Long Short- 
Term Memory (LSTM) networks, and Bidirectional LSTM (Bi-LSTM), 
demonstrates the capability to capture both spatial and temporal de
pendencies within weather data, which are crucial for precise pre
dictions. A significant contribution of this work is the introduction of the 
Kepler Optimization Algorithm (KOA) for hyperparameter tuning. 
Inspired by Kepler’s laws of planetary motion, KOA optimizes the DLM’s 
performance by identifying the most appropriate hyperparameter con
figurations, thus improving prediction accuracy. Additionally, the 
integration of Transductive Transfer Learning (TTL) into the deep 
learning models offers enhanced efficiency by leveraging prior knowl
edge to refine forecasting capabilities while minimizing resource con
sumption. The utilization of diverse datasets encompassing 
environmental parameters and PV plant-generated power across various 
sites enhances the robustness of the study. The proposed TKCBL achieves 
up to 99.65% R2 and 99.48% average R2 of all datasets. The average 
RMSE achieved by TKCBL in all datasets is 0.27% which is very low as 
compared to competing techniques. This outcome underscores the 
hybrid approach’s potential to provide remarkably accurate and resil
ient power output predictions under diverse weather conditions. 

The synergy of the hybrid DLM, KOA hyperparameter tuning, and 
TTL techniques offers a holistic solution to elevate the management of 
PV power plants. The ability to analyze spatial and temporal data 
effectively, coupled with efficient hyperparameter optimization and 
knowledge transferability, positions this approach as a valuable tool for 
ensuring efficient and dependable power output predictions within dy
namic environmental contexts. These research findings contribute not 
only to the renewable energy field but also hold substantial promise for 
practical applications in PV power plant management. By leveraging 
these insights, stakeholders can make informed decisions and optimize 
the efficiency of PV power generation, further advancing the transition 
to sustainable and clean energy sources. 
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[11] Mayer MJ, Gróf G. Extensive comparison of physical models for photovoltaic 
power forecasting. Appl. Energy 2021;283:116239. 

[12] Sideratos G, Hatziargyriou ND. An advanced statistical method for wind power 
forecasting. IEEE Trans. Power Syst. 2007;22:258–65. 

[13] Mayer MJ, Yang D. Pairing ensemble numerical weather prediction with ensemble 
physical model chain for probabilistic photovoltaic power forecasting. Renew. 
Sustain. Energy Rev. 2023;175:113171. 

[14] Barman M, Choudhury NBD. A similarity based hybrid gwo-svm method of power 
system load forecasting for regional special event days in anomalous load 
situations in assam, india. Sustainable Cities Soc. 2020;61:102311. 

[15] Zhao Y, Ye L, Wang Z, Wu L, Zhai B, Lan H, Yang S. Spatio-temporal markov chain 
model for very-short-term wind power forecasting. J. Eng. 2019;2019:5018–22. 

[16] Sivaneasan B, Yu C, Goh K. Solar forecasting using ann with fuzzy logic pre- 
processing. Energy Procedia 2017;143:727–32. 

[17] Zhao Y, Ye L, Pinson P, Tang Y, Lu P. Correlation-constrained and sparsity- 
controlled vector autoregressive model for spatio-temporal wind power 
forecasting. IEEE Trans. Power Syst. 2018;33:5029–40. 

[18] Xu X, Lu Y, Vogel-Heuser B, Wang L. Industry 4.0 and industry 5.0–inception, 
conception and perception. J. Manuf. Syst. 2021;61:530–5. 

[19] Parmentola A, Tutore I, Costagliola Di Fiore M. Environmental side of fourth 
industrial revolution: The positive and negative effects of i4 technologies. In: 
Handbook of Smart Materials, Technologies, and Devices: Applications of Industry 
4.0. Springer; 2021. p. 1–31. 

[20] Leng J, Sha W, Wang B, Zheng P, Zhuang C, Liu Q, Wuest T, Mourtzis D, Wang L. 
Industry 5.0: Prospect and retrospect. J. Manuf. Syst. 2022;65:279–95. 

[21] Huang S, Wang B, Li X, Zheng P, Mourtzis D, Wang L. Industry 5.0 and society 
5.0–comparison, complementation and co-evolution. J. Manuf. Syst. 2022;64: 
424–8. 

[22] Fang X, Misra S, Xue G, Yang D. Smart grid–the new and improved power grid: A 
survey. IEEE Commun. Surveys Tutorials 2011;14:944–80. 

[23] Tuballa ML, Abundo ML. A review of the development of smart grid technologies. 
Renew. Sustain. Energy Rev. 2016;59:710–25. 

[24] Lin KY. Dynamic pricing with real-time demand learning. Eur. J. Oper. Res. 2006; 
174:522–38. 

[25] Hu Z, Kim J-H, Wang J, Byrne J. Review of dynamic pricing programs in the us and 
europe: Status quo and policy recommendations. Renew. Sustain. Energy Rev. 
2015;42:743–51. 

[26] Das L, Munikoti S, Natarajan B, Srinivasan B. Measuring smart grid resilience: 
Methods, challenges and opportunities. Renew. Sustain. Energy Rev. 2020;130: 
109918. 

[27] Albasrawi MN, Jarus N, Joshi KA, Sarvestani SS. Analysis of reliability and 
resilience for smart grids. In: 2014 IEEE 38th Annual Computer Software and 
Applications Conference. IEEE; 2014. p. 529–34. 

[28] Ahsan L, Baig MJA, Iqbal MT. Low-cost, open-source, emoncms-based scada system 
for a large grid-connected pv system. Sensors 2022;22:6733. 

[29] Kermani M, Adelmanesh B, Shirdare E, Sima CA, Carnı ̀ DL, Martirano L. Intelligent 
energy management based on scada system in a real microgrid for smart building 
applications. Renewable Energy 2021;171:1115–27. 

[30] Chen Y, Xu J. Solar and wind power data from the chinese state grid renewable 
energy generation forecasting competition. Scientific Data 2022;9:577. 

[31] Emmanuel T, Maupong T, Mpoeleng D, Semong T, Mphago B, Tabona O. A survey 
on missing data in machine learning. J. Big Data 2021;8:1–37. 

[32] Jin J, Li M, Jin L. Data normalization to accelerate training for linear neural net to 
predict tropical cyclone tracks. Math. Problems Eng. 2015;2015. 

[33] Cohen I, Huang Y, Chen J, Benesty J, Benesty J, Chen J, Huang Y, Cohen I. Pearson 
correlation coefficient. Noise Reduction Speech Process. 2009:1–4. 

[34] Urbanek T, Prokopova Z, Silhavy R, Vesela V. Prediction accuracy measurements 
as a fitness function for software effort estimation. SpringerPlus 2015;4:1–17. 

[35] Abdel-Basset M, Mohamed R, Azeem SAA, Jameel M, Abouhawwash M. Kepler 
optimization algorithm: A new metaheuristic algorithm inspired by kepler’s laws of 
planetary motion. Knowl.-Based Syst. 2023;268:110454. 

[36] Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, 
Santamaría J, Fadhel MA, Al-Amidie M, Farhan L. Review of deep learning: 
Concepts, cnn architectures, challenges, applications, future directions. J. Big Data 
2021;8:1–74. 

[37] Liu Z, Wang H, Liu J, Qin Y, Peng D. Multitask learning based on lightweight 1dcnn 
for fault diagnosis of wheelset bearings. IEEE Trans. Instrum. Meas. 2020;70:1–11. 

[38] Shahid F, Zameer A, Muneeb M. Predictions for covid-19 with deep learning 
models of lstm, gru and bi-lstm. Chaos, Solitons & Fractals 2020;140:110212. 

[39] Nguyen THT, Phan QB. Hourly day ahead wind speed forecasting based on a hybrid 
model of eemd, cnn-bi-lstm embedded with ga optimization. Energy Reports 2022; 
8:53–60. 

[40] Pinto G, Messina R, Li H, Hong T, Piscitelli MS, Capozzoli A. Sharing is caring: An 
extensive analysis of parameter-based transfer learning for the prediction of 
building thermal dynamics. Energy Build. 2022;276:112530. 

[41] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J.B. Tenenbaum, H. 
Larochelle, R.S. Zemel, Meta-learning for semi-supervised few-shot classification, 
arXiv preprint arXiv:1803.00676 (2018). 

[42] Kushibar K, Salem M, Valverde S, Rovira À, Salvi J, Oliver A, Lladó X. Transductive 
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