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Abstract: Natural language processing (NLP) technology has played a pivotal role in health mon-
itoring as an important artificial intelligence method. As a key technology in NLP, relation triplet
extraction is closely related to the performance of health monitoring. In this paper, a novel model
is proposed for joint extraction of entities and relations, combining conditional layer normalization
with the talking-head attention mechanism to strengthen the interaction between entity recognition
and relation extraction. In addition, the proposed model utilizes position information to enhance the
extraction accuracy of overlapping triplets. Experiments on the Baidu2019 and CHIP2020 datasets
demonstrate that the proposed model can effectively extract overlapping triplets, which leads to
significant performance improvements compared with baselines.

Keywords: joint extraction; talking-head attention; Chinese medical texts; RoBERTa; health monitoring

1. Introduction

The emerging field of health monitoring aims to detect and prevent disease early
by combining electronic medical records with health indicators; in general, the idea of
health monitoring is to accurately extract key information from electronic medical records
or medical texts [1]. The key information is usually represented in the form of triplets;
therefore, as a branch of NLP [2], entity relation joint extraction is exploited to extract
relational triplets between entities from texts. In the field of health monitoring, entity
relation extraction helps to discover hidden knowledge and associations using massive
health databases in order to optimize and improve health monitoring services [3].

The modeling of extracted entities and relations in early works primarily used the
pipeline model [4]. The pipeline model separates the extraction task into two different
subtasks, which then use two separate models to reduce computational costs. Although
the pipeline model is flexible and simplifies the processing flow, there are many limitations
on the management of the two independent models. First, a mistaken result during
entity extraction has an impact on the relation extraction task, which can degrade the
pipeline model’s performance. Second, the pipeline model ignores internal connections and
dependencies between the entity recognition and relation extraction tasks [5]. Third, the
pipeline model cannot provide an proper solution to the problem of overlapping entities in
the named entity recognition task; this results in redundant information from candidate
entities without relationships, which is detrimental to information extraction performance
and imposes a considerable burden on optimal allocation of computing resources during
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the relationship extraction task. Therefore, joint models that extract entities and relations
simultaneously have been proposed to overcome the above disadvantages.

In recent years, research on joint models has been predominantly based on English
public datasets, and there have been few studies based on Chinese medical datasets.
Therefore, joint extraction of entity relationship encounters many challenges with respect to
Chinese medical texts. A primary challenge is that, because many medical entities involve
multiple words, it is difficult for joint models to identify these entities. More importantly,
the language of medical descriptions is quite complex, especially in electronic medical
records of patients’ past and current medical history [6]. Furthermore, disease entities are
associated with symptomatic entities. For example, the joint model extracts the triplet
“cancer–symptom–pain”. The relationship placing “symptom” between “cancer” and “pain”
can be matched correctly; hence, a more efficient method for joint extraction of entities
and relations can be designed by utilizing position information and correlations between
entities to improve the accuracy of the joint model.

In this paper, we propose a novel pointer network model based on joint entity and
relation extraction for Chinese medical texts. Because of the excellent performance of
RoBERTa on sentence encoding tasks, RoBERTa is first utilized as the encoding layer
to encode sentences, thereby enhancing the connection between entities and extracting
positional information in sentences. Next, based on the information encoded by RoBERTa,
the position information is applied to strengthen the feature relationships in sentences and
to fuse the different features occurring between entities. Finally, the talking-head attention
mechanism is introduced to enhance interaction between relationships. Compared with
baseline models on the Baidu2019 and CHIP2020 datasets, the proposed model is able to
consider the semantic features in sentences while achieving improved accuracy.

In summary, the contributions of our work can be summarized as follows:

1. We propose a joint entity and relation extraction model to effectively remedy the
problem of overlapping triplets in Chinese datasets.

2. The proposed model combines position information with a talking-head attention
layer, adding additional semantic information and enhancing interaction between
relationships.

3. Our proposed model outperforms existing models in terms of the F1 value, real-
izing and improvement of 0.05 and 0.16 on the Baidu2019 and CHIP2020 datasets,
respectively, and is able to extract entity relations in highly overlapping and complex
sample datasets.

The rest of the paper is organized as follows. First, Section 2 introduces related works.
In Section 3, the proposed joint model is described in detail. In Section 4, the datasets and
the baseline models used for comparisons are described and the predictive performance of
the proposed model is evaluated. Finally, we present our conclusions and discuss future
research directions in Section 5.

2. Related Work

The existing relation extraction models in the field of medicine can be divided into
pipeline models and joint models [7]. In pipeline models, the relation extraction task is
divided into two independent subtasks and a model is constructed and trained for each
subtask. On the other hand, joint models share parameters between the extraction results
to simultaneously extract entities and relationships. In the field of medicine, early works
addressed information extraction in a pipelined manner to enhance the accuracy of entity
extraction and relation extraction. More specifically, the pipeline model has been applied
to extract relational triplets in two separate steps: named entity recognition (NER) and
relational classification (RC) [8].

In NER, during early sequence tasks the traditional methods are based on rules [9],
dictionaries [10], and machine learning [11–13]. However, with the deepening of research
on deep learning, these methods are becoming widely used in sequence modeling in
the data-driven era, with examples including Long-Short-Term Memory (LSTM) [14],
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Condition-Random Field (CRF), and Bidirectional Encoder Representations from Trans-
formers (BERT) [15]. With the development of deep learning, Liu et al. [16] applied the
Bi-LSTM-CRF model to the Chinese clinical medical entity recognition system, utilizing
CRF to achieve high micro-average F1-scores on multiple English datasets. LSTM can be
used to recognize entities in specific formats; however, the accuracy of LSTM models on
Chinese datasets is not acceptable. Therefore, Gridach et al. [17] introduced a novel neural
network architecture that investigated a combination of LSTM, CRF, word embeddings, and
character-level representation for recognition of biomedical named entities. Considering
the characteristics of Chinese words segmentation, the model named Lattice LSTM [18]
combined character information and lexical information for the first time while avoiding
the influence of segmentation errors on LSTM. Zhao et al. [19] proposed a novel Chinese
clinical named entity recognition method combining lattice LSTM and adversarial training;
this method can improve the robustness of neural models by increasing perturbations
in order to avoid the influence of segmentation errors. Li et al. [20] proposed a BERT–
BiLSTM–CRF model for the medical field that simultaneously considers the characteristics
of Chinese medical word segmentation and medical dictionary characters. The construction
of the BERT–BiLSTM–CRF model has been applied to the field of EMR as well. Specifically,
Gao et al. [21] introduced a BERT Chinese pre-training model able to automate feature
selection, then combined BiLSTM and CRF to optimize the Chinese NER algorithm and
applied the model to process an electronic medical record dataset. Because the LSTM model
ignores context information, Kong et al. [22] sought to exploit the context information
of short-term and long-term memory for the NER task by designing a simple attention
mechanism that can improve training efficiency based on multiple Convolutional Neural
Networks (CNN) in parallel. However, Multi-CNN models have difficulty capturing the
spatial information between words. Therefore, Wang et al. [23] proposed an adversarial
training LSTM–CNN system, which they called ASTRAL, to exploit position information
between adjacent words. Unlike existing NER methods, ASTRAL improves the model
structure and training process by introducing a Gated CNN to fuse the information of
adjacent words.

In terms of medical RC, existing methods rely on medical features that can easily
cause errors to accumulate during relation extraction, which then degrades the accuracy
of feature extraction systems such as Recurrent Neural Networks (RNN) or other neural
network-based methods. Hence, Fei et al. [24] proposed a BiLSTM–RNN model to learn
the semantic features for relation extraction, and verified that LSTM–RNN can achieve
better performance than LSTM on feature extraction. To improve the performance of
RNNs, Zhang et al. [25] proposed a model that can automatically learn the features of
sentence sequences by combining the RNN and CNN approaches for extracting biomedical
relationships; however, this model fails to exploit the dependency types among words.
To address this issue, a dependency-driven approach was proposed in [26] for relation
classification using an attentive graph convolutional network (A-GCN), which applies a
graph convolutional network-based attention mechanism to distinguish the importance of
different dependencies between words. However, A-GCN lacks reliability when coding
long sentences. Wang at el. [27] designed a structural block method to encode blocks
associated with entities; the structural block method is able to eliminate noise caused by
irrelevant parts of sentences to enhance the representation of relevant words. While the
structural block method has the advantage of being independent of long sentence context,
it only encodes the sequential tokens within a block boundary. Fortunately, BERT is able to
encode long sentences, which has a significant impact on the natural language processing.
To this end, Zhang et al. [28] introduced a clinical language model that used BERT for
context pretraining, focusing on the importance of embedding in sentences. However, their
clinical language model ignored the critical role of important phrase information. Therefore,
Xu et al. [29] introduced a relational classification model based on BERT and a gated multi-
window attention network (BERT–GMAN) to construct a key phrase classification network
to obtain multi-granularity phrase information and exploit element-wise max-pooling to
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select the features of key phrases; BERT–GMAN showed greatly improved accuracy on the
relational classification task. In addition, referencing subsequent improvements to BERT, the
BioBERT model [30] has obtained excellent performance as a language representation model
on multiple datasets. Nevertheless, the above-mentioned models ignore the connections
between entity extraction and the relation extraction, which may lead to error propagation
and decrease the accuracy of the extraction results.

Recently, many researchers have attempted to alleviate the problem of error propaga-
tion when jointly extracting entities and relations by exploiting complex semantic features
with a single model. Based on complex semantic features, the initial joint model introduced
the dependency syntax tree [31], which was able to effectively capture the features of
sentences by stacking bidirectional tree-structured LSTM–RNNs on bidirectional sequential
LSTM–RNNs. In this approach, the entities and relations are jointly represented to share
parameters, allowing for entity and relation extraction in a single model. Based on previous
work on dependency syntax trees [31], Katiyar et al. [32] replaced the dependency syntax
tree with an LSTM network to determine different relations by comparing the similarity of
entities with other entities. However, this approach ignores the entity boundary informa-
tion in sentences. Hence, to enhance the accuracy of the pointer network in the process of
decoding, Gu et al. [33] and Zeng et al. [34] introduced the copy mechanism to generate
the relation and proposed the CopyNet and End2End Neural models, respectively. Among
these, the CopyNet model uses a novel method of word generation based on the copying
mechanism to choose proper sequences in the input and place them in the proper position
in the output. On the other hand, the End2End Neural model utilizes the copy mechanism
to jointly extract relational facts from sentences in the overlapping triplets class using
different decoder strategies. Giannis et al. [35] proposed a multi-head selection model.
This model considers the entity boundary information in sentences by introducing a CRF
layer into the entity recognition task, thereby transforming the relationship extraction task
into a multi-head selection problem. Although the multi-head selection model has demon-
strated its effectiveness on multiple datasets, the model ignores robust generalizations
during entity training as well as gaps between entities during the entity prediction pro-
cess. To alleviate the model’s problems with robust generalizations and gaps, adversarial
training mechanisms [36] and soft label embedding [37] have been proposed. Unlike the
existing joint models, ETL-span [38] is a novel framework that can adequately capture
semantic dependencies between different steps to remove noise between pairs of entities.
Dixit et al. [39] directly extracted span-level features on the basis of the ETL–SPAN model;
this model is able to pay attention to overlapping entities, avoiding erroneous information
transmission cascade; unfortunately, the performance of this model in extracting triplets
from long sentences is not satisfactory. To address the issue of relation extraction in long
sentences, Eberts et al. [40] used BERT to encode long sentences and fuse multiple features
before classifying relationships. In recent years, with the help of BERT, researchers have
paid more attention to the connections between entities and relationships. Luo et al. [41]
proposed a neural network framework called the ATT–BiLSTM–CRF model, which uses
an attention mechanism for biomedical joint extraction. The ATT–BiLSTM–CRF model
effectively strengthens the connection between the biomedical entity and the relationship.
Hong et al. [42] proposed a joint entity relation extraction model based on a graph con-
volutional network (GCN) to effectively distinguish the interaction between entities and
relationships. Lai et al. [43] designed a new multi-attentional mechanism to improve the
performance of graph attentional networks, although this did not result in any improve-
ment on overlapping relationships. Considering the issue of overlapping relationships,
Wei et al. [44] proposed the Casrel model for relationship extraction, then merged the
original sequence information using on BERT. To address the challenge of overlapping
relationships, in this paper we propose a novel model that utilizes RoBERTa to encode
sentences in the encoding layer and exploit the position information in order to enhance the
feature representation of Chinese sentences. In addition, conditional layer normalization is
combined with talking-head attention to alleviate the problem of overlapping triplets.
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3. Proposed Joint Model

In this section, we present a description of the proposed joint extraction model moti-
vated by the previous work of Wei et al. [44], in which the head entity is defined randomly
for relation extraction without completely traversing all entities during entity extraction.
The proposed model can identify all possible triplets in a sentence, even where a few triplets
may share the same entities or the same relations. More specifically, the proposed model
extracts triplets using two modules: a RoBERTa encoding module, and a cascade decoding
module. In the RoBERTa encoding module, RoBERTa is applied to fully extract sentence
features and identify connections between words in sentences. In the cascade decoding
module, subject extraction is applied to find all possible subjects in the sentence. Then,
relation–object extraction is applied to find all relevant relations and their corresponding
objects. The cascade decoding module is designed with multi-level training objectives,
simplifying the entity extraction process. The specific block diagram of the proposed model
is shown in Figure 1. Among them, ai(i = 1, 2, 3), bj(j = 1, 2, 3, 4), and ck(k = 1, 2, 3) repre-
sent “pancreatic cancer”, “ultrasonic examination”, and “pancreatic masses”, respectively,
in Chinese characters. The RoBERTa encoding module and cascade decoding module are
elaborated upon in the following subsections.

Figure 1. Block diagram of the proposed model.

3.1. RoBERTa Encoder

The RoBERTa encoder utilizes RoBERTa as an encoder to extract feature information
from sentences. RoBERTa is a bidirectional coding representation algorithm based on the
transformer algorithm for feature extraction and sentence modeling [45]. RoBERTa is able to
learn deep representations by jointly conditioning on context, and can fine-tune additional
output layers to perform efficiently on many downstream tasks.

In the encoder module, RoBERTa is applied to encode the sentence, which is then fed
into subsequent decoder modules. Specifically, given a sentence x of length n, every word
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xt in the sentence can be transformed into a token embedding, segment embedding, and
position embedding. Hence, the output xt of RoBERTa is as follows:

x = {x1, x2, · · · , xt, · · · , xn} (1)

xt = ES + ET + EP (2)

where ET represents a word vector Etoken, ES represents a segment vector Esegment, and EP
represents a position vector Eposition.

The detailed flow of RoBERTa in a Chinese sentence is shown in Figure 2, where
ai(i = 1, 2, 3) and bj(j = 1, 2, 3, 4) represent “pancreatic cancer” and “ultrasonic examina-
tion”, respectively, in Chinese characters. The twelve-layer transformer encoder of RoBERTa
is utilized to encode the Chinese sentence with bidirectional coding representation, then
three feature vectors are applied to reconstruct the sentence from the noisy data [46]. The
feature vectors are then passed to the cascade module for subject extraction.

Figure 2. Block diagram of RoBERTa applied to a Chinese sentence.

3.2. Cascade Decoder

The cascade module is adapted to extract triplets provided by the previous feature
vectors. Specifically, the cascade decoder is divided into two cascaded steps, namely, subject
extraction and relationship–object extraction. First, subject extraction detects subjects for
each input sentence, including both head and tail entities. Second, relation–object extraction
checks all possible relations to determine whether relations can be matched to the head
and tail entities in the sentence. In addition, talking-head attention is utilized to obtain the
relationships behind the conditional layer, which can enhance the accuracy of the cascaded
steps. In the following subsections, the subject extraction and relationship–object extraction
procedures are described in detail, as is the training algorithm used in the proposed model.

3.2.1. Subject Extraction

In the subject extraction process, all possible subjects are recognized by directly de-
coding the feature vector h produced by the RoBERTa encoder. More specifically, this is
essentially a binary classification problem that assigns each token a binary tag (0/1) that
represents the start or end position of the identified subject by initializing a pointer network.
Then, the subject is entered as a head entity in the module at the next level. The detailed
operations used for subject extraction are as follows:[

sstart

send

]
= σ

([
Wstart

s
Wend

s

]
× h +

[
bstart

s
bend

s

])
(3)
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where sstart represents the probabilities of the start position of all subjects for the input
sentence and send represent the probabilities of the end position of all subjects for the input
sentence. If the probability of a subject s exceeds a certain threshold, the corresponding tag
is assigned a value of 1; otherwise, it has a value of 0. Here, h is the encoded representation
for the input sentence, Wstart

s and Wend
s represent the weight matrix of the start and end

positions in the full connection layer, and are updated automatically, bstart
s and bend

s are
the respective offset vectors of the start and end positions, and σ is the sigmoid activation
function used to map the output.

Next, the span of subject s in the input sentence x is optimized using the following
likelihood function pθ(s | x):

pθ(s | x) = ∏
t∈(start,end)

L

∏
i=1

(
st

i
)Rt

1
(
1− st

i
)Rt

2 (4)

where L is the length of the input sentence, Rstart
1 and Rstart

2 are marked as 1 and 0, respec-
tively, if the subject start position is marked as 1 in the output start position sequence,
Rend

1 and Rend
2 are marked as 0 and 1, respectively, if the subject end position is marked as

1 in the output end position sequence, and the parameter θ is
{

Wstart
s , bstart

s , Wend
s , bend

s

}
.

Moreover, the function pθ(s | x) is exploited to evaluate the subject extraction performance.
For subject detection, the match principle for the nearest start–end distance is adopted

to decide the span of subjects. For example, as shown in Figure 1, the matrices with
the marked start and end positions of the three entities “pancreatic cancer”, “ultrasonic
examination”, and “pancreatic mass” are obtained after the RoBERTa encoding layer. As
the start token matches the nearest end token, the result of the first entity is “pancreatic
cancer”. Based on the match strategy, the proposed model only considers those end tokens
with positions behind the existing start token. More importantly, the match strategy can
maintain the integrity of entities to the greatest extent possible.

3.2.2. Relation–Object Extraction

Relation–object extraction simultaneously recognizes objects and their involved re-
lations based on the previously obtained subjects. As shown in Figure 1, relation–object
extraction consists of conditional layer normalization (CLN) and talking-head attention
(THA). First, CLN is used to determine a specific category and randomly generate contexts
based on this category. In particular, CLN [47] utilizes a fixed-length vector as a conditional
scenario to incorporate the conditions fi and fl into normalization. Moreover, in CLN the
feature h and two conditions are fused to combine relation features with the input entity
features. Hence, the output ĥ of CLN is as follows:

ĥ = [(h− avg)÷std]× γ + β (5)

where avg is the mean value of h, std is the standard deviation of h, and β and γ are two
dynamic matrices that are influenced by the input subject in the sentence. Two different
matrices that can be transformed by the different entities for initializing β and γ in the same
dimension are exploited. In addition, two matrices β, γ and the feature h are combined to
obtain the feature ĥ that is affected by subject s. When merging these vectors, it is crucial
that the dimension output by CLN remains consistent with the original pretraining model.

In order to exploit the parameters of entity recognition while improving the accuracy
of relation extraction, the output matrix is spliced into CLN using the position information
from RoBERTa, then the subsequent THA utilizes the matrix. The proposed model combines
a feature ĥ with the position information to obtain the matrix H, as follows:

H = ĥ + EP (6)
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To enhance the effectiveness of feature extraction, the proposed model uses attention
mechanisms. Compared with talking-head attention, multi-head attention [48] only focuses
on the performance of each head, ignoring the relevance of the heads. The formulas for
multi-head attention are as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (7)

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(8)

MultiHead(Q, K, V) = Concat(head1, head2 · · · , headh)W
O (9)

where Q, K, and V are converted from H, while WQ
i , WK

i , and WV
i represent the respective

weight parameters of Q, K, and V for the ith calculation; moreover, dk represents the di-
mension of V, so f tmax is the softmax activation function, the single-head attention headi is
calculated using Equation (8), and Attention(·) in Equation (8) is illustrated in Equation (7).
Finally, by repeating Equation (8) h times, the multiple attention MultiHead(·) is obtained
based on the corresponding results for h times, where WO is the weight parameter and is
automatically updated.

By linking the heads together, talking-head attention [49] can exploit more information
from different representation subspaces at different positions. In addition, the informa-
tion includes location information, syntax information, and other information. Hence,
talking-head attention utilizes two additional learned matrices λW

i and λL
i to fuse head

attention into talking-head attention. Therefore, the formulas for talking-head attention are
as follows:

A(Q, K) =
QKT
√

dk
(10)

Ji = λL
i so f tmax

(
λW

i A(Qi, Ki)
)

(11)

O = TalkingHead(Q, K, V) = Concat(J1V1, · · · , JhVh) (12)

where Q, K, and V are converted from H, A(Qi, Ki) represents the ith calculation of
single-head attention, so f tmax is the softmax activation function, and Ji indicates that
single-head attention is associated with other attentions, where λW

i and λL
i can move

information across attention heads by transforming the attention-logits and attention-
weights, respectively. The output of talking-head attention TalkingHead(·) concatenates
the calculation of attention for all heads.

Although the subjects are obtained by decoding the feature vector h during subject
extraction, the head entity features are exploited during relation extraction to enhance the
connection between the relations and the entities. Therefore, based on the features of the
head entities in the sentences, the output of the relation extraction is as follows:[

rstart

rend

]
= σ

([
Wstart

r
Wend

r

]
∗ (O + vi) +

[
bstart

r
bend

r

])
(13)

where rstart and rend represent the probabilities of the respective start and end positions
of all relations in the input sentence; the corresponding token are marked as 1 if the
probability of the start and end positions exceeds a certain threshold, and are 0 otherwise.
Moreover, vi represents the encoded representation vector between the start and end tokens
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of the ith subject detected in the subject extraction module, Wstart
r and Wend

r represent the
weight matrix of start and end positions relative to the relations, bstart

r and bend
r are the

respective offset vectors of the start and end positions of the relations, and σ is the sigmoid
activation function.

More specifically, in order to achieve the fusion of O and vi in Equation (13), it
is necessary to ensure that the dimension of the two vectors remains consistent during
the relation–object extraction process. For each subject vi, all subjects are traversed to
extract triplets, while the subject is randomly selected for each sentence through the Casrel
model [44]. Although the proposed model incurs higher computational cost during relation
extraction, this results in improved accuracy during triplet extraction.

Next, the relation representations of the object o and subject s in the input sentence x
are optimized using the following likelihood function pθ(o | s, x):

pθ(o | s, x) = ∏
t∈{start,end}

L

∏
i=1

(
rt

i
)Rt

1
(
1− rt

i
)Rt

2 (14)

where L is the length of the sentence, Rstart
1 and Rstart

2 are marked as 1 and 0, respectively, if
the object start position is marked as 1 in the output start position sequence, Rend

1 and Rend
2

are marked as 0 and 1, respectively, if the object end position is marked as 1 in the output
end position sequence, and the parameter θ is

{
Wstart

r , bstart
r , Wstart

r , bend
r

}
. In addition, the

function pθ(o | s, x) is exploited to evaluate the relationship extraction performance.
As shown in Figure 1, for the output of each sentence a matrix is constructed to

calculate the matching result between entities and relations. For example, the subject
“pancreatic cancer” compares the relationships between “imageological examination”,
“age”, and “clinical manifestation” with different objects, and all relations are traversed
to determine the object that can be used to construct a triple with the subject “pancreatic
cancer”. Finally, the two triplets “pancreatic cancer–imageological examination–ultrasonic
examination” and “pancreatic cancer–clinical manifestation–pancreatic mass” are found.

For all training sets, the likelihood functions of entities and relations are optimized
for each sentence x. The optimizer utilizes the Adam [50] loss function to maximize K by
optimizing pθ(s | xi) and pθ(o | s, xi), which dynamically reduces the learning rate based
on the number of times while increasing the model’s efficiency and effectiveness. The
indicator K is written as follows:

K =
|D|

∑
i=1

[
∑

s∈Ti

log pθ(s | xi) + ∑
r∈Tr

log pθ(o | s, xi)

]
(15)

where |D| represents the cardinality of the training set, Ti represents all subjects in the
sentence, Tr represents all relationships corresponding to the head entity, pθ(s | xi) is
defined in Equation (4), and pθ(o | s, xi) is defined in Equation (14).

In the above, K is the key indicator that determines when the training process of the
proposed model terminates. Specifically, if K is continuously updated until it reaches a
steady state, then the training process is terminated. The training algorithm used for the
proposed model is provided in Algorithm 1.
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Algorithm 1: Training Algorithm of the Proposed Model
Input: Training dataset D, training epochs N
Output: Optimal parameter K
Pre-trained: Use RoBERTa to obtain the encoded feature vector h Initialize:
Transform Chinese sentences into vector representations and initialize the model
parameters

for i = 0 to |D|, do
Select the ith sentence xi={x1, x2, ..., xn} from the training set D;
for j = 0 to N, do

Obtain the position information EP using Equations (1) and (2) through the
embedding module of RoBERTa;

Obtain the probabilities of the start positions sstart and end positions send of
the subjects using Equation (3);

Obtain the likelihood function pθ(s | x) using Equation (4) based on sstart

and send in subject extraction;
Obtain ĥ using Equation (5) in conditional layer normalization;
Caculate the matrix H based on ĥ using Equation (6);
Obtain O from Equations (10)–(12) in the talking-head attention layer;
Obtain the probabilities of the start positions rstart and the end positions

rend of the relations using Equation (13);
Obtain the likelihood function pθ(o | s, x) using Equation (14) based on

rstart and rend in relation–object extraction;
Update the K parameter using Equation (15);

end
end
Return K;

4. Performance Analysis

In this section, our experiments are mainly introduced from three aspects. First, the
data sources and components of the Baidu2019 and CHIP2020 datasets are explained.
Second, the experimental setup is described in detail, including the implementation details,
evaluation metrics, and experimental environment settings. Third, the superiority of the
proposed model is verified by comparison with baseline models.

4.1. Datasets

The experiments were carried out on the Baidu2019 datasets and CHIP2020 datasets;
the detailed description of the structures of these two datasets is as follows:

• Baidu2019 [51] contains sentences extracted from Baidu Baike and Baidu News Feeds;
it is the largest Chinese information extraction dataset on the basis of schema, including
more than 190,000 real-world Chinese sentences, more than 400,000 triplets, and
50 types of prespecified relations. To improve dataset availability, the dataset is
divided into a training set and testing set using a certain proportion.

• CHIP2020 [52] is a Chinese medical dataset collected by the National Language Pro-
cessing Laboratory of Zhengzhou University and the Key Laboratory of Computa-
tional Linguistics of the Ministry of Education of Peking University. It contains more
than 17,000 Chinese medical sentences, more than 50,000 triplets, and 43 types of
prespecified relations. The CHIP2020 dataset consists of diseases, symptoms, imag-
ing tests, and other medical information. Moreover, the dataset is divided into a
training set and testing set to enhance dataset standardization by establishing an
official method.

The statistics of the two datasets are listed in Table 1 to further illustrate the charac-
teristics of the Baidu2019 and CHIP2020 datasets. In addition, the datasets each include a
training set and testing set that can be divided into three categories, as shown in Table 2,
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that is, Normal, Entity Pair Overlap (EPO), and Single Entity Overlap (SEO) [4,38]. Below,
the results of different categories are analyzed in detail.

Table 1. Statistics of the two datasets.

Statistics
Baidu2019 CHIP2020

Train Test Train Test

sentence 172,983 21,626 14,339 3585
riplets 363,895 45,558 43,660 10,626

relations 50 43

Table 2. Statistics of different categories of triplets in the datasets.

Category
Baidu2019 CHIP2020

Train Test Train Test

Normal 80,310 9984 5724 1496
EPO 19,049 2385 6937 1655
SEO 73,596 9257 1678 434

4.2. Experimental Setup

First, a number of the parameters in the proposed model are introduced. Specifically,
the batch size was set to 8, the learning rate was set to 1× 10−5, and the maximum length
of the input sentence was set to 128. In addition, the number of heads for talking-head
attention was 48, the number of transformer blocks was 12, and the size of the hidden
state was 768. A stopping mechanism that ends the training process was adopted in the
experiments. To measure the accuracy of the experimental results, the precision (pre),
recall (rec), and F1-score are considered as the scoring functions, and can be written as
shown below:

pre =
TP

TP + FP
× 100% (16)

rec =
TP

TP + FN
× 100% (17)

F1 =
2× pre× rec

pre + rec
× 100% (18)

where TP represents the number of correctly predicted triplets, FP represents the number
of incorrectly predicted triplets, and FN represents the unpredicted triplets; pre explains
the ratio of correctly predicted triplets to all predicted triplets, rec explains the ratio of
correctly predicted triplets to all triplets in the datasets, and F1 provides a comprehensive
evaluation of the results of precision and recall.

Next, the experimental environment is described concretely. As shown in Table 3, all
models were implemented in TensorFlow-gpu 2.2.0 and trained on an Ubuntu 18.04 system
with 32 GB of memory and an Nvidia 2080 GPU.

Table 3. Experimental environment settings.

Item Environment

Operating system Ubuntu 18.04.5 LTS
CPU i7-8700 @3.20 GHz
GPU NVIDIA GeForce RTX 2080Ti

Memory 31 G
Python version 3.7

TensorFlow [53] version TensorFlow-gpu 2.2.0
Transformers [54] version 3.1.0
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4.3. Results and Discussion

In this section, the results of our comparative experiments and ablation experiments
are analyzed and discussed. Overlapping experiments were constructed on different types
of sentences and the performance of the proposed model was compared with baselines. In
addition, the results of parametric experiments on inference methods were applied to verify
the effectiveness of the talking-head attention mechanism. Finally, the experiments selected
different sentences in order to judge the accuracy of the proposed model in a case study.

4.3.1. Comparative Experiment with Existing Research Works

In the experiments, several baseline methods were considered for comparisons:

• MultiR [55]: a multi-instance learning algorithm combining a sentence-level extraction
model with a simple corpus-level module, which alleviates the problem of noise
caused by labeling.

• CoType [56]: an extraction model that jointly utilizes text features and type labels
when carrying out entity and relationship extraction, which considers the problem of
overlapping.

• Multi-head selection [35]: a neural model that identifies multiple relations for each
entity to perform relation extraction; it can simultaneously train an entity recognition
module and relationship extraction module.

• Casrel [44]: a joint model designed as a novel cascade binary tagging framework
derived from a principled problem formulation.

• ETL-span [38]: a specific label scheme that decomposes entity recognition and rela-
tionship extraction into several labeling problems to extract multiple triplets.

In order to more comprehensively verify the effectiveness of the proposed model,
experiments were conducted on the Baidu2019 and CHIP2020 datasets by comparing it
with baseline models. Table 4 shows a comparison of precision, recall, and F1 between the
proposed model and the baseline methods on the Baidu2019 and the CHIP2020 datasets.

Table 4. Comparisons with different methods on the Baidu2019 and the CHIP2020 datasets.

Method
Baidu2019 CHIP2020

Precision Recall F1 Precision Recall F1

MultiR [55] 0.634 0.389 0.482 0.261 0.378 0.312
CoType [56] 0.729 0.703 0.716 0.344 0.497 0.41

Multi-head attention [35] 0.764 0.712 0.737 0.412 0.572 0.471
Casrel [44] 0.800 0.720 0.758 0.42 0.581 0.48

ETL-Span [38] 0.779 0.801 0.790 0.41 0.633 0.494
Ours 0.801 0.838 0.809 0.566 0.767 0.64

Table 4 shows the results on the Baidu2019 and CHIP2020 datasets. For the Baidu2019
dataset, it can be observed from Table 4 that the proposed model outperforms the best
baseline models by 1.9% in triplet extraction. This improvement can be explained by the
employment of the cascade decoder, which can accurately capture multiple relations. In
addition, the proposed model achieves a 5.1% improvement in F1-score over the Casrel
model on the Baidu2019 dataset. Unlike the Casrel model, the proposed model exploits
RoBERTa to capture the semantic features in sentences and utilizes a talking-head attention
mechanism to obtain more effective attention. The results show that the proposed model
performs well on the task of feature extraction on Chinese datasets. Considering the results
on the CHIP2020 dataset, it can be observed from Table 4 that the proposed model over-
whelmingly outperforms all the baselines in terms of all evaluation metrics; in particular,
it achieves a 14.6% improvement in F1-score over the ETL-Span model on the CHIP2020
dataset. Moreover, the pre-trained RoBERTa and talking-head attention are utilized to
effectively extract single triplets and overlapping triplets from the Chinese medical dataset.
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In addition, the results on these datasets show that there is a significant gap between
the general field and the medical field when extracting triplets, as the proposed model has
more difficulty dealing with overlapping triplets in the field of medicine. More precisely,
as shown in Table 2, the Baidu2019 dataset mainly consists of the Normal and SEO classes,
while the CHIP2020 dataset mainly includes the Normal and EPO classes. This inconsistent
distribution of categories between the two datasets leads to better performance on the
Baidu2019 dataset. Nonetheless, the proposed model achieves a smaller gap between
the Baidu2019 and CHIP2020 datasets than the baseline models, which demonstrates its
superior effectiveness on the task of extracting overlapping triplets in medical contexts.

4.3.2. Ablation Experiments

Using the Baidu2019 and CHIP2020 datasets, our ablation experiments focused on the
contribution of the RoBERTa encoder, CLN layer, and THA layer. Each time, a module in the
RoBERTa encoder, CLN layer, or THA layer was removed to obtain the effect of that module
on the proposed model. First, it can be seen from Table 5 that if the RoBERTa encoder is
removed on the Baidu2019 and CHIP2020 datasets, the F1 score is reduced by 3.9% and
3%, respectively. These results verify that the RoBERTa encoder can effectively extract
Chinese sentence features. Removing the CLN layer has have an apparent degradation
effect on the F1-score as well, which indicates that combining the position information
with the encoder feature is beneficial to the process of extracting triplets. When comparing
with the models with and without the THA layer, it is clear that the THA layer provides a
remarkable improvement in the F1-score, which demonstrates that talking-head attention
can effectively improve the accuracy of overlapping triplet extraction.

Table 5. Results of the ablation experiments.

Method
Baidu2019 CHIP2020

F1 F1

Ours 0.809 0.64
-RoBERT 0.77 0.61

-CLN 0.778 0.62
-THA 0.782 0.61

4.3.3. Analysis of Overlapping Triplets

To verify the ability of the proposed model to alleviate the problem of overlapping
triplets, experiments were conducted on three categories of sentences and its performance
was compared with the baseline models.

The results of the comparison between the proposed model and the baseline models on
three categories of sentences are shown in Figure 3a–c. The results show that the proposed
model achieves the best results on the Normal class, EPO class, and SEO class. Compared
with the Casrel model, the F1-value improves by 10.9% and 11.9% on the EPO class of
Baidu2019 and CHIP2020, respectively. Moreover, the F1 value improves by 6% and 16.2%
for the SEO class. Indeed, among three categories of overlapping classes, the EPO and
SEO classes are relatively complex collections of triplets. In contrast, the proposed model
achieves consistently outstanding performance, especially for the EPO class, which shows
that talking-head attention can alleviate problems on the EPO class by enhancing the
relevance of features.
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(a) (b)

(c)

Figure 3. F1-score when extracting relational triplets from sentences on the different classes: (a) Nor-
mal class; (b) EPO class; (c) SEO class.

4.3.4. Inference Method

To test the talking-head attention mechanism [49], experiments were structured com-
paring different heads to verify the reliability of the mechanism. Figure 4a,b shows the
results of different heads on the Baidu2019 and CHIP2020 datasets.

(a) (b)

Figure 4. The performance on different datasets with different heads: (a) Baidu2019 dataset and
(b) CHIP2020 dataset.

It can be seen that talking-head attention efficaciously adjusts the trade-off between
precision and recall with different choices of heads. It can be seen that when increasing the
number of head from 1 to 48, the F1-score significantly increases by 2.4% and 2.8% on the
Baidu2019 and CHIP2020 datasets, respectively. Furthermore, the proposed model works
more effectively on both the Baidu2019 and CHIP2020 datasets as the number of heads
increases. Due to the limitations of the experimental environment, 48 was chosen as the
maximum number of heads.
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4.3.5. Case Study

To specifically and intuitively observe the ability of the proposed model in overlapping
extraction, triplets were extracted from complex sentences selected from the CHIP2020
dataset and its performance was analyzed. For ease of understanding, the English annota-
tions of the Chinese sentences selected from CHIP2020 dataset are shown in Table 6.

Table 6. Results of the case study on different sentences.

Sentence Text Our Model

case_1

Trientine is also a complexing agent, which can promote the ex-
cretion of copper. It is sometimes used as a first-line drug in WD
patients with neurological symptoms. It is effective in all types of
patients, and the general dose is 40–50 mg/(kg·d). Other copper
drugs: Dimercaprol (because of side effects have been less), Sodium
Dimercaptosuccinate, Dimercaptosuccinic Acid capsules and Sodium
Dimercaptosulphonate and other heavy metal chelate agents.

see Figure 5a

case_2

Intrahepatie cholestasis of pregnancy(HELLP) is acute fatty liver of
pregnancy. The patient developed the classic symptoms of general
fatigue, nausea, pre-eclampsia, abnormal blood clotting and kidney
damage. Liver biopsy showed fatty infiltration, but biopsy is rarely
performed during diagnosis.

see Figure 5b

(a) (b)

Figure 5. The triplets extracted by the proposed model in the case study: (a) case_1 and (b) case_2.

The first sentence of the selected Chinese sentences is shown in Table 6, which indicates
all triplets of the entity ‘WD’. This sentence is classified as the SEO class, as the triplets of
the sentence contain repeated entities. It can be be seen from Figure 5a that most of triplets
were extracted accurately. More specifically, the proposed model correctly identified one
disease and four drugs, and only missed on one drug. Moreover, it can be seen that the
relationship between the entity ‘trientine’ and the entity ‘WD’ was not extracted because
of the specific position of the entity ‘trientine’ in the sentence. In summary, the proposed
model has more accurate extraction effects on the SEO class. On the second sentence shown
in Table 6, classified as being from the EPO class, the results are shown in Figure 5b. This
sentence contains more triplets, and has more than ten entities. Specifically, the proposed
model correctly identified six diseases, three symptoms, and one examination, although it
had one symptom is wrong. Furthermore, the wrong symptom (“fatty infiltration”) from
the proposed model was extracted because the relationship between the symptom “fatty
infiltration” and the disease “acute fatty liver during pregnancy” was misidentified. In the
end, the results of the case study fully prove the excellent performance of the proposed
model on Chinese medical sentences.
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4.4. Engineering Applications

Intelligent medical treatment is a prominent future development trend in internet-
based medical treatment. With the rapid development of information technology, more and
more intelligent medical systems have been constructed to assist hospitals in diagnosing
patients and even predicting diseases in advance. A health monitoring system is regarded as
a kind of intelligent medical application scenario in the medical field, and is an important
development for realizing medical data sharing and fusion. Due to the diversity and
complexity of medical texts, existing research on the structuring of electronic medical
records has mostly paid attention to exploiting deep learning models for completion
intelligent medical tasks, such as medical entity recognition, medical relationship extraction,
medical entity linking, medical entity alignment, etc. The structured electronic medical
records are then applied for health monitoring and disease prediction. Medical entity
recognition and medical relationship extraction are essential parts of the medical text
structuring task. However, extracting the wrong triplets can have an enormous negative
impact on the accuracy and universality of subsequent applications. In this regard, a more
accurate deep learning model is proposed in this paper to complete the task of entity
relation extraction. As shown in Figure 6, a data-driven approach is employed to structure
electronic medical record data. More specifically, electronic medical records from hospitals
and health indicators from devices are exploited to predict patients’ condition.

Figure 6. An application diagram of the proposed model in health monitoring.

As mentioned above, in order to further improve the accuracy of health monitoring,
our next work will focus on training more types of data, including technical medical
terms, unstructured crawler data, etc. In addition, as the deep learning model has visible
shortcomings, such as the lack of robustness, the lack of annotated data, the few-shot
learning method could be incorporated into the proposed model to reduce the dependence
of the model on labeled data. In addition, this method would improve the efficiency
of extraction process while saving labor cost. The proposed model could have great
significance for the construction of intelligent medical system.
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5. Conclusions and Future Work

This article highlights the advantages of artificial intelligence technology for health
monitoring. Specifically, we propose a novel model for joint extraction of entities and rela-
tionships to improve the accuracy of health monitoring. The proposed model transforms
joint extraction into a binary tagging problem. We introduce RoBERTa to fully extract
sentence features. Furthermore, we exploit conditional layer normalization in the decoder
to combine entities with relationships. Talking-head attention is applied to strengthen the
interaction between entity recognition and relation extraction. Thus, the proposed model
can simultaneously extract different triplets from sentences and alleviate the problem of
overlapping triplets. We conducted complex experiments on two Chinese datasets to
demonstrate the effectiveness of the proposed model. Our experimental results on the
Baidu2019 and CHIP2020 datasets show that the proposed model outperforms baseline
models. Ablation experiments were used to demonstrate the importance of each mod-
ule. In summary, the experiments show that the proposed model can effectively extract
overlapping triplets and has better performance than existing methods.

In the future, different technologies can be further explored to extract information
efficiently in Chinese sentences. First, the accuracy of the proposed model on the SEO class
needs to be improved in order to increase the accuracy of the healthcare monitoring system.
In order to solve the problem of low efficiency on SEO class identification, one option is
to investigate different attention fusion methods. A second issue is that this model does
not effectively identify medical texts, as special medical sentences are complex. Hence, for
special medical sentences, medical dictionaries could be combined with medical sentences
to enhance the model’s performance on extracting overlapping triplets in medical contexts.
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