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Abstract. Detection of anomalies based on smart meter data is cru-
cial to identify potential risks and unusual events at an early stage. In
addition anomaly detection can be used as a tool to detect unwanted
outliers, caused by operational failures and technical faults, for the pre-
processing of data for machine learning, to detect concept drift as well as
enhancing cyber-security in smart electrical grid operations. It is known
that anomalies are defined through their contextual appearance. Hence,
anomalies are divided into point, conceptual and contextual anomalies.
In this work the contextual anomaly detection is examined, through a
novel type of load forecasting known as vertical approach. This chapter
explores the use of anomaly detection in the relevant learning systems
for machine learning in smart electrical grid operation and management
through data from New South Wales region in Australia. The presented
vertical time approach uses seasonal data for training and inference, as
opposed to continuous time approach that utilizes all data in a contin-
uum from the start of the dataset until the time used for inference. It
is observed that Local Outlier Factor identifies different local outliers
given different vertical approaches. In addition, the local outlier factor
score vary vertically. An anomaly is defined as a deviation from an es-
tablished normal pattern. Spotting an anomaly depends on the ability
to defy what is normal. Anomaly detection systems aim at finding these
anomalies. Anomaly detection systems are in high demand, despite the
fact that there is no clear validation approach. These systems rely on
deep domain expertise.

Keywords: cybersecurity, anomaly detection, smart grid, local outlier
factor

1 Introduction

Machine learning (ML) can provide electrical load demand forecasting, giv-
ing information about future loads, which provides essential input to other
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applications such as Demand Response, Topology Optimization and Anomaly
Detection, facilitating the integration of intermittent clean energy sources.

An anomaly is defined as a deviation from an established normal pattern. Spot-
ting an anomaly depends on the ability to defy what is normal. Anomaly detec-
tion systems aim at finding these anomalies. Anomaly detection systems are in
high demand, despite the fact that there is no clear validation approach. These
systems rely on deep domain expertise.

In the safe operation and management of the smart grid there is a need for
efficient and reliable detection of anomalies. The data used in grid operation is
of such an amount, that it is not possible to do so manually or by visual inspec-
tion alone, and there is a need for efficient, automated and accurate anomaly
detection methods [1]

The available advanced information and communicating platform and computa-
tional capability renders smart grid prone to attacks with extreme social, finan-
cial and physical effects. The smart grid concept enables the utilization of smart
appliances in homes and electric vehicles for providing support for frequency reg-
ulation and voltage regulation. Cyber threats could affect the ancillary services
that are being delivered from the aggregators, which might lead to stability and
security issues resulting in brownout or massive blackouts [2].

To coordinate and manage the increase of renewable energy sources, such as
wind, sun and hydro, they can be operated using gried-tied voltage source con-
verters (VSCs) [3]. VSCs regulate voltage and frequency locally. The VSCs en-
able the operation of intelligent microgrids (MGs), and vulnerable for attack. In
the distributed power network the attack can disrupt the frequency regulation,
voltage stability and the power flow management [4].

The implementation of two way communication by the use of sensors and in-
telligent agents such as advanced metering infrastructure (AMI) as well as load
aggregation, make these attractive objects for cyber attacks. Sensors can be
penetrated using a Trojan Horse, to manipulate the adversary inside the control
platform, and change reference inputs in both outer and secondary control for
VSCs. The attacker can here change acquisition gains, that create bias in the
measurements report.

The enhanced agent topology of a smart electrical grid, reveals the mentioned
vulnerabilities. The valuable question is; what is the price of the smartness of
the smart electrical grid, in terms of the security of the supply?

Anomaly detection is an important first step in supervised machine learning
processing to search out erroneous data, where the data was recorded due to an
error or disrupted by other causes. Examples of such erroneous data could be
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the product of a sensor fault, downtime due to maintenance or when time series
data is recorded in the changes from daylight saving time. This first step in data
cleaning process has been known to enhance any forecasting algorithm [5][6].

From the field of Time Series Analysis and different correlation studies, it is
known that seasonality affects the electrical load consumption. Time series anal-
ysis includes this knowledge in parametric methods such as Seasonal AutoRegres-
sive Moving Average [7] [8]. The authors of this book chapter has also included
drift due to seasonal variations, in the method vertical axis approach [9][10]

In the Section 2 of this book chapter the different learning systems in anomaly
detection are explained, as well as the main categories of anomalies. Section
3 covers the literature review. Section 4 gives the mathematical foundation for
LOF. Section 5 presents the methodology used, and finally in Section 6 are given
the results and conclusion.

2 Learning systems in Anomaly Detection

Machine learning algorithms are divided into unsupervised, supervised and semi-
supervised learning. Unsupervised learning is when the algorithm is learning
without knowing the target for its learning. The algorithm is trying to make
sense amongst the features of the data, as in discovering natural groups within
the data by clustering techniques. In supervised learning the algorithm know
the target of prediction during the training stage of the algorithm. When train-
ing the algorithm features are divided into dependent and independent features.
The independent features involves the basis of the decision making, the input
vector, and the dependent variable is the target vector. In supervised learning
the patters between input and output is learned in the training phase and based
on this result the models parameters are identified. Semi-supervised learning
method is a hybrid between the mentioned supervised and unsupervised learn-
ing, and it involves elements from both supervised and unsupervised learning-
Semi-supervised learning uses partially labeled and unlabeled instances to de-
tect anomalies. One instance is in autoencoders where only the data that depicts
normal behavior are labeled and used to train the algorithm. Based on the as-
sumption of what is normal it will flag anomalous datapoints when exposed to
data that differs from normal data [11]

To learn patterns across timescales, sliding window technique is introduced. Slid-
ing window method is used when doing time series forecasting, and it introduces
a shift in the input and output variable relation. This can be done through dy-
namic or static modeling. For this work we will explain the static modeling of
sliding window method.

In the Sliding window method the training and test set input and target vec-
tors timestamp is shifted using a sliding technique that allows the number of
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timesteps shifted, to equal the predictive window. In practical terms it means
that the algorithm reads a features input for a certain timeframe and then
matches it with the selected predictive window. In the training phase of the
modelling, the algorithm will then learn the patterns that suggest the follow-
ing behaviour ahead in time. In sliding window adaptation the ’Feature Data’
columns is the input (time of day, dry-bulb temperature, humidity, previous
loads, etc.) and the target vector is ’Load Data’, and the ’Load Data’ is shifted
48 timesteps back (half-hourly values), and this is how the algorithm is fed the
information when doing day ahead forecasting.

The sliding window method explained here is used in supervised learning for
time series. Alternative versions of sliding window method have been adopted
to deal with concept drift. In machine learning concept drift occurs when the
underlying distribution of the data changes over time changes over time, making
the model unfit to predict for future events [12]. An adaptive sliding window
method, that calculates an adoptive window-size on the fly is has been proposed
to deal with concept drift [13]. Another adaptation raises the complexity by us-
ing multi sliding window detecting growth length over several windows detecting
the drift length by adjoining several windows finding the optimal window length
useful for online learning [14].

In Recurrent Neural Networks like Long Short-term Memory networks (LSTM)
different gates are used to remember and forget time-occurrence over different
time windows. To deal with concept drift in LSTMs it has been proposed a
novel forgetting mechanism for anomaly detection [15]. It has also been pro-
posed to narrow down the scope, by critical lines detecting distribution change.
The first step in the proposed method is to reduced dimensionality through an
orthogonal transformation of the data reducing the feature space to its principal
components [16]. After reducing the feature space the distributions are compared
by two-sample Kolmogorov–Smirnov Test (KS test) [17].

Anomalies depend on the structure, distribution and type of data, as well as
carnality of relationship of the data [18]. Basically there are 3 main types of
anomalies: Point, Contextual and Collective anomalies. Point anomaly is an in-
stant, that can be regarded anomalous, amongst other instances in the data.
They are extreme, and caused instantly. In electric load demand point anoma-
lies when other sources of energy (such as district heating) are curtailed [19].
Collective Anomaly is an instance that is defined an anomaly based on the con-
text. Meaning that, in some context (e.g based on the temperature of a season),
a particular behaviour is normal, but put in a different context (a different sea-
son) it qualifies as abnormal behaviour. Collective anomalies are data instances
that deviate significantly from the entire dataset, but individual data amongst
the collective instances may not qualify as an outlier.
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3 Literature Review

Anomaly detection is done on any time series data. Robust statistical meth-
ods have been known to determine deviation from normal electrical load pat-
terns. Simple statistical methods, such as Box-plots have been used in the pre-
processing of electrical consumption load profiles to determine daily usage pat-
terns [19]. Box-plot have also been used to identify anomalies on regression
forecast errors in order to improve the prediction [20].

Efforts to find data-mining framework to typical electricity load patterns (TELP).
TELP has been proven successful for anomaly detection in builduing electricity
consumption data. The first step in TELP is to cluster data in temporal seg-
ments, such as daily electricity load profiles (DELP) using density based spatial
clustering application with noise (DBSCAN). The framework is aimed to iden-
tify typical electricity load patterns and gain knowledge hidden in the patterns
and to potentially be used in an early fault detection of anomalous electricity
load profiles [21]. Also to detect anomalies of electricity consumption in office
buildings an improved kNN is proposed, ikNN, to automatically classify con-
sumption footprints as normal or abnormal [22].

Other techniques for identifying patterns in electricity consumption, are deter-
mining distinctive clusters within seasons, and the obtained clusters are used to
create seasonal curves for the four seasons, with each having two optimal clusters
representing the load demand [23]. An autoregressive integrated moving average
with exogenous inputs (ARIMAX) model is used to extract weather dependency
to find the residuals, then through hypothesis testing the extremities, maximum
and minimums are found [24]. This procedure was reproduced, with linear re-
gression finding the residuals and a Bayesian maximum likelihood classifier to
identify anomalies [1]. Dynamic Bayesian Networks and Restricted Boltzman
Machine has been proposed for anomaly detection in large-scale smart grids.
Simulated on the IEEE 39, 118, and 2848 bus systems the results were verified
[25]. Real-Time Mechanism for detecting false data injection attacks analyzed
the change of correlation between two phasor measurement units parameters
using Pearson correlation coefficient on IEEE 118 and 300-bus systems [26].

Machine learning techniques have been highlighted for their ability to differen-
tiate between cyber-attacks and natural disturbances. By a simulating a variety
of scenarios the ability for One R, Random Forest, Naive Bayes and J-Ripper to
recognize attacks was investigated: Short Circuit faults; location is represented
by the percentage range, Line maintenance; identified through remote relay trip
command, Remote tripping command injection; the attacker operates the re-
lay remotely that causes a breaker to open, Relay setting change; the attacker
misconfigures the relay settings to cause maloperation of relays, FDIA; attacker
manipulates measurements sensors. The simulated scenarios was grouped into
classes; natural events, attack events, and no events [27].
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4 Local Outlier Factor for Anomaly Detection

Local Outlier Factor (LOF) is a density based unsupervised anomaly detection
algorithm introduced in 2000 [28]. LOF compares the local density of a point to
the local density of k of its neighbors. By comparing the local density of a point
to the local density of its neighbors one can identify point that have substan-
tially lower density than its neighbors. These points are considered to be outliers.

The first step in LOF is to compute all distances. As shown for in (Equation 1)
for an m-dimensional Euclidean space:

d(xi, xj) =

√√√√ n∑
i,j=1

(xi − xj)2 (1)

In an example dataset consisting of n=7 points, as shown in Fig. 1, and Table
1.

The distance xi to xj between B and D is:

BD2 = (Bx −Dx)
2 + (By −Dy)

2

BD2 = (1− 4)2 + (5− 1)2

BD2 = 25

BD =
√
25 = 5

The distances k to all point in the neighborhood of x, Nk(xi). All distances
are computed in order to define the nearest neighbors distances Nk:

– AB: 6.08 AC: 6.32 AD: 5.83 AE: 6.4 AF: 7.21 AG: 6.71
– BA: 6.08 BC: 1.0 BD: 5.0 BE 4.47 BF: 5.39 BG: 5.83
– CA: 6:32 CB: 1.0 CD: 4.24 CE 3.61 CF: 4.47 CG: 5.0
– DA: 5.83 DB: 5.0 DC: 4.24 DE 1.0 DF: 1.41 DG: 1.0
– EA: 6.4 EB: 4.47 CC: 3.61 ED: 1.0 EF: 1.0 EG: 1.41
– FA: 7.21 FB: 5.39 FC: 4.47 FD: 1.41 FE 1.0 FG: 1.0
– GA: 6.71 GB: 5.83 GC: 5.0 GD: 1.0 GE 1.41 GF: 1.0

After computing all the distances the values are sorted from nearest in row 1,
see Table 2, in ascending order to the 6th nearest neighbor in row 6. From the
Nk-matrix in Table 2 reveal some intuition for the k-parameterisation. The value
of k is also controlling the smoothing strength of LOF [29]. It is recommended
choosing a minimum k and a maximum k, and for each point, taking the max-
imum LOF value over each k in that range. Several guidelines for choosing the
bounds are given. For the minimum value, the LOF values fluctuate the points in
a uniform distribution for k<10, with points in a uniform distribution sometimes
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Fig. 1: An example dataset

x y Letter

7 6 A
1 5 B
1 4 C
4 1 D
3 1 E
3 0 F
4 0 G

Table 1:
An exam-
ple dataset

A B C D E F G k

5.83 1 1 1 1 1 1 1
6.08 4.47 3.61 1 1 1 1 2
6.32 5 4.24 1.41 1.41 1.41 1.41 3
6.4 5.39 4.47 4.24 3.61 4.47 5 4
6.71 5.83 5 4.47 4.47 5.39 5.83 5
7.21 6.08 6.32 5 6.4 7.21 6.71 6

Table 2: All nearest distances in ascending order
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showing up as outliers. Secondly, the minimum k-value serves as a minimum size
to be considered a ”cluster”, and points can be outliers relative to that cluster.
If k=20, and you have a group of 10 points and a point X, each point in the
group will include X in its nearest neighbors, and x will include those points,
leading them to have very similar LOFs.

For the maximum value, a similar criteria applies, in that it should be the max-
imum number of objects that you want to be considered outliers if clustered
together. A group of N objects isolated from the main set can either be a clus-
ter, or N outliers; for k<N, they will be the first; for k>N, they will be the second.

Once the optimal k-value is found the LOF uses the reachability distance (RD)
to compute the LOF of a point x:

Reachability Distance(xi, xj) = max(k − distance(xj), dist(xi, xj)) (2)

If xi is further away from xj , than xj ’s k
th nearest neighbor, then xi is the RD,

if the opposite, that xj ’s kth nearest neighbor the actual distance between xi

and xj then dist(xi, xj) is used as RD, this is known as the smoothing factor.

When all RD’s are computed the next step is to find the Local Reachability
Density (LRD). This is found by taking the inverse of the average RD:

LRD(xi) =

( ∑
xjϵN(xi)

{
RD(xi,xj

|N(xi)|

})−1

(3)

If the LRD(xi) is high then the point xi is in a dense neighborhood, and opposite,
when LRD(xi) is low, then xi is in a sparse neighborhood. The LRD’s of the
points in Nkxi, multiplied by the LRD of xj is used to compute the LOF of
point xi:

LOF (xi) =

∑
xj

ϵN(xi)LRD(xj)

|N(xi)|
∗ 1

LRD(xi)
(4)

If the average value of the LRD’s in Nkxi is large and the LRD of xi is small,
then xi is an outlier.

5 Methodology

In this work data from New South Wales, Sydney region, is considered. New
South Wales, Sydney region electrical load profile data set [30] includes meteo-
rological parameters (e.g. DryBulb and WetBulb Temperature, Humidity, Elec-
tricity price and time of use) [31]. Data is gathered from 2006-2011. The overall
energy mix in New South Wales consists mainly of Coal, Natural Gas, Hydro
and other renewable energy sources as shown in Table 3.
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Power plant Number Installed Power (MW)

Hydro 24 4794
Wind 14 1250
Solar 9 228
Coal 8 11730
Biogas 11 56

Natural Gas 19 3766

Table 3: Energy Mix in New South Wales, Australia

Horizontal approach

Vertical approach

Training blocks
in seasonal
sequence

Inference

Horizontal timeline

V
er
ti
ca
l
ti
m
el
in
e

Fig. 2: Vertical and Horizontal Approach

The methodology in this work is based on a comprehensive correlation anal-
ysis on the impact of external parameters on electrical load demand [7][8][9][10].
It is observed from these analyses that that meteorological temperatures are
highly correlating to the electrical load demand. The vertical time approach
uses seasonal data for training and inference. The horizontal approach uses con-
tinuous datasets, i.e., it utilizes all data in a continuum from the start of the
dataset until the time period used for inference. The illustration of horizontal
and vertical approaches is presented in Fig. 2.

Vertical approach can be performed with minimum amount of data compared
to continuous approach. Also, the vertical time approach predictive results are
compared with prediction based on continuous time series data. In vertical ap-
proach, the training set, D = {xi}Ni=1, is partitioned into subsets by each season
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Computing LOF for all 4 seasons (n=17520)

Horisontal Approach:

Finding Optimal k-value

Computing LOF Seasonwise

Testing Season 1 (n=4256)

Testing Season 2 (n=4416)

Testing Season 3 (n=4416)

Testing Season 4 (n=4368)

V
er
ti
ca
l
A
p
pr
oa
ch

Comparing Horisontal and Vertical Approach

Fig. 3: Flowchart of the proposed model

of the year, and then are merged together only containing seasonally information
about the load pattern. In a dataset containing time observation for five years
(e.g., 2016–2020), time is separately selected season-wise, and then merged to
contain only the specific season for training, D = {xspringi}2019i=2016.

In this study, seasons are divided by months, where Season 1 is December, Jan-
uary, February, and Season 4 is September, October, November. The LOF, is
compared for the Horizontal and Vertical Approach, as seen in the flowchart
presented in Fig. 3. First the LOF is computed on all 4 seasons, finding the
optimal value of k, to be compared seasonwise, independently on each season,
and finally comparing the percentage of detected anomalies.
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6 Results, Discussion and Conclusion

The first results from step one in the flowchart for the proposed model, in Fig.
3, are illustrated in Fig. 4: The results show all the outliers from the horizontal
approach, the red rings encircling these LOFs in, Fig. 4, are the radius used to
describe their individual LOFs, from the threshold value of LOF <-1.5 to the
maximum LOF=-2.93. This maximum LOF is recorded on the 15 th of septem-
ber 2010 at 03:30 hours, and recorded a system load of 6882.9 MW. From these
results the upper and lower bounds are chosen.

The data is computed from LOF using k-nearest neighbor of 6, 8 and 10, and
showng 3 different LOF’s (LOF <-1.5, LOF <-2 and LOF <-2.5), shown in Ta-
ble 4. The results show that as the search space widens the fraction of outliers
detected decreases. In the first row in Table 4 The fractions continues to de-
crease as for the lower level of LOF. For k=10, the fraction of LOF is halfed
when regarding the -1.5 threshold compared to the -2.5 threshold.

Observing the results from the LOF’s for the different k-values; when compar-
ing for horizontal and vertical approach most of the results show that vertical
approach detects a bigger fraction of anomalies. This is valid for 25 out of 32
results a fraction of 78 %. For LOF <-1.5 and k=6, k=8, k=10, for LOF <-2 and
k=6, K=8, k=10 and finally for LOF <-2.5 and k=6, vertical approach detects
more anomalies than horizontal approach.

Observing the results from horizontal approach to vertical approach on Season
One, in 7 out of 9 test results the fraction of detected anomalies are higher using
vertical approach. In Season Two this fraction is reduced to 4 out of 8 (since
the k=8 for LOF<-2 has equal values). In Season Three vertical approach has a
higher fraction on 100 % of the test results, compared to horizontal approach.
In Season Four in 6 out of 9 test results the fraction of detected anomalies are
higher using vertical approach. These results verify observations from analysing
the seasonal impact on the load electrical load demand.

Season One has a relatively higher electrical load demand as compared to Season
Three. These two seasons stand out in the detection of outlier and the explana-
tion for this is found in the correlation to external parameters. In Season Three
(June-July-August) dry bulb temperatures recorded are so low that the demand
for heating increases the electrical load demand. This might be an explanation
to the many outliers found in Season Three. Season One has a lower load de-
mand, but the visual inspection shows higher occasional peaks in the demand. By
visual inspection, Fig 3, non of these peaks are detected by horizontal approach.

This work reflects the previous extensive correlational analysis as well as al-
gorithmic development designed to option for changing seasonal behaviour due
to the impact of external parameters. It is shown that the number and fraction of
detected outliers are higher when using vertical approach, as this work proposes,
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Fig. 4: Outliers detected varying radius of the red encirclement show
their individual LOFs ranging from, LOF<-1.5 to the maximum LOF=-
2.93.

Season
LOF <-1.5 LOF <-2 LOF <-2.5

k=6 k=8 k=10 k=6 k=8 k=10 k=6 k=8 k=10

All seasons 3.39 0.52 0.12 1.28 0.11 0.01 0.51 0.03 0.01

Season One 3.40 0.44 0.16 1.50 0.12 0.05 0.77 0.05 0

Season Two 3.54 0.59 0.09 1.26 0.11 0.02 0.46 0 0

Season Three 3.88 0.73 0.14 1.52 0.18 0.05 0.75 0.05 0.05

Season Four 3.34 0.60 0.21 1.09 1.09 0.07 0.46 0.21 0.12

Table 4: Results

compared to the traditional continuous method using horizontal approach. There
is a need for evolving the impact of external parameters and seasonal behavioural
patterns on electrical load demand to enhance the outlier detection for smart
energy systems.
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