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Abstract: Microgrids are energy systems that can operate independently or in conjunction with
the main electricity grid. Their purpose is to link different energy sources, enhance customer
participation in energy markets, and improve energy system efficiency and flexibility. However,
regulatory, technical, and financial obstacles hinder their deployment. To comprehend the current
state of the field, this study utilized citation network analysis (CNA) methodology to examine over
1500 scholarly publications on microgrid research and development (R&D). The study employed
modularity-based clustering analysis, which identified seven distinct research clusters, each related
to a specific area of study. Cluster 1, focused on control strategies for microgrids, had the highest
proportion of publications (23%) and the maximum citation link count (151), while Cluster 4, which
examined microgrid stability, had the lowest proportion of papers (10%). On average, each publication
within each cluster had four citation links. The citation network of microgrid research was partitioned
using cluster analysis, which aided in identifying the main evolutionary paths of each subfield.
This allowed for the precise tracing of their evolution, ultimately pinpointing emerging fronts and
challenges. The identification of key pathways led to the discovery of significant studies and emerging
patterns, highlighting research priorities in the field of microgrids. The study also revealed several
research gaps and concerns, such as the need for further investigation into technical and economic
feasibility, legislation, and standardization of microgrid technology. Overall, this study provides
a comprehensive understanding of the evolution of microgrid research and identifies potential
directions for future research.

Keywords: microgrid; carbon emissions; renewable energy; electric vehicles

1. Introduction

Microgrids, which are local networks of energy sources and consumers, often work in
tandem with the central power grid, but they can disconnect and operate autonomously if
necessary, as shown in Figure 1. These systems can supply electricity to a single building,
campus, or small community using a combination of decentralized energy resources, such
as renewable sources and energy storage, as well as traditional electricity generation [1].
With the increased reliance on renewable sources such as solar and wind, microgrids are
becoming increasingly popular as a means of efficiently integrating these sources into the
power grid. Turbines in microgrids can offer a dependable source of electricity generation
that can function separately from the larger utility grid. Depending on the requirements
of the system, turbines, including wind and microturbines, can be used in microgrids in a
variety of ways. They also improve power reliability and resilience by allowing for isolation
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or disconnection during outages and continuing to supply essential loads. Microgrids
have the potential to enhance grid efficiency and flexibility by integrating decentralized
energy resources, demand response, and energy storage, as well as promoting customer
involvement in energy markets through advanced metering and control systems [2].
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Figure 1. A typical schematic of a microgrid system.

However, the widespread adoption of microgrids faces challenges, including regula-
tory barriers, technical limitations, and financial considerations.

Despite these obstacles, the global microgrid market is anticipated to expand rapidly
over the next few years, driven by the need to modernize and upgrade outdated power
infrastructure as well as the rising need for reliable and sustainable power. This expansion
is anticipated to be notably rapid. Microgrids offer a hopeful solution for integrating
renewable energy sources into the power grid, enhancing the reliability and robustness
of energy systems, as well as improving overall efficiency and flexibility. However, it is
essential to recognize the obstacles and constraints that must be overcome for the wider
application of microgrids and the maturation of this technology through continued R&D.
Research on microgrids is dispersed throughout numerous subdomains, including control
and regulation optimization, storage, and cyber security, among others. There are a number
of reviews on microgrids, but they are generally limited to a single topic, such as con-
trol studies, microgrids with converter-interfaced generations [3], protection strategies of
AC/Dc microgrids [4], market participation [5], industrial microgrids [6], cyber-security [7],
sustainability of microgrids [8], and microgrid architectures [9]. The objective of this study
is to examine the evolution of research and development (R&D) within various subfields
of microgrids by conducting a social network analysis (SNA) on a corpus of research
publications. Citation network analysis (CNA) has emerged as a methodical and scientific
way of analysing research literature to uncover changes in techniques, future trends, and
research frontiers. ‘The information landscape of an area’s evolution towards research
frontiers is complex and shaped by citations, making CNA a valuable tool for technology
forecasting and an alternative to expert-based methods that draw on SNA techniques [10].
This paper employs cluster analysis to segment the citation network of research on micro-
grids, highlighting the key evolutionary paths of each subfield and tracing the evolution to
identify challenges and emerging fronts. In addition to tracing the existing technological
advances in this sector and identifying the restrictions that impeded expansion of microgrid
technology, the key routes of the evolution of each cluster indicate the future paths and
emerging research fronts.
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2. Methodology

In this study, we conduct a main path analysis of a citation network of microgrid (MG)-
based research articles. As shown in Figure 2, the MG citation network was constructed by
collecting citation information via Web of Science (WoS).
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Figure 2. Schematic representation of main path analysis.

Assigning a weight to every directed link between two nodes is the initial step in
preparing a main path [10]. Three key measures [11] are used to assess a link’s weight:
Node Pair Projection Count (NPPC), Search Path Node Pair (SPNP), and Search Path Link
Count (SPLC). Of these three, the SPLC of a given link indicates the number of search paths
by which the network traversed through the link; therefore, it is believed to be the most
significant to traversal weight. If the SPLC value is large, more search paths traverse the
link [12]. At a source node, citation networks construct their major paths by connecting
the links carrying the heaviest load until they reach a sink node. Each relationship in a
primary path supports the dissemination of knowledge to later publications, and these
relationships are often used to trace the progress of science by matching historical facts and
citation links. The major path nodes denote milestones in the study domain [13]. Although
the priority search method selects connections of a primary path directly, the total number
of network traversals may not be the highest. The first step of main path analysis is to
identify the connections with the highest travel count that emerge from all resources. The
first node of a global main path is called the initial node, and the subsequent three links
are produced by repeating the operation until a sink node is reached. Here, we developed
the software package GEPHI’s global main path [14]. By tracking down the relevant MG
technology papers, we built the global main path analysis. We obtained bibliometric
information from the Web of Science by utilizing the keyword “microgrid”, which we then
utilized to build the citation network [15]. This citation network consisted of 1000 nodes,
including cited papers. To identify the predominant research themes, we performed a
modularity-based clustering analysis on the citation network [16], which resulted in seven
major clusters, each representing a distinct research theme. Each cluster was extracted as a
separate network and identified the key route of evolution. These key routes are given as
supplementary figures (Figures S1–S7). Each key route traces the evolution of its domain,
depicting milestone papers. The leaf nodes indicate the emerging trends and immediate
future agenda, as shown in Figure 3.
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3. Evolution of Microgrid Technology

There are numerous subdomains of microgrid technology research (Figure 3), each of
which focuses on a distinct component of microgrid design, operation, and management.
Energy storage, control, power electronics and power quality, renewable energy integration,
stability, storage, protection and cybersecurity, regulation and distribution, and economic
and business models are some of the major areas of microgrid technology study. The
following is a discussion of the viewpoints, limitations, and future possibilities for each of
these diverse subdomains identified through main path analysis.

3.1. Control Strategies for Microgrids

The largest discovered cluster was examined first in the citation network study. The
content of the research articles of the important nodes along the evolutionary path was
studied to monitor the evolution, constraints, and future research potential. One of the
central nodes focuses in particular on the design and assessment of controllers, which
integrates synchronization algorithms to insure a seamless and secure reconnection of
the utility and microgrids after the fault is rectified [17,18]. Incorporating an inverter-
based microgrid [19] with parallel inverters [20–23] into a distribution network has made
it easier to use distributed generation, storage, and renewable energy sources. It has
also improved power quality and reduced losses, increasing the system’s dependability
and efficiency. The actual and reactive power requirements for the microgrid must be
distributed among the inverters in line with their ratings, and the grid voltage must be
controlled in Figure 4. In small grids with substantial nonlinear and unbalanced load
proportions, the waveform quality in terms of balance, transient disturbances, and har-
monics needs to be actively regulated [24]. Additionally, a method for handling inverters
connected in parallel in a standalone AC supply system [25] and control strategies for flexi-
ble microgrids composed of parallel connections between numerous line-interactive UPS
systems using droop approach [20,26–32] to prevent vital interactions among UPS units
were also discussed [33]. Numerous control techniques based on active power flow [34–38],
line impedance [21,32,39–44], voltage quality [30,32,38,45–49], stability [28,37,41,42,50–55],
load sharing [56], frequency quality [46,47,49,53,57], current quality [19,38,48,58], system
dynamics (DOF) [59], synchronization [60], reliability [61], operating cost [61,62], hier-
archy [42,63–66], reactive power [32,37,38,52,67,68], communication time delay [66], etc.,
were reported in the literature for enhancing the overall performance of the microgrid, as
shown in Figure 4.
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This cluster studies microgrid control strategies. The research has focused on designing
and testing controllers with synchronization algorithms to allow a smooth and secure
reconnection of the utility and microgrids following a fault. Due to multiple distributed
energy resources (DERs) and demands, microgrids are hard to manage. Microgrid control
and monitoring require communication networks and data management systems, which
are prone to failure. The unpredictability of distributed energy resources (DERs) and
demand in a microgrid makes system management difficult. An inverter-based microgrid
with parallel inverters in a distribution network makes distributed generation, storage,
and renewable energy easier and more reliable and efficient. Active power flow, line
impedance, voltage quality, stability, load sharing, frequency quality, and reactive power
have all been used to improve microgrid performance. To increase microgrid performance
and dependability, this research may continue to explore new control mechanisms.

3.2. Optimization and Management of Microgrid Systems

The following cluster (Figure S2) of the citation network regards the different opti-
mization methods for microgrids. “The expert multi-objective AMPSO (Adaptive Modified
Particle Swarm Optimization) algorithm [69] has been compared to other evolutionary
algorithms such as GA (genetic algorithms) and PSO (Particle Swarm Optimization) in a
study of optimization methods for microgrid with renewable energy sources, including
tidal energy [70], and a backup Micro-Turbine/Fuel Cell/Battery hybrid power source”. In-
corporating cutting-edge distributed energy resources can greatly enhance the performance
of power systems, particularly distribution networks. However, it is important to note
that excessive use of renewable energy under certain conditions could result in negative
effects on the system’s performance. It has been shown through simulations utilising a
bi-level operational framework based on the energy band that adding a microgrid to a
DN increases the system’s capabilities as a whole. Bi-level cooperation problems were
solved using enhanced non-dominated sorting genetic algorithms, which integrate the
optimisation of the distribution networks and the profit maximisation of the microgrid [71].
SystemC-AMS-based modelling and simulation frameworks for cyber-physical electrical
energy systems (CPEES) were also developed for optimization [72].

To ensure the dependability and stability of a distribution network (DN) with many mi-
crogrids, various frameworks for operation management [73,74], market management [75,76],
and security and risk management [77–79] (as shown in Figure 5) and algorithms for
efficient energy [80–84] were also developed. Energy management is shown in Figure 6. Al-
gorithms based on demand-side response [85–88], voltage stability [89], price elasticity [90],
consumer comfort [91,92], multi-carriers [93], distributed generation (DG) [94], customer
response [95], operating costs [79,92,95–100], hybrid renewable energy sources [101–105],
interconnected microgrids [106,107] environmental pollution [108], emissions [109,110],
cooperative participation [111], and storage [97,112,113] were found to be the key routes in
this network. Reverse power flows, local oscillations, and frequency fluctuations are the
key uncertainties [114] of microgrids, which challenge their stability, reliability, and protec-
tion. Smart modelling of microgrids using Petri nets (PNs) aids in handling these kinds of
encounters, which are extensively employed to illustrate and research the operations of
industrial systems in both discrete and continuous-time occurrences. Time-based pricing
networks are seen as more reliable options for grid integration strategies in the context
of unpredictable loads and renewable energy sources. Electric-vehicle-based microgrids
have the potential to utilize energy storage systems, with the vehicles being able to aid the
microgrid in satisfying load demands and maintaining voltage and power quality.
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However, during periods of high EV usage, the microgrid may experience increased
load. Implementing EV power scheduling can address the profit and cost profile as well as
support demand-related issues faced by microgrids.

Microgrid optimization and management now includes advanced PSO algorithms,
dynamic demand response (DR), hierarchical models, and smart consumer behaviour. Hier-
archical decentralized frameworks were created to manage MEMGs and smart consumers.
Deep-learning-based forecasters and risk-averse information gap decision theory (IGDT)
scheduling risk controlling were applied to predict uncertain parameters. A prediction-
based approach for designing dynamic demand response (DR) systems that match smart
consumers’ behaviour reduced peak energy and heat costs by 17.5% and 8.78%, respec-
tively [115]. Hierarchical models were constructed for generation scheduling, mobile unit
allocation, distribution feeder reconfiguration (DFR), and maintenance crew scheduling
to improve DC-MG resilience. Simulations indicated that DFR and proactive interven-
tions cut ENS by 19,124 kWh and 4101 kWh, respectively, when considering load demand,
wind speed, and solar radiation uncertainty. Information exchange between microgrids
boosted the supply service level to key loads by 48.16%, boosting resilience by 3.47% [116].
Enhanced mixed binary–continuous PSO employed V-shaped QPSO to handle binary
variables for six scenarios, taking market price, supply, and demand volatility into account,
to tackle unit commitment (UC) problems in microgrids. This quadratic PSO outperformed
classical PSO with SPSO and HPSO in several instances [117]. PSO was used to handle
dynamic economic load dispatch (DELD) in grid-connected MGs with integrated demand
response programs. The two-point estimate method (TPEM) addressed demand, renewable-
energy generation, and market price uncertainties. The simulations showed that demand
response integration reduced the study microgrid’s running costs by 21.77% [118]. Fast-
start distributed generators and fast-responding needs were studied to boost microgrid
flexibility and affordability. Fast-responding needs can work with a scenario-based schedul-
ing, but slow-responding demands cannot. If switched off at the DA stage, a slow-start
generator cannot be restarted [119]. A bi-level bidding system was created to manage
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energy exchange between networked microgrids with traditional and smart users. Load
demand and renewable generation uncertainty were managed using the CVAR approach.
Simulations show that risk-taker scheduling lowers the market-clearing price and increases
smart customers’ comfort index [120]. Finally, CCHP MGs with battery-charging stations re-
ceived an information gap decision theory (IGDT)-based energy management system [121].
Considering the ON/OFF history of power/heat/cooling units, least up-time and least
down-time constraints, start-up and shut-down ramp rate limits, and other risk factors,
battery energy storage (BES) and thermal energy storage (TES) reduced MG operating
expenses by 7.4% and 1.82%, respectively [122]. The battery-charging station (BCS) raised
the MG operation cost by 20.19%, and taking into account uncertainties, it increased by
8.22% [123].

The discussion in this session focuses on managing and optimizing microgrid systems.
The integration of renewable energy sources has the potential to improve power systems;
however, excessive reliance on such sources may have adverse effects on system perfor-
mance. Microgrid optimization has been facilitated through the utilization of optimization
algorithms such as AMPSO, GA, and PSO. Various management frameworks have been
devised for the purpose of managing operations, marketing, security, and risk management.
The significance of energy management algorithms in the management of microgrids has
been established, encompassing demand-side response, voltage stability, price elasticity,
and consumer comfort. Microgrid stability, reliability, and protection are impacted by vari-
ous uncertainties, including but not limited to reverse power flows, local oscillations, and
frequency fluctuations. Several solutions were proposed, including intelligent modelling
using Petri nets, time-based pricing networks, and microgrids based on electric vehicles
with scheduling. The study concludes by emphasizing that microgrid optimization and
management now incorporate sophisticated PSO algorithms, dynamic demand response,
hierarchical models, and intelligent consumer behaviour. More research is required to
develop and test novel optimization and management methods and frameworks for mi-
crogrid systems, which is the research gap. Prospective paths for research encompass the
advancement of novel algorithms, frameworks, and systems with the aim of augmenting
the efficiency, dependability, and cost-effectiveness of microgrid systems.

3.3. Microgrid Regulation

The third largest cluster (Figure S3) in term of number of papers in the citation network
examines microgrid regulation, shown in Figure 7. Multi-agent system (MAS) technology
manages a microgrid to optimize energy exchange between producing units, local loads,
and the main grid using a classic distributed algorithm based on the symmetrical assign-
ment problem [124]. Using interconnected microgrids and lumped loads, these systems
arrange energy resources for island power systems. Energy resource scheduling comprises
three phases. First, each microgrid’s internal demand is scheduled. The next step is to
search for the best wholesale energy deals coming from a network’s electricity export
providers. Finally, each microgrid is rescheduled to match demand from the wholesale
energy market simulation and internal needs [125]. Multi-agent systems manage multiple
microgrid-distributed energy resources in a two-level configuration. The symmetrical
assignment problem with a naive auction algorithm matches energy market buyers and
sellers. Market participants include generation, load, auction, grid, and storage organ-
isations [126]. DSC regulates frequency, voltage, and power in microgrids using local
unit controllers. Microgrid situations with more distributed generators (DGs) require this
technique. Secondary control’s narrow traffic pattern allows local-controller, local-area
communication. The voltage restoration separates the voltage and frequency control de-
sign by employing a distributed finite-time control strategy to converge all distributed
generations (DGs) to the set point in constrained time [127]. Consensus-based distributed
frequency control with control input limitations restores frequency [128]. A novel coor-
dinated power controller design architecture optimises scattered generator active power
output. Distributed generating systems have DED and CC function modules for each bus.
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Distributed consensus-theory-based DED calculates each generator’s optimal active power
generation references [129]. Distributed cooperative VUC control is used for islanded
microgrids. Each distributed generator (DG) may balance sensitive load bus (SLB) voltage.
Each local DG’s contribution level (CL) is proposed to demonstrate compensation ability.
Each local DG features a supplementary compensation architecture and communication
layer [130,131]. Control strategies are necessary for isolated microgrids with inconsistent
communication in order to regulate frequency and voltage of each distributed generator
(DG) and share active/reactive power. Droop-based secondary and tertiary control strate-
gies are established using iterative learning mechanics. The DGs only need to communicate
sporadically and in a low-bandwidth manner with their neighbours, as control inputs are
updated at the end of each iteration. Periodic communication can be costly and inefficient
in microgrid control [132]. In isolated microgrids, secondary frequency and voltage are
managed through event-triggered distributed control.
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The proposed control strategies aim to restore frequency and voltage, accurately share
active power, and minimize communication among the secondary controllers. Feedback
control laws are replaced with estimator outputs, which are only updated during event-
triggered times [133].

A new master–slave-organised DC microgrid network control technique with dis-
tributed iterative-event triggers and constrained communication capacity can synchronise
DER voltages. Low-bandwidth communication networks can optimise load sharing for
economic operation [134]. Broadcast gossip distributes peer-to-peer control entirely. To
govern voltage and reactive power sharing, DER units need local voltage and current
readings from their neighbours. The broadcast gossip communication protocol’s scalability
and reliability allow control inputs to precisely share reactive power across each DER by
restoring voltage levels at the shared coupling. Distributed controllers replace the central
hierarchy in local DERs. Line switches’ peer-to-peer requirements ensure microgrid system
stability, allowing DERs to plug-and-play and survive topology changes [135,136]. For
DC cyber-physical microgrids, resilient neighbour-based distributed cooperative control
involves slow-switching topologies and communication delays. The proposed robust
control method can synchronize a DC microgrid’s voltages by achieving optimal load
sharing for DERs’ generation cost reductions to improve economic operation at the same
layer through a sparse communication network, taking communication delays and slow-
switching topologies into account [136,137]. In an isolated AC microgrid, a two-layer
distributed control technique may regulate the output power of huge DERs such as PVs
and BESSs to achieve self-consistent proportional power sharing with time delay [138,139].
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A distributed dynamic event-triggered control rule for each distributed generator handles
secondary frequency restoration and active power distribution in an AC microgrid sys-
tem with constrained varying time delays. Dynamic event-triggered approaches reduce
communication costs. Lyapunov function analysis provides stability, active power sharing,
and asymptotic frequency restoration. The adequate condition limits time delays [139].
DoS attacks are mitigated using a secondary-control-layer-distributed resilient control tech-
nique. Even during DoS attacks, the control technique maintains bus voltage and optimises
current sharing by tertiary layer. A new secondary-layer robust sampling approach protects
against DoS assaults. Most secondary control methods sample at a predetermined pace.
The easy-to-implement distributed robust controller may maintain DC microgrid system
stability despite DoS attacks, according to theoretical research [140]. The sample control
architecture uses a time-varying sampling period and enhanced communication to prevent
sophisticated attackers from collecting it. Resilient secondary controllers depend on sample
period and communication. According to theory, the offered technique can restore bus
voltage and share current even during DoS assaults and heterogeneous communication
delays. A controller-hardware in-the-loop DC microgrid test system tests our method
against communication delays and DoS attacks [141,142]. Attacks on the voltage and
frequency control-loop inverter input channels that are unknown and unbounded could
have a negative impact on microgrid stability and its cooperative performance. “Stability
analysis with Lyapunov techniques combined with an entirely distributed attack-resilient
control framework retains the uniformly bounded consensus for voltage containment and
frequency regulation” [143].

In conclusion, managing and connecting a variety of systems and components is
necessary for microgrids. For regulators, this makes microgrid operation and construction
complicated. Regulations governing microgrid connectivity vary by country. Regulators
struggle to develop guidelines for utility and microgrid collaboration. System security and
dependability must be balanced with innovation and the incorporation of renewable energy
sources in microgrid control. Microgrid management makes sure that microgrids integrate
well with the main power grid. Regulations for consumer protection, grid management,
and interconnection are mentioned. The laws strike a compromise between customers,
utilities, and microgrid operators. Future microgrid regulation is anticipated to support
the integration of renewable energy, enhance system stability and reliability, and protect
consumers. New regulations may be necessary for distributed energy sources, energy
storage technologies, and electric automobiles. International standards and harmonized
regulations are required to facilitate the development and implementation of microgrids
throughout the world due to the rising demand for them and their potential to increase
energy security and decrease reliance on conventional grid systems. Lastly, microgrid
regulation is expected to support the integration of renewable energy, system dependability,
and stakeholder interests.

3.4. Stability of Microgrids

Microgrid stability is the major concern addressed in the fourth cluster (Figure S4) in
the citation network. Intelligent controller systems estimate system variables and adjust
to operational changes to outperform the traditional controllers [144]. A mathematical
model shows how modest rooftop photovoltaic (PV) power plants affect a larger power
system’s economic and performance characteristics. PV electricity generation had a high
break-even cost below 10% [145]. Battery storage stabilises PV system power output
(Figure 8), but it is expensive and wasteful. This study proposes altering MPPT control
parameters to smooth short-term power output changes in PV systems without additional
equipment. The proposed measure restricts PV system power output growth by moving
the MPPT control operating point to a position where maximum power is not created with
current insolation when insolation increases rapidly [146]. PV/battery cuts peak demand
by 7% [147]. The benefit of PV and emergency storage when used together is greater than
when these two technologies are used separately, and distributed PV and storage may
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enhance grid security [148]. A new energy-storage-modelling software links wind turbines,
solar PV arrays, and variable electrical loads. The model calculates the filling and emptying
of the energy store and anticipates power curtailment or unfulfilled demand. This unique
modelling strategy outperforms previous methodologies [149]. The output of a PV system
is optimized using MPPT, but it converges to a local maximum instead of the maximum
of the curve. A two-stage MPPT control is suggested for non-uniform insolation [150].
A Photovoltaic Energy Capacitor System (PV-ECS) power-generating system using solar
energy estimation has been described, and energy capacitor systems coupled to power
electronics devices can control power [151,152]. Fuzzy logic and PSO are used to optimize
the most prevalent proportional–integral (PI)-based frequency controllers in AC microgrid
systems [153], and Kriging-based surrogate modelling reduces assessment costs [154]. A
microgrid test platform evaluates the performance and robustness of synthesized controllers
under disturbances and uncertainties [155]. A marine vessel equipped with a portable
islanded microgrid comprising PV, wind turbine, SWE, and ESS employs a fuzzy PD +
I load frequency controller (LFC). Electric vehicles manage load frequency in islanded
microgrids [156]. Alternative power-balancing technologies are being investigated because
battery energy storage systems (BESS) are expensive and degrade quickly. Low-frequency
EV BESSs with vehicle-to-grid capability are popular.
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When employed in V2G scenarios, a novel multi-objective fractional order control ap-
proach for EVs optimizes the V2G controller under a variety of operating conditions caused
by intermittent renewable energy sources [157]. An efficient two-area interconnected mi-
crogrid (ICG), based on renewable energy sources without batteries, uses dish Stirling solar
power generation, wind power generation, plug-in hybrid electric vehicles, a diesel engine
driven generator, heat pumps, and freezers [158]. For load frequency analysis in hybrid
microgrids with wind, micro-hydro, biogas, and biodiesel generators, one study linearizes
a medium-sized linear-Fresnel-reflector solar-thermal power unit. The model simulates
workable DR approaches for isolated and interconnected modes [159]. Optimization-based
FO controller tuning uses GOA, GSA, GA, and PSO [160]. The stability boundary locus
(SBL) method finds the FOPI controller’s stable parameters space or fuel-cell microgrid
stability boundary curves. The system’s characteristic equation determines the SBL’s stable
zones. Electrolysers and fuel cells are sustainable [161,162]. Hydrogen Fuel Cells (HFCs)
connected to microgrid control frameworks are studied for their efficiency and environmen-
tal friendliness. Power restrictions with high demand or transient events fluctuate HFCs.
This study improves virtual synchronous generator (VSG) control for power production
systems that combine HFCs and supercapacitors (SCs) [163]. Two-stage photovoltaic power
generation has DC-link voltage management difficulties. Using DC-side synchronised
active power regulation, two-stage photovoltaic (PV) power generation without energy
storage was developed [164].

Microgrid stability study ensures safe and reliable operation. This involves studying
how microgrids affect electricity system stability during disruptions and creating new
control algorithms to improve voltage and frequency stability. Research uses machine
learning and artificial intelligence to improve microgrid performance. Control algorithms,
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distributed energy resources (DERs), and photovoltaic (PV) and energy storage power
output are improved to improve microgrid stability.

Future research on the topic of microgrid stability will focus on enhancing the stability
of these systems through the creation of new and improved control algorithms. These
algorithms will use machine learning and artificial intelligence to optimize microgrid
performance and stability in real time. There will be research undertaken to evaluate the
effect of microgrids on the stability of the electrical grid during outages and to regulate the
voltage and frequency levels in microgrids to preserve system stability. Microgrid stability
is crucial, since these systems are vital to the electrical system’s safety and reliability.

3.5. Microgrid—Energy Storage

Energy storage (Figure 9) is a major issue in microgrid construction and is discussed
in the fifth cluster (Figure S5) of the citation network. Thermal energy stores use thermal
inputs and outputs to connect to the system, while electrical energy stores use electrical
inputs and outputs, and the efficiency and reliability of these electrical energy systems
(EES) need to be monitored consistently [165]. Electrical energy is stored in flywheels,
pumped hydro, compressed air, and electrochemical devices. Ice storage, custom thermal
storage medium, and phase transition materials use material, sensible, and latent heat
capacities [166]. All solar electric systems need batteries. Their efficiencies and lifespans
affect PV system performance and economics. Batteries made specifically for photovoltaic
systems need to have a high cycle stability and a very low discharge rate. An algorithm
for large battery storage systems measures electrolyte-specific gravity and voltage at a
predetermined temperature to establish a battery’s state of charge [167]. The life cycle
costs of a rural energy-storage electromechanical flywheel battery and a lead-acid-battery
storage system were compared. Flywheels were cheaper than lead batteries over time.
Based on the foregoing, small-scale flywheel energy storage could boost rural electricity in
sub-Saharan Africa. Electromechanical flywheel battery storage reduces lead-acid-battery
disposal environmental impacts. Examining the separation of Cd and Ni from Ni-Cd
batteries using an aqueous two-phase system (ATPS) made of water, copolymer L35, and
Li2SO4 is crucial when taking environmental considerations into account. The amount of
additional extractant (potassium iodide), the mass ratio between the phases of the ATPS,
leaching, the tie-line length (TLL), and the dilution factor of the battery samples all affect
how these metals are extracted from bottom stage (BP) to the upper stage (UP) of the
ATPS [168]. Online impedance spectroscopy was used to solve battery lifespan and isolated
maintenance issues. Battery impedance spectroscopy is integrated into static converter
control [169]. A micro-hydraulic technology was used to partially replace battery storage
in a standalone photovoltaic facility. The micro-hydraulic system has a water pump, water
turbine, DC generator, and two identical water reservoirs. The photovoltaic generator
leverages an inverter to directly supply demand during the day, and any excess energy
pumps water from the lower reservoir to the higher reservoir. The lower-reservoir water
turbine powers the load at night [170]. Wind power and energy storage technologies were
integrated to solve power system issues caused by wind’s intermittent nature. Wind–hydro
pumped storage is one example.

Wind and hydro solutions fulfil local electricity needs, reducing the reliance on fossil
fuels and imports compared to the wind–light complementary pumped storage power
system. This system employs solar, wind, and complementary energy sources to generate
clean electricity and store backup power [171–173]. It has the potential to grow, with a
low-cost wind–hydropower system being analysed from both an investment perspective (to
maximize returns) and a system perspective (to increase renewable energy penetration and
reduce costs). Genetic algorithms are used to optimize the system [174]. To address the issue
of resource volatility causing electricity demand to exceed generation, pumped storage can
replace batteries in wind–solar hybrid power systems [175]. The combination of wind, solar,
and hybrid technologies creates and stores electricity at low cost [176]. In Cameroon, hybrid
systems combining pico-hydro and photovoltaic with biogas generators reduce electricity
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costs [177]. Deep-cycle batteries are superior for standalone renewable power systems, but
pumped storage with a battery bank is 55% cheaper than deep-cycle batteries and more
economical with a hydraulic controller. Increasing storage autonomy and capacity would
make pumped storage more cost-competitive. Pumped storage with batteries is the best
option for reliability, energy efficiency, and technology implementation [178]. Microwave-
induced CO2 gasification of carbon compounds could store energy. Charcoal used the
least energy in a study that studied four materials. Activated carbon and charcoal reacted
well with CO2, while anthracite and coke did not. Charcoal was the most energy-efficient,
especially at high volumetric hourly space velocities (VHSVs). The multimode microwave
oven was more energy-efficient than the single-mode oven. Initial studies demonstrated
that this method could reach energy efficiency of roughly 50% at laboratory scale. To
compete with energy storage technologies, these performances can be improved. Since
particle size improves process power, it affects energy consumption. Thus, a pressure
drop–energy consumption compromise is needed. Comparing multimode vs. single-mode
microwave heating, multimode heating is more energy-efficient. This paper proposes
an energy-efficient technique that outperforms H2-based fuel cells and batteries. Water
reservoirs and flywheels are more energy-efficient yet cause environmental and socio-
economic issues. Only supercapacitors outperform microwave-induced charcoal CO2
gasification [179].
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Remote communities can improve energy security and living circumstances by using
renewable energy, especially solar and wind power linked with microgrid technology. Solar,
wind, and energy storage allow isolated communities to generate sustainable electricity at
cheaper costs than fuel. Renewable energy technologies benefit isolated microgrids. In the
best instance, PV panels reduce LCOE by 19% compared to diesel engine systems. Using
biomass as the major energy source reduces costs by twice as much, and gasifier-based and
ORC-based systems create roughly 95% renewable electricity. However, usage of biomass
in huge amounts will increase environmental pollution. By combining conventional power
with local renewable energy in a remote place, the hybrid microgrid energy system is
controlled accurately. The concept shows pumped storage of hydroelectricity’s efficacy
in irrigation and power restitution. Fuel savings and CO2 reduction are demonstrated by
the proposed technology [180–182]. Hybrid microgrid architecture using an Equilibrium
Optimizer (EO) is proposed. The microgrid system is designed using EO because it quickly
finds the best option. EO selects the best system design to reduce cost, increase stability, and
cover load in varied climates. PV, WT, battery, and diesel generator constitute a microgrid.
This study minimises net present cost (NPC) while preserving reliability, availability, and
renewable percentage [183,184]. For optimal convergence, efficacy tools are needed for
microgrid design. Stochastic metaheuristic algorithms solve complex problems best. The
Gradient Artificial Hummingbird Algorithm (GAHA) reduces microgrid system energy
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cost (EC) by combining a gradient-based optimizer (GBO) with Artificial Hummingbird
Algorithm (AIHA) [185–187]. The hybrid Harris Hawks Optimizer Arithmetic Optimiza-
tion Algorithm (HHHOAOA) is a new metaheuristic algorithm for sizing and designing
autonomous microgrids, which increases solution variety during optimization to improve
solution accuracy [188]. EV-load scheduling reduces standalone microgrid costs, and the
artificial hummingbird algorithm outperforms mainstream metaheuristics in off-grid mi-
crogrid size. Load demand affects off-grid microgrid cost more than meteorological data.
Battery storage reduces overbuilt and excessive curtailment hazards [189].

Energy storage technologies are too expensive for microgrids to justify. Energy storage
for isolated or low-income microgrids may be found difficult. Integrating storage devices
into microgrids is difficult because they must match the microgrid’s load and generation
profile. This includes coordinating storage-system charging and discharging with microgrid
generators and loads. Energy storage devices need regular replacement and maintenance.
Remote or inaccessible microgrids may struggle with this. Energy storage is essential
to a microgrid, but its cost, technical challenges, safety concerns, durability concerns,
and regulations make it difficult to adopt. Energy storage research tries to overcome
these challenges. To improve microgrid stability and reliability, energy storage solutions
are being integrated. Alternative power-balancing methods are being studied because
BESS are expensive and degrade quickly. Vehicle-to-grid low-frequency electric vehicle
battery energy storage devices are common. Machine learning and AI are improving
control algorithms and microgrid stability. Researchers are using energy-storage-modelling
software to link wind turbines, solar PV arrays, and variable electrical loads to optimize
microgrid efficiency. Future research will likely focus on developing more efficient and
cost-effective energy storage systems for microgrids and increasing their stability and
performance through enhanced control algorithms. The utilisation of cutting-edge battery
technologies is one area of future development in energy storage for microgrids. The most
popular battery type in microgrids right now is lithium-ion, but there are many other
battery types that are being developed that have higher energy densities, longer cycle lives,
and better safety. Microgrids will be able to store energy more effectively and reliably
thanks to these new battery technologies, which will also increase their affordability and
renewability. Integration of energy storage with other energy management technologies,
such as demand response and energy efficiency, is another area of future development.
Microgrids can optimise their energy use, lessen their reliance on the grid, and increase
their resilience and sustainability by combining energy storage with these technologies.

The creation of new energy storage business models is another aspect of the future
potential of energy storage in microgrids. New business models that use energy storage as
a resource that generates income are emerging as the cost of energy storage continues to
fall. Energy storage, for instance, can be utilised to offer grid services such as frequency
management or participation in the capacity market, bringing in more money for microgrid
operators. Last but not least, integrating energy storage with EV charging infrastructure is
a part of the future scope of energy storage in microgrids. Energy storage can be crucial in
regulating this demand and lessening the burden on the grid as more EVs are deployed
and the need for charging infrastructure grows.

3.6. Microgrid Protection

Microgrids can combine numerous distributed renewable energy sources with distri-
bution networks, but creating a sufficient protection mechanism is a hurdle for microgrid
installation, as shown in Figure 10 and addressed in the respective cluster (Figure S6) of the
citation network. Digital relays and a communication network were suggested to defend the
microgrid system instead of conventional methods, which are inefficient [190]. Distributed
generators (DGs) can improve power system dependability and quality through intentional
islanding or microgrid operation. Controlling and protecting voltage and frequency are
the biggest challenges for microgrids. Protection plans for lines and DGs during islanded
operation, control methods for inverter-based DGs to manage voltage and frequency [191],
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and microprocessor-controlled relay-based protection methods for low-voltage microgrids
were also created [192,193]. Microprocessor-controlled relays also protected looping or
meshed microgrids [194]. Intelligent protection methods such as wavelet transforms and
decision trees [195] can effectively protect the microgrid from problematic circumstances
related to such substantial operational condition swings. A superimposed reactive energy
protection strategy uses directional features and a threshold to identify the microgrid’s
problematic phase and section. The Hilbert transform calculates superimposed reactive en-
ergy (SRE) and sequence components of superimposed current in this protection technique.
This protects looping and radial microgrids against solid and high-impedance faults [196].
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Apart from this, a protection approach for microgrids employing interval type-2 fuzzy
logic [197], using two separate fuzzy systems to detect, classify, and locate microgrid
faults while taking into account the numerous uncertainties involved with faults, was
also discussed. “After a single-phase tripping event, these fuzzy systems employ the
phase angle between superimposed modal voltage and modal current to identify the fault
direction, helping to secure the microgrid and acting as a fall back in case the primary
protection fails” [198]. PV-integrated microgrids use power electronic converters due to
photovoltaic (PV) source operation’s intermittent load demand. A convolutional neural
network (ConvNet)-based protection technique was used to distinguish between PV sys-
tem inverter failures and distribution line symmetrical and asymmetric faults, as well as
to detect, classify, and identify the defective section [199]. Most fault detection methods
use a communication mechanism to convey information between protection units, which
could compromise the entire protection system given the vulnerability of power electronic
converters in DC microgrids. In contrast, an equivalent inductance-based fault detection
system employing a simplified fault current equation was found to be more effective at
performing the task [200]. Despite DC microgrids’ many advantages and features, pro-
tecting them is difficult due to factors including photovoltaic (PV) systems’ self-limited
current, wind energy systems’ long time constants, and communication systems’ depen-
dence, among others. A protection system for DC microgrids was also developed that uses
the rate of power (dP) and rate of voltage (dV) and maps them as a dP-dV profile [201]
suitable for all RES and energy storage systems, regardless of the DC microgrid’s power
rating and design. In addition to this, to guarantee the adaptability of DC microgrids to
system reconfiguration and weather sporadicity, an ensemble-classifier-based protection
technique has also been published [202], where the ensemble-based method is insensitive to
individual classifier bias and dataset dimension/size [203]. A fault detection/classification,
mode detection, and section identification approach based on Discrete Wavelet Transform
(DWT) and Extreme Learning Machine (ELM) has been developed for grid-connected and
island-mode microgrids to tolerate nonlinear wind-speed fluctuation. Similarly, a joint
probabilistic model for understanding the variations in wind speed and solar irradiance
was also developed [204]. Due to the growing number of distributed energy resources,
demand in the network, and the cost of communication infrastructure, sensors in every
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bus are sometimes too expensive to monitor and preserve. To reduce transmission delay, a
communication network needs significant bandwidth to transmit sensor data. An ensemble
classifier and Wavelet Packet Decomposition (WPD)-based low-cost protection approach
for hybrid microgrids with optimum sensor location and converter failure immunity was
also evaluated [205]. Due to low fault current and non-linear dynamics, hybrid microgrids
have trouble detecting high-impedance faults (HIF). Network reconfiguration caused by
N-1 contingency and weather-induced stochastic variation in PV-based distributed en-
ergy resources (DERs) make HIF identification more difficult. A long short-term memory
(LSTM)-based protection strategy with improved weather sporadicity and N-1 adaptation
was also proposed for higher HIF sensitivity [206].

Microgrids frequently consist of a variety of generators, storage devices, and loads,
making it challenging to ensure that all components can communicate and work together
efficiently. The remote control and monitoring of microgrids raises concerns regarding
cybersecurity and the possibility of malicious attacks on the system. To safeguard data
exchanges between microgrid components and control systems, secure communication
protocols will be necessary. This will prevent hackers from intercepting and modifying data
as well as interfering with communications between microgrid components. In the future,
cyber-physical systems (CPS) will play an increasingly vital role in microgrid operations.
CPS merge physical and cyber technologies to build a system that is more efficient and
resilient. Nonetheless, safeguarding CPS will be essential to ensuring that they are not
susceptible to assault. Critical to minimising the impact of any cyberattack on the micro-
grid will be the development of an incident response strategy that includes methods for
detecting, responding to, and recovering from cyberattacks. This research will likely focus
on developing intelligent protection systems that can adapt to changing conditions and
respond in real time to protect the microgrid against disturbances. However, like any power
system, microgrids are susceptible to a variety of risks that must be managed to ensure their
safe and efficient operation. These risks include equipment failure, cybersecurity threats,
natural disasters, and regulatory compliance. To mitigate risks associated with microgrid
operations, operators can adopt diverse strategies, including but not limited to regular
equipment maintenance, cybersecurity measures, disaster preparedness plans, and com-
pliance monitoring. Adequate risk management is crucial for ensuring the dependability,
safety, and financial sustainability of microgrid systems. The application of advanced ana-
lytics and machine-learning methodologies for the detection and anticipation of potential
hazards represents a promising avenue for the advancement of microgrid risk management.
The utilization of various techniques can facilitate the detection of potential hazards prior
to their manifestation through the assessment of extensive amounts of information from
diverse origins, thereby enabling preventive management and alleviation of risks.

The integration of cybersecurity protocols within the framework of microgrid risk
management represents an exciting prospect for future exploration. The employment of
digital technologies and the Internet of Things (IoT) in microgrids has led to an increase in
cybersecurity risks, posing a significant threat to the operation and management of these
systems. The integration of cybersecurity measures into the risk management framework is
imperative to ensure the protection of microgrids from potential online threats. The future
risk management scope of microgrids includes the advancement of novel frameworks and
techniques for managing risks. As microgrids continue to evolve and diversify, it will be
necessary to create novel risk management frameworks and methodologies that are tailored
to the specific risks associated with different types of microgrids, including off-grid or
islanded microgrids. Future microgrid risk management will include energy management,
grid integration, and renewable energy integration. The establishment of a comprehensive
approach to microgrid management can ensure optimal performance and risk mitigation.
This can be achieved by integrating risk management with other aspects of microgrid
operation and management. The study of risk management in microgrids has emerged as
a significant field of investigation, owing to the escalating implementation of microgrids
on a global scale. Current research involves risk assessment frameworks, risk scenario



Designs 2023, 7, 58 16 of 31

modelling, and risk management tactics. Despite advancements, research on renewable
energy integration, climate change implications, and cost-effective and dependable risk
management methods is still lacking. Further investigation is imperative in these domains
to guarantee secure and enduring functioning and endorse the extensive implementation
of microgrids as a fundamental element of the energy shift.

3.7. Microgrid and EV Charging

The primary theme that emerged in the next cluster (Figure S7) relates to the modelling,
optimising, controlling, and maintenance procedures for microgrid EV charging stations
and their storage (Figure 11). Microgrids with PV and energy storage systems (ESS) for
charging stations have been developed, since the number of electric cars (EV) in cities has
expanded quickly [207]. Traditional sizing methods cannot examine large-scale situations
using nonlinear optimization models to ensure design economy and dependability.
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Many physical–economic model (PEM) and data-driven model (DDM) techniques
have been developed to manage nonlinear battery degradation and optimal power dis-
tribution under varied EV charging profiles [208]. A concise tree-based machine learning
(ML) model that was tested on a public dataset of data from domestic EV charge points
and trained on each charge station based on the behaviour of its users revealed that the
forecasting error can be reduced by up to 4 times, which in turn results in a progress of up
to 50% in a combined aging–quality of service metric [209]. Microgrids based on PV panels
put on rooftops or car parking shades, electrochemical stationary storage, EV charging
stations, and public grid connection reduce power grid overload and increase renewable
energy [210,211]. PV-powered electric vehicle charging stations with V2G power manage-
ment were also included [212]. Real-time mixed-integer linear programming problems
were created to minimize energy expenditure while taking into account EV arrival and
departure [213].

Fast charging and EV storage systems are further topics covered in this cluster. Ac-
cording to the optimization results for EV fast charging using continuous differentiable
charging (CDC) and multi-stage constant current (MCC), the CDC method can reduce
the charging time by roughly 33.5% without compromising battery health [214], which
is also supported by simulation results using the SMC method [215]. Through the def-
inition of a SystemC-AMS framework, which simultaneously models the physical and
mechanical evolution, together with environmental characteristics and energy flows, an
EV power consumption model that considers the characteristics of the vehicle and the
driving route, along with accurate models for all power components, renewable power
sources, and batteries, has also been developed [216]. “The impact of battery ageing models
on energy management of microgrids” [217], “DCM based on fuzzy logic systems” [218],
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“Virtual-battery based droop control for ESS” [219], and “EV drivers’ behaviour based
power management strategies” [220] are the other concepts covered in this cluster.

The futures of electric vehicle (EV) charging and microgrids are deeply linked, since
both play a vital part in the transition to a cleaner, more sustainable energy system. Integra-
tion of microgrids with EV charging infrastructure has the potential to minimize reliance
on fossil fuels by allowing EV owners to charge their vehicles using renewable energy
generated locally. It also helps balance energy demand and supply, reducing strain on grid
infrastructure and encouraging the use of renewable energy sources for EV charging. As
the market for electric vehicles (EVs) continues to expand, advancements in microgrids and
EV charging will be required to facilitate this transition to a more sustainable energy system.
By offering a localised supply of renewable energy and grid services, microgrids can play a
significant role in the smart charging of electric cars (EVs). Smart charging is the process
of optimising EV charging based on variables including power costs, the availability of
renewable energy sources, and grid stability.

Microgrids can facilitate smart charging by combining EV charging stations with
renewable-energy generators such as solar or wind turbines. Both the carbon footprint of
EV charging and the expense of maintaining charging stations can be decreased as a result.
Moreover, microgrids can act as platforms for the application of sophisticated algorithms
and management techniques for EV smart charging. These algorithms can optimise EV
charging schedules and lower charging costs for EV users by utilising real-time information
on power pricing, the availability of renewable energy sources, and system conditions.

4. Exploring AI-Based Research Methodologies for Microgrid Control

This section discusses AI-based microgrid research methodologies. Microgrid control
points include DERs, loads, weather forecasts, energy markets, and the main grid [221].
In microgrids, a hierarchical classical control system is employed to manage primary
and secondary Maximum Power Point Tracking (MPPT), voltage and frequency regula-
tion, power sharing, protection, fault recovery, and rapid communication, as explained
in [221]. Meanwhile, a high-level tertiary control system oversees energy management,
power flow management within the microgrid and the larger power grid, prosumer mar-
ket participation, customer segmentation, load and generation forecasting, and market
price prediction [221–226]. Most control approaches use neural-network-based algorithms.
Convolution neural network and K-Nearest Neighbour have classified and clustered in
several studies. Reinforcement learning may be applied in power-sharing and energy
marketing decisions.

In AI-enhanced microgrid primary control, the principal control layer prioritizes real-
time power-sharing, MPPT, and inertia control. Traditional microgrid droop control lacks
precision, speed, and robustness. However, AI can enhance these aspects of control [227].
AI can track the MPP with a 0.1% error [228]. Most of the control layers use neural
network (NN)-based solutions, and ANN-based droop control improves active and reactive
power sharing and voltage and frequency management [229]. Virtual energy-based droop
control [219] and bus-signalling primary control [230] allow grid–PV–ESS integrated system
coordination. SoC-based power-sharing solutions [231] use fuzzy logic to fine-tune local
controller droop coefficients to maintain SoC level across all storage devices [232–234]. This
enables the controllers to respond dynamically to changes in the microgrid and maintain a
stable and balanced distribution of power. By using SoC-based power-sharing solutions
with fuzzy logic, microgrid operators can optimize the use of renewable energy sources
and ensure reliable and efficient power delivery [235].

Traditional secondary control methods have delayed response, imprecise control,
and expensive communication infrastructure requirements, which can compromise system
reliability [236]. At this control layer, microgrid stability during faults faces difficulties [237].
These difficulties demand intelligent control methods. The secondary layer (Figure 12)
keeps uncontrolled variations within acceptable limits for load or generation changes [26].
Several techniques have been introduced to manage voltage and frequency deviation at
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this level, including the Multilayer Perceptron (MLP) model [238], the use of Artificial
Neural Networks (ANN) and genetic algorithms (GA) [239], the reinforcement learning
(RL) approach [240], the Interval Type 2 (IT2) fuzzy system based on deep reinforcement
learning (DRL) [241], the distributed machine learning (ML) method [242], and the Extreme
Learning Machine (ELM) technique [243]. These methods have pros and cons, depending
on the microgrid scenario.
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Communication delay is crucial in hierarchical control systems. Communication
compensation blocks address network and time delays [244]. Delay minimization Q-
Learning [245] reduces communication latency by 66% and 33% compared to other algo-
rithms. A regression model has been developed to compensate for communication issues,
ensuring swift and efficient voltage restoration, even under conditions of communication
impairment [244].

As described in [246], a secured communication network based on deep-learning tech-
nology has been implemented to identify and categorize anomalous signals, safeguarding
the microgrid against false signals. Low-inertia microgrids must maintain stability during
faults. Controlling active and reactive power dispatch from DERs and maintaining load
margin requires Corrective Voltage Control (CVC). An ML-based secondary-layer CVC
framework [247] predicts optimal active and reactive power from each DER to restore
voltage. In another approach, SVM-based fault detection [248] measures voltage and cur-
rent at each selected point to accurately locate the fault section. Another tree-based ML
model [249] has been proposed to measure voltage and current signals at each feeder to
identify faulty events and alert the control system. In [250], NN-based adaptive microgrid
protection combines ANN and SVM fault identification features also a multi-agent-based
ML model [251] protects grid-tied and islanded AC microgrids.

The tertiary control layer (Figure 13) is responsible for optimizing the microgrid’s
power flow and managing grid import/export [252], ensuring that distributed energy
resources (DERs) are dispatched efficiently to reduce costs. This layer also enables DER
units to participate in energy markets and provide support to other microgrids or external
grids. Artificial intelligence (AI) can enhance the control capabilities of this layer. The
Optimal Power Flow (OPF) method, which considers network power quality requirements
and operational limitations on assets, is used to determine the optimal objective function
value for an electrical network [253].
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When Energy Storage Systems (ESS) are present within a microgrid, a Dynamic
Optimal Power Flow (DOPF) approach [254] can be utilized to optimize DER output
over a specified time horizon. Predictive control based on dynamic programming is
recommended for peak shaving and maximizing owner profitability in grid-connected
PV systems with ES [255,256]. In addition, an isolated microgrid consisting of diesel
generators, wind turbines, and energy storage presents a multi-objective optimization
challenge [257]. As noted in References [258,259], machine-learning (ML) power flow
methods based on data analysis are proposed for such scenarios. Moreover, cooperative
reinforcement learning (RL) is employed to optimize the economic dispatch of distributed
energy resources (DERs), as described in Reference [260]. A multi-agent neural network
(NN)-based energy management system (EMS) is employed in grid-connected microgrids
to coordinate and minimize grid power imports [261].

Even though AI-based control systems have demonstrated promising results in enhanc-
ing the performance of microgrids, there are still limitations. The absence of standardization
and compatibility across various microgrid components and systems is a major barrier to
the implementation of AI in microgrids. Nevertheless, there are numerous opportunities for
advancing the application of AI in microgrids in the future. Among these are the develop-
ment of common communication protocols and data formats for microgrid components, as
well as the enhancement of data gathering and sharing procedures. In addition, additional
research can be conducted to develop more robust and precise artificial intelligence models
for microgrid control, such as those based on deep-learning or reinforcement-learning algo-
rithms. There is also the possibility of integrating AI with other developing technologies,
such as blockchain, to improve the usefulness and security of microgrids. Nevertheless, the
future of artificial intelligence in microgrids appears positive, with further developments
anticipated in the coming years. While research into AI-enhanced hierarchical control of
MGs is necessary, it is also crucial to have a broad understanding of microgrid research.
Energy management, demand response, and grid integration are just a few of the microgrid
research fields that could gain from using AI technologies. The social, economic, and
environmental effects of microgrid deployment and use should also be considered, as well
as how AI might be utilised to improve these effects. In conclusion, while the field of
AI-enhanced hierarchical control of MGs is one that shows promise, it is crucial to have a
broad understanding of microgrid research to fully explore the potential of AI in microgrid
operation and administration.
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5. Comparison of Recent Reviews with the Proposed Methodology

Table 1 presents a comparison of the proposed methodology with the latest reviews on
microgrid research. The proposed study employs citation network analysis and modularity-
based clustering analysis, which helped identify the main evolutionary paths and emerging
fronts and challenges of the subfields. The study comprehensively presents the evolution of
microgrid research and identifies potential directions for future research. The other studies
use a systematic review methodology to discuss various aspects of microgrid planning,
operation, and control, including the use of renewable energy sources, control tactics,
and control strategies. One study also emphasizes the need for a consensus procedure to
monitor voltage and frequency for stability and reliability in microgrids with intermittent
renewable energy sources.

Table 1. Comparison of latest reviews with the proposed methodology.

Study Year Methodology
Number of

Papers
Reviewed

Research
Clusters

Identified
Key Findings

Proposed Study 2023

citation network
analysis (CNA)

methodology and
modularity-based
clustering analysis

349 7

The study used CNA and cluster analysis to
partition the citation network of microgrid

research and identify the main evolutionary
paths of each sub-field. The main paths were

traced to pinpoint emerging fronts and
challenges, providing a comprehensive

understanding of the evolution of microgrid
research. The study also identified potential
directions for future research in microgrids.

[262]
F. S. Al-Ismail 2021 systematic review

methodology 131 N/A

The paper discussed the evolution of DC
microgrids and their characteristics, advantages
over AC microgrids, and various aspects of DC

microgrid planning, operation, and control,
including DC sources, energy storage systems,

DC distribution systems, and load
management strategies.

[263]
Shahgholian, G 2021 systematic review

methodology 280 2

The study described microgrids’ applications
and types and their control goals, including
coordinated control and local control. It also
tackled microgrid load frequency control and
tiny signal stability improvement, concluding

that microgrid technology could improve power
system sustainability and resilience.

[264]
S. P. Bihari et al. 2021 systematic review

methodology 69 2

The paper discussed hybrid microgrids that use
renewable energy sources including solar
photovoltaic, wind, and biomass and the

necessity for a consensus mechanism to monitor
voltage and frequency for stability and reliability.

It also examined microgrid economics and
proposed hybrid biomass–solar

photovoltaic–wind turbine microgrid systems
that prioritize power quality, real-time

monitoring, and economic analysis.

[265]
N. Altin and S. E.

Eyimaya
2021 systematic review

methodology 164 2

This paper outlined central and decentralized
control strategies and analysed their advantages,
disadvantages, and applications. The paper also
noted that different architectures can improve

reliability depending on the application or
resource category.

[266]
Ishaq S et al. 2022 systematic review

methodology 92 6

The article suggested several control topologies
depending on integrated source, connected
loads, and MG ratings. It also studied MG

control strategies, the infrastructure’s major
issues, and microgrid optimization methods and

their benefits and downsides.
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6. Conclusions

Microgrids are energy systems that can operate independently or in conjunction with
the main electricity grid. They have the potential to integrate renewable energy sources,
enhance customer participation in energy markets, and improve energy system efficiency
and flexibility. However, the deployment of microgrids faces several obstacles, such as
regulatory, technical, and financial challenges. To better understand the current state of
the field, a study was conducted using citation network analysis (CNA) methodology to
examine over 1500 scholarly publications on microgrid research and development. The
study employed modularity-based clustering analysis, which identified seven distinct
research clusters, each related to a specific area of study. Cluster 1, focused on control
strategies for microgrids, had the highest proportion of publications (23%) and the maxi-
mum citation link count (151), while Cluster 4, which examined microgrid stability, had
the lowest proportion of papers (10%). On average, each publication within each cluster
had four citation links. The citation network of microgrid research was partitioned using
cluster analysis, which aided in identifying the main evolutionary paths of each subfield.
This allowed for the precise tracing of their evolution, ultimately pinpointing emerging
fronts and challenges. The study revealed several research gaps and concerns, such as
the need for further investigation into technical and economic feasibility, legislation, and
standardization of microgrid technology. For example, one potential direction for future
research is the application of artificial intelligence and machine learning to regulate and en-
hance the performance of microgrid systems. Another area of interest is the development of
methods for optimally integrating microgrids with major grids and the optimized charging
and discharging of contemporary loads such as electric vehicles connected to these grids.
These systems are increasingly vulnerable to cyberattacks that compromise the security
and stability of the grid. Hence, development of secure communication protocols is a
crucial research area for the future. Similarly, the development of advanced control systems
and high-tech power electronics components to ensure their stability, dependability, and
safety constitutes another research direction. Overall, the study provides a comprehensive
understanding of the evolution of microgrid research and identifies potential directions
for future research. With the advances in integrated technologies, microgrids have the
potential to play a significant role in realizing the UN Sustainable Development Goal
7 (SDG7), which calls for “affordable, reliable, sustainable and modern energy for all”.
By investing in research and development initiatives in the areas identified by the study,
we can accelerate the deployment and adoption of microgrid systems and create a more
sustainable and secure energy future for all.
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