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ABSTRACT Stress is a natural human reaction to demands or pressure, usually when perceived as harmful
or/and toxic. When stress becomes constantly overwhelmed and prolonged, it increases the risk of mental
health and physiological uneasiness. Furthermore, chronic stress raises the likelihood of mental health
plagues such as anxiety, depression, and sleep disorder. Although measuring stress using physiological
parameters such as heart rate variability (HRV) is a common approach, how to achieve ultra-high accuracy
based on HRV measurements remains as a challenging task. HRV is not equivalent to heart rate. While heart
rate is the average value of heartbeats per minute, HRV represents the variation of the time interval between
successive heartbeats. The HRVmeasurements are related to the variance of RR intervals which stand for the
time between successive R peaks. In this study, we investigate the role of HRV features as stress detection
bio-markers and develop a machine learning-based model for multi-class stress detection. More specifically,
a convolution neural network (CNN) based model is developed to detect multi-class stress, namely, no stress,
interruption stress, and time pressure stress, based on both time- and frequency-domain features of HRV.
Validated through a publicly available dataset, SWELL−KW, the achieved accuracy score of our model has
reached 99.9% (Precision= 1,Recall= 1,F1−score= 1, andMCC= 0.99), thus outperforming the existing
methods in the literature. In addition, this study demonstrates the effectiveness of essential HRV features for
stress detection using a feature extraction technique, i.e., analysis of variance.

INDEX TERMS Stress detection, heart rate variability, convolution neural network, feature extraction.

I. INTRODUCTION
Physical or mental imbalances caused by noxious stimuli
trigger stress to maintain homeostasis. Under chronic stress,
the sympathetic nervous system becomes overactive, leading
to physical, psychological, and behavioral abnormalities [1].
Stress levels are often measured using subjective methods
to extract perceptions of stress. Stress level measurement
based on collected heart rate viability (HRV) data can help
to remove the presence of stress by observing its effects on
the autonomic nervous system (ANS) [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Callico .

Typically, people with anxiety disorders have chroni-
cally lower resting HRV compared with healthy people.
As revealed in [2] and [3], HRV increases with relaxation and
decreases with stress. Indeed, HRV is usually higher when a
heart is beating slowly and vice versa. Therefore, heart rate
and HRV generally have an inverse relationship [2], [3]. HRV
varies over time based on activity levels and the amount of
work-related stress.

Furthermore, stress is usually associated with a negative
notion of a person and is considered to be a subjective feeling
of human beings that might affect emotional and physical
well-being. It is described as a psychological and biological
reaction to internal or external stressors [4], including a bio-
logical or chemical agent and environmental stimulation that
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induce stress in an organism [5]. On a molecular scale, stress
impacts the ANS [6], which uses sympathetic and parasym-
pathetic components to regulate the cardiovascular system.
The sympathetic component in a human body [7] works
analogously to a car’s gas pedal. It activates the fight-or-flight
response, giving the body a boost of energy to respond to
negative influences. In contrast, the parasympathetic com-
ponent is the brake for a body. It stimulates the body’s rest
and digests reaction by relaxing the body when a threat has
passed. Given the fact that theANS regulates themental stress
level of a human being, physiological measurements such as
electrocardiogram (ECG), electromyogram (EMG), galvanic
skin response (GSR), HRV, heart rate, blood pressure, breath
frequency, and respiration rate can be used to assess mental
stress [8].

ECG signals are commonly adopted to extract HRV [9].
HRV is defined as the variation across intervals between
consecutive regular RR intervals,1 and it is measured by
determining the length between two successive heartbeat
peaks from an ECG reading. Conventionally, HRV has been
accepted as a term to describe variations of both instantaneous
heart rate and RR intervals [12].

Obtaining HRV from ECG readings requires clinical set-
tings and specialized technical knowledge for data interpre-
tation. Thanks to the recent technological advances on the
Internet of medical things (IoMT) [17], it is possible to
deploy a commercially available wearable or non-wearable
IoMT devices to monitor and record heart rate measurements.

Based on ECG data analysis (or HRV features, various
machine learning (ML) and deep learning (DL) algorithms
have been developed in recent years for stress prediction [20],
[21], [22], [23], [24], [25], [26], [27] (see more details in Sec.
II). Among the publicly available datasets for stress detection,
SWELL−KWdeveloped in [13] and [14] one of the twomost
popular ones. However, none of the existingML andDL stud-
ies based on the SWELL−KW dataset for multi-class stress
classification have achieved ultra-high accuracy, especially
for multi-class stress level classification [15], [16]. Therefore,
there exists a research gap on developing novel ML models
which are able to achieve ultra-high accurate prediction.

Motivated by various existing applied ML and DL
based studies on HRV feature processing for stress
level classifications, we have designed and developed a
one-dimensional convolutional neural network (1D CNN)
model for multi-class stress classification and demonstrate
its superiority over the state-of-the-art models based on the
SWELL-KW dataset in term of prediction accuracy. More
specifically, we have performed studies on stress detection
using both traditional machine learning algorithms and/or
multi-layer perceptron (MLP) algorithms which are inspired
from the fully connected neural network (FCNN) architec-
ture. In our work, we have developed a 1D CNNmodel which

1An RR internal represents the time from an R-peak to the next
R-peak [10]. It defines the time elapsed between two successive R-waves of
the Q-wave, R-wave and S-wave (QRS) signal on the electrocardiogram [11].

is based on the convolution operation. CNN reduces number
of training parameters as MLP takes vector as input and CNN
takes tensor as input so that CNN can understand spatial
relation.

While the accuracy achieved with full features is nearly
100%, we have also introduced a feature reduction algorithm
based on analysis of variance (ANOVA) F-test and demon-
strate that it is possible to achieve an accuracy score of 96.5%
with less than half of the features that are available in the
SWELL−KW dataset. Such a feature extraction reduces the
computational load during the model training phase.

In a nutshell, the novelty and the main contributions of this
study are summarized as follows:

• We have developed a novel 1D CNN model to detect
multi-class stress status with outstanding performance,
achieving 99.9% accuracy with a Precision, F1-score,
and Recall score of 1.0 respectively and aMatthews cor-
relation coefficient (MCC) score of 99.9%. We believe
this is the first study that achieves such a high score of
accuracy for multi-class stress classification.

• Furthermore, we reveal that not all 34 HRV features
are necessary to accurately classify multi-class stress.
We have performed feature optimization to select an
optimized feature set to train a 1D CNN classifier,
achieving a performance score that beats the existing
classification models based on the SWELL-KW dataset.

• Our model with selected top-ranked HRV features
does not require resource-intensive computation and it
achieves also excellent accuracy without sacrificing crit-
ical information.

The remainder of the paper is organized as follows. After
summarizing related work and pointing out the distinction
between our work and the existing work in Sec. II, we intro-
duce briefly the framework for stress status classification,
dataset, and data preprocessing in Sec. III. Then the devel-
oped CNN model is presented in Sec. IV. Afterwards, Sec. V
defines the performance metrics to evaluate the proposed
classifier and Sec. VI presents the numerical results. Further
discussions are provided in Sec. VII. Finally, the paper is
concluded in Sec. VIII.

II. RELATED WORK
The related work considered in this study covers HRV data
quality and various state-of-the-art ML/DL algorithms devel-
oped for stress detection.

For HRV data quality, a detailed review on data received
from ECG and IoMT devices such as Elite HRV, H7, Polar,
andMotorola Droid can be found in [18]. 23 studies indicated
minor errors when comparing the HRV values obtained from
commercially available IoMT devices with ECG instrument-
based measurements. In practice, such a small-scale error
in HRV measurements is reasonable, as getting HRVs using
portable IoMT devices is more practical, cost-effective, and
no laboratory/clinical equipment is required [18], [19].
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FIGURE 1. Framework of the proposed stress status classification model: From data
collection to stress level classification.

On the other hand, there have been a lot of recent research
efforts on ECG data analysis to classify stress through ML
and DL algorithms [20], [21], [22], [23]. Existing algo-
rithms have focused mainly on binary (stress versus non-
stress) and multi-class stress classifications. For instance, the
authors in [4] classified HRV data into stressed and normal
physiological states. The authors compared different ML
approaches for classifying stress, such as naive Bayes, k-
nearest neighbour (KNN), support vector machine (SVM),
MLP, random forest, and gradient boosting. The best recall
score they achieved was 80%. A similar comparison study
was performed in [27], where the authors showed that SVM
with radial basis function (RBF) provided an accuracy score
of 83.33% and 66.66% respectively, using the time-domain
and frequency-domain features of HRV.Moreover, dimension
reduction techniques have been applied to select best tempo-
ral and frequency domain features in HRV [24]. Binary clas-
sification, i.e., stressed versus not stressed, was performed
using CNN in [25] through which the authors achieved an
accuracy score of 98.4%. Another study, StressClick [26],
employed a random forest algorithm to classify stressed
versus not stressed based on mouse-click events, i.e., the
gaze-click pattern collected from the commercial computer
webcam and mouse.

In [14], tasks for multi-class stress classification (e.g.,
no stress, interruption stress, and time pressure stress) were
performed using SVM based on the SWELL−KW dataset.
The highest accuracy they achieved was 90%. Furthermore,
another publicly available dataset, WESAD, was used in [27]
for multi-class (amusement versus baseline versus stress)
and binary (stress versus non-stress) classifications. In their
investigations, ML algorithms achieved accuracy scores up
to 81.65% for three-class categorization. The authors also
checked the performance of deep learning algorithms, where
they achieved an accuracy level of 84.32% for three-class
stress classification. Furthermore, it is worth mentioning
that novel deep learning techniques, such as genetic deep
learning convolutional neural networks (GDCNNs) [38],
[39], have appeared as a powerful tool for two-dimensional
data classification tasks. To apply GDCNN to 1D data,
however, comprehensive modifications or adaptations are

required and such a topic is beyond the scope of this
paper.

As summarized in Tab. 5 of [15], in a fresh study published
online in August 2022, the best results for stress detection
based on the SWELL−KW dataset for the single-dataset
models developed therein are 88.64% (Accuracy), 93.01%
(Precision), 92.68% (Recall), and 82.75% (F1-scores) respec-
tively. Compared with these state-of-the-art models, the
model developed in this study has achieved much better
performance (seemore details in Subsec. VI-F especially Tab.
3 of this paper).

III. FRAMEWORK OVERVIEW AND DATA
PREPROCESSING
In this section, we give an overview about the framework
for multi-class stress classification. While the overview and
model preparation (including data collection, dataset, and
data preprocessing) are outlined in this section, the CNN
model itself is presented in the next section.

A. FRAMEWORK OVERVIEW
Fig. 1 illustrates the schematic diagram of the proposed stress
level classification framework. Briefly, the framework consti-
tutes the following procedures.

• Data collection and datasets. HRV signals are collected
and separated into a training dataset and a testing dataset.
They will use to define the model’s architecture and to
assess the proposed model’s effectiveness.

• Data preprocessing and feature extraction. Data are pre-
processed to fit into the feature ranking algorithm. In this
study, ANOVA F-tests [28] and forward sequential fea-
ture selection are employed for feature ranking and
selection respectively.

• Classification and validation. The designed DL-based
multi-class classifier is trained, tested, and validated
with significant features and annotations (e.g., no stress,
interruption condition, and time pressure) labeled by
medical professionals.

• Testing. In the testing phase, distinctive features are
considered from the new test samples, and the class label
is resolved using all classification parameters estimated

57472 VOLUME 11, 2023



J. A. Mortensen et al.: Multi-Class Stress Detection Through Heart Rate Variability

FIGURE 2. Distribution of data in SWELL−KW [13].

in training. Different numbers of features are extracted
and tested.

• Performance assessment. The performance of the clas-
sifier is measured against discrimination analysis met-
rics, such as Accuracy, Precision, Recall, F1-score, and
MCC.

B. DATA COLLECTION AND DATASET
We adopt the SWELL−KW dataset, which was collected in
a study reported in [13] and [14]. Various types of data have
been recorded, including computer logging, facial expression
from camera recordings, body postures from a Kinect 3-
dimensional (3D) sensor, heart rate (variability), and skin
conductance from body sensors.

In the experiments, 25 volunteers performed typical knowl-
edge tasks (writing reports, making presentations, reading
emails, searching for information) during which their psycho-
logical and biological status data were recorded. The working
conditions of the participants were manipulated with two
types of stressors: email interruptions and time pressure. The
SWELL−KW dataset comprises HRV computed for stress
and user modeling. The subjective experiences of participants
with task load, mental effort, mood, and perceived stress
were also recorded. Each participant was exposed to three
different working environments and the data are then labeled
by medical professionals as follows.

• No stress: The participants are permitted to work on the
activities for as long as they need, up to 45 minutes.
However, they are unaware of the maximum duration of
the task.

• Time pressure: Under time pressure, the time to com-
plete the same job was decreased to 2/3 of its time in the
normal condition.

• Interruption: The participants were interrupted when
they received 8 emails in the middle of a given activity.
Some emails were pertinent to their tasks, and the par-
ticipants were asked to take particular actions, whereas
others were totally irrelevant to the ongoing tasks.

The distribution of the collected data with three different
stress classes is presented in Fig. 2. The HRV indices were
computed by extracting an inter-beat interval (IBI) signal
from each participant’s peaks of the ECG signals. For each
participant, the experiment lasted for approximately 3 hours.
From the HRV data, various time-domain and frequency-
domain features are extracted, as presented in Tab. 1. Fur-
thermore, we illustrate in Fig. 3 the time-domain features,

TABLE 1. Explanation.

e.g., time intervals between consecutive heart beats (RR
interval) and hear rate of HRV signals. Correspondingly, the
frequency-domain features, i.e., the signal power levels with
respect to low frequency (LF) and high frequency (HF), are
illustrated in Fig. 4. These plots are generated using the first
1000 samples from the SWELL−KW dataset.
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FIGURE 3. Time-domain features of HRV.

FIGURE 4. Frequency-domain features of HRV.

C. DATA PREPROCESSING
The collected HRV data in the SWELL−KW dataset are
time-variant. For classification, we re-construct the HRV
data, which was a discrete time series with timestamps, to a
series indexed with sequence numbers without timestamps.
Moreover, we convert all data into the numerical format.
We also remove participants’ noisy, incomplete, or missing
data. These processing steps result in 25 participant’s data
with 410322 number of records and 34 number of features
for stress level classification.

Moreover, we perform normality tests using methods, such
as Shapir–Wilk [29], on each feature of the datasets and the
results reveal that the data samples do not look likeGaussian.
The normality tests are performed following the standard
hypothesis testing method with a P-value α ≥ 0.05 (i.e.,
sample looks like Gaussian). Further data preprocessing steps
are performed as follows.

• Splitting data for training and testing as 80|20 for
train|test datasets, respectively;

• Normalization with a standard scalar method to confine
the feature values within the range of {0,1}, as some of
the selected features were in different magnitudes; and

• Reshaping of each row of the training features into a 1D
vector so that it becomes an input to the input layer of
the deep learning model.

IV. A CNN MODEL FOR STRESS STATUS CLASSIFICATION
In this section, we present the developed deep learning model
for stress status classification. As shown on the right-side
hand of Fig. 1, the model consists of feature ranking, feature
extraction, and tress level classification.

A. FEATURE RANKING AND EXTRACTION
Firstly, we rank the essential features based on their relevance
to the classification task. To do so, the ANOVA [31] F-
test is adopted to select the significant features from the
SWELL−KW dataset for feature ranking and extraction.
ANOVA is a popular tool to perform a parametric statistical
hypothesis test that assesses whether the means of two or
more data samples (typically three or more) are from the same
distribution or not. An F-statistic or F-test is a statistical test
method that adopts ANOVA to calculate the ratio between
variance values, such as variance from two different sam-
ples, or explained and unexplained variance. Furthermore,
ANOVA can be used when one variable is numeric, and the
other one is categorical, such as when a numerical input
data and a classification outcome variable are compared in
a classification task.

In this study, we first employ all features for stress classifi-
cation and then drop the minor significant features based on
the importance of features (i.e., feature ranking) before per-
forming the classification task. In the latter case, the training
time is shortened while keeping the accuracy of the model.

B. A CNN DL MODEL FOR STRESS CLASSIFICATION
The designedDLmodel for stress level classification is devel-
oped based on the conventional, well-known CNN architec-
tures [32]. CNN is a powerful tool for automatic feature
extraction and learning from 1D data sequences. The HRV
features of the CNN architecture that are used in our model
are illustrated in Tab. 1. For our model design, we retain a
reasonable number of neurons in each layer based on the
common heuristics (e.g., validation loss, hidden units are
a fraction of the input). The CNN kernels slide over the
components of the 1D input pattern during convolution.

More specifically, our 1D CNN model consists of an input
layer, multiple hidden layers, a max-pooling layer, a flatten-
ing layer, and an output layer, as depicted in Fig. 5. The
input layer is a 1D convolutional layer, and it consists of
64 filters, a kernel of size 2, and a relative light unit (ReLU)
activation function. The ReLU activation function helps to
avoid the vanishing gradient so that a faster convergence can
be obtained. The 1D max-pooling layer has been introduced
to reduce the dimensions of the feature maps. The flattening
layer has been adopted to convert the down-sampled data into
a 1D vector that acts as an input to the output layer. A softmax
activation function has been adopted in the output layer for
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FIGURE 5. The structure of the developed 1D CNN model for stress
classification.

multi-class, i.e., no stress, time pressure, and interruption
classification based on probability distribution.

For loss calculation, we introduce the categorical cross-
entropy loss function to compile our 1D CNN model. For
model training, we adopt the adaptive moment estimation
(ADAM) optimizer, as it is computationally efficient and
claims less memory. To reduce the learning rate and improve
the performance of our model, a validation split step of 0.05 is
configured.

As the platform to train and validate the developed
model, we rely on Google Colab. Specifically, the model is
trained with the default configuration of Google Colab, e.g.,
Intel(R) Xeon(R) central processing unit (CPU)@2.20 GHz
and 12 GB random access memory (RAM). The initial input
data shape is (328257, 34). Then the input data is reshaped to
(328257, 1, 34) where each row of the input data is formed
into a one-dimensional vector. The Fit() generator turns train-
ing data into many batches, each with a size 64, for training.

V. PERFORMANCE METRICS
The performance of the developed 1D CNN model for
multi-class stress classification has been evaluated through
discrimination analysis based on the SWELL−KW dataset.
The discrimination analysis metrics are Precision (eq. (1)),
Recall (eq. (2)), Accuracy (eq. (3)), F1-score (eq. (4)), MCC
(eq. (5)), classification report, and confusion matrix [29],
[30]. A confusion matrix is a 2-dimensional table (actual
versus predicted) and both dimensions have four options,
namely, true positives (TP), false positives (FP), true nega-
tives (TN), and false negatives (FN).

The cells, or a collection of cells, considered by the
ratios for a particular class in multi-class classification are
explained as follows [33]. TP is an outcome where the model
estimates the positive class accurately; TN is an outcome in
which the model correctly predicts the negative class; FP
is an outcome where the model estimates the positive class
inaccurately; and FN is an outcome in which the model
forecasts the negative class incorrectly. Accordingly, The per-
formance metrics for a given class are expressed respectively
as follows [29].

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(3)

F1-score =
2 × Recall × Precision
Recall + Precision

(4)

A higher value from the above expressions represents bet-
ter performance of a model, and this applies to all perfor-
mance metrics. On the other hand, bias is an error due to
erroneous assumptions in the learning algorithm, and vari-
ance is an error from sensitivity to small fluctuations in
the training set. While high bias leads to under-fitting, high
variance results in overfitting. Accuracy and F1-scores can be
misleading because they do not fully account for the sizes of
the four categories of the confusion matrix in the final score
calculation. In comparison, the MCC is more informative
than the F1-score and Accuracy because it considers the
balanced ratios of the four confusion matrix categories (i.e.,
TP, TN, FP, and FN ). The F1-score depends on which class is
defined as a positive class. However, MCC does not depend
on which class is the positive class, and it has an advantage
over the F1-score as it avoids incorrectly defining the positive
class [34]. TheMCC is expressed as follows [30].

MCC =
TP ∗ TN − FP ∗ FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(5)

VI. CLASSIFICATION RESULTS AND DISCUSSIONS
In this section, we present the experimental results
and reveal the importance of ANOVA-based feature
selection.

A. FEATURE RANKING AND SELECTION FOR SWELL−KW
In this study, we have considered all 34 features provided
by the SWELL−KW dataset. However, some of the fea-
tures are irrelevant and act as outliers. With this regard,
the ANOVA method has been very significant. Initially,
it ranks the 34 features based on their F-values. Fig. 6
presents the ranking of the HRV features that are avail-
able in the SWELL−KW dataset. Typically, features with
higher F-values are more important for final stress level
categorization. The most relevant and important subset of
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FIGURE 6. Feature ranking of the 34 features using ANOVA.

FIGURE 7. Accuracies with ANOVA-sorted features.

the rated features is further identified via a forward sequen-
tial feature selection method. The forward sequential fea-
ture selection forms the optimal subset of features from the
34 features in their ranked order by sequentially selecting the
features.

In Fig. 7, we demonstrate the accuracy scores by sequen-
tially selecting the ANOVA-sorted features. It can be
observed that accuracy increases with the number of features
adopted for model training. More specifically, the developed
model achieves above 95% accuracies with less than half of
the ANOVA-sorted features, i.e., less than 17 features. In the
following two subsections, we first evaluate the performance
of our model in terms of Precision, Recall, F1-score, and
MCC when all available features are applied to the classifier
and then demonstrate the efficacy of the feature reduction

TABLE 2. Performance of the proposed 1D CNN model for three level
classifications with all features.

algorithm for stress level detection when the top 15 features
are selected.

B. PERFORMANCE WHEN ALL FEATURES ARE APPLIED
The developed CNN model has classified the SWELL−KW
dataset into the following three stress categories based on
emotional states, i.e., no stress, time pressure, and interrup-
tion, and it has obtained an extremely high level of accuracy.
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FIGURE 8. Confusion matrix obtained based on stress class classification.

FIGURE 9. Training versus validation accuracy.

More specifically, Tab. 2 demonstrates the performance of
the developed 1D CNN model on stress level classifications.
Clearly, we have achieved the highest accuracy score of
0.99 with Precision = 1, recall = 1, F1−score = 1, and
MCC= 0.99 respectively. Overall, the accuracy of the devel-
oped 1D CNN model reaches an accuracy level of 99.9% for
all three classification levels.

Fig. 8 presents the confusion matrix obtained from the
developed 1D CNN model based on the SWELL−KW
dataset. It is evident from the figure that the proposed clas-
sifier correctly predicts the true label with less than 0.01%
error for all three classes.

Furthermore, we have verifiedwhether the proposedmodel
is overfitted or not. Fig. 9 illustrates the training versus vali-
dation accuracy obtained through our experiments. From this
figure, it is clear that the validation accuracy and training
accuracy are nearly identical, with the validation loss being
slightly higher than the training loss. In other words, the
model is not overfitted, and it meets the criteria for a good
fit model.

C. PERFORMANCE WITH TOP FIFTEEN FEATURES
We further investigate the performance of the model by
employing only the top 15 ANOVA-sorted features, and the
obtained results are listed in Tab. 4. Through the values shown
in the table, we demonstrate that the average scores for Pre-
cision, Recall, F1-score, andMCC achieved by the proposed
model are still excellent, reaching a score of 96.5%, 94.6%,
97.0% and 92.9%, respectively. Overall, we have achieved a
score of 96.5% accuracies on average. Furthermore, the per-
formance of the model using a 70/30 train-test split resulted
in an accuracy of 0.961, precision of 0.960, recall of 0.956,
F1 score of 0.957, and MCC of 0.935.

On the other hand, it is worth reiterating that the perfor-
mance of our 1D CNN model with all features is extraordi-
nary, outperforming the case with top 15 features. However,
such a benefit comes at a cost of a longer training time,
specially when the size of a dataset is massive. In general,
there is always a trade-off between performance and resource
consumption. Therefore, whether to select all features or not
depends on the key performance requirements of a system
or service. In our experiments, the model training time with
15 features is 1733 seconds, which is 8 seconds less than the
model training time with all features.

D. K-FOLD CROSS-VALIDATION
To validate the obtained results with the top 15 features,
a k-fold cross-validation procedure has been performed and
the results are compared with the ones obtained from the
developed 1D CNN model. K-fold cross-validation divides
the dataset into k equal-sized folds, training and evaluating
the model k times, with each fold serving as the test set
once and the remaining k-1 folds serving as the training set.
The evaluation scores are then averaged across the k folds to
obtain a more robust estimate of the model’s performance.

For our validation, the default value, i.e., 5 splits is con-
figured. In each split, the model is trained and evaluated on
the test data, and performance metrics in terms of Preci-
sion, Recall, Accuracy, F1 score, and MCC are calculated.
The evaluation results based on these five splits show that
the model achieves an average score of Precision = 0.944,
Accuracy= 0.945, Recall= 0.933, F1= 0.908, and MCC=

0.908, obtained based on the same test dataset. As such, it is
evident that the developed model is capable of classifying the
samples into their respective classes with ultra-high accuracy.

E. HYPERPARAMETER OPTIMIZATION
Initially the model parameters are selected based on experi-
ence (as explained in Sec. IV-B). In what follows, we further
investigate the impact of hyperparameter optimization on the
performance of the developed model, using the Hyperband
Tuning technique.

Using the top 15 features of the SWELL−KW dataset,
hyperband [40] tuning is employed to optimize the hyper-
parameters of our model. The purpose of the tuning process
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TABLE 3. Quantitative comparison of the results with other state-of-the-art models.

TABLE 4. Performance of the proposed 1D CNN model for three level
classifications with top 15 ANOVA-sorted features.

is to maximize the model’s validation accuracy. Through the
validation procedure illustrated in Appendix A, the best set of
hyperparameters is found by the algorithm to be filters= 160,
kernel size= 5, and dense units= 48, resulting in a validation
accuracy of 0.99.

On the other hand, it is worth noting that, although
hyper-parameter tuning can be effective in improving the
performance of ML models, it can be a challenging task to
apply it in real-life applications. This is due to its demand
for a significant amount of computational resources, espe-
cially for large-volume datasets and complex models which
may not always be available. Additionally, the optimal set
of hyperparameters may be specific to the dataset, model,
and the problem at hand, making it difficult to develop a
generalizable approach to hyperparameter tuning [41], [42].
Thus, default hyperparameters or a small set of manually
tuned hyperparameters may suffice in many cases including
this study to achieve satisfactory performance.

F. QUANTITATIVE COMPARISON WITH EXISTING STUDIES
Finally, we make a quantitative comparison of our model ver-
sus other related studies appeared in the literature. In Tab. 3,
the performance indicators from a few recent studies for
automatic classification of stress levels are comparedwith our
1D CNN model.

Existing studies that are based on publicly accessible
datasets such as SWELL−KW, WESAD, and AMIGOS

concentrated on binary and multi-class stress detection when
assessing the effectiveness of their ML/DL models. It is
worth mentioning that we used the SWELL−KW dataset for
multi-class stress detection. Regarding performance evalu-
ation, prior studies, e.g., [13] and [24], considered merely
the accuracy score as the key performance metric. Although
accuracy is a popular indicator, it is sufficient only if the false
positive and false negative rates are essentially similar, and
the dataset is symmetric.

Furthermore, Tab. 3 reveals that, when all features are con-
sidered during model training, none of the existing ML/DL
models reported in the literature outperform the one devel-
oped in this study in terms of Accuracy, Precision, Recall,
F1-score, andMCC for categorizing stress levels.

When a subset of features is selected for model training,
the model presented in [25] shows higher performance than
the proposed model in this study with top 15 ANOVA-sorted
features. The reason is that the authors in [25] considered all
available features in the datasets, and they did not apply any
dimension reduction technique for performance evaluation of
their model.

VII. FURTHER DISCUSSIONS
Execution time of full features versus top-15 features: The
execution time difference between the all feature-based
model and the top-15 feature-basedmodel reported in Subsec.
VI-C seems small. There are two reasons for this result. 1)
The SWELL−KW dataset which serves as the basis for this
study has a moderate amount of data (410322 number of
records and 34 features as mentioned in Subsec. III-C) and 2)
our training and validation procedures are performed based
on Google Colab which has powerful CPUs and graphics
processing unit (GPUs) as well as a huge amount of RAMs.
When the volume of a dataset becomes huge which is typical
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for big data processing, or/and the data processing machine
is less powerful, e.g., based on a personal computer or a
server located at a clinic, the benefit of our model with feature
reduction will be more significant, specially for validation.
This is because, after the data collection phase, data training
can be still performed offline based on powerful CPUs/GPUs.

Model Applicability: The model developed in this study
is built based on the SWELL−KW dataset. Nevertheless,
we believe that, with proper parameter tuning or enhance-
ment, themodelmay be applicable to other datasets that target
at similar mental health status analysis. Within the frame-
work of an ongoing research project acknowledged below,
we are collecting real-life data including HR and RR for
mental health inpatients in a Norwegian hospital based on
non-wearable Internet of things (IoT) devices. We plan to
assess the performance of the developed model based on our
own datasets. However, to include the validation results based
on these inpatient datasets is beyond the scope of this paper.

VIII. CONCLUDING REMARKS
In this study, we have developed novel a 1D CNN model for
stress level classification using HRV signals and validated
the proposed model based on a publicly available dataset,
SWELL−KW. In our model, we also applied an ANOVA
feature selection technique for dimension reduction. Through
extensive training and validation, we demonstrate that our
model outperforms the state-of-the-art models in terms of
major performance metrics, i.e., Accuracy, Precision, Recall,
F1-score, and MCC when all features are employed. Fur-
thermore, our approach with ANOVA feature reduction also
achieves excellent performance. For future work, we plan to
further investigate the feasibility of optimizing the model to
fit it into edge devices so that real-time stress detection can
become a reality.
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