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Abstract—The performance of reproducing kernel Hilbert
space-based methods is known to be sensitive to the choice of the
reproducing kernel. Choosing an adequate reproducing kernel
can be challenging and computationally demanding, especially
in data-rich tasks without prior information about the solution
domain. In this paper, we propose a learning scheme that
scalably combines several single kernel-based online methods to
reduce the kernel-selection bias. The proposed learning scheme
applies to any task formulated as a regularized empirical risk
minimization convex problem. More specifically, our learning
scheme is based on a multi-kernel learning formulation that
can be applied to widen any single-kernel solution space, thus
increasing the possibility of finding higher-performance solutions.
In addition, it is parallelizable, allowing for the distribution of the
computational load across different computing units. We show
experimentally that the proposed learning scheme outperforms
the combined single-kernel online methods separately in terms
of the cumulative regularized least squares cost metric.

Index Terms—Online learning, reproducing kernel Hilbert
space, multi-kernel learning.

I. INTRODUCTION

Reproducing kernel Hilbert space (RKHS)-based methods
allow modeling highly non-linear relationships at a moderate
computational cost [1]. Thanks to their simplicity and gener-
ality, they have been successfully adopted in a wide range of
signal-processing applications [2], [3].

The performance of any RKHS-based method strongly
relies on a preselected reproducing kernel (RK). The efficient
selection of an adequate RK presumes some task-specific prior
information, such as knowledge about the data domain, invari-
ant data transformations, geometrical data structures, or some
properties of the underlying data generating process [4]. For
example, spline interpolation RKs are best suited for smooth
data [5], [6]. Similarly, radial basis RKs can perform poorly
if their associated hyperparameters are not properly tuned to
the task. The kernel-selection issue cannot be easily mitigated
via cross-validation [7] because the associated computational
load grows prohibitively with the number of RKs. On the other
hand, efficiently computable approximations of the leave-one-
out error [8] or hyperparameter optimization techniques [9]
usually involve non-convexity and may lead to undesirable
local minima.

This work was supported by the SFI Offshore Mechatronics grant
237896/O30 and the PETROMAKS Smart-Rig grant 244205/E30 from the
Research Council of Norway.

Multi-kernel methods compensate for the lack of task-
specific prior information using a predefined set of RKs known
as dictionary. The dictionary can be formed by integrating
different types of RKs, the same RK with different hyperpa-
rameter values, or a mix of both. Typically, the preselected
RK is constructed as a combination of several RKs from the
dictionary [10]. Therefore, how the dictionary is formed and
how the preselected RK is constructed have a pivotal impact
on the resulting accuracy and complexity of the method. For
instance, the larger the dictionary is, the more likely it is to
reduce the kernel-selection bias compared to a particular RK
or hyperparameter choice. In addition, larger dictionaries allow
for greater adaptability when learning from data samples since,
in practice, these samples may come from a combination of
different sources. On the other hand, increasing the dictionary
size becomes computationally demanding or even prohibitive.
For this reason, a commonly sought goal for multi-kernel
methods is to find a compromise between performance and
a computationally light and compact representation of the
proposed solution in terms of the dictionary elements [11].

Another related scaling issue that also applies to single-
kernel methods is the curse of kernelization, i.e., potentially
unbounded linear growth in model size with the amount of
data [12]. This drawback is generally addressed through online
approaches, which may rely on sparsification procedures [13],
[14], [15], [16], [17] or dimensionality reduction approxima-
tions [18], [19], among others [20].

In this context, some works [21], [22], [23] have explored
the use of online methods for determining the optimal solution
associated with each single RK within the dictionary, as well
as the best combination of these single-kernel solutions under
a given task. Following a conceptually similar approach, this
paper proposes a novel multi-kernel learning scheme that
can be parallelized across RKs by efficiently combining the
solution of several single RK-based online methods running
concurrently. This provides scalability with respect to the
number of data samples and adaptability across different data
patterns. Moreover, it allows to distribute the computational
load across different computing units as the dictionary size
increases. Our proposed scheme applies to any task that can
be formulated as a regularized empirical risk minimization
(RERM) convex problem [24], [25]. Finally, the performance
of the proposed learning scheme is experimentally validated in
terms of the cumulative regularized least squares cost metric.



II. PROBLEM FORMULATION

Supervised learning is arguably one of the core topics in
machine learning [26]. Many supervised learning tasks can be
formulated as RERM convex problems whose solution admits
a kernel representation. That is, given a set of N data samples
S = {(x(n), y(n))}Nn=1 ⊆ X × Y , and an RKHS1 H ⊆ YX ,
the goal is to find a function estimate f ∈ H minimizing the
following regularized functional cost

Cη (f ;S) =
N∑

n=1

ℓ
(
f(x(n)), y(n)

)
+

η

2
∥f∥2H, (1)

where the loss ℓ : Y2 → R∪{∞} is a proper convex function
used as a goodness-of-fit metric, the regularizer ∥·∥2H : H → R
is the squared RKHS H induced norm, and the hyperparameter
η ∈ R+ controls the model complexity of the solution.

Under a multi-kernel learning framework, one typically
constructs a valid RK by adequately combining the RKs within
a preselected dictionary [10]. Particularly, finding the RK
within a convex hull of P positive definite RKs that yields
the function estimate incurring the lowest functional cost (1)
is equivalent to obtaining a solution from H built as the
RKHS direct sum H1 ⊕ · · · ⊕ HP , where each pth RKHS
Hp = span{kp(x, ·) : x ∈ X}, being kp : X 2 → R its
associated RK [27]. The solution f ∈ H that minimizes (1),
can be expressed without loss of generality as f = θ⊤f , where
f = [f1, . . . , fP ]

⊤ ∈ H1:P , with H1:P ≜ H1 × · · · ×HP and
θ = [θ1, . . . , θP ]

⊤ ∈ ∆P−1, with ∆P−1 ≜ {β ∈ RP : β ⪰
0 and 1⊤β = 1} denoting a simplex [28]. Thus, the RERM
problem posed before becomes

min
θ∈∆P−1,f∈H1:P

Cη (f ;S) (2a)

subject to: f = θ⊤f . (2b)

Optimization problem (2) is bi-convex, meaning that it is
convex in θ for a fixed f and vice-versa. Still, it is not
jointly convex in both optimization variables. It can be tackled
via specialized methods that primarily exploit the convex
substructures of the problem [29]. However, these methods
do not scale well with the number of RKs and data samples,
denoted as P and N , respectively.

This paper presents a method to solve efficiently (2) for
large P and N .

III. PROPOSED SOLUTION

This section describes how to synergize an online formu-
lation and an upper bound on the objective (2a) to solve (2)
scalably with respect to N and P .

A. Online setting

Online settings [30], [31] can be adopted to solve (2)
achieving low run-time complexity with respect to N while
incurring a certain tolerable (cumulative) cost. They usually
trade-off solution accuracy for speed, e.g., by processing only
a few samples every iteration, for low memory complexity,

1The notation YX refers to the set of functions from X to Y .
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Fig. 1. Visual description of the online setting considered.

e.g., by discarding samples after a few processing steps, or for
model complexity control, i.e., bounded model size regardless
of whether N increases.

The online setting considered in this work can be cast as
a method-environment iterative game [32]. The data samples
in S are assumed to be available sequentially. Then, at each
iteration step n, the method chooses a function estimate f (n) ∈
H1 ⊕ · · · ⊕HP expressible as f (n) = θ(n)⊤f (n) with θ(n) ∈
∆P−1 and f (n) ∈ H1:P . In response, the environment pe-
nalizes the proposed function estimate f (n) with the incurred
cost Cη(f (n);S(n)

L ), where S(n)
L = {(x(i), y(i))}ni=nL

⊆ S is a
sliding window of L data samples and nL ≜ max{n−L+1, 1}.
Finally, once the nth function estimate f (n) is chosen, the
method receives the nth data window S(n)

L , which can be used
at the next iteration2 step n+ 1. Fig. 1 visually describes the
procedure.

B. Upper bound on the functional cost

As we show next, we can improve scalability with respect
to the number of RKs, by making use of the following upper
bound:

Cη(f ;S) =
N∑

n=1

ℓ
(
θ⊤f(x(n)), y(n)

)
+

η

2
∥θ⊤f∥2H (3a)

≤
N∑

n=1

P∑
p=1

θpℓ
(
fp(x

(n)), y(n)
)
+ θ2p

η

2
∥fp∥2Hp

(3b)

≜ C̆η(θ,f ;S). (3c)

The first upper-bounded term in (3b) follows directly from
Jensen’s inequality [33], whereas the second term is obtained
by invoking the definition of the RKHS direct sum norm
[34]. Even though the second term in (3b) could have also
been upper bounded through Jensen’s inequality, as in [28],
exploiting the definition of the RKHS direct sum norm, leads
to a tighter bound because θ2p ≤ θp for θp ∈ [0, 1].

The key advantage of the upper bound cost (3c) is that it
is separable across the P RKs within the dictionary, hence
allowing for parallelization at the expense of some loss in
optimality, albeit with still satisfactory performance.

C. Parallelizable learning scheme

Our proposed learning scheme consists of executing at each
iteration step n the following consecutive operations:

2At the first iteration step n = 1, the method has not received any data
sample, thus f (1) is set as some arbitrary initial function estimate.



Algorithm 1 (Quadratic program) Projection onto simplex.

Input: The function estimate components {f (n)
p }Pp=1, the data

window S(n−1)
L and the loss ℓ.

1: Set the components of a and b as in (5).
2: Sort b in ascending order, denoted as u: u1 ≤ u2 ≤ · · · ≤

uP and rearrange a accordingly into v.

3: Find ρ = max
{
1 ≤ j ≤ P : uj −

∑j
i=1

ui
vi

+2∑j
i=1

1
vi

< 0

}
.

4: Define µ = −
2+

∑ρ
i=1

ui
vi∑ρ

i=1
1
vi

.

5: Compute θp = max
{
− 1

2ap
(bp + µ), 0

}
for p = 1, . . . , P .

Output: θ.

1) Every pth function estimate component f
(n)
p is chosen

through a single-kernel online method operating over the pth
RK within the dictionary. The methods are selected by the
user, and they can be different for each RK as long as all
of them adopt the online setting described in Sec. III-A.
For example, stochastic gradient descent methods for function
estimation [35], and associated variants [36], [37], can be
readily used. Since the function estimate components of f (n)

can be computed in parallel across P different computing
units, the computational cost can be distributed.

2) Next, the convex weights in θ(n) are chosen as the ones
that minimize the partially evaluated upper bound cost (3c)
at f (n) and S(n−1)

L , referred from now on as learning cost.
Mathematically,

θ(n) = arg
θ∈∆P−1

min C̆η
(
θ,f (n);S(n−1)

L

)
(4a)

= arg
θ∈∆P−1

min θ⊤A(n)θ + b(n)
⊤
θ, (4b)

where A(n) ≜ diag(a(n)) ∈ SP
++, with a(n) ∈ RP

+, and
b(n) ∈ RP whose components are computed3 as

a(n)p =
η

2

∥∥∥f (n)
p

∥∥∥2
Hp

, (5a)

b(n)p =
∑

i∈I(n−1)
L

ℓ
(
f (n)
p (x(i)), y(i)

)
, (5b)

for all p ∈ N[1,P ], where I(n−1)
L corresponds to the index

set associated with the data samples in S(n−1)
L . We adapt the

projection onto the simplex algorithm discussed in [38], [39],
[40] by extending its applicability to any quadratic problem
described by a diagonal positive definite matrix with simplex
constraints. As a result, the proposed Algorithm 1 can solve
(4) exactly. Its computational complexity is bottlenecked by
a sorting step; that is, an asymptotic average complexity
O(P logP ) [41]. It should be mentioned that this complexity
can be further reduced to O(P ) on average by using a ran-
domized pivot algorithm variation that identifies the parameter
ρ (Algorithm 1, line 3) using a divide and conquer procedure

3Notice that nothing prevents f
(n)
p to be zero-valued and thus A(n) from

being singular and positive semi-definite. However, we can always set A(n) =
diag(a(n)) + δIP where δ is an arbitrarily small positive value.

instead of sorting [42], but this is out of the scope of the
present paper.

3) Finally, the function estimate f (n) = θ(n)⊤f (n) is
proposed.

In summary, our scheme can be seen as a higher-level
learner that iteratively chooses the lowest incurring learning
cost combination of function estimates provided by lower-level
learners, namely, single RK methods.

IV. PERFORMANCE ANALYSIS

Under an online setting, as the one described in Sec. III-A,
the incurred cost accumulated over time receives the name of
cumulative cost (CC). In our case, the CC up to the nth time
step is given by

∑n
i=1 Cη(f (i);S(i)

L ). From here, recall that
every ith function estimate f (i) is proposed via Sec. III-C,
before the ith data window S(i)

L becomes available; thus, the
CC is a measure of performance protecting against overfitting.
Intuitively, the lower the growth of the incurred CC with
respect to n, the better the expected performance over unseen
data. In fact, popular measures of performance, such as the
dynamic regret, are constructed as the difference between the
CC incurred by the sequence of function estimates proposed
by a method and a sequence of comparators [43].

In order to validate our scheme experimentally, we pose
a signal reconstruction online problem from synthetically
generated streaming data. Specifically, we use the squared loss,
i.e., ℓ(f(x), y) = (f(x) − y)2, and a dictionary of P = 20
Gaussian kernels, i.e., kp(x, t) = exp

(
− 1

2 (x− t)2/σ2
p

)
, with

different widths σp linearly spaced between 0.1 and 10. The
method associated with each RK is an augmented naive online
Rreg minimization algorithm (NORMA) [35] with a window
length of L = 10 data samples, a budget of τ = 100 kernel
expansion terms (beyond the allowed budget we truncate the
oldest terms of the kernel expansion), and a fixed learning rate
λNORMA = 0.05. That is, before any possible truncation, each nth
function estimate associated with the pth RK is constructed as
f
(n)
p =

∑n−1
i=1 α

(n)
p,i kp(x

(i), ·), where each α
(n)
p,i ∈ R denotes

a kernel-expansion coefficient obtained from the following
NORMA update:

f (n)
p = f (n−1)

p − λNORMA ∂f Cη
(
f ;S(n−1)

L

)∣∣∣
f=f

(n−1)
p

, (6)

which, after some algebraic steps, leads to the next closed-
form update rule:

α
(n)
i =


−λNORMA ℓ

′(n−1)
p,i if i = n− 1,

γα
(n−1)
i − λNORMA ℓ

′(n−1)
p,i if i ∈ I(n−1)

L \{n− 1},
γα

(n−1)
i otherwise,

(7)
where ℓ

′(n)
p,i ≜ ℓ′

(
f
(n)
p (x(i)), y(i)

)
= 2

(
f (n)(x(i))− y(i)

)
and γ ≜ (1− λNORMAη) ∈ R(0,1)

+ . The regularization parameter
is chosen as η = 0.01. Lastly, the data samples have been
generated via a stable AR(1) process y(n) = φy(n−1) + u(n),
with φ = 0.5488135, u(n) iid∼ N (0, 0.71519837), y(0) = 0 and
unit time stamps uniformly arranged in time, i.e., x(n) = n.



Additionally, we compare our scheme with the online mul-
tiple kernel regression (OMKR) algorithm [21], arguably the
closest approach conceptually. More specifically, we compare
against the budget OMKR gradient-based variant method over
the same experimental setting described above. Briefly, the
considered OMKR method can be described, at each iteration
step n, by the following three-stage scheme:

1) The set of function estimates, in this case, regressors
proposed by each one of the P NORMAs, is updated as (7)
and collected in f (n) ∈ H1:P .

2) Then, the P weights for combining the multiple regres-
sors are updated as

w(n) = w(n−1)−λ
(n)
OMKR ∇w Cη

(
w⊤f (n);S(n−1)

L

)∣∣∣
w=w(n−1)

.

(8)
In this case, we use an initial learning rate λ

(1)
OMKR = 8 · 10−4

that is halved every 50 steps until a minimum value of 10−5.
After some algebraic manipulations and making use of the
definition of the RKHS direct sum norm [34], the evaluated
gradient in (8) equals to∑
i∈I(n−1)

L

f (n)(x(i))ℓ′
(
w(n−1)⊤f (n)(x(i)), y(i)

)
+ηA(n)w(n−1).

(9)
The matrix A(n) corresponds to the one introduced in (5a),
and the initial combination weights are set as w(1) = 0P .

3) Finally, the function estimate f (n) = w(n)⊤f (n) is
proposed.

Unlike our scheme, the OMKR algorithm can eventually
learn any linear combination of single-kernel function esti-
mates. However, due to the additive nature of the update step
in (8), the OMKR algorithm usually suffers from slow conver-
gence rates. Moreover, it requires a sequence of learning rates
λ
(n)
OMKR whose tuning involves optimization techniques or task-

specific knowledge, hence adversely affecting performance,
e.g., poor learning or instabilities, if not carried out adequately.

Our experimental results in Fig. 2 show that the CC incurred
by our proposed learning scheme outperforms the lowest
CC incurred by any of the combined single RK NORMA
regressors separately. In the same figure, it can also be
observed that our scheme incurs a CC that increases at a
lower rate than the one incurred by the OMKR algorithm,
thus allowing our scheme to outperform the best NORMA
regressor much sooner. The reason behind this observation is
arguably the additive nature of the OMKR algorithm, which
requires numerous updates to completely remove the residual
contributions of irrelevant regressors. For example, see in Fig.
3 the “spiky” shape of the OMKR signal estimate due to some
regressors constructed with a narrow-valued σp RK.

Regarding computational resources, both the OMKR algo-
rithm and our scheme can be parallelized across the RKs
within the dictionary, which in our experiments means a
constant time complexity O(τ), and a combination step of
complexity O(P ) and O(P logP ), respectively. However, as
mentioned in Sec. III-C, the complexity of our scheme can
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Fig. 2. Cumulative cost up to time step n incurred by our learning scheme,
the OMKR algorithm, and the combined single RK NORMA regressors
individually. The dashed-dotted line L · n is shown as a reference.
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Fig. 3. Snapshot of the 42nd signal estimate obtained by the OMKR algo-
rithm, our learning scheme, and the best and the worst of the combined single
RK NORMA regressors (denoted by the indices p+ and p−, respectively) in
terms of the so-far (n = 42) incurred cumulative cost.

be further reduced to O(P ) on average, making both of the
compared approaches computationally equivalent.

V. CONCLUSION

We present a multi-kernel learning scheme that experimen-
tally outperforms the best of the combined single RK methods,
in terms of the cumulative regularized least squares cost
metric, with a comparable computational load per computing
unit. This corroborates the ability of the proposed scheme to
effectively accommodate a larger function space (from which
to draw function estimates) of multi-kernel methods while
keeping the lower computational complexity of online single
RK methods. Furthermore, although Algorithm 1 has been
expressly designed for the task discussed in this paper, it can
be used to solve any other problem that accepts a formulation
as in (4b).
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Supplementary material for “An Online Multiple
Kernel Parallelizable Learning Scheme”

CORRECTNESS OF ALGORITHM 1
A Lagrangian of problem (4) is

L(θ,λ, µ) = θ⊤diag(a(n))θ + b(n)
⊤
θ − λ⊤θ + µ(1⊤θ − 1), (S.1)

being µ ∈ R and λ ∈ RP the Lagrange multipliers associated with the equality and inequality constraints, respectively. At the
optimal solution θ(n), the following KKT conditions [44] hold:

2θ(n)p a(n)p + b(n)p − λp + µ = 0, p = 1, . . . , P (S.2a)

θ(n)p ≥ 0, p = 1, . . . , P (S.2b)

λp ≥ 0, p = 1, . . . , P (S.2c)

λpθ
(n)
p = 0, p = 1, . . . , P (S.2d)

P∑
p=1

θ(n)p = 1. (S.2e)

From the complementary slackness, stated in (S.2d), we can deduce that if the primal inequality constraint in (S.2b) is slacked,
i.e., greater than zero, then λp = 0 and from the stationarity condition (S.2a), the solution fulfils

θ(n)p = − 1

2a
(n)
p

(b(n)p + µ) > 0. (S.3)

On the other hand, if the primal inequality constraint is tight, i.e., θ(n)p = 0, then the dual constraint (S.2c) is not binding.
Again, from the stationarity condition in (S.2a), we can identify those non-binding constraints as those that satisfy the following
expression:

b(n)p + µ = λp ≥ 0. (S.4)

In this way, it is clear from (S.4) that the components of the optimal solution that are zero, if any, correspond to the larger
components of b(n). Without loss of generality, we can assume that the components of b(n) are sorted in ascending order as
long as the components of a(n) are rearranged accordingly. Thus, by comparing b(n) with the solution as follows:

b
(n)
1 ≤ · · · ≤ b(n)ρ ≤ b

(n)
ρ+1 ≤ · · · ≤ b

(n)
P ,

θ
(n)
ρ+1 = · · · = θ

(n)
P = 0,

(S.5)

it can be concluded that the index ρ ∈ N[1,P ] determines the number of components in the solution that are nonzero. From
here, and rewriting the equality primal constraint (S.2e) as

P∑
p=1

θ(n)p =

ρ∑
p=1

θ(n)p = −1

2

ρ∑
p=1

1

a
(n)
p

(b(n)p + µ) = 1, (S.6)

the Lagrangian multiplier associated with the equality constraint can be isolated and computed as

µ = −
2 +

∑ρ
p=1

b(n)
p

a
(n)
p∑ρ

p=1
1

a
(n)
p

, (S.7)

as long as the index ρ is known.

Theorem 1: Let ρ be the number of positive components in the solution of optimization problem (4), then

ρ = max

{
1 ≤ j ≤ P : bj −

2 +
∑j

i=1
bi
ai∑j

i=1
1
ai

< 0

}
, (S.8)

where b is obtained by sorting b(n) components in ascending order and a corresponds to a(n) rearranged accordingly.



Proof. Let us first define the quantities φj ≜ bj − (2 +
∑j

i=1
bi
ai
)/
∑j

i=1
1
ai

and sj:k ≜
∑k

i=j
1
ai

. Then, the goal is to show
that j = ρ is the largest index in {1, . . . , P} for which φj remains negative.

For j < ρ, we have that

φj =
1

s1:j

(
s1:jbj −

(
2 +

j∑
i=1

bi
ai

))
(S.9a)

=
1

s1:j

s1:jbj − 2−
ρ∑

i=1

bi
ai

+

ρ∑
i=j+1

bi
ai

 (S.9b)

=
1

s1:j

s1:jbj + s1:ρµ+

ρ∑
i=j+1

bi
ai

 (S.9c)

= bj + µ+
1

s1:j

ρ∑
i=j+1

1

ai
(µ+ bi) < 0, (S.9d)

where in step (S.9b) we use the equivalence
∑j

i=1
bi
ai

=
∑ρ

i=1
bi
ai

−
∑ρ

i=j+1
bi
ai

. Next, in step (S.9c), we make use of the
relation in (S.7). Finally, the step (S.9d) holds thanks to the relation in (S.3) and because s1:j , ai ≥ 0 ∀i, j.

For j = ρ, and thanks to (S.3), we have φρ = bρ + µ < 0. Then, using the relation in (S.7), we can verify that (S.8) holds.
For j > ρ, we can follow similar algebraic steps as in (S.9) to obtain

φj =
1

s1:j

s1:ρ(bj + µ) +

j∑
i=ρ+1

1

ai
(bj − bi)

 ≥ 0. (S.10)

The inequality in (S.10) holds thanks to the relation in (S.4) and the fact that bj ≥ bi ∀i.
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