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Abstract

Charging scheduling algorithms play a vital role in diminishing the negative consequences on electricity networks from the
widespread adaptation of electro-mobility. Therefore, there is a growing interest in a pragmatic solution that requires only modest
resources. To reach this goal, we propose a decentralized, IEC charging standard compliant, two-layer charging scheduling
algorithm, which only requires unidirectional communication and reduced computing capabilities. The objective of the algorithm
proposed is to achieve valley filling by exploiting the flexibility of electric vehicles through optimal tracking of a target signal. The
IEC standard compliant, semi-continuous charging characteristic is attained with a mixed-integer linear formulation. Different
formulations of the problem by forming vehicle groups and randomization in charging events are examined. The results show that
the IEC 61851-compliant formulation with a semi-continuous charging characteristic for the proposed method fails to perform as
good as the variable charging rate formulation, which has a 2.8 and 3.9-fold deviation in the variance of the total demand relative
to the variable charging rate at 50% and 100% penetration rates, respectively. Nevertheless, the inclusion of randomization
and grouping improves the performance of the IEC standard-compliant formulation. Considering four groups, the variance in
demand of semi-continuous charging formulation at 50% penetration is nearly equal to that of the variable charging rate proofing
the viable potential of the technically feasible solution proposed.

1 Introduction

The increasing trend towards electrification of the transporta-
tion sector has raised a series of technical problems affecting
the healthy operation of the electricity network. A num-
ber of studies have already highlighted such negative con-
sequences [1–4]. To reduce the impacts of the widespread
integration of electro-mobility on the distribution grids, control
strategies for electric vehicle (EV) charging are crucial.

A wide range of such demand side management strategies,
which exploit the temporal flexibility of the EVs, are discussed
in the literature demonstrating a strong potential [5–10]. These
studies employ distinct control architectures and methodolo-
gies for the charging scheduling process. The majority of the
charging schemes proposed employ a variable charge rate, con-
sidering that the EV can withdraw power at any rate between
zero and a given maximum rate. However, the IEC 61851
standard specifies that beyond the standby mode, the charging
current has to be in the range from 6 A to 48 A, being then a
semi-continuous variable [11]. Therefore, the studies with vari-
able charge rates, do not meet compliance with the standard
IEC 61851. Due to the limitations of the charging technol-
ogy, the economic and practical deployment of the proposed
strategies are therefore debatable.

In a previous study, we proposed an autonomous decen-
tralized demand side management (ADSM) algorithm for EV
charging scheduling to flatten the aggregated demand at the
low voltage (LV) distribution transformer [12]. The proposed
control architecture can be easily deployed by means of a sim-
ple embedded controller attached to the EV supply equipment
(EVSE) owing to the linear formulation of the optimization.
The method also only relies on unidirectional communication
and therefore requires few communication resources. These
features render it well suited for practical implementations.
Similar to the works in [5–9], a variable charging rate, which is
not in accordance with IEC charging standards, was assumed,
in our previous implementation [12]. Hence in this paper, we
aim to adapt this control architecture to comply with charg-
ing limits specified in the standards. To meet the requirement
defined in the standards, a semi-continuous charging rate is
used, which is either zero or varies between the minimum and
maximum values. The semi-continuous charging characteristic
is realized using a mixed integer linear programming (MILP)
formulation.

The aim of the study proposed is to provide an exemplary
case that demonstrates the impacts of compliance with stan-
dards in control algorithms of EV charging upon the intended
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outcomes and establish a simple, practically viable control
algorithm for EV charging scheduling.

The rest of the paper is arranged as follows. A detailed
description of the MILP formulation for the decentralized
ADSM method proposed is presented in Section 2. Section 3
includes the simulation setup that we used for the analysis.
The simulation results are presented in Section 4 followed by a
conclusion in Section 5.

2 Method

The decentralized hierarchical ADSM approach proposed in
our previous study is referred to as Optimal Power Track-
ing (OPT) [12], since the fundamental principle is to track
a predefined reference power signal with minimal deviations.
The tracking signal is determined to achieve valley filling by
exploiting the flexibility of EV demand. The algorithm is for-
mulated in a two-layer architecture as presented in Figure 1.
In the first layer, the DSO determines a target power signal
S based on the estimates of non-elastic power demand D∗

and aggregated total EV demand E∗ and broadcasts to all
the EVs. In the second layer, with the knowledge of EV user
behaviour estimates (arrival times tj,arri, departure times tj,dep,
energy demand E∗

j ), each EVSE scales the received signal to
the expected day ahead EV energy demand and performs an
optimization to track the scaled signal with minimal deviations.

2.1 Determination of the target signal

The tracking signal is determined based on the estimated day
ahead aggregated non-EV demand profile (D∗) and the esti-
mated total EV energy demand of all the grid-connected EVs
(E∗). The day-ahead prediction of the non-elastic load profile
is realizable through forecasting tools, in particular, AI-based

Fig. 1 The two-layer architecture of the optimal power track-
ing demand side management algorithm for EV charging.

techniques that are capable of learning complex nonlinear rela-
tionships from the historic data [13]. The recent developments
in substations equipped with intelligent transformers facilitate
the measured load demands [14]. Sub-metering systems offer
the possibility to measure the historical EV demand data which
can be used to decouple the EV demand to obtain the non-
elastic demand. The estimation of the aggregated EV flexibility
in the form of a total energy demand value is also achievable
with AI-based techniques [15].

The first step to determine the target signal is to obtain the
fill level Z by solving,

NT∑

t=1

max{(Z −D∗
t ), 0} ∆t = E∗, (1)

for Z using the two estimates in accordance with the classi-
cal water filling algorithm [16]. NT is the total number of time
steps of length ∆t in the optimization window. The mismatch
between the fill level and the estimated non-elastic load pro-
file at each time interval for the optimization horizon St is
computed and transmitted to the EVs:

St = Z −D∗
t . (2)

2.2 Local optimization at the EVSE with MILP

In the second layer of the OPT, a local optimization is per-
formed by each EV controller. The local controller attached to
the EVSE, splits the negative S−

t and positive S+
t parts of the

original power signal received St. Thereafter, the tracking sig-
nal to be optimally tracked is determined using the estimated
next-day EV demand for each EV. The tracking signal for the
j th EV,

S+
j,t =

E∗
j∑NT

t=1
S+

t ∆t
S+

t (3)

is derived by scaling S+
t to the estimated next day energy

demand for the j th EV, E∗
j . The optimization problem is

devised to track the S+
t with minimal deviation given the EV

user behaviour predictions. Methods for EV user behaviour
predictions based on clustering [17], data-learning [18], data-
driven [19], etc. are discussed in the literature. We proposed
a linear formulation in [12] to the optimization problem
stated, which demands reduced computational cost. However,
as already stated above, the previous implementation assumes
a variable charging rate. To meet compliance with the limits
specified by the IEC 61851 standards, we re-formulated the
original, linear optimization in a MILP formulation. The objec-
tive and the associated constraints of the optimization problem
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are listed below, where j refers to the j th EV.

min
NT∑

t=1

[aj,t(1 + S-
t) + bj,t] ∆t s.t. (4)

− aj,t ≤ S+
j,t − Pj,t ≤ aj,t ∀t, ∀j, (5)

− bj,t ≤ Pj,t+1 − Pj,t ≤ bj,t ∀t,∀j, (6)

SOCj,min ≤ SOCj,t ≤ SOCj,max ∀t,∀j, (7)

xj,tPj,min ≤ Pj,t ≤ xj,tPj,max ∀t,∀j, (8)

xj,t ∈ [0, 1] ∀t,∀j, (9)

bj,t ≥ 0 ∀t, ∀j, (10)

xj,t = 0 ∀j, for t, where the EV is not at home. (11)

Here, aj,t and bj,t are two sets of auxiliary variables, SOCj,min

and SOCj,max are the minimum and maximum permissible
state of charge of the battery of EVj , specified by the manufac-
turers. The SOC of vehicle j at time step t is derived assuming
a linear battery dynamics:

SOCj,t =SOCj,0 +
1

CB
j

{ t∑

s=1

ηj,c Pj,s ∆t−
t∑

s=1

Ej,s

}
(12)

where, Ej,t refers to the energy demand for driving. Pj,t is
the charging power of the EVj at time t. Pj,min and Pj,max are
the minimum and maximum permissible charging power of the
battery either defined by the EVSE or EV manufacturer. xj,t

is a binary variable, which for each EV at time t specifies
charging (1) or not-charging (0). It is used to implement the
semi-continuous charging characteristics in compliance with
the IEC standards for each EVj at time t.

2.3 Randomization and grouping

The limits imposed on the minimum charging current can result
in new peaks due to simultaneity, especially at high pene-
trations. To mitigate this drawback, a randomization and a
grouping mechanism are used in the decentralized controllers.

A grouping mechanism, implemented by the DSO, randomly
assigns each EV to one of the Ng groups. A new target sig-
nal for each group Sg,t is derived by segmenting the original
target signal St into Ng signals, each exhibiting the same
time integral reflecting energy. A given EV will receive the
target signal created for the group and the total number of
EVs present in the group (NEV,g). Subsequently, the EVs per-
form the MILP optimization described in the previous section
alongside a randomization process.

In the randomization process, each controller generates a
random probability for every time slot of the target signal using
a uniform distribution. Only if the probability is higher than a
threshold value, charging is allowed. The threshold probabil-
ity PT,t at time step t is determined based on the percentage of
EVs in the group able to charge simultaneously at the minimum

charge rate without exceeding the target signal:

PT,t = 1− (
S+

g,t

PminNEV,g

) (13)

The performance of the method is highly dependent on the
number of groups. Hence, we evaluate and compare the results
for different numbers of groups.

3 Simulation Setup

In our study, we conducted load flow simulations of a distribu-
tion grid to assess different performance indicators. The load
flow simulation [20] implemented in MATLAB® [21] uses the
backward forward sweep flow method [22] which is equally
applicable for both radial and weakly meshed grids as proposed
by Ghatak and Mukherjee. The OPT linear optimization prob-
lem is solved using the MATLAB® implementation of cutting
plane and branch and bound algorithms. We conducted simu-
lations over a week with a time resolution of 15 minutes. The
selected week was chosen from the winter season as it exhibits
a higher demand compared to other seasons. The optimization
problem is solved every 24 hours at noon, taking into account
the forecasts for the next 36 hours. We consider overlapping
time windows for the optimization to ensure that the SOC of
the vehicle is always within the limits, guaranteeing the energy
required for driving is delivered without failure. The simula-
tions are performed under the assumption of perfect predictions
of the uncertain parameters since the scope of the study is to
evaluate the feasibility of the proposed concept.

3.1 Grid simulation model

The topological data of a LV grid in Austria was used as the
test grid in this study. The data used to model the grid includ-
ing information on the distribution transformer, loads (location,
load type, annual energy consumption), and topology (connec-
tivity, cable type, length) were provided by the local DSO,
Vorarlberger Energienetze GmbH [23]. The simulated LV dis-
tribution grid comprises a 800 kVA, 10/0.42 kV step-down,
3-phase transformer with 52 load nodes and 103 distribution
lines. The grid supplies 490 residential consumers, 9 business
units, and 77 other consumer units including heat pumps, pub-
lic facilities, etc. Data related to the annual energy consumption
for each consumer was also made available by the local DSO.
The grid simulation was conducted considering the LV side of
the transformer as the slack node with a reference voltage of
1 p.u.

3.2 Household load demand

For the non-elastic household demand data, the Irish Com-
mission for Energy Regulation (CER) dataset from a smart
metering project was used [24]. These data having a half-hour
sampling time were re-sampled to a sampling interval of 15
minutes. After filtering the incomplete data, a data set of 4225
customers was considered. The household demand data spans
over a year from 14th July, 2009 to 31st December, 2010.
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3.3 EV load demand data

The historical residential charging data were obtained from
records of the experimental statistics of the Electric Charging
Point Analysis project funded by the Office of Low Emission
Vehicles [25]. The records include charging events spanning
over a year for residential charge points in the UK. The data
contains time-stamp data that determines the corresponding
time of connection (start time of charging session), the time of
the disconnection (end time of charging session), the amount
of energy supplied, and the charging rate for each identified
charging session. To demonstrate the feasibility of the concept,
a perfect prediction of EV usage behaviour was assumed.

3.4 EV specifications

In modeling the electric vehicle, we used the specifications of
the Nissan Leaf with a battery capacity of CB

j = 40 kWh. We
assume that the charging infrastructure is equipped with a 3-
phase 400 V/16 A semi-fast charger with a maximum charging
power of 11 kW having a charging efficiency of ηj,c = 0.9.

3.5 Simulation scenarios

The simulations were performed for a range of EV penetrations
(0% - 100%, in steps of 10%). We defined EV penetration as the
percentage of households that own an EV. The benchmark case
with no EVs is included in the analysis for the purpose of refer-
ence, which is referred to as the 0% penetration case. We also
simulated the uncontrolled EV charging scenario (Unc), where
the EVs start charging as soon as they arrive at the point of
charging, at a maximum charging rate until fully charged. The
results for the proposed MILP-based scenarios are compared
with our previously proposed setting with a variable charge
rate scenario (hereafter referred to as VC). Different formu-
lations of the proposed MILP solution to the OPT approach
were considered to achieve comparable optimality to the VC
scenario. The outcomes of the straight transformation of the
OPT approach into MILP are denoted as SC. As discussed
in Section 2, the MILP formulation of OPT with randomized
charging events without group formulation is represented by
the scenario SC_1. The MILP formulation with randomiza-
tion and grouping from two to six groups is represented by the
scenarios SC_2-SC_6.

4 Results

This section provides a comparative analysis of the perfor-
mance of the MILP formulations of OPT for EV charging
management presented in Section 3.5 using several perfor-
mance indicators. The intended objective of the OPT algorithm
is to fill the valleys of the non-elastic demand curve utilizing
EV demand flexibility by tracking a pre-defined reference sig-
nal. Valley filling is primarily employed to reduce the variance
in the demand profile. Therefore, we used the variance in total
demand as an index to measure the performance of the differ-
ent formulations proposed which is shown in Figure 2 for the
penetration range considered. For the purpose of comparison,

the variance normalized to the variance of the 0% penetration
is used.

Fig. 2 Variance in the total demand normalized to the vari-
ance of the 0% penetration for uncontrolled, OPT with variable
charge rate (VC), OPT with semi-continuous charge rate (SC),
OPT with semi-continuous charge rate and randomization in
charging (SC_1), OPT with semi-continuous charge rate and
randomized charging with two to six groups (SC_2-SC_6).

The formulation of OPT with semi-continuous (SC) charg-
ing alone reduces the variance in comparison to uncontrolled
EV charging, but shows a significant deviation from OPT with
VC, which is more noticeable at high penetrations as observed
in Figure 2. This can be attributed to the concurrent charging
of a high number of EVs at the minimum permissible charging
rate during the deep valley periods. The randomization process
improves performance to a high extent across all penetrations,
whilst still exhibiting a slight variation at high penetration. The
inclusion of grouping leads to a performance much closer to
the implementation of OPT with VC. Increasing the number of
groups results in better performance, however, a group number
of four is adequate to achieve similar performance to OPT with
VC up to a penetration of 50%.

The valley-filling nature of OPT also aids in reducing the
peak-to-average power ratio (PAPR) of the networks. A com-
parison of the PAPR is shown in Figure 3.

Similar to the results presented in Figure 2, the PAPR of the
OPT algorithm with SC charging is on an equitable level to
that of OPT with VC only at low penetrations, in our specific
configuration up to a penetration of 30%. The SC charging with
randomization shows comparable results up to a penetration
of 70%. The adoption of grouping further improves the PAPR
results. The results also demonstrate that at high penetrations, a
high number of groups leads to more favorable results in PAPR.

The OPT method has several other advantages besides valley
filling and peak reduction capabilities. We have demonstrated
in [12] that the OPT approach positively influences the voltage
violations in the nodes and current violations of the cables in
the LV grids. Therefore, we evaluated the variations between
the different OPT formulations on these two parameters. A

4



Fig. 3 Peak to average power ratio (PAPR) for uncon-
trolled (Unc), OPT with variable charge rate (VC), OPT with
semi-continuous charge rate (SC), OPT with semi-continuous
charge rate and randomized charging (SC_1), OPT with semi-
continuous charge rate and randomized charging with two to
six groups (SC_2-SC_6).

comparison of voltage deviations for the penetration ranges
considered is presented in Figure 4. In summary, the influence
of the different MILP formulations on the voltage deviations
follows a similar trend to that of the variance and PAPR indices.

Fig. 4 Maximum voltage deviations in the grid nodes for
uncontrolled (Unc), OPT with variable charge rate (VC),
OPT with semi-continuous charge rate (SC), OPT with semi-
continuous charge rate and randomized charging (SC_1), OPT
with semi-continuous charge rate and randomized charging
with two to six groups (SC_2-SC_6).

Further, we examined compliance with the voltage standard
criteria defined in EN 50160. The selected LV network exhib-
ited a resilient behaviour in terms of voltage. The compliance
with EN 50160 was found to be violated at a penetration of
70% at uncontrolled charging of EVs. All OPT formulations

with randomized charging provided successful mitigation to
these voltage violations.

An overview of the number of events where the cables
exceed the permissible currents in the simulated week is shown
in Table 1. The number of cables exceeding the limit is denoted
in the brackets.

Table 1 Summary of cable overloading events (number of cables
affected) within the simulated week
Penetra- Unc VC SC SC_1 SC_2 SC_3 SC_4 SC_5 SC_6tion (%)

10 2 (2)
20 40 (2)
30 111 (6)
40 203 (8) 4 (2) 6 (4) 4 (2) 4 (2) 4 (2) 4 (2) 4 (2) 4 (2)
50 273 (11) 12 (4) 26 (5) 20 (4) 18 (4) 14 (4) 14 (4) 14 (4) 12 (4)
60 381 (11) 28 (4) 79 (6) 44 (4) 40 (4) 42 (4) 42 (4) 38 (4) 32 (4)
70 527 (12) 66 (4) 256 (10) 102 (4) 102 (4) 96 (4) 88 (4) 86 (4) 72 (4)
80 688 (16) 120 (4) 402 (13) 157 (5) 152 (4) 160 (4) 138 (4) 134 (4) 132 (4)
90 833 (20) 167 (7) 568 (16) 221 (7) 212 (7) 200 (7) 206 (7) 191 (7) 188 (7)
100 981 (25) 203 (7) 632 (18) 261 (9) 260 (8) 259 (7) 255 (7) 234 (7) 235 (7)

In the selected grid, cable overloading problems start to
occur already at low EV penetration rates, i.e., at 10%. The
OPT with VC mitigates the cable overloading problems up
to a penetration of 30% while reducing the overloading prob-
lems at penetrations beyond that. The SC formulations with
grouping realize comparable results to that of the VC formu-
lation. The SC formulation having random load scheduling
and a grouping of six shows the closest performance to the
OPT implementation with VC rate in reducing the overloading
events.

In summary, the findings demonstrate that the MILP for-
mulation to the OPT algorithm to achieve semi-continuous
charging characteristics as defined by the IEC standards, does
not perform as well as OPT formulation with the variable
charge rate. The introduction of randomization and group-
ing improves performance, whereby an increasing number of
groupings contributes positively.

5 Conclusion

We present a decentralized charging scheduling algorithm that
is practically feasible, requires less communication and com-
putational cost, and complies with IEC 61851 charging stan-
dard. The primary objective of the algorithm is valley filling,
achieved by optimally tracking a target power signal exploit-
ing the flexibility of EVs. The method exhibited promising
results when used in a previous implementation with a vari-
able charging rate which is not in compliance with the IEC
standards.

In this study, the proposed method is extended to ensure
compliance with the IEC standards. A mixed-integer linear
optimization formulation was adopted to realize the semi-
continuous charging characteristic to meet compliance with the
IEC standards. The results show that the MILP formulation
fails to perform successfully compared to the variable charging
rate implementation, indicating a 2.8 and 3.9-fold deviation in
the variance in demand at 50% and 100% penetration rates.
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To overcome this limitation, the method is extended with a
modification involving a randomization and grouping mecha-
nism. The randomization process alone improves the perfor-
mance of the variance in demand, being 1.2 and 1.5-fold with
respect to the variable charge rate at 50% and 100% penetra-
tion rates, respectively. The adoption of the grouping enhances
the performance further, in particular for high penetrations. The
best performance was achieved with six groups; the highest
number of groups we employed, with a variance in demand
of 1.04 times that of the variable charge rate, at 100% pen-
etration rate, indicating the proposed method to be a feasible
implementation.

The performance of the proposed method subjected to the
various uncertainties associated will be considered in a future
implementation. The incentives for consumer participation and
the policy framework for the implementation in practice remain
to be developed by the DSO.
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