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Abstract
This study introduces a framework for analyzing opportunities for mathematical reasoning 
(MR) in school mathematics, using MR-relevant claims and their derivation as the unit of 
analysis. We contend that this approach can effectively capture a broad range of opportuni-
ties for MR across various teaching situations. The framework, rooted in commognition, 
entails identifying necessary object-level narratives (NOLs) and the processes involved in 
their construction and substantiation. After theoretical development, the framework was 
refined through analyses of mathematics lessons in Norwegian primary school classrooms. 
Examples from the data illustrate how to utilize the framework in analysis and what such 
analyses can reveal in four typical teaching situations: the introduction of new mathemati-
cal objects, the introduction of procedures, work on exercise tasks, and work on problem-
solving tasks. Drawing from the analysis of these examples, we discuss the value of the 
framework for analyzing MR in school mathematics and how such analysis can benefit 
teachers and researchers.

Keywords Analytic framework · Mathematical reasoning · Commognition · Primary 
school

1 Introduction

Mathematical reasoning (MR) involves developing mathematical claims by processes related to 
searching for similarities and differences between mathematical objects, like comparing, clas-
sifying, and conjecturing, and processes related to validating, like justifying and proving (Jean-
notte & Kieran, 2017; G. J. Stylianides, 2008). Several countries, such as the USA and Nor-
way, emphasize embedding MR in teaching across all topics and grades (National Council of 

 * Anita Valenta 
 anita.valenta@ntnu.no

 Kirsti Rø 
 kirsti.ro@hvl.no

1 Department of Teacher Education, Norwegian University of Science and Technology, Trondheim, 
Norway

2 Department of Language, Literature, Mathematics and Interpreting, Western Norway University 
of Applied Sciences, Bergen, Norway

http://orcid.org/0000-0002-4469-5508
http://orcid.org/0000-0001-9492-018X
http://orcid.org/0000-0002-3563-501X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10649-024-10309-5&domain=pdf


 A. Valenta et al.

1 3

Teachers of Mathematics, 2000; Ministry of Education and Research, 2019). However, despite 
being integral to the discipline of mathematics, it is unclear how MR can be integrated into 
school mathematics (Ball & Bass, 2003; Chazan & Lueke, 2010). To promote MR, studies 
emphasize problem-solving tasks and tasks requiring conjectures and justifications (Bieda, 
2010; Herbert & Williams, 2023; Ponte et al., 2023). However, Gardiner (2004) suggests that 
mathematical claims are developed in all school mathematics, not just in particular tasks. He 
emphasizes that deductive reasoning is essential even in work on calculation strategies because 
all mathematics teaching shapes students’ understanding of the nature of mathematics. We 
argue, therefore, that there is a need to investigate opportunities for MR in school mathematics, 
entailing studying diverse teaching situations in mathematics classrooms, such as introducing 
new mathematical objects or procedures and working on different types of tasks. A framework 
broadly identifying MR opportunities in classroom data is crucial to reveal when and how MR 
opportunities arise, how they are utilized, and how MR can be strengthened.

Previous research has introduced various frameworks addressing (opportunities for) MR. In 
their textbook analysis, Davis et al. (2014) built on G. J. Stylianides’ (2009) work and identi-
fied tasks and expositions (narrative parts of the textbook) with the potential for investigat-
ing patterns, conjecturing, or argumentation. These were further subjected to a deeper content 
analysis. Davis et al. (2014) used one or more sentences in expositions and separate questions 
in tasks as their unit of analysis. Similar approaches were employed in other frameworks for 
textbook analysis (such as Otten et  al., 2014; Thompson et  al., 2012; see also Weingarden 
et al., 2022). In the case of adapting such frameworks from textbook/task analysis to classroom 
data, it is challenging to determine the unit of analysis as the data is rather different.

Other studies explored MR in classroom interactions, often focusing on specific MR 
processes. For example, Bieda (2010) investigated work on proving tasks, identifying 
events where students justified conjectures, categorizing justifications by mathematical 
validity, and analyzing teacher moves. This approach, also seen in studies by Ellis et  al. 
(2019), Herbert and Williams (2023), Nordin and Boistrup (2018), and Reuter (2023), 
requires identifying data excerpts involving particular MR processes and analyzing related 
aspects. Adapting their frameworks to the broader context of MR in school mathematics 
may pose challenges in determining the unit of analysis. However, we assume it is possible 
by identifying excerpts in classroom transcripts involving any MR processes.

The aforementioned studies share the approach of identifying MR processes (required 
in tasks or played out in interactions). Hence, given a task or discussion about some calcu-
lations involving no MR processes, these approaches would not capture it as an opportunity 
for MR, even though it can be such according to Gardiner (2004). MR is fundamentally 
about deriving claims (Jeannotte & Kieran, 2017), and we propose that a framework high-
lighting claims rather than MR processes would give broader insight into MR opportuni-
ties. Starting by identifying a mathematical claim that can be developed by MR processes, 
one can analyze how it was developed in the data, even though it was not by MR. The 
framework would capture such situations as opportunities for MR, providing room for dis-
cussion and analysis. Sometimes, promoting MR in a given situation does not make sense, 
while, in other cases, it can enhance learning. Beyond offering a comprehensive perspec-
tive on opportunities for MR, initiating the analysis by identifying MR-relevant claims 
could also provide a suitable unit of analysis for classroom data.

After identifying MR-relevant claims, the framework must encompass the processes 
involved in their development within the classroom. As pointed out above, we suggest 
that these processes can be MR processes and other types of processes. In their frame-
work for task analysis, Weingarden and Buchbinder (2023) introduce “school-based pro-
cesses” (e.g., solving equations, drawing graphs, and calculating) as a counterpoint to 
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MR processes. However, they acknowledge that “solving any mathematical task can (and 
should) involve reasoning” (p. 5), blurring the distinction between school-based processes 
and MR processes in teaching situations. Also, Jeannotte and Kieran’s (2017) theoretical 
distinctions, e.g., between comparing and classifying, may not be crucial in analyzing MR 
opportunities in classrooms. To effectively identify how and where MR can be strength-
ened, we propose the need for an alternative distinction between processes involved in the 
development of mathematical claims. This distinction should emphasize the nature of the 
different processes. Moreover, to enhance applicability, this distinction should be derived 
not only theoretically but also inductively through classroom data analysis. This paper’s 
primary contribution lies in the introduction of such a framework, and our research ques-
tion is:

How can opportunities for mathematical reasoning in school mathematics be investi-
gated, taking MR-relevant claims and their development as the unit of analysis?

To address the research question, we started by developing the framework theoreti-
cally (Section 2), drawing on previous studies and utilizing commognition (Sfard, 2008) as 
our theoretical lens. Commognition has shown merit in prior studies analyzing MR (e.g., 
Shinno & Fujita, 2021; Valenta & Enge, 2022; Weingarden & Buchbinder, 2023). Specifi-
cally, Sfard (2008) emphasizes constructing and substantiating narratives as central aspects 
of mathematics (p. 225). We find these three notions valuable for investigating MR: MR-
relevant claims constitute a particular kind of narrative, and their development in the class-
room can be seen as construction and substantiation. The framework was then refined by 
analyzing data from Norwegian primary school classrooms. The study employs data for a 
dual purpose: refining the framework (Sections 3.2 and 3.3) and illustrating how the frame-
work can be used to analyze classroom data and what the analysis can reveal (Sections 3.3 
and 4). In Section 5, we discuss the study’s theoretical and methodological contribution 
along with the practical value of the framework — both for teachers and researchers.

2  Theoretical framework

This section describes the critical constructs of commognition (Sfard, 2008), the definition 
of MR given by Jeannotte and Kieran (2017), and other theoretical notions used to develop 
the framework.

2.1  A commognitive perspective on mathematics and mathematical reasoning

Sfard (2008) argues that mathematics is a particular discourse: a form of communication 
within a community. This discourse employs specific words, visual mediators, routines, 
and narratives. Words like “sum” and visual mediators like “ + ” are used to identify the 
objects of communication. Routines, like calculations or deductive reasoning, are regu-
lar actions within this discourse. Narratives are spoken or written utterances describing 
objects or relations between objects or activities with or by objects, such as definitions and 
theorems. They are subjected to endorsement or rejection by being labelled as true or false 
(Sfard, 2008, p. 300).

Jeannotte and Kieran (2017) define MR processes, through a commognitive frame, 
as “processes that derive narratives about objects or relations by exploring the relations 
between objects” (p. 9). They distinguish between processes related to searching for 



 A. Valenta et al.

1 3

similarities and differences, validating, and exemplifying. Searching for similarities and 
differences involves generalizing, classifying, identifying patterns, comparing, and conjec-
turing, all inferring narratives. Conjecturing infers narratives with the epistemic value of 
“likely,” creating a need for validation. For example, identifying a pattern and conjectur-
ing may lead to the claim that “a number must end with 5 or 0 to be divisible by 5,” which 
requires validation. The validating MR processes are justification, proving, and formal 
proving, aiming to change a conjecture’s epistemic value (e.g., from likely to true). Justifi-
cation allows for modifying the epistemic value, but it can be from “likely to more likely” 
and does not need to be mathematically valid. For instance, checking several examples that 
a claim holds would make it more likely (but not certain) that it is true. However, proof 
must be mathematically valid, and the epistemic value must be modified from likely to true 
(Jeannotte & Kieran, 2017).

Sfard (2008) describes constructing, substantiating, and recalling narratives as core rou-
tines of mathematical discourse (p. 225). Constructing is a process resulting in new endors-
able narratives and substantiation as a process that helps participants decide whether to 
endorse previously constructed narratives. MR processes related to the search for similari-
ties and differences infer narratives and are thus a form of construction. Similarly, MR pro-
cesses related to validation are substantiation processes. Besides MR processes, there can 
be other forms of construction and substantiation, as we elaborate in Sections 2.3 and 2.4.

2.2  Mathematical narratives that are subject to MR processes

Sfard (2007) distinguishes between object-level narratives, which are stories about objects, 
such as “1/2 is equivalent to 2/4”, and meta-level mathematical narratives, which are sto-
ries about the discourse itself, including “how mathematics is done” (Sfard, 2007, p. 572), 
such as “In mathematics, we always want to know why a pattern arises.” Jeannotte and 
Kieran (2017) highlight that MR involves deriving narratives about objects or relations (p. 
9), meaning they are object-level narratives. However, while both definitions and theorems 
are examples of object-level narratives, their nature is somewhat different, so we need to 
specify object-level narratives further to identify opportunities for MR.

Hewitt (1999, 2001a, b) classifies mathematics into arbitrary, agreed upon within the 
community, and necessary, which can be derived. Examples of arbitrary mathematics 
include names, definitions, and conventions, while necessary mathematics involves proce-
dures, results of calculations, and theorems. Based on Hewitt, we distinguish between arbi-
trary object-level narratives (AOLs) and necessary object-level narratives (NOL). AOLs 
are substantiated by reasonableness (e.g., Kontorovich & Zazkis, 2017), aiming to ease 
communication or as products of historical development. In contrast, NOLs can be sub-
stantiated by proving, following deductive chains of object-level claims. Therefore, NOLs, 
along with their construction and substantiation, are relevant for investigating opportunities 
for MR. Thus, the first step of our framework is to identify NOLs that are constructed and/
or substantiated in the data, differentiating them from AOLs and meta-level narratives. The 
unit of analysis is thus an NOL and its construction and substantiation.

A. J. Stylianides and Ball (2008) emphasize that, in primary school, the complexity of 
developing and validating a conjecture depends on the number of cases involved—single, 
multiple but finite, or infinite. If a conjecture involves an infinite number of cases, it can be 
challenging for students to find an appropriate representation and a way to validate it. As 
the number of cases in a conjecture plays a significant role in the involved MR processes, 
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we follow A. J. Stylianides and Ball’s (2008) categorization of conjectures and differentiate 
between three types of NOLs:

• single case (e.g., “101 is a prime number”),
• multiple but finitely many cases (those that can be proved by systematic enumeration of 

all cases, e.g., “11 is not possible to write as a sum of two prime numbers”), and
• infinitely many cases/general NOLs (e.g., “square numbers have always an odd number 

of factors”).

Approaches to substantiation of NOLs concerning different numbers of cases are dis-
cussed further in Section 2.4.

2.3  Construction of NOLs

Narratives can be constructed by MR processes related to the search for similarities and 
differences (Jeannotte & Kieran, 2017). For example, by investigating multiples of five, 
one can infer the narrative “The ten first multiples of five end with five or zero” through 
classification or pattern identification. While the distinction between various MR processes 
might not be crucial for classroom analysis, it is essential to note that MR processes involve 
exploring relations between objects.

Alternatively, narratives can be constructed by calculating or solving equations (Sfard, 
2008). For instance, following an equation-solving procedure may lead to the narrative 
“Five is the only solution of the given equation.” Procedures in mathematics are based on 
properties of and relations between objects, and properties and relations can be discussed 
more or less while performing procedures. However, the distinction between discussing 
mathematical objects and detailing actions is crucial in mathematical discourse1 (Sfard, 
2016a, 2016b), and recognizing this distinction is central to analyzing MR, given that MR 
processes focus on properties and relations (Jeannotte & Kieran, 2017). Therefore, consid-
ering the construction of NOLs, we distinguish between construction based on procedures 
and construction based on properties and relations.

2.4  Substantiation of NOLs

No additional substantiation is needed when a new NOL is constructed through deductive 
reasoning or by correctly applying an endorsed procedure (Sfard, 2008, p. 230, 232). For 
example, suppose the definition of prime numbers is used to infer the narrative “There 
are more prime numbers between 1 and 50 than between 51 and 100” or that the narrative 
“12 × 9 = 108” is constructed by correctly applying a known procedure for multiplication. 
Then, endorsement follows from construction, and substantiation thus happens simultane-
ously. However, a separate substantiation is required when constructing a narrative by con-
jecturing or when the NOL is constructed using an unfamiliar procedure. For example, 
if “12 × 9 = 108” is proposed in grade 2, where the procedure is unlikely known, a sepa-
rate substantiation is needed. Therefore, we claim that some narratives are substantiated 

1 Such distinction is related to ritual or explorative routines (see Sfard, 2016a, 2016b). We do not go further 
into these notions here due to space limitations.
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implicitly through their construction, while others are substantiated explicitly by a separate 
validation.

As for construction, we differentiate between substantiation using procedures and 
substantiation using properties and relations, as informed by Sfard (2016a, 2016b). 
Also, Nachlieli and Tabach (2019) point out that substantiation can happen through 
detailing either the steps of a procedure or the underlying reasoning (see also Drageset’s 
(2021) distinction between explaining reasons and explaining actions). For instance, to 
validate the narrative “1.5 plus 2.3 equals 3.8,” an argument using procedures might be 
“First, I took five and three to get eight, then I took one and two and got three; so, I got 
3.8.” Conversely, an argument for the same narrative using properties and relations could 
be “The sum of five tenths and three tenths is eight tenths, and the sum of one and two 
is three. Hence, the sum is three and eight tenths, thus, 3.8.” While these arguments may 
appear similar, the first is about actions while the second is about mathematical objects. 
Again, this distinction is crucial since MR processes are about mathematical objects 
rather than describing actions.

As previously discussed, Jeannotte and Kieran (2017) identify justifying, proving, and 
formal proving as MR processes related to validation, with the distinction that justifica-
tion need not be mathematically valid, while proving must be. A. J. Stylianides and Ball 
(2008) stress that the validity of argumentation modes depends on the number of cases 
involved—single, multiple but finite, or infinite. Reid (2002) distinguishes arguments for 
single-case claims based on the number of steps and premises involved, labelling one-step 
reasoning from one premise as a specialization. “Prime numbers have only two factors, five 
has only two factors, thus, five is a prime number.” is an example of specialization. For 
claims involving finitely many cases, showing a systematic approach to finding all cases 
is considered valid (A. J. Stylianides & Ball, 2008). For general claims, learners often use 
empirical arguments by checking examples, and such arguments are not proof (Sowder & 
Harel, 1998). However, examples can be used generically to uncover the underlying prop-
erties and/or relations causing the conjecture to hold, which is considered valid proof in 
school (e.g., Rø & Arnesen, 2020; Rowland, 1998).

2.5  A theoretically derived framework for NOLs, their construction 
and substantiation

Following the synthesis above, we summarize categories of NOLs, their construction and 
substantiation in Table 1. The first step in applying the framework is identifying NOLs con-
structed and/or substantiated in the data, differentiating them from AOLs and meta-level 
narratives. NOLs can take either of three forms based on the number of cases. Construction 

Table 1  Theoretically derived framework for NOLs, their construction and substantiation

NOL-narrative Construction Substantiation

• single case
• multiple, but finitely many cases
• general (infinitely many cases)

• using procedures
• using properties and relations

• implicit, by construction
• explicit, using procedures
• explicit, using properties and 

relations
  o valid
  o non-valid
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can occur by using procedures or properties and relations. Substantiation can be implicitly 
embedded in construction or explicit. As for construction, explicit substantiation can occur 
using procedures, or properties and relations. The latter relates to proving and can be valid 
or non-valid.

3  Refining the theoretical framework using empirical data

We seek a detailed understanding of a specific phenomenon (e.g., Cohen et  al., 2011, 
pp. 219–223): the phenomena of teaching and learning MR and opportunities for such in 
school mathematics. The framework in Table 1 is refined using data collected from class-
rooms chosen by a generic purposive sampling (Bryman, 2016, pp. 412–413). We chose 
primary school2 classrooms to refine the framework (Section  3.2) and demonstrate its 
applicability (Section 4), acknowledging that data from later grades could have shed light 
on other aspects of MR. Below, we elaborate on the participants and data collection and 
analysis processes.

3.1  Data and participants

This study is situated within a larger project to promote MR in primary education 
(ProPrimEd), wherein instructional materials were developed and tested through an inter-
vention-based study. The data collection reported here was conducted in preparation for 
the intervention, investigating teachers’ current instructional practices and opportunities for 
MR in their classrooms. Data was collected in five classrooms (grades 4–7) in two Nor-
wegian primary schools, of which four are used in this study.3 The local government sug-
gested that the schools and the principals encouraged the teachers to participate, to which 
they agreed. The four male participants had four to 17 years of experience as mathematics 
teachers and reported having no specific competence or experience regarding MR. Hence, 
they represent teachers who might benefit from the instructional materials developed 
through ProPrimEd. Informed consent was collected from the teachers and the students’ 
guardians.

Two researchers observed two weeks of mathematics teaching in each classroom, total-
ing 18 lessons lasting 40 to 90  min. For all lessons, whole-class discussions and group 
work were video-recorded, and the teacher carried a sound recorder. The data material is 
verbatim transcripts of whole-class discussions and teachers’ verbal exchanges with stu-
dents during group work. We only analyzed interactions in which the teacher participated, 
as we considered the teacher to set the tone for the classroom discourse.

Table 2 gives an overview of the four teachers’ (pseudonyms) lessons. The purpose of 
the table is to offer insight into the data material used to refine the framework. We use the 
term exercise tasks for tasks where it appears clear how the students should proceed; other-
wise, we use problem-solving tasks.

2 In Norway, primary school refers to grades 1 to 7 (ages 6 to 13).
3 One teacher worked primarily project-based, which was considered to not reflect what we consider as 
usual teaching. Hence, these data were omitted for this study.
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3.2  Analytical approach

The analysis was carried out through two stages based on the framework in Table 1. Stage 
1, referring to the first column of Table 1, entailed separating the NOLs from other nar-
ratives (i.e., AOLs, meta-level narratives, non-mathematical narratives) by locating 
sequences in the classroom dialogue that revolved around new NOLs. Based on our inter-
pretation, we put the narratives into words, as in this example from Einar’s classroom, 
where the students worked with prime numbers:

26 Einar (...) Is four a prime number? [Students: No.] Why not? 
27 Brian Because you can get the number by two times two. 
28 Einar Yes, it is an even number, and since it is an even number, one can always 

make it with factor two. (…) it is actually so that two is the only even
number that is also a prime number. So, four is not, so from now on, we can 
skip the even numbers; we don't have to look at them. (…)

Table 2  Overview of the four teachers, lessons, and the mathematics content

Grade 4, teacher Hans
1. Relating multiplication to different contexts and 

models: introduction and exercise tasks. One 
problem-solving task on multiplication

2. Exercise tasks on multiplication: relating multi-
plication to different contexts and calculations

3. Station-based teaching: two stations on relating 
multiplication to different models, one on puzzling 
with the 10 × 10 multiplication table

4. Problem-solving task involving multiplication, 
then exercise tasks on multiplication: relating mul-
tiplication to different contexts and calculations

5. Station-based teaching: two stations with exercise 
tasks on multiplication (relating multiplication to 
different contexts); one station with a problem-
solving task on the distributive property

6. Students make their own 10 × 10 multiplication 
table (to be used later as a tool)

Grade 6, teacher Arne
1. Exercise task: “Which decimal number is on my 

mind?”: primarily about practicing using terms 
related to positions and values and choosing ques-
tions strategically

2. Exercise tasks: “Which decimal number is on my 
mind?”, tasks on placing decimal numbers on the 
number line, rounding off

3. Addition and subtraction with decimal numbers: 
discussing procedures and exercise tasks

4. Various tasks — exercise and problem-solving — 
on addition and subtraction of decimal numbers

Grade 6, teacher Einar
1. Introduction to the definition of prime numbers. 

Exercise tasks on applying the definition
2. Work on prime numbers: exercise tasks and 

problem-solving tasks
3. Problem-solving task on strategies in multiplication
4. Station-based teaching: two stations with exercise 

tasks on multiplication and one station with a 
problem-solving task

Grade 7, teacher Per
1. Addition and subtraction with negative numbers – 

introduction and exercise tasks
2. Conventions in calculations: using brackets and 

orders of operations – introduction and exercise 
tasks

3. Work on tasks related to negative numbers and 
conventions, exercise, and problem-solving

4. Short lesson: reviewing tasks from lesson 3

Table 3  NOLs identified in the 
excerpt above Sequence NOL

26–28 4 is not a prime number (single)
28 Even numbers, except for 2, are 

not prime numbers (general)
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We only considered new narratives constructed or substantiated in the classroom (e.g., 
from task solutions) and disregarded known narratives recalled during task solutions. In 
the above excerpt, we identified two such NOLs, as shown in Table 3 (the NOL “2 times 
2 equals 4” is not included in Table 3, as it is considered recalled). After identifying and 
phrasing the NOLs appearing in the classroom dialogues, we distinguished between NOLs 
concerning a single case, multiple cases, and infinitely many cases.

In Stage 2, the utterances concerning each NOL’s construction and substantiation 
were coded. Thus, this stage adhered to the second and third columns of Table 1 and 
was undertaken by identifying whether the construction or substantiation was done by 
referring to a procedure or properties and relations. The coding was initially deduc-
tive, following the categories in Table 1. Further, the coding scheme was expanded by 
open coding. The analysis thus followed an abductive approach (Kennedy & Thornberg, 
2018), as the theoretical framework was complemented by categories found by induc-
tive analysis in cases where the framework fell short of capturing the nuances of the 
data material. For example, there were NOLs suggested by either the teacher or the stu-
dents for which there were no observable construction processes. Some NOLs were pre-
sented in the classroom as a rule or fact. Also, NOLs were constructed by a mixture of 
using procedures and properties and relations. Further, some NOLs were substantiated 
by being unchallenged in the classroom (where students were free to disagree), by a 
short confirmation or through a mixture of procedures and properties. Table 4 provides 
an overview of the codes for construction and substantiation of NOLs identified in the 
data, with examples.

3.3  Refined framework for NOLs, their construction and substantiation

The theoretical framework was refined following the abovementioned process, as shown in 
Table 5. Codes resulting from the inductive analysis are italicized.

Table 6 shows an excerpt of the analysis of lesson 2 in Einar’s class. In addition to cod-
ing the processes of construction and substantiation, we noted whether the substantiation 
processes were valid or not, as well as the argument type. The substantiation identified in 
Einar’s lesson on prime numbers [28] was interpreted as a generic example since Einar 
used the number 4 generically. Below, we provide more in-depth examples of analysis.

Table 5  Refined framework for NOLs, their construction, and substantiation

NOL-narratives Construction Substantiation

• single case
• multiple cases
• general

• unclear
• NOL presented as a rule/fact
• NOL presented as a claim (to be 

examined)
• using procedures
• using a mixture of procedures and 

properties
• using properties and relations

• no protests
• short confirmation
• implicit, by construction
• explicit, using procedures
• explicit, using a mixture of procedures and 

properties
• explicit, using properties
   o valid
   o non-valid
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4  Illustrative episodes

To illustrate the use of the framework and the phenomena it can reveal, we proceeded to 
identify different teaching situations in the eighteen lessons. Following a thematic analysis 
approach (Braun and Clarke, 2006), we identified four categories of teaching situations: 
introducing new objects, introducing new strategies or procedures, working on exercise 
tasks, and working on problem-solving tasks. Examples of in-depth analysis of opportuni-
ties for MR from each category are provided below.

4.1  Introducing new objects

Introducing new mathematical objects, definitions, and representations involves arbitrary 
object-level narratives (AOLs). As discussed before, substantiation of such narratives is 
not related to MR. However, the analysis revealed that MR processes can appear when new 
definitions are introduced.

Lesson 1 from Einar’s classroom illustrates the MR processes that occur while defin-
ing prime numbers. Moreover, the episode shows how the discussion can develop as 
the definition is repeatedly used. Einar approached the definition of prime numbers by 
letting the students search for similarities and differences related to the notion of fac-
tors, as factors were known to the students. In the following excerpt, the class discussed 
factors of ten:

69 Einar (…) You say that we can make ten as one times ten and ten times one, and 
two times five, five times two. Are there other ways? How can we know 
that there are not, that we have not forgotten some? (…)

70 Umut The multiplication table. 
71 Einar Yes, we can check the multiplication table (…), finding ten as five times 

two and one times ten, and that there are no more tens there. Ten is not that
big of a number, and we can think, if I multiply [something] by three, can I 
get it? If it is only whole numbers? No, it does not work. Four, can we 
multiply by four and get ten? One can test numbers up to ten (…). But, as 
you say, it is just one times ten, ten times one, two times five, and five times 
two. What about fifteen?

Table 6  Example of analysis of construction and substantiation of NOLs

Sequence NOL Construction Substantiation

26–28 4 is not a prime number. (single) Unclear Explicit, by properties 
and relations (applying 
definition)

28 Even numbers, except for 2, are 
not prime numbers (general)

By properties and relations 
(generalizing)

Explicit, by properties 
and relations Valid, 
generic example
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After checking factors in several numbers and writing the results on the blackboard, the 
discussion continued:

101 Einar (...) Are there some of these numbers having many different products? And 
others with few? See if there is some pattern on the blackboard. What
happens with different numbers? Talk with people sitting around you.

Einar then introduced prime numbers as those with only two factors that can be written as a prod-
uct in just one way. Moreover, the use of the definition was practised, as in the following excerpt:

152 Einar Is sixteen a prime number? Or not? 
153 Brian No.
154 Einar No, it is not. Because we can write sixteen as sixteen times one, but we can 

also use other factors, such as two, four, or eight, to make sixteen. So, it is
not a prime number.

(…)
169 Einar Nineteen? Ingrid?
170 Ingrid It is a prime number.
171 Einar Yes. Why? 
172 Ingrid Because you can only multiply by one to get it. 
173 Einar Yes, and that is why it is a prime number.
(…)
249 Einar Eleven? [Students in chorus: Yes!] It is a prime number.
250 Einar Thirteen, then? [Students in chorus: Yes] 

While introducing the definition of prime numbers, several NOLs were constructed and 
substantiated using properties and relations. For example, in [69–71], factors of 10 were dis-
cussed, and the narrative “1, 10, 2, and 5 are all the factors of 10” was substantiated by sys-
tematically listing all possible products, and in [101] students were asked to look for patterns. 
After the presentation of the definition, new NOLs were again constructed and substanti-
ated using properties and relations by classifying numbers as prime or not. These NOLs are 
of the same form and about single cases (“x is a prime/not prime”). During [152–154] and 
[169–173], the substantiation was explicit and deductive, as the class referred to the defini-
tion (denoted as a specialization by Reid (2002)). However, later in the dialogue [249–250], 
substantiation was less emphasized: the NOLs were now substantiated by no protests or short 
confirmations. When the same substantiation process has been undertaken several times, it can 
be reasonable not to repeat it during a classroom dialogue.

4.2  Introducing new strategies or procedures

Strategies and procedures are general NOLs, and their construction and substantiation can be 
undertaken by MR. One episode where a new procedure was introduced occurred in Arne’s 
classroom, lesson 3. The general NOL discussed was: “The sum of two decimal numbers is 
a decimal number where each digit is given as the sum of digits on corresponding positions, 
and values for ten and more are exchanged to a higher position.” In the episode, the construc-
tion processes appeared as a mixture of procedures and properties, and the substantiation was 
implicit by construction. The discussion started with an example:
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36 Arne What do you think will happen if we add zero point eight to one point 
twenty-two? When we add eight more tenths, what happens then? 

(...)
40 Arne Yes, we add eight tenths, and when you add eight tenths to two tenths, how 

many tenths do you get, Anniken?
41 Anniken Zero?
42 Arne Yes, we kind of get zero tenths in the end, but why do we get zero tenths? 

What have you done?
43 Anniken Because we transfer it to the ones.
44 Arne Yes! That is right. Once we get ten tenths here, we have to exchange; that is

how the base ten system works, because there is no room for that. The
largest number that can be in tenth place is nine, so once we get ten, we 
have to exchange.

(The dialogue continues similarly, and they find the sum to be 2.02.)
57 Arne Those two principles you are talking about now. That is really the most 

important thing you need to remember (…) as soon as we can exchange, for 
example, tenths to ones, then we should exchange. The other principle is 
that we must be able to distinguish between ones and tenths and hundredths 
and not start mixing them. Otherwise, it will be a complete mess. 

In [36–56], the single case NOL “1.22 + 0.8 equals 2.02” was constructed using a mix-
ture of procedures and properties. The procedures emerged in Arne’s and the students’ talk 
about actions, such as “we add eight tenths” [36], “you get” [40], and “we transfer” [43]. 
However, they also talked about properties of the positioning system, such as in [44], where 
Arne uttered that there is no room for more than nine tenths in the given position. The sub-
stantiation was implicit (and thus of the same type as construction – by a mixture of proce-
dures and properties) as there was no additional discussion on the validity of the narrative 
“1.22 + 0.8 equals 2.02” after reaching the sum.

In [57], the general NOL, which we formulate as “The sum of two decimal numbers is 
a decimal number where each digit is given as the sum of digits on corresponding posi-
tions, and values for ten and more are exchanged to a higher position,” was constructed 
by generalizing from the example “1.22 + 0.8 equals 2.02” (construction using properties 
and relations). The substantiation was implicit by construction, and the example was used 
generically in the substantiation process.

4.3  Work on exercise tasks

In our data, all exercise tasks were about constructing or substantiating single-case NOLs. 
Following our theoretical account, single-case NOLs can be constructed and substantiated 
using properties and relations, thus offering opportunities for MR. Sometimes, the exercise 
tasks were about properties of numbers or operations (e.g., involving processes of classifi-
cations). Other times, they involved practicing procedures.

Examples of tasks on properties were checking if a number is a prime number (Ein-
ar’s classroom), trying to find out “which number is on my mind” (Arne’s classroom), and 
relating multiplication to different representations (Hans’ classroom). The following epi-
sode is from Hans’ classroom and a whole-class discussion about a picture of three tables 
with six people seated around each. The student Nelly suggested that the situation could 
refer to the calculation six times three.
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42 Hans So, six times three is eighteen. But Nelly, can I ask you why you have 
written six here?

43 Nelly Because there are six people at a table.
44 Hans Why did you write three at the end here?
45 Nelly Because there are three tables.
46 Hans Because there are three tables. Mhm. What do we find out, then?
47 Nelly Then I find out – six – six – six, it is sort of three times six.
48 Hans Mhm, great, Nelly.

The construction of the narrative “six times three fits the situation in the picture” was 
coded as unclear since the origin of Nelly’s suggestion was unknown. The discussion above 
concerned substantiation and used properties and relations, explicitly using the definition 
of multiplication previously endorsed by the class.4 Hence, the substantiation can be con-
sidered a specialization: applying a definition to the given case.

Exercise tasks about practicing procedures were treated in various ways in the data – some-
times emphasizing procedures, sometimes properties and relations. In the following, Hans helped 
a student calculate seven times six, emphasizing properties and relations in multiplication:

362 Hans Here, you had six times six, and then you get thirty-six, right? [Student: 
Yes] While here, it is seven times six, that is, six more. Then there is one 
more six than before. Six more, another six. And what will it be?

In contrast, the following episode from Arne’s lesson 4 (grade 6) emphasizes proce-
dures: the student describes actions of taking away and having something left, and there is 
no further discussion.

318 Student I think it will be zero point nine because I calculated. First, we take away 
two, then we have one point six left. Then we take away six, and we have 
one left. Also, I take away one, and then it becomes zero point nine.

319 Arne Yes.

4.4  Work on problem‑solving tasks

We define problem-solving tasks as those involving several steps, where at least some 
appear challenging or new to the students. In our data, all problem-solving tasks were 
about constructing or substantiating NOLs5 (single, multiple case, or general). We provide 
two episodes from work on multiple case NOLs; first, from Einar’s classroom, working on 
the task presented in Fig. 1.

4 The definition can be summarized as follows: a situation with a equal groups, each containing b objects, 
fits the expression a × b, thus, the product gives the total amount of objects. We notice that Nelly starts with 
the expression 6 × 3 and ends with the expression 3 × 6. We choose not to problematize this, as it is irrelevant 
to the current focus.
5 Tasks can also be about other narrative types. For example, the solution of “Compare the three given 
strategies” would result in a meta-level narrative, and the solution of “What is a prime number” would be 
an AOL.
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Fig. 1  A problem-solving task from Einar’s classroom generating a multiple case NOL

Fig. 2  A problem-solving task from Per’s classroom, generating a multiple case NOL

The following excerpt comes from the final discussion in a student group:

162 Aksel Sixteen large and nine small.
163 Ingrid Why is that?
164 Aksel Then it will be ninety-eight, and it is impossible with any higher. If you take 

minus two on that, you have ninety-six plus five; then you have one 
hundred-and-one.

165 Einar Yes, correct. (…) the most you can get is sixteen large buttons, which cost a 
total of sixteen times five, [that is] eighty kroner. Okay? And then, if you 
have sixteen large ones, you must have nine small ones since it must be 
twenty-five in total; sixteen plus nine is twenty-five. And nine small buttons 
cost nine times two. Eighteen kroner. And eighty plus eighteen, that is
ninety-eight kroner in total. Then you can afford it. But if you take another 
large button, so there are seventeen large and eight small, you cannot afford 
it because it costs three more kroner, as you say [Aksel]. It will be a 
hundred-and-one kroner. So, as Aksel says here, there will be sixteen large
buttons and nine small ones.

The solution of the task, “Kine has to buy 16 large and nine small buttons”, was coded 
as multiple case NOL since it can be proved by systematically comparing all possible com-
binations to the given premises (total cost maximum NOK 100, and as many large buttons 
as possible). Earlier, Aksel compared different combinations. Hence, the construction was 
coded as a mixture of procedures (calculating) and properties (comparing to other solu-
tions and premises). The excerpt above demonstrates substantiation; it is explicit and valid 
by systematically listing all solutions.

Another episode involving work on multiple case NOLs appeared in Per’s grade 7 class-
room. The task is shown in Fig. 2.
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The following episode took place after group work:

25 Per Some of you have solved the task like this. – Adds parentheses so that the 
expression on the board is (7 + 7 – 7 + 7) x 7 – 7. What is the answer?

(A discussion on the priority of operations and how to calculate the expression follows.)
48 Per (Writes “=91” on the blackboard) Great.
49 Per But then (…) the next task, put parentheses to get the least number possible. 

(…) Does anyone have any suggestions? (No response)
50 Per Something you can think of? No? Okay, look here. What if I put the 

parentheses here? – Adds parentheses so that the expression becomes 7 + 7 
– (7 + 7) x 7 –7. What do I have, then? What do I need to do first?

(A discussion on the priority of operations and how to calculate the expression follows.)

This task is about constructing and substantiating two multiple case NOLs of the form 
“This position of parenthesis gives largest/least result,” which systematic listing can prove. 
The construction of both NOLs was unclear. One emerged from students’ work, the teacher 
suggested the other, and we do not know which processes were involved in either. Unlike in 
the previous episode from Einar’s classroom, the substantiation was coded as no protests, 
as no one claimed to have found a position of parenthesis giving the biggest/least possible 
answer, and no one disputed that the suggested NOLs were true.

5  Discussion

In the introduction, we hypothesized that using MR-relevant claims and their development 
as the unit of analysis holds merit for investigating opportunities for MR in school math-
ematics. In addition to developing the framework, classroom data was utilized above to 
illustrate how the framework can be used in analysis and what the analysis of four typical 
teaching situations can reveal. Here, we will discuss the theoretical and methodological 
contribution of our work and the practical value of the framework.

5.1  Theoretical and methodological contribution

We argue that the proposed framework for investigating opportunities for MR in school 
mathematics contributes theoretically and methodologically in three ways.

Firstly, identifying NOLs and their construction and substantiation captures opportuni-
ties for MR that the frameworks utilized in previous studies would omit, thus applying to a 
greater range of teaching situations. For example, the episode where students work with the 
task about 7 s and parentheses (Section 4.4) would not be captured by searching for MR 
processes only. Also, opportunities for MR in exercise tasks (4.3) would not be captured if 
one analyzed just particular types of tasks.

Secondly, the framework proposes a new categorization of processes of construction and 
substantiation. Weingarden and Buchbinder (2023) suggested distinguishing between school-
based and MR processes. However, MR can be involved while performing “school-based” pro-
cesses, as seen in work on exercise tasks (Section 4.3). Our distinction between referring to pro-
cedures and referring to properties and relations resembles that of Weingarden and Buchbinder 
(2023). Still, our framework emphasizes the main difference between MR and other possible 
processes, drawing on the commognitive definition of MR (Jeannotte & Kieran, 2017) and the  
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commognitive framing more generally (Nachlieli & Tabach, 2019; Sfard, 2016a, 2016b). More-
over, our analysis shows that substantiation can happen as a mixture of referring to procedures  
and properties and relations. In this way, we offer supporting examples of the phenomenon 
Christiansen et al. (2023) propose as hybrids between ritual and explorative routines.

Thirdly, our analysis shows that taking NOLs as the unit of analysis holds merit as an 
analytic approach. We suggest that such a “narrative approach” can also be used to investi-
gate other aspects of mathematics teaching. For example, identifying meta-level narratives 
and investigating their construction and substantiation can provide insight into processes of 
establishing new meta-rules in classrooms.

5.2  Practical contribution

This study was initiated by the need for a framework to capture opportunities for MR in 
school mathematics. We propose that the framework and its application offer insights that 
can benefit practitioners (teachers, pre-service teachers) and researchers. As specified in 
Section  3.1, we have analyzed classroom interactions in which the teacher participated, 
thus illustrating how teachers may create opportunities for MR. Yet, the framework and the 
related analytical approach do not distinguish between the actors involved, meaning that 
the framework applies to both teacher-student and student–student interactions.

The framework can make (pre-service) teachers conscious of the difference between 
arbitrary and necessary mathematics (Hewitt, 1999) and that MR is possible in all situa-
tions where some necessary claim about mathematical objects (NOL) is developed. The 
framework also provides an “easy way” to distinguish between MR processes, which are 
about properties of and relations between objects, and other kinds of processes, such as 
detailing the steps of a procedure in a task solution. Hence, the framework can give a better 
understanding of what MR is about and what it can entail in practice.

Analyzing classroom data using the framework can provide insights into opportuni-
ties for and occurrences of MR in school mathematics and foster discussions on how to 
enhance it in different teaching situations. While problem-solving tasks inherently offer 
MR opportunities, these opportunities can also be missed, as shown in the second episode 
in 4.4. On the other hand, exercise tasks can give opportunities for MR when properties, 
relations, and questions like “Why is this true?” are emphasized, as highlighted in Sec-
tion 4.3. Although reasoning in exercise tasks may be simple and repetitive, it can facili-
tate a habit of justifying claims, which is essential in mathematics (Gardiner, 2004; Sfard, 
2008). However, there can be many repetitions, and even though MR is possible in some 
situations, it does not always make sense, as discussed in the episode on prime numbers in 
Section 4.1. Furthermore, although definitions and conventions are arbitrary and not some-
thing to prove, the episode in Section 4.1 illustrates that MR can be fostered before and 
after introducing definitions. Still, mathematical procedures are necessary mathematical 
knowledge (Hewitt, 1999) and can be deduced, so, unsurprisingly, MR can be promoted 
while introducing procedures. Even though MR revolves around properties and relations 
while procedures focus on actions, the episode in Section 4.2 shows that it is possible to 
promote properties and relations when introducing and practicing procedures.

In addition to its application in working with (pre-service) teachers, the framework can 
be valuable for research. It can be used to characterize and compare different classrooms, 
revealing opportunities for MR and their utilization, and to identify opportunities for MR 
that are taken or missed. Different phenomena can be revealed, such as one we observed 
in our data: that students in primary schools have minimal experience with reasoning on 
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general mathematical claims. In the 18 lessons analyzed, only one task in grade 7 involved 
validating general NOLs. Proving general claims is considered challenging (G. J. Stylia-
nides et al., 2017), and students’ limited experience with general claims can be a part of the 
explanation. Additionally, the framework can be used to characterize and compare work 
on different mathematical topics, investigating whether and how the mathematical content 
influences opportunities for MR. For instance, the distinction between using procedures 
and using properties can point to why promoting MR in work on procedures can be chal-
lenging, a phenomenon discussed by Chazan and Lueke (2010): MR is about properties 
and relations between objects while introducing procedures naturally entails discussing 
doings. Furthermore, the framework can identify areas to strengthen MR in school math-
ematics and compare changes before and after interventions. This last objective was our 
primary motivation for developing the framework, and we aim to demonstrate its efficacy 
in future studies.

While the framework’s applicability is discussed above, there is potential for further 
development. For example, the framework stems from analyzing teaching practices in four 
Norwegian primary school classrooms. Exploring different contexts may reveal additional 
framework categories. Furthermore, including meta-level learning about MR, as empha-
sized by Weingarden and Buchbinder (2023), could introduce a new dimension to the anal-
ysis. Hence, the proposed analytic framework is an initial step toward more insight into 
opportunities for MR in school mathematics.
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