
[einstein]
.

Triangulating Precision: A Compar-
ative Study of Manual and Auto-
mated Annotations with YOLO,Azure
Custom Vision and Grounded SAM on
a Customized Data set for creation
of a product for safety of recycling
industries

A Comparative Study of Manual and Automated Annotations with
YOLO Model Training ,Azure Custom Vision,GroundingDINO and
GroundedSAM,on a Customized battery Data set for creation of an end-
end product for safety of recycling industries

Rida Aaliya

SUPERVISORS
Morten Goodwin,Per-Arne Andersen

University of Agder, 2024
Faculty of Engineering and Science
Department of Engineering and Sciences

Obligatorisk gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslinjer for
bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene på deres ansvar og hvilke
konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar.

1. Vi erklærer herved at vår besvarelse er vårt eget arbeid, og at vi ikke har
brukt andre kilder eller har mottatt annen hjelp enn det som er nevnt i
besvarelsen.

Ja

2. Vi erklærer videre at denne besvarelsen:

• Ikke har vært brukt til annen eksamen ved annen avdeling/univer-
sitet/høgskole innenlands eller utenlands.

• Ikke refererer til andres arbeid uten at det er oppgitt.

• Ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• Har alle referansene oppgitt i litteraturlisten.

• Ikke er en kopi, duplikat eller avskrift av andres arbeid eller
besvarelse.

Ja

3. Vi er kjent med at brudd på ovennevnte er å betrakte som fusk og kan med-
føre annullering av eksamen og utestengelse fra universiteter og høgskoler i
Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8 og Forskrift om ek-
samen §§ 31.

Ja

4. Vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert. Ja
5. Vi er kjent med at Universitetet i Agder vil behandle alle saker hvor det

forligger mistanke om fusk etter høgskolens retningslinjer for behandling av
saker om fusk.

Ja

6. Vi har satt oss inn i regler og retningslinjer i bruk av kilder og referanser
på biblioteket sine nettsider.

Ja

7. Vi har i flertall blitt enige om at innsatsen innad i gruppen er merkbart
forskjellig og ønsker dermed å vurderes individuelt. Ordinært vurderes alle
deltakere i prosjektet samlet.

Nei

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant
annet enerett til å gjøre verket tilgjengelig for allmennheten (Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli publisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre oppgaven tilgjengelig
for elektronisk publisering:

Ja

Er oppgaven båndlagt (konfidensiell)? Nei
Er oppgaven unntatt offentlighet? Nei
Er utviklet programvare konfidensiell? Ja

Acknowledgements

This Master’s thesis was conducted at the University of Agder (UiA) in Grimstad, Norway. I,
Rida Aaliya, from the Department of Information and Communications Technology (ICT),
extend my gratitude to my professors Morten Goodwin and Per-Arne Andersen for their
unwavering guidance and patience throughout this project. Special thanks to Mattias Sohl,
the CEO of StellAI, for providing the dataset and necessary licenses. I express my apprecia-
tion to my colleagues at StellAI, Trygve Solberg and Kristoffer Sand. Additionally, heartfelt
thanks to my husband,Vaseem Javad and my two kids for their support during late-night
and weekend work sessions.I extend my heartfelt gratitude to my father and my late mother,
whose unwavering motivation every day fueled my journey to complete my Master’s degree.
Their support and encouragement have been invaluable throughout this academic pursuit.

I express my gratitude to the various technologies and their knowledge documentation that
played a crucial role in the completion of this project. A special thanks to OpenAI’s Chat-
GPT, which I utilized for paraphrasing the entire thesis. The availability of this tool signif-
icantly contributed to the quality of my writing. I want to acknowledge that I did not copy
any content directly from ChatGPT; instead, I utilized it solely for paraphrasing purposes.

ii

Abstract

This thesis centers on the imperative task of detecting and segmenting batteries within the
recycling industry, addressing the need for an efficient and accurate solution. The primary
goal is to conduct a comprehensive comparison of state-of-the-art methods to discern the
most suitable approach for the specified task. The comparative analysis extends to both
manual and auto annotations, where manual annotations employ Roboflow, feeding data
into Ultralytics’ YOLOv5 and YOLOv8 models, as well as Azure Custom AI. Auto annota-
tions leverage Grounded SAM and GroundingDINO, with Grounded SAM data integrated
into YOLOv8 and YOLOv5. Remarkably, YOLOv8, combined with manual annotations
for the custom battery dataset, demonstrates significant success. The thesis concludes by
selecting the most effective method and enhancing a health dashboard based on the chosen
model, providing a comprehensive and practical solution for the recycling industry’s battery
detection and segmentation challenges.

iii

Contents

Acknowledgements ii

Abstract iii

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Thesis Goal . 2
1.4 Contributions . 2
1.5 Hypothesis . 3
1.6 Thesis Outline . 3

2 Background 5
2.1 Deep Learning . 5

2.1.1 Activation Function . 6
2.1.2 Bias . 8
2.1.3 Weights . 9
2.1.4 Loss Functions . 9
2.1.5 Propagation in Neural networks . 10

2.2 Confidence Score: . 10
2.3 Algorithms . 11

2.3.1 Supervised Learning . 11
2.3.2 unsupervised Learning . 12

2.4 YOLO Architecture . 12
2.4.1 Precision . 12
2.4.2 Recall . 12
2.4.3 Average Precision . 12
2.4.4 mAP-Mean Average Precision . 13
2.4.5 epochs and Batches . 14
2.4.6 IoU . 14
2.4.7 Bounding boxes: . 17
2.4.8 Sigmoid weighted linear Unit (SiLu) 21
2.4.9 YOLOV5 Architecture . 21
2.4.10 YOLOV8 Architecture . 23

2.5 Roboflow . 27
2.6 Azure Custom AI . 29
2.7 Grounded SAM . 29
2.8 GroundingDino . 30
2.9 Streamlit: . 30

iv

2.10 LangChain and OpenAI API . 30

3 Methods 31
3.1 Problem statement - Dataset and proposed plan of action 31
3.2 Problem statement - Detection and proposed plan of action 31

3.2.1 Experiment1 . 32
3.2.2 Experiment2 . 32

3.3 Problem statement -Segmentation and proposed plan of action 32
3.3.1 Experiment 3 . 32
3.3.2 Experiment 4 . 33

3.4 Problem statement - Health Dashboard and proposed plan of action 34

4 Related Literature 35
4.1 Azure Custom AI . 35
4.2 YOLO-You Only Look Once . 38
4.3 GroundingDIno . 42
4.4 GroundedSAM . 45

5 Performance Experiments and Results 47
5.1 Creation of Custom data set: . 47

5.1.1 Objective . 47
5.1.2 Steps Taken . 47
5.1.3 Inferences . 48

5.2 Comparison of image Detection Model using YOLOV5,YOLOV8 and Azure
Custom AI . 49
5.2.1 Objective: . 49
5.2.2 Steps Taken . 49
5.2.3 Inference: . 56

5.3 GroundingDINO . 65
5.3.1 Objective . 65
5.3.2 Steps Taken . 65
5.3.3 Inference . 66

5.4 Image Segmentation using Roboflow,YOLO Models and Grounded SAM . . 69
5.4.1 Objective . 69
5.4.2 Steps Taken . 69
5.4.3 Inference . 69

5.5 Health Dashboard and Chat bot . 74
5.5.1 Objective . 74
5.5.2 Steps Taken . 74
5.5.3 Inference . 74

6 Discussions 77
6.1 Methodology and Approaches: . 77

6.1.1 Effectiveness of manual annotations using Roboflow 77
6.1.2 Impact of Auto annotations . 77
6.1.3 Comparison of Results . 79

6.2 challenges . 79
6.3 Dataset Considerations . 80
6.4 Future Directions and Improvements: 80
6.5 Integrations with Health Dashboard . 81
6.6 Discussion on Contributions . 82
6.7 Discussion on Hypothesis . 82

7 Conclusions 83

A Abbreviation 84

Bibliography 85

List of Figures

2.1 Simple single layer Neural network . 6
2.2 Binary Step function . 7
2.3 Linear Activity Function . 7
2.4 Sigmoid function . 8
2.5 ReLu Function . 8
2.6 Leaky ReLu . 9
2.7 Loss Function . 9
2.8 Propagation-Forward and Backward . 10
2.9 Confusion Matrix . 11
2.10 Average Precision . 13
2.11 Numpy Calculation of Average precision from Scikit 13
2.12 Ground Truth vs Predicted image bounding box 15
2.13 Intersection Area . 15
2.14 IoU formula . 16
2.15 YOLO Bounding box calculation . 17
2.16 Pascalvoc . 18
2.17 Grid Box augmented from [35] . 19
2.18 Convolution with 3x3 matrix Kernel . 20
2.19 Striding . 20
2.20 2x2 matrix Max pooling . 21
2.21 YOLO Architecture from Ultralytics Docs - https://docs.ultralytics.com/yolov5/tutorials/architecturedescription/?h =

yolov51−model − structure . 22
2.22 BiFPN . 22
2.23 Binary Cross Entropy . 23
2.24 c2f and Bottleneck . 24
2.25 SPPF Yolov8 emulated by [36] . 25
2.26 Loss function in Yolov8 . 26
2.27 Roboflow . 27
2.28 Roboflow Upload . 27
2.29 Roboflow Annotation . 28
2.30 GroundingDino emulated from [U] . 30

3.1 Object Detection Module . 32
3.2 Segmentation Module . 33
3.3 Health dashboard . 34

4.1 Timeline . 36
4.2 CNN . 37
4.3 AlexNet . 38
4.4 Yolo Architecture- Timeline emulated from [19] 39
4.5 DETR . 42
4.6 Timeline -Grounded SAM and GroundingDIno 42
4.7 Grounding DiNO-Part I . 44
4.8 GroundingDino-PartII . 44

vii

4.9 GroundingDino-III . 45
4.10 Grounded SAM -General atchitecture . 46

5.1 Trained generic dataset with generic image Predictions-1 47
5.2 Trained generic dataset with generic image Predictions-2 48
5.3 Recycling plant images with trained model 48
5.4 Recycling plant images with trained model of custom dataset 48
5.5 Experiment Approach . 50
5.6 YOLOV5 vsYOLOV8 Box Loss . 51
5.7 YOLOV5 vsYOLOV8 object Loss . 52
5.8 YOLOV5 vsYOLOV8 class Loss . 53
5.9 Confidence Score Yolov5 vs Yolov8 . 54
5.10 Overall Metric Performance in YoloV5 vs YoloV8l 55
5.11 Azure Custom AI Project creation . 56
5.12 Azure Custom AI Predictionresult1 . 56
5.13 Azure Custom AI Predictionresult2 . 57
5.14 Azure Custom AI API . 57
5.15 Azure Custom AI Dashboard . 58
5.16 Validation of predicted Object Detection in YoloV5 and YOLOv8 60
5.17 Validation of predicted Object Detection in YoloV5 and YOLOv8 61
5.18 Bird’s eye view validation of images in YoloV5 and YOLOv8 62
5.19 Bird’s eye view validation of images in YoloV5 and YOLOv8 63
5.20 Precision and Recall Differences in Yolov5 and Yolov8 across 100 Epochs . . 64
5.21 GroundingDINO-Prediction1 . 67
5.22 GroundingDINO-Prediction 2 . 67
5.23 Grounding DINO-Prediction 3 . 68
5.24 Annotated Images from Roboflow . 69
5.25 Instance Segmentation-Yolov8 Manually annotated images 70
5.26 Instance Segmentation-Yolov8 using GroundedSAM 70
5.27 Instance Segmentation-Yolov5 Using Manually annotated images 70
5.28 Instance Segmentation -Yolov5 using Grounded SAM 70
5.29 Instance Segmentation validation data of Yolov5,Yolov8 and GroundedSAM 73
5.30 Health Dashboard . 75
5.31 chatbot with langchain . 76

6.1 Roboflow workflow . 78
6.2 RepViT-SAM . 81

viii

.

List of Tables

2.1 Roboflow Export model . 29

4.1 Common Network Architecture and its Applications 36

5.1 Comparison of metrics of YoloV5detection model vs YOLOV8 detection mod-
elvs Azure Custom AI . 58

5.2 Segmentation-Comparison . 72

x

.

Chapter 1

Introduction

In this section, the backdrop of recycling industries is explored, emphasizing the necessity
of implementing deep learning within this sector. The discussion then progresses to delve
into the motivations, goals, contributions, and hypotheses that underpin the subsequent
exploration.

1.1 Introduction

In Norway’s recycling sector, a significant number of fire incidents occur annually, particu-
larly within the period of January 2016 to May 2019, with 141 reported cases according to
BRIS [1]. It is noteworthy that many minor fire incidents go unreported. The primary cause
of these accidents is the incorrect sorting of batteries in recycling plants. An interview with
a plant employee reveals that challenges primarily arise during the sorting of constructional
waste materials, where smaller batteries such as AA, AAA, Quad A, and coin batteries be-
come concealed within the waste, leading to potential hazards ranging from minor to severe.

StellAI, a startup, is employing deep learning and computer vision to segregate batteries
from waste, aiming to mitigate fire risks. The primary goal of this project is to deliver a
Proof of Concept (PoC) that supports recycling industries which explains as how this prod-
uct made in PoC aims to enhance the sorting of batteries by implementing features that
utilize the most suitable model tailored to the specific requirements of this startup. This
involves the development and optimization of a customized dataset to ensure the effective
functioning of the model within the context of the recycling industry’s needs.
The project’s scientific objective is to apply diverse models and various deep learning tech-
niques to a dataset of nearly 300 custom images exclusively obtained from a recycling plant.
The aim is to assess precision, develop a proof of concept with a model yielding a higher mean
average precision value, and enhance the capability to detect smaller objects like batteries,
especially from a ’bird’s eye view.’ Additionally, the project seeks to establish a dashboard
for presenting statistical analyses, which will be displayed on monitors for employees. This
dashboard aims to help employees understand patterns or trends in battery waste. Further-
more, the project involves utilizing LLM (presumably a type of machine learning model) to
query custom data for gaining additional insights.
In this initiative, a diverse array of models and techniques is employed to identify a model
that achieves a comprehensive mean average precision (mAP). Initially, the focus is on train-
ing models for object detection, utilizing various YOLO (You Only Look Once) models (both
YOLOV5 and as well as YOLOV8). The training data is sourced from Roboflow, and the
images undergo manual annotation to enhance the accuracy of the models. In the subsequent
phase, the YOLO model undergoes training using automatically annotated images through
the utilization of Grounding DINO. This approach involves leveraging Grounding DINO for
the annotation process to enhance the efficiency of the model training along with instance

1

segmentation to train a model. Grounded SAM is utilized for this purpose, enhancing the
training process. Subsequently, Azure Custom Vision is employed for detection tasks, pro-
viding a comprehensive framework for model development and evaluation.
Following the completion of all the experiments, a comprehensive comparison of the models
is conducted. This assessment is based on several factors, including Mean Average Precision
(mAP), Confusion Matrix values, and the time required for training each model. These
metrics provide a holistic view of the models’ performance, aiding in the identification of the
most effective and efficient solution for sorting batteries in the recycling industry.

1.2 Motivation

Engaging in StellAI and gaining insights into the potential hazards posed by batteries in
the recycling industry has served as a significant source of motivation. The prospect of
mitigating accidents through the development of this product serves as a compelling drive
for my efforts in this endeavor.

1.3 Thesis Goal

Custom Dataset

To establish a specialized dataset for batteries in a recycling industry, the following steps
will be undertaken:

1. Utilize DRONE camera images for the purpose of object detection.

2. Employ high-resolution camera images to facilitate instance segmentation tasks.

Image Detection

• Manually annotate all custom images using the state-of-the-art tool Roboflow. Sub-
sequently, the dataset is sent through the API to the Ultralytics portal for model
training, conducting 100 epochs, and comparing the performance between YOLOv5
and YOLOv8.

• Train the model with the same dataset using Azure Custom AI and then compare its
mean Average Precision (mAP) efficiency with that of YOLO.

• Test the dataset using GroundingDINO , a zero shot auto detector and observe the
patterns in the results.

Instance Segmentation

• The dataset was sent to YOLOV5 and YOLOV8 for instance segmentation, and both
models were trained for 50 epochs.

• Auto-annotated Grounded SAM results were used to train the YOLO model for 50
epochs, and the results were compared with a manually annotated model.

1.4 Contributions

The thesis makes several significant contributions to the field of object detection and seg-
mentation, particularly in the context of the recycling industry. The key contributions can
be summarized as follows:

1. Creation of a Custom Dataset:

2

• A curated dataset comprising 300 images has been meticulously crafted to address
the unique challenges posed by the recycling industry.

• The dataset, including diverse scenarios and environments, has been made avail-
able on GitHub, serving as a valuable resource for further research and development
in the domain.

2. Development of a Proof-of-Concept (PoC) Product:

• The thesis introduces a practical and innovative PoC product tailored for the
recycling industry.

• This product leverages advanced deep learning techniques for the detection and
segmentation of batteries in recycling processes, contributing to enhanced safety
and efficiency.

3. Comparative Analysis of Annotation Techniques:

• A comprehensive comparative analysis has been conducted, evaluating the efficacy
of state-of-the-art manual annotation methods against cutting-edge automated
annotation technologies.

• The study includes a detailed examination of results obtained from GroundedSAM
and GroundingDINO, shedding light on the strengths and limitations of these
annotation approaches.

These contributions collectively advance our understanding of object detection and segmen-
tation in recycling environments. The dataset and PoC product provide tangible resources
for researchers and practitioners, while the comparative analysis offers insights into the
evolving landscape of annotation methodologies.

1.5 Hypothesis

Null Hypothesis H0

"The accuracy and efficiency of battery detection and segmentation of custom dataset us-
ing advanced automated annotation techniques, specifically Grounded SAM and Grounding
DINO, are significantly superior compared to traditional manual annotation methods."

Alternative Hypothesis H1

"The accuracy and efficiency of battery detection and segmentation of custom dataset using
traditional manual annotation methods like Roboflow , are significantly superior compared
to specifically Grounded SAM and Grounding DINO."

1.6 Thesis Outline

The thesis consists of the following topics in details

I Background - This topic explains about the following topics in detail which is applied as
part of scientific experiment: A. Deep Learning - Overview, Activation Functions and Bias
in Deep Learning are discussed. B. Algorithms in Supervised and Unsupervised Learning 1.
Classification 2. Regression 3. Recommendations 4. Clustering 5. Generative Adversarial
Networks (GANs) 6. Auto encoders C. YOLO Architectures where Evolution of YOLO Mod-
els and comparison of YOLOv5 vs. YOLOv8 architecture are covered D. Roboflow - where
a role of Roboflow in Data Annotation and steps of Data Prepossessing are discussed. E.

3

Azure Custom AI - An Overview and Training Models with Custom Data F. GroundedSAM
- An Introduction and Application Image Segmentation G. GroundingDINO -An Overview
and about Object Detection with Text Prompts H. Streamlit and Langchain - A Frontend
Development tool with Chatbot Integration is discussed
II. Methods
An architecture overview and problem statements with proposed action of plans like Dataset
Creation, Annotation Strategies,Model Training Approaches and Evaluation Metrics are
discussed in this chapter
III. Related Literature
Related scientific methods and about applications are discussed
IV. Experiment and Results
Experimentation of all plans proposed and results are discussed in this chapter
V. Conclusions and Discussions This chapter talks about Hypothesis review, Methodol-
ogy and approaches,Challenges,Data set Considerations,Future directions and improvements

4

Chapter 2

Background

In this section, we will delve into the elements of deep learning, convolution networks, the
YOLO architecture, GroundedSAM, GroundingDINO, and Roboflow models, as these are
the fundamental components utilized in this project.

2.1 Deep Learning

Deep learning, a subset of machine learning, possesses the capability to process instructions
akin to the human brain.For instance, when a human views an image of a car, regardless of
the specific model, the ability to comprehend remains intact. In this process, neurons receive
visual information from the eyes and the brain engages in processing. Similarly, deep learning
emulates the human brain through artificial neurons.Deep learning employs representational
learning, a process where feeding raw input into a system enables automatic generation of
outputs for image detection and image segmentation[22] Deep learning employs neurons to
simulate a system for generating output.
Deep learning comprises of multiple neuron network where several calculations happens on
layers including few hidden layers, and after the processing, the output is displayed, pre-
dicting a value.To comprehend the processes occurring between the layers, deep learning
performs intricate calculations based on principles of linear algebra, Jacobian vectors, and
Jacobian chain rules.In addition to extensive calculations, deep learning involves forward
and backward propagation, essential mechanisms for adjusting and optimizing the network
during the learning process.

Let’s examine a simple example of how a convolutional neural network works.
In figure 2.1, x1,x2,x3 are inputs,w1,w2 and w3 are weights and N is a neuron network and
sigma is an activation function and b is called as bias and Let us see each component and
its functionalities

5

Figure 2.1: Simple single layer Neural network

2.1.1 Activation Function

In neural networks, when weights and biases are initialized with randomized values, there
is a risk of the output ranging from negative infinity to positive infinity. If values become
extreme, accurate predictions become challenging. Therefore, to ensure the system operates
within a reasonable range of values, an activation function is employed. There are various
activation functions available[32], and they can be categorized into different types. Some of
these include:

Binary Step function:

Binary step function is the simplest activation methods used for classification problems where
Os and 1s are the output.[32] as shown in fig 2.2

Linear function:

This is yet another simple linear activation function which uses f (x) = x +3 as shown in fig
2.3

Sigmoid function:

This is one of the non linear functions where output values fluctuates between 0 and 1 and
mostly used in neural network as shown in fig 2.4

Relu Function:

Relu stands for rectified linear unit and also this model is popular in neural network because
not all neurons are activated at a same time.there are many improvized versions of Relu such

6

Figure 2.2: Binary Step function

Figure 2.3: Linear Activity Function

as leaky Relu where unlike ReLu all negative values equating to zero like will be slightly
lineated. as shown in fig 2.5 and fig 2.6 for Leaky ReLu

Softmax Function:

This is a combination of multiple Sigmoid functions which makes model easy to work for
multi class classifications problems also.

7

Figure 2.4: Sigmoid function

Figure 2.5: ReLu Function

2.1.2 Bias

Bias is a constant value that is introduced before providing information to a neuron, specif-
ically as the product of the input and weights. In analogy, bias can be likened to a constant

8

Figure 2.6: Leaky ReLu

Figure 2.7: Loss Function

term added in a linear function. Bias is a scalar value and generally denoted by b orbl

The primary rationale behind adding bias to the system is to ensure that even if the input
value is zero, a neuron can still be activated through the addition of a constant value. This
helps introduce flexibility and allows neurons to respond to different input conditions.

2.1.3 Weights

Weights play a crucial role in determining the output of a neuron. The product of weights
and raw inputs, combined with the activation function, significantly influences the prediction
of outputs. Various methods exist for determining how weights are assigned and adjusted in
a neural network. One type of weights in a neural network is Neural Network with Random
Weights (NNRW),[17] where the weights are randomly adjusted at each layer during training
in an unsupervised manner. On the contrary, there is the Backward Propagation (BP)
technique[17], where weights are selected based on the outputs and loss functions.Backward
Propagation (BP) is known for being memory-intensive and requiring intensive calculations
compared to the Neural Network with Random Weights (NNRW) approach.

2.1.4 Loss Functions

Loss functions play a vital role in neural networks by aiding in the retraining of a model to
approach the desired output. These functions calculate the difference between the predicted
output and the original output, providing a measure of the disparity. In the Backpropagation
model, the weights are subsequently adjusted through Jacobian Differential calculations
based on this difference. Various types of calculations are employed in neural networks, with
Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) being commonly used
methods. The formula is given in fig 2.7

9

Figure 2.8: Propagation-Forward and Backward

2.1.5 Propagation in Neural networks

Backward propagation is a method in neural networks where a model is trained based on
the loss function. It assigns weights progressively to an input layer through multiple hidden
layers to minimize the error. Subsequently, using the updated weight values assigned by the
backward propagation model, Forward propagation is performed again to retrain with new
values. The process is recursive, involving the calculation of loss values and taking mea-
sures accordingly. This iterative process continues until the loss value reaches an acceptable
threshold.[23] as shown in fig 2.8

2.2 Confidence Score:

Similar to humans, machines incorporate a level of confidence in predicting outputs. For
instance, when detecting batteries in a recycling industry, if the images of batteries are
small, humans might misinterpret objects as batteries or vice versa. There are instances
when humans assign a probability to objects, considering them as potential batteries. Sim-
ilarly, machines predict objects along with a confidence percentage. For example, if Image
detection indicates a 90% confidence level, the machine is highly certain that the object is
a battery. Conversely, if the confidence percentage falls below 30%, the machine may con-
sider the object less likely to be a battery. Indeed, training a model through feedback is
invaluable in refining machine learning systems. Humans can consistently provide data and
monitor the confidence percentage exhibited by the machine. This iterative process allows
for ongoing improvement over time, enabling the machine to enhance its accuracy and re-
liability in predictions. Certainly, when dealing with a large number of images, manually
checking all outputs becomes impractical. To address this, a systematic approach is devel-
oped where the machine is trained with a subset of the total images, say 70%, while 20% is
reserved for testing the model’s performance, and the remaining 10% is allocated for vali-
dation purposes. This division allows for effective training, testing, and validation, ensuring

10

Figure 2.9: Confusion Matrix

the model’s robustness and generalization to unseen data. In this process, it is crucial for
machines to communicate with humans during testing to report how many predictions align
with the actual objects, referred to as True Positives. This information is vital for assessing
the model’s accuracy and effectiveness in recognizing the intended objects .As illustrated
in the figure 2.9, the confusion matrix comprises four values: True Positive, True Negative,
False Positive, and False Negative. These metrics provide a comprehensive assessment of
the model’s performance in binary classification tasks.

2.3 Algorithms

In Machine learning,there are various types of mechanisms as how machine learns and pre-
dicts outputs.Most important types being Supervised Learning,unsupervised learning,semi-
supervised learning,Reinforcement learning

2.3.1 Supervised Learning

Supervised learning can be likened to the process of teaching a child. Similar to showing a
child diagrams of cars, trucks, and planes and subsequently testing their knowledge by asking
questions about cars on roads, supervised learning involves training a model with predefined
labels using training data. The model is then tested with various images, and its predictions
are compared with the expected outputs for evaluation and refinement.Supervised learning
is broadly divided into two primary categories: Classification and Regression.Classification
involves scenarios where the expected output is discrete, such as determining whether an
email is spam or not. On the other hand, regression is applied in time series analysis when
the time series is continuous. For instance, it is commonly used in predicting stock prices,
which exhibit continuous changes over a period of time.One of the best examples of regression
is YOLO model which will be explained further in section..

11

2.3.2 unsupervised Learning

In general, supervised learning is effective when the expected output is well-defined, and the
input features are known. This makes the process of labeling data more straightforward and
facilitates the training of models to make accurate predictions based on the provided labeled
examples.However, in situations like anomaly detection, where the input is not well-defined,
and the characteristics cannot be precisely defined, unsupervised learning proves to be more
effective. Unsupervised learning allows the model to identify patterns or anomalies in the
data without the need for labeled examples, making it well-suited for scenarios with unclear
input characteristics Unsupervised learning is applied in clustering scenarios, such as the
K-Means clustering algorithm. In clustering, similar categories are grouped together into
clusters, and the algorithm calculates the mean distance within these clusters to predict
output values. This approach allows the model to identify inherent patterns or groupings
within the data without predefined labels.Association is another type of unsupervised learn-
ing where a set of common characteristics is associated to predict the output. For instance,
the recommendation systems used by platforms like Prime Video utilize association rules,
suggesting movies based on patterns such as "People who saw this movie also liked other
movies like these." This approach helps predict user preferences without explicit labeling of
the data. In this thesis, a combination of both supervised and unsupervised algorithms will
be employed and comparison will be made on the outcomes

2.4 YOLO Architecture

Before delving into its architecture, it’s crucial to comprehend the following terms associated
with YOLO (You Only Look Once).

2.4.1 Precision

Precision is calculated as the ratio of True Positives to the sum of True Positives and False
Positives.For instance, if there are 10 objects, and 8 are True Positives (correctly detected)
while 2 are False Positives (incorrectly detected), then the precision is calculated as 8 / (8 +
2) = 0.8. This implies that 8 out of the 10 detect ions were accurate, and 2 were incorrect.For
a model to perform effectively, it is desirable for the precision to be higher.

2.4.2 Recall

Recall is calculated as the ratio of True Positives to the sum of True Positives and False
Negatives.For example, if there are 10 objects, and there are 8 True Positives (correctly
detected) and 2 False Negatives (missed detections), then the Recall is calculated as 8 / (8
+ 2) = 0.8. This implies that the model missed detecting 2 out of the 10 actual objects,
indicating a proportion of the objects that were not identified.For a model to perform well,
it is preferable for the recall percentage to be higher.

2.4.3 Average Precision

Average Precision is a metric employed when mean of precisions obtained at each threshold
and it is computed as shown in the figure 2.10 [2][18]

12

Figure 2.10: Average Precision

2.4.4 mAP-Mean Average Precision

The average precision is the mean value calculated when multiple objects in an image are
detected, and there are three classes. In this scenario, individual average precisions (APs)
are computed separately for each class, and then the mean of these APs is calculated.To
provide a straightforward example, if the average precisions (APs) for three classes are 0.91,
0.92, and 0.96, then the mean average precision (mAP) is calculated as the sum of these
values divided by the total number of classes: mAP = (0.91 + 0.92 + 0.96) / 3.[fig 2.11]

Figure 2.11: Numpy Calculation of Average precision from Scikit

13

2.4.5 epochs and Batches

When dealing with a dataset of 1000 image samples, attempting to feed all images into a
neural network can strain computing capacity. This is because the calculations involved in
gradient descent, particularly for backward propagation, are computationally intensive. The
resources required for processing such a large dataset in one go can exceed the available
computational capacity, leading to potential performance issues.Instead of handling 1000
images simultaneously, they can be segmented into batches. For instance, if a batch size of
20 images is selected in the given example, it would result in 50 batches of data.Conversely,
a single epoch is regarded as complete when a neural network processes through all 50
batches.If a neural network is set with 100 epochs, it indicates that the program has finished
training on the dataset of 1000 images, organized into 50 batches, for a total of 100 cycles.The
purpose behind this approach is to guide the program in minimizing errors during the training
process.Following each epoch, the YOLO model provides values for recall, precision, and
mAP.[16]

2.4.6 IoU

In YOLO image detection, images are recognized using bounding boxes. After the model
is trained, images are sent through the network for validation. If the bounding box of the
prediction perfectly aligns with the ground truth box, the Intersection over Union (IoU) is
considered to be 100 percent, indicating that the prediction precisely matches the trained
value.The IoU is computed using a formula that involves the ratio of the intersection area over
the union of the bounding boxes.For example, if a threshold value is set at 50 percent, denoted
as 0.5, and the IoU is 0.7, then the result is positive, indicating successful object detection.
Conversely, if the IoU is 0.3, the object detection is considered unsuccessful.Hence,threshold
is a critical factor in model detection; when it’s set to higher values and the mAP remains
elevated, it indicates that the model is effective, given the higher IoU values.[18].Its explained
in a figure 2.12 ,2.13 and 2.14

14

Figure 2.12: Ground Truth vs Predicted image bounding box

Figure 2.13: Intersection Area

15

Figure 2.14: IoU formula

16

Figure 2.15: YOLO Bounding box calculation

2.4.7 Bounding boxes:

YOLO Bounding box

The bounding box is a fundamental component of image detection in the YOLO model. In
YOLO, the coordinates are computed in the following format: (x-center, y-center, width,
height), as illustrated in the figure 2.15
In the illustration, the x, y coordinates for the top-left, top-right, bottom-left, and bottom-
right corners of the rectangle are (86,112), (486,112), (86,257), and (486,257) respectively.
The x_center can be determined by averaging the x-axis values [(486+86)/2] and then di-
viding by 640, given the image resolution of 640x480. Similarly, the y-center is calculated
by averaging the y-coordinates [(257+112)/2] and then dividing by 480. The width is de-
termined as the length of the rectangle, which is 400 divided by 640, and the breadth is
considered as the height of the rectangle, which is 145 divided by 480. [14]

Pascal VOC

There is a second type of bounding box known as the PASCAL_VOC XML format, em-
ployed in Grounded SAM. In this format, a PASCAL_VOC XML file is generated for each
image, recording dimensions in the form [x_min, y_min, x_max, y_max]. For the provided
diagram, the PASCAL_VOC coordinates would be [86, 112, 486, 257]. The coordinates for
the PASCAL_VOC format for the diagram below are illustrated in the diagram.image1 .jpg
is a file which is annotated and database it is stored in roboflow.ai and width ,height and
depth is also mentioned and bounding box for one of the cylindrical batteries are mentioned
as [441,838,511,920][14] as shown in the figure 2.16

One hot encoding

The one-hot encoder, or one-hot encoding method, transforms variables into a binary format
of 1s and 0s, indicating the presence or absence of a particular entry. For example, in this
project there are 5 classes of data is detected and they are represented as follows:
[’cylindrical battery’,’Rectangular battery’,’Industrial Battery’,’wires-cables’,’coin battery’]
are classes and they are encoded as follows:

17

Figure 2.16: Pascalvoc

1.’Cylindrical battery’ = [1,0,0,0,0]
2.’Rectangular battery’ = [0,1,0,0,0]
3.’Industrial battery’ = [0,0,1,0,0]
4.’Wires-Cables’ = [0,0,0,1,0]
5.’Coin Battery’ = [0,0,0,0,1]

Grid Boxes

Images must be segmented into smaller sections to be input into the neural network. For
instance, as depicted in the figure below, if the image has a resolution of 640x480, it is
transformed, let’s say, into a 640x640 image resolution (the specific size depends on the
YOLO model). This image is then divided into a grid, and assuming an 8x8 grid, each box
will contain 80 pixels. as shown in fig 2.17
The center point of the truth box is identified, and the distance from the center point of the
truth image to the boxes is established, with the difference being computed. The difference
from the midpoint is computed using the formulae: (x - x1)/80, (y - y1)/80, w/640, h/640,
where 80 is the grid size, and width and height are calculated based on the image resolution,
which is 640x640 and along with 4 parameters, the 5th parameter i.e class objectness score,
a presence of oject is calculated will be added and along with that (x,y,w,h)[35]
(x1, y1, w1, h1, c1) = [(xcordinatedistancebetweenthegridboxandthecenterpointoftruthbox)
, (ycordinatedistancebetweenthegridboxandthecenterpointoftruthbox)
, (widthoftruthbox/resolutionofanimage)
, (heightoftruthbox/resolutionofanimage)
, classobjectiveness]
In addition to the initial 5 parameters, a 6th parameter, Probability, is introduced, incor-
porating the probabilities of the 5 classes. For instance, if the probability values are [0.035,
0.00, 0.86, 0.065, 0.04], and a threshold is applied, the grid box will be associated with an im-

18

Figure 2.17: Grid Box augmented from [35]

age related to the industrial battery, as 0.86 represents the probability of class 3, "industrial
battery," as assumed in the "one hot encoding" section.
Following this example, if it is assumed that there are 2 bounding boxes for each grid, then:
(2 * 5) + 5 = 15 parameters per grid

• 2: 2 bounding boxes

• 5: 5 parameters (x, y, w, h, c)

• 5: Probability of 5 classes

Based on this calculation, the prediction vector for each grid should be 80 * 80 * 15, where
80 * 80 represents the grid boxes, and 15 represents the parameters for each grid.
Hence, the total prediction vector will be 6400 grid boxes * 15 parameters. If there are
multiple bounding boxes created for a single image, all the bounding boxes are evaluated
based on the probability and class objectness.

Kernel,Stride,Padding ,Pooling and Flattening

Modern images often have higher resolutions, and sending such images directly to a fully
connected neural network can result in an excessively large single array input size. This can
lead to increased computational power consumption. To mitigate or modify the resolution,
a kernel is employed. This kernel acts as a filter with randomized values and is adjusted
based on the back propagation loss values. To illustrate, let’s consider a simplified example
of a 5x5 matrix image. Using a 3x3 kernel, convolution begins by applying the 3x3 kernel to
the first 3x3 matrix in the image, resulting in a single value. Next, the convolution process
continues by applying the 3x3 kernel to the highlighted portion from the first row and second
column to the first row and fourth column, extending to the third row and fourth column.
This results in another value. Similarly, the convolution process is repeated nine times, each
time applying the 3x3 kernel to a different portion of the 5x5 matrix, resulting in nine values
as illustrated in the figure 2.18 and fig 2.19 [27]
In the scenario described above, if an mxm matrix image is convoluted with an nxn matrix
kernel, then the output dimension would be [(m-n)+1]. In this case, it is [5-3]+1 = 3.
If further reduction of the image output is desired, striding can be applied. Striding is a
process where, instead of performing sequential convolution, steps are skipped, and this is
referred to as 2-step striding.

19

Figure 2.18: Convolution with 3x3 matrix Kernel

Figure 2.19: Striding

In striding, values are utilized only once. For example, if the first 3x3 matrix of a 5x5 image
is convoluted, it then moves to the last 3x3 matrix. As a result, there are only 4 convolutions
happening. In other words, in the output from convolution in the last example, the values
in the 2nd row and 2nd column are not necessary anymore because those multiplications are
skipped in the 2-step striding, resulting in a 2x2 matrix. If there is an mxm image resolution
and nxn kernel, and 2-step striding is to be applied, the output can be calculated using
the formula [(m-n)/s]+1 = [(5-3)/2]+1 = (2/2)+1 = 2. Therefore, the result will be a 2x2
matrix, as illustrated in the figure below.

To maintain border information during convolution, Padding can be applied, which involves
adding additional 0s around the matrix. For instance, in an example above 5x5 matrix will
become 7x7 matrix because of additional 0s across the border and if a 7x7 matrix is obtained
through padding and then convoluted with a 3x3 kernel, the output will be (7-3)+1 = 5,
preserving the 5x5 matrix information.

Max Pooling Max pooling is employed to retain essential information from an image while
simultaneously reducing its size. This method, such as max pooling, is commonly utilized
in YOLO.refer fig 2.20 [3]

20

Figure 2.20: 2x2 matrix Max pooling

2.4.8 Sigmoid weighted linear Unit (SiLu)

The SWISH activation function is represented as f(x) ⇒ x ∗ σ(β ∗ x).

When the value of Beta is set to 1.702, the activation function is recognized as GELU. If
Beta is set to 1 in the SWISH function, it transforms into the SiLU function.
f(x) ⇒ x.σ(x)

2.4.9 YOLOV5 Architecture

The Architecture diagram of YOLOV5 is shown in fig 2.21 copied from YOLO architectural
website[4] To enhance the accuracy and efficiency of an EfficientDet Model, the utilization
of Feature Pyramid Network (FPN) is implemented. [34]
FPN employs a top-down approach and utilizes convolution as a function to enhance ef-
ficiency. However, the information flow is unidirectional. To enhance efficiency, PANet
was introduced in the preceding model, featuring two flows—top-down and down-up. In
YOLOv5, repeatable modules were introduced, referred to as BiFPN (Bidirectional Feature
Pyramid Network), where all features are looped back, resulting in an efficient and improved
model as shown in fig 2.22[34]

Augmentation Techniques to reduce overfitting model

To prevent overfitting, YOLOv5 employs various augmentation techniques, including: [4]

• Mosaic Augmentation: Mosaic Augmentation involves merging four images into a single
picture. This technique helps the model better respond to random images during
validation that may not resemble the Mosaic Augmented picture.

• COPY-PASTE Augmentation: Random images are pasted into other pictures to intro-
duce noise and prevent overfitting of the model.

• Random Affine Transformations: This augmentation technique includes flipping and
shearing images to effectively train the model.

• Albumentations: YOLOv5 utilizes the Albumentations library, a powerful tool with
pre-defined augmentation techniques.

• HSV (Hue, Saturation, Value) Augmentation: HSV Augmentation involves changing
the hue, saturation, and value of images during training to enhance the model’s robust-
ness. [4]

21

Figure 2.21: YOLO Architecture from Ultralytics Docs -
https://docs.ultralytics.com/yolov5/tutorials/architecturedescription/?h = yolov51 − model −
structure

Figure 2.22: BiFPN

22

Figure 2.23: Binary Cross Entropy

Losses in YOLOv5

There are three losses calculated in YOLO model[4]

• Class Loss: It belongs to binary cross entropy , which is also known as logarithmic loss,
which tracks the incorrect labelling by penalizing and rewarding a model based on its
prediction and the formula for calculation is shown in figure 2.23

• Objectness Loss:Objectness means if the object is present in a particular grid or
not.Also, this is calculated using Binary cross entropy method

• Location Loss:IoU loss which explains if the bounding box is aligned as per the ground
truth image

• Total Loss: Total loss is a calculation of sum of losses λ1.Lcls + λ2.Lobl + λ3.Lls

2.4.10 YOLOV8 Architecture

YOLOv8 comprises three primary components: Backbone, Neck, and Head. The Backbone
is the region where all deep learning calculations occur, serving as the stage for feature
extraction. The output from the Backbone is then directed to the Neck, followed by the
Head, where the determination of bounding boxes and labels takes place.
There are multiple components in YOLOV8 additionally as compared to YOLOV5 such as :

C2F and Bottleneck

In contrast to YOLOv5, which employs the C3 model where the output is derived from the
final bottleneck operation, YOLOv8 adopts a different approach. YOLOv8 concatenates
outputs from multiple iterations of bottleneck operations, convolutes the results, and then
sends the output. Additionally, the bottleneck in YOLOv8 adds outputs from sequential
convolutions, as illustrated in the figure 2.24.[36]

23

Figure 2.24: c2f and Bottleneck

SPPF - Special Pyramid pooling Fast

SPPF, or Special Pyramid Pooling Fast, is an enhanced version of SPP (Spatial Pyramid
Pooling). One significant modification in SPPF is that all MaxPools are concatenated instead
of being performed sequentially as shown in the fig 2.25

Loss-Yolov8

In contrast to YOLOv5, the losses in YOLOv8 are decoupled from each other and it is an
anchor free model.Decoupled in Yolov8 context means that the results Boundingbox loss and
class loss are independent of each other as shown in the figure 2.26 [5][6]

24

Figure 2.25: SPPF Yolov8 emulated by [36]

25

Figure 2.26: Loss function in Yolov8

26

Figure 2.27: Roboflow

Figure 2.28: Roboflow Upload

2.5 Roboflow

Roboflow is a comprehensive tool that efficiently gathers, organizes, labels, processes, trains,
deploys, and displays datasets. It supports easy integration with various machine learning
algorithms, such as YOLO, Azure Custom Vision, and others. Additionally, it seamlessly
connects with the Ultralytics webpage, simplifying the overall workflow as shown in fig 2.27[7]

Collection of dataset

For this thesis, 300 custom images from the recycling industry were uploaded. If more
generalized images are needed, the Roboflow universe can also be utilized as shown in the
figure 2.28[7]

Annotation

After uploading the images, they can be assigned to different team members for manual
annotation. The datasets can then be divided into training, testing, and validation sets.

Augmentation

During the dataset creation, augmentation techniques can be applied, including flipping,
upside-down transformations, adding noise, and converting images to grayscale. These aug-

27

Figure 2.29: Roboflow Annotation

mentations help diversify the dataset and improve the model’s ability to generalize to differ-
ent scenarios as shown in fig 2.29[7]

Invoking APIs to Various ML Platforms

Roboflow can invoke an API for Various ML platforms in various formats as shown in a table
2.1: [7]

28

Format ML
CSV Tensor flow object detection
CSV RetinaNetKeras
CSV Multi-Label Classification
JSON COCO
JSON COCODETECTION
JSON CREATEML
XML PASCALVOC
Txt YOLO DARKNET
Txt YOLOV3 KERAS
Txt YOLOV4 PyTorch
Txt Scaled-YOLOV4
Txt YOLOV5 ORIENTED BOUNDING BOXES
Txt MEITUAN/yolo6
Txt YOLOV5 PyTorch
Txt YOLOV7 PyTorch
Txt YOLOV8

Code-Free Training Integrations Ultralytics Hub
Code-Free Training Integrations AWS Rekognition Custom labels
Code-Free Training Integrations Google Cloud AutoML
Code-Free Training Integrations Microsoft Azure Custom Vision
Code-Free Training Integrations OpenAI Clip Classification
Code-Free Training Integrations Tensorflow TF Record
Code-Free Training Integrations Server BenchMark

Table 2.1: Roboflow Export model

2.6 Azure Custom AI

Microsoft provides Cognitive Services, including the Azure Custom AI service, which allows
for the training and validation of models.Azure Custom AI offers versatility for both clas-
sification and object detection tasks, providing precise identification of objects along with
their coordinates. The cloud service boasts auto-scaling capabilities during model training,
ensuring efficient and rapid processing even with a large volume of images. In Custom AI,
manual annotation of images is essential, and this can be done either through the portal
interface or by downloading APIs directly from the Roboflow model. To train a model in
Azure Custom AI, a minimum of 15 images of a particular class is required for training.
During the validation phase, if there are any false positives or false negatives, feedback can
be provided to improve the robustness of the model.

2.7 Grounded SAM

Grounded SAM is an innovative technology that enables automatic image segmentation
using text prompts. It boasts an extensive pre-trained model with 11 million diverse, high-
resolution images, averaging 3300x4950 pixels. The model includes 1.1 billion masks from
SA -1B dataset, with approximately 99.1% of these masks being auto-generated. Grounded
SAM is primarily comprised of three components[21]:

1. Image Encoder: This component processes each image once, and it can be applied
before prompting the model.[21]

2. Prompt Encoder: The Prompt Encoder encodes text using the off-the-shelf text en-
coding from CLIP. It comes in two types: Sparse and Dense.These components work

29

Figure 2.30: GroundingDino emulated from [U]

together to enable the segmentation of images based on text prompts.

3. Mask Decoder: This component involves the mapping of image embeddings, prompt
embeddings, and output tokens to generate a mask. It is responsible for the up-sampling
of images when the outputs are displayed. [21]

2.8 GroundingDino

GroundingDINO, an object detection model, utilizes GLIP (Grounded Language Image Pre-
training), which is considered a superior model compared to CLIP (Contrastive Language
Image Pre-training).[8] Grounding Dino is employed for object detection. When text prompts
are provided, they are sent to the text encoder, while the image is processed by the visual
encoder. Both sets of information are fed into the deep fusion model, incorporating Bert
layers for processing. In the image, box proposals related to visual regions are generated.
Simultaneously, word tokenizers are applied to tokenize text prompts. The matrices of words
and pictures are then matched to precisely identify objects as shown in fig 2.30.[9]

2.9 Streamlit:

Streamlit is a front-end web framework seamlessly integrated with the Python library, making
it extremely straightforward to install. Its primary objective is to offer a web service platform
where dashboards and chatbot interfaces can be effortlessly set up. Streamlit is constructed
using ReactJS components, earning it the designation of a JavaScript web application with
Python integration. [20]

2.10 LangChain and OpenAI API

Langchain and OpenAI API can be harnessed to construct personalized chatbots for users.
This chatbot is seamlessly integrated into a dashboard deployed on Streamlit, and the in-
teractions, including queries and responses, are stored and managed through the PineCone
vector database pod.

30

Chapter 3

Methods

Within recycling industries, batteries are routinely sorted, and even smaller AA batteries,
which contain hazardous materials, pose a potential fire hazard. Among AA batteries, two
distinct types are present: Lithium batteries and Alkaline batteries. Lithium batteries, in
particular, are acknowledged for being more inherently hazardous[37].There are majorly four
issues have been identified in recycling industries and this project aims to provide scientific
solutions in developing a product as a Proof of concept , and these include:

3.1 Problem statement - Dataset and proposed plan of action

To initiate the comprehension of the recycling plant and the data set model, attempts were
made to explore different data sets such as the COCO model set,Roboflow Universe. While
generic images of batteries were found, a challenge arose due to issues related to backgrounds,
diverse textures of batteries, and other factors. Consequently, the generic pre-trained com-
puter vision model didn’t prove to be very effective for this project. Subsequently, efforts
were directed towards creating a custom dataset by gathering a diverse set of images directly
from the recycling plant. Approximately 300+ images and a few videos were collected for
this purpose. The training of the project involved utilizing custom images that encompassed
various backgrounds, including open ground, piles of waste materials, conveyor belts, and the
floor.The objectives or implementation provided for this problem statement were as follows:

• Gather images from the recycling plant encompassing diverse textures and backgrounds.

• Annotate images using Roboflow or GROUNDING DINO

The primary rationale for validating precision in this project is rooted in the design
objective of prioritizing safety and minimizing fire hazards induced by batteries. Preci-
sion and Recall assessment becomes crucial to ensuring the effectiveness and reliability
of the product in addressing these safety concerns.

3.2 Problem statement - Detection and proposed plan of action

Recycling plants, characterized by their larger units, exhibit a disorganized arrangement of
numerous batteries strewn across the ground, and anywhere on floors and bins, as illustrated
in the figure below. This scenario poses a potential fire hazard, particularly when in contact
with combustible substances or under the pressure of inadvertently placed objects. During
an interview with an employee of StellAI, instances were also highlighted wherein an en-
tire sealed drum/bin exploded due to the presence of lithium batteries few months ago in
Oslo recycling unit.To tackle this issue, the paramount focus is on the detection of objects,
specifically understanding the precise location of batteries in this context.

31

Figure 3.1: Object Detection Module

For this project, aerial drone images of a recycling plant have been collected, with a primary
focus on pinpointing the exact locations of various items, including Cylindrical AA batteries,
wires/cables, Rectangular Batteries, Industrial batteries, and small coin batteries. The
experiment is designed to accomplish this specific identification task.To address this concern,
following two experiments will be performed

3.2.1 Experiment1

The initial phase of the experiment involves evaluating the accuracy of annotations by com-
paring manual annotations performed in Roboflow with automated annotations generated
by GroundingDino.

3.2.2 Experiment2

• Image detection utilizing YOLO models such as YOLOv5, YOLOv8 was undertaken.
The focus on image detection serves as the initial component of the overall solution.

• The primary objective of this project is to detect 6 different types of objects into six
distinct classes: Cylindrical battery, Coin battery, Wires/cables, Rectangular battery,
Industrial batteries, and No batteries.

• To broaden the scope of this experiment, an additional attempt was made to upload
trained models in Azure Custom Vision.The aim is to ensure that both developers and
non-developers can effortlessly manage this module with ease.

The model that exhibits superior performance will be chosen for the Proof of Concept (PoC).
as shown in fig 3.1

3.3 Problem statement -Segmentation and proposed plan of action

When materials are transported on a conveyor belt, various objects such as bulbs, wires,
and batteries are often clustered together, creating a challenge in effectively segmenting and
distinguishing individual objects.
To tackle this challenge the following experiments are performed:

3.3.1 Experiment 3

• Polygon annotations are performed manually using Roboflow, and automated annota-
tions are generated using GroundedSAM. The accuracy of the model is then compared.

32

Figure 3.2: Segmentation Module

3.3.2 Experiment 4

• To provide output of segmentation which yields better accuracy to YOLOV8 and
YOLOV5 model to calculate metrics and also to use the trained dataset to predict
live stream data

Ref fig3.2

33

Figure 3.3: Health Dashboard

3.4 Problem statement - Health Dashboard and proposed plan of
action

Upon completion of the model training and the initiation of predictions, a pivotal step in-
volves creating a dashboard. This dashboard serves as a user-friendly interface, providing
users with comprehensive statistics and facilitating a better understanding of patterns. To
achieve this, inputs from the previous experiments are integrated into a Stream lit Applica-
tion to generate the desired dashboard.
This project places a strong emphasis on employing diverse methods and consolidating them
into a comprehensive package based on the results that demonstrate superior accuracy.ref
fig 3.3

34

Chapter 4

Related Literature

4.1 Azure Custom AI

This section covers the article written by Salvaris, M et al[29] and Alom, M. Z. et al.[15]
In the article by Salvaris, M et al[29], it is discussed that AI has undergone significant
advancements over the years, with notable improvements made in this decade. It empha-
sizes the importance of understanding the timeline of milestones to observe the remarkable
progress in machine learning and deep learning.
This book delves into the architecture of Convolutional Neural Networks, Recurrent Neural
Networks, and Generative Adversarial Networks, along with their advancements over the
years. It explores how these technologies have seamlessly integrated into everyday human
life, contributing to innovations like speech-to-speech translators, automated chatbots, and
autonomous cars. Microsoft collaborates with a Power and Utility company in Norway, con-
tributing to an energy management system. The system utilizes drones for capturing images
of power lines, employing deep learning image detection techniques known as eSMarts. This
scenario mirrors the challenge of drone images requiring image detection, showcasing the
application of advanced technologies in the Recycling or sustainability sector. Microsoft
offers Cognitive Services, a platform that includes pre-trained models derived from exten-
sive datasets such as COCO and ImageNet. Users can seamlessly leverage these pre-trained
models by invoking APIs, facilitating the integration of powerful and ready-to-use AI capabil-
ities into their applications or projects.In addition to pre-trained models, Microsoft provides
Custom AI solutions. This allows users to train models on their own custom datasets by
labeling objects, conducting model training, and validating the model’s efficiency using spe-
cific validation data. Custom AI solutions offer a more tailored approach for users with
specific needs and datasets. Similar to other deep learning technologies, Microsoft supports
supervised learning through Custom AI and unsupervised learning through their cognitive
services. This provides users with flexibility in choosing the learning approach that best fits
their specific use cases and data availability. Machine learning encompasses various tasks,
including classification, regression, recommendations, ranking, and clustering. One of the
most prominent learning approaches in machine learning is supervised learning, where hu-
mans provide labels to represent the ground truth. Nevertheless, significant progress has
been made in unsupervised learning through the utilization of techniques such as Generative
Adversarial Networks (GANs) and autoencoders. Deep learning, a subset of Machine Learn-
ing (ML) and Artificial Intelligence (AI), faced challenges in its early years due to limited
data availability and computational power. However, advancements such as the introduc-
tion of GPUs by NVIDIA and the creation of datasets like ImageNet played a crucial role
in making deep learning feasible.Deep learning encompasses four main applications:

1. Classification: Determines whether an object is present in an image or not.

2. Object Classification and Localization: Identifies the location of the object in an image.

35

Figure 4.1: Timeline

Common Network Architecture Applications
CNN Classification & Detection
RNN NLP,Time Series Analysis
GANs Image to image ,text to image creation

Auto encoders Anamoly detection

Table 4.1: Common Network Architecture and its Applications

3. Detection: Specifies the coordinates where an object is situated in an image.

4. Segmentation: Identifies the pixels that contain objects in an image.

The deep learning workflow involves several key steps, including identifying a relevant
dataset, pre-processing the data, training the model, assessing its performance, fine-tuning
as necessary, deploying the model, and iterative refining the process with continuous data
collection and monitoring for ongoing improvement.
Convolutional Neural Networks (CNNs) exhibit two distinctive features:

1. The Automatic Feature Extractor: This component of the neural network is responsible
for extracting features from images using convolution layers and pooling layers.

2. The Classifier: This is a fully connected network that facilitates the classification of
images into various classes.

In CNN’s, weights are initially chosen randomly. During the training process, if the error
is calculated in the classifier, back propagation begins, and weights are adjusted accord-
ingly. This iterative process continues, with the network comparing its loss value after each
adjustment, aiming to minimize the error. Loss functions can be calculated using Mean
Squared Error, Binary Cross-entropy, or Categorical Cross-entropy. The choice of the loss
function depends on the activation function applied in the last layer of the neural network.
Microsoft’s pre-trained CNN models (ResNet-50,AlexNet,etc..,) are trained on large datasets
such as ImageNet ,CIFAR-10,COCO.
Dr. Fei Fei Li, a professor from Stanford, pioneered ImageNet , a project where images are
collected across the internet and also labelled. Her team, with the assistance of ’mechanical

36

Figure 4.2: CNN

Turk’—a platform where people are hired on a contract basis—worked on labeling data for
millions of images to create a comprehensive dataset.[29] As datasets were becoming more
extensive, the ImageNet Competition was announced, challenging participants to propose a
CNN model with minimal error function. This competition led to the development of the
AlexNet algorithm in 2012. The AlexNet algorithm introduced two additional elements to the
traditional CNN: Local Response Normalization (LRN) and Drop Out. LRN enhances peak
values and dampens lesser values in the CNN network, a concept known as lateral inhibition.
It is added after the ReLU activation function. Drop Out is a concept incorporated in
the Fully Connected Network, where neurons with a probability less than 0.5 are dropped
out, preventing their participation in both backward propagation and forward feed. To
understand further about Algorithms,as per Alom, M. Z. et al. [15]referred AlexNet and
comprises five convolutional layers and two fully connected networks. The first layer consists
of 96 filters of an 11x11 matrix, with a max pool of 3x3 filters and a stride of 2. The second
layer has 256 filters, followed by layers with 384, 256, and 256 filters, respectively. Drop Out
elements are added in the Fully Connected Network (FCN). The input samples are of size
224x224x3, and the output is of size 55x55x96.[15]
Following AlexNet, several architectures were developed, and ZFNet received an award in
2013. Addressing the computational heaviness of AlexNet, ZFNet modified the 11x11 ker-
nels in AlexNet to 7x7, reducing the number of weights and making computations more
manageable.
The 2014 award winner was GoogleNet, a model that introduced dimensionality reduction,
leading to increased accuracy. GoogleNet also managed to reduce the total number of pa-
rameters to 7 million, a significant reduction compared to AlexNet’s 60 million parameters.
This architecture comprised 22 layers. [15] In 2015, ResNet was introduced as a Residual net-
work. True to its name, this model aimed to tackle the vanishing gradient problem. ResNet
provided various versions with multiple layers, including 34, 50, 101, 152, and an impressive
1202 layers.[15] The diminishing gradient problem occurs when the network’s complexity
increases, causing the time required for calculations to rise significantly, and sometimes even
leading to the network becoming unresponsive. ResNet successfully addressed this challenge.
[15] Microsoft has trained using these algorithms. Microsoft employs transfer learning in both
Cognitive Services and Custom Vision. In Custom Vision, users can upload and manually

37

Figure 4.3: AlexNet

label custom datasets on a web page. Alternatively, they can retrieve manually labeled im-
ages from Roboflow. After training a model, quick tests can be conducted, and if the results
and accuracy meet the requirements, the model can be used as a baseline by invoking an
API. [29] The advantages of using Microsoft include the capability in Custom AI to provide
immediate feedback when objects are not detected. This facilitates quick relearning for the
AI system. Microsoft is already involved in a project in Norway that focuses on energy
and sustainability. The project involves custom data and aerial images, aligning with the
requirements of this project. This existing work in a similar domain could provide valuable
assistance and resources for this project. There are options available such as BatchAI and
Batch Shipyard that facilitate the automatic scaling of GPUs for training. This feature helps
in accelerating the learning process and simplifying the training of machine learning models.
Additionally, Microsoft ensures the privacy of custom data, providing a secure environment
for handling sensitive information. Currently, Microsoft has invested in OpenAI and fo-
cuses on developing LLM applications, with significant integration of Co-Pilot in Microsoft’s
offerings.

4.2 YOLO-You Only Look Once

According to the thesis, two papers were thoroughly examined:

1. YOLO architecture, spanning from YOLO1 to YOLO8.Hussain, M. (2023) “YOLO-v1
to YOLO-v8[19]

2. A comparative analysis of YOLOv5 versus YOLOv8 for image detection using drone
camera images.[30]

As detailed in an earlier section, significant architectural changes have occurred since 2012.
YOLO draws inspiration from the GoogleNet Architecture and was initially crafted in 2015.
The primary focus of developing this architecture has consistently been on achieving high
speed and accuracy. YOLO, functioning as a single-shot detector, will be further explored in
subsequent sections of this chapter. The lightweight computation characteristic contributes
to the model’s robustness and swiftness in processing data. This efficiency has played a

38

Figure 4.4: Yolo Architecture- Timeline emulated from [19]

pivotal role in making YOLO a preferred model for real-time streaming data, establishing
its popularity.
YOLOV1 introduced a revolutionary concept by dividing an image into grids, with each grid
of size sxs predicting bounding boxes. The final selection involved choosing the box with the
highest confidence score. YOLOV1 also implemented the Non-Max Suppression technique,
which required defining threshold values. Boxes with confidence scores below the specified
threshold were eliminated from consideration. This is also one of the factors influencing
how changes in threshold values impact mean Average Precision (mAP). Inspite of YOLOv1
bringing few new concepts like single shot detector,Non-Max suppression value and grids
with 2 bounding boxes each, the mAp it achieved was 63.4 percent at 45 frames per second
for YOLO as compared to faster R-CNN which had mAP of 71percent.As a result, various
variants of YOLO have been introduced.
In Yolov2, the goodness of speed which YOLOv1 model gave had to be reatined and had to
address limitations and hence few new concepts were introduced

• Batch Normalization: This technique was implemented to reduce covariate shift. In
batch normalization, when input is divided into batches and fed into layers, the mean
and standard deviation of the first layer are calculated. The data before entering any
layer is then normalized based on these mean and variance values, and it is further
shifted and scaled using hyperparameters like beta and gamma. This process helps
reduce the need for dropout, which was introduced in ResNet to address issues like
overfitting and diminishing gradient problems.

• Anchor Boxes: Anchor boxes are predefined template boxes whose dimensions are
typically calculated by pre-training models. This concept is beneficial in determining
the correct bounding box with respect to confidence scores and the region of interest
for an object.

After these enhancements, YOLOv2, when trained on the ImageNet dataset, exhibited an
improvement in mean Average Precision (mAP) compared to state-of-the-art architectures
such as Faster R-CNN.

YoloV2 still faced challenges in identifying smaller objects, leading to the development of

39

the YOLOv3 architecture. In YOLOv3, the goal was to preserve the positive aspects of
YOLOv2 while introducing additional improvements. This involved increasing the number
of layers to 106 convolution layers and implementing multi-scale object detection. The latter
implies that detection occurs in various regions across multiple layers, each with different
granularities. These detections are then converged to facilitate the identification of smaller
objects.
After YOLOv3, the author of the proposed models did not continue further, and the develop-
ment of YOLOv4 was taken up by the computer vision community. Initially, multiple models
were experimented with, such as CSPResNext-50, CSP-DarkNet-53, Efficient Net-B3. The
primary goal was to enhance performance, and after experimenting with various backbones,
CSPDarknet-53 was selected. This part of the architecture is referred to as the Backbone.
For the Neck region, a slight improvement was made by choosing PANet (Path Aggregation
Network), where networks are concatenated instead of using the ADD function. This can
be used for both top-bottom and bottom-up architecture. Along with these features, data
augmentation, i.e., intentional addition of noise, was introduced to improve and train models
better. One of the highlights of YOLOv4 is the creation of the Mish Activation function,
where f(x) = x.tanh(softplus(x)). YOLOv5 brought several advancements compared to its
predecessors. First, it was open-sourced, and secondly, it was written in PyTorch to better
accommodate production environments. In YOLOv2, the Anchor Box concept was intro-
duced, and in YOLOv5, this algorithm was integrated into a pipeline, enabling automatic
detection of anchor boxes and reducing the number of parameters in the network. Addition-
ally, YOLOv5 introduced various variations, such as YOLOv5-s, YOLOv5-m, YOLOv5-l,
and YOLOv5-x models, each corresponding to different computational parameters.
Yolov6 was developed by the Meituan technical team in China and introduced several en-
hancements[19]:

1. Industrial Focus: Yolov6 was specifically designed for industrial applications.

2. Anchor-Free Model: Unlike some other models, Yolov6 is an anchor-free model, mean-
ing it does not rely on predefined anchor boxes for object detection.

3. Decoupled Classification and Regression: Yolov6 separates the tasks of classification
and regression, utilizing different heads for each. This decoupled architecture results in
two distinct losses: VFL (Varifocal Loss) for classification and Distributed Focal Loss
for regression (bounding box loss).

4. Teacher-Student Model: Yolov6 employs a Teacher-Student model approach. The
Teacher model contains labels and ground truth information, contributing to the train-
ing process.

Yolo v7 was launched concurrently with YOLOv6, focusing on GPU enhancements and ar-
chitectural redesigns. It was designed for compound scaling, where models can be scaled
in depth or width depending on the specific requirements, whether it be accuracy or speed.
Additionally, YOLOv7 introduced some additional trainable "bag of freebies" to enhance its
capabilities.

Yolov8, developed by Ultralytics in January 2023, is specifically designed for tasks such as
detection, segmentation, pose estimation, tracking, and classification. As a state-of-the-art
model within the YOLO family, it is known for its exceptional speed and accuracy, par-
ticularly in real-time video applications. The integration with Python further contributes
to its popularity. Yolov8 is capable of tracking up to 50 frames per second, showcasing its
efficiency in dynamic environments.
Comparing YOLOv5 and YOLOv8 is significant, especially considering they both come from

40

Ultralytics. Both frameworks are well-suited for real-time video applications, aligning with
the specific needs of the recycling industry. This makes the comparison essential to deter-
mine which model better addresses the requirements of the industry in terms of efficiency,
accuracy, and real-time processing capabilities.

In the article written by Indri Purwita Sary et al [30] it presents a comparative analysis
between YOLOv5 and YOLOv8 in the context of detecting people using unmanned aerial
vehicles (UAVs). The project involves experimenting with drone images across different
backgrounds and lighting conditions to assess the models’ ability to detect people. The study
utilizes the Auth-Persons pre-trained dataset and discusses the advantages of the YOLO
single-shot detector model. The author compares the results of YOLOv5 and YOLOv8 on
this dataset, providing insights into their performance. The evaluation involves Confusion
Matrix parameters, and the conclusion suggests that YOLOv5 outperforms YOLOv8 by
0.54%.

41

Figure 4.5: DETR

Figure 4.6: Timeline -Grounded SAM and GroundingDIno

4.3 GroundingDIno

DeTR, short for Detection Transformer, leverages the transformer architecture for object
detection tasks. While transformers are well-established in natural language processing
(NLP), the application of the same model to image detection has gained significant attention
in recent years. This approach allows for effective object classification and labeling without
the need for explicit supervision, showcasing the versatility of the transformer architecture
across different domains.
In the realm of unsupervised learning for image detection, notable contributions have been
made by organizations such as OpenAI, Google, and Microsoft in recent years. Ongoing
efforts focus on continuous advancements and improvements in this domain.CLIP, which
stands for Contrastive Language-Image Pre-training, is a model influenced by the context
of VirTex visual representations from textual annotations. In this approach, an image is
provided as input to the model, and it generates text as a response or prompt based on the
visual content. n simpler terms.
CLIP combines a transformer model for text embeddings with either ResNet or Visual Trans-

42

former (ViT) for vision embeddings. During training, 32,768 random snippets were paired
with 32,768 images, and the model learned to associate text and visual content. By Rad-
ford, A. et al[28]ResNet performs effectively for image encoding in the ImageNet dataset.
However, when applied to CLIP with ImageNet sketches, it doesn’t yield satisfactory results.
Therefore, Visual Transformer was introduced to address this issue, and it proves to be more
effective in handling noisy data.
GLIP, or Grounded Language Image Pretraining, is a model introduced by Microsoft that
draws inspiration from CLIP (Contrastive Language-Image Pretraining).Liunian, H. et al.[24].
GLIP has been pretrained using a vast dataset of 27 million grounding instances. This
dataset includes 3 million human-annotated images and 24 million image-text pairs obtained
from web crawling. According to the author, GLIP has achieved an Average Precision (AP)
of 60.8 on the COCO dataset.
GLIP utilizes a phrase grounding mechanism, making it proficient at identifying crucial
phrases within a sentence. In terms of architecture, GLIP differs from CLIP by integrating
vision and text at a deep fusion stage, unlike CLIP which fuses them in the final step. The
model boasts 58.4 million unique noun phrases, facilitating the identification of phrases.
GLIP is user-friendly and deployable as it leverages a transfer learning model. It comes
pre-trained with 80 common object categories from MS COCO and 1000 common object
categories from LVIS, and phrase grounding is derived from the FLICKR30 dataset.
DINO, an acronym for DETR with Improved DeNoising anchor boxes, is an image detec-
tion model featuring multi-layer transformer encoders, multi-layer transformer decoders, and
multiple prediction heads for object identification. Grounding DINO extends this model by
incorporating GLIP, creating an open-set object detection framework. Open-set object de-
tection enhances the model’s ability to discern intricate details about objects through text
phrases or text comprehension. ViT, initially a popular transformer for computer vision,
faces limitations when considering images with nuanced details. The standard 16x16 pixel
conversion may not be suitable for images with tiny objects, leading to computational chal-
lenges when expanding to larger dimensions. To address this, the Swin Transformer was
introduced, where SWIN stands for Shifted Windows. In Swin Transformer, the concept
of shifted windows is employed, allowing self-attention to work only with neighboring pix-
els. This approach reduces the computational load, and by iteratively shifting windows, the
model covers all parts of the image efficiently. The Swin Transformer thus mitigates the
challenges associated with large-scale computations in ViT.as per Liu, Z. et al. [26]
The author,Liu, S. et al. [25] has given an explanation of working architecture The archi-
tectural diagram was extracted from the GroundingDINO paper and has been divided into
three sections.
When given a prompt such as "Batteries, Wires, Circular battery" and an input image for
object extraction, two parallel operations commence. The images are sent to the SWIN
Transformer, which operates on the shifted window concept. This choice is justified by the
understanding that there are numerous extractions from images compared to tokens from
text. Simultaneously, the text prompt is processed in the next stage of transformers, where
vanilla features are extracted, as per the author’s explanation. The extracted features are
subsequently directed to the Feature Enhancer.Within the Feature Enhancer, the images
undergo Deformable Self-Attention, which involves processing the input images with queries
to generate offsets and multiple heads for extracting valuable information. Simultaneously,
text features are subjected to self-attention as shown in fig 2 In the third stage, the outcomes
from the previous steps are input into a cross-modality query, where the results from both
images and text are combined. The values in the matrix are analyzed, and this layer aids in
injecting text information into queries.

43

Figure 4.7: Grounding DiNO-Part I

Figure 4.8: GroundingDino-PartII

44

Figure 4.9: GroundingDino-III

4.4 GroundedSAM

Grounded SAM is a fusion of GroundingDINO and the Segment Anything model. As detailed
by Kirillov, A. et al. [21] regarding the Segment Anything model, it drew inspiration from
the functioning of NLP. Initially, the authors constructed an extensive segmentation dataset
consisting of 1 billion masks on 11 million data points, referred to as SA-1B. The primary
objective of Segment Anything is to generate masks based on a given text prompt. This
model is influenced by CLIP for prompt encoding and ViT (Visual Transformer) for image
encoding. The Segment Anything model comprises three data engines:

1. Assisted-Manual: SAM assists human annotators in the annotation process.

2. Semi-Automatic: SAM automatically annotates some parts of images, which are then
refined by human annotators.

3. Fully Automatic: SAM performs complete automatic annotation without human inter-
vention.

Segment Anything consists of three main components:

1. Image Encoder: It utilizes a pre-trained Vision Transformer (ViT) based on the MAE
architecture for processing images.

2. Prompt Encoder: This component uses Contrastive Language-Image Pre-training (CLIP)
for encoding prompts or text.

3. Mask Decoder: Responsible for mapping the image to text embeddings and generating
a token-to-mask output.

Grounded SAM paper was released on July 2023 and authors Zhang, C. et al. [38] explain
GroundedSAM a fusion of GroundingDINO and SAM.
In a simplified explanation, the model works by first detecting edges and identifying boxes
using GroundingDINO for image encoding. Then, the Segment Anything model is employed
to generate masks. Finally, the text prompt is incorporated, resulting in a masked Grounded

45

Figure 4.10: Grounded SAM -General atchitecture

SAM output. The integration of these components allows for the identification of objects
based on both visual and textual information.
While Grounded SAM has made significant strides in computer vision research, there is an
ongoing debate about its applicability in medical technology. The paper mentioned [38] high-
lights that medical image segmentation still requires certain supervision requirements. This
observation may also be relevant to the case of battery segmentation, as further elaborated
in subsequent sections.

46

Chapter 5

Performance Experiments and Results

As mentioned earlier in the problem statement in Methods Chapter, this section will elab-
orate on the intricacies of each problem statement, providing a detailed account of the
Objectives,Steps Taken and Inferences

5.1 Creation of Custom data set:

5.1.1 Objective

Upon initiation of this project, an initial search for images was conducted across renowned
datasets such as COCO Dataset, yielding a limited number of images related to batteries.
Subsequently, efforts were directed towards the Roboflow universe, where the discovered im-
ages proved to be overly simplistic. Consequently, a decision was made to train a model using
a set of 27 generic images. the link is https://universe.roboflow.com/school-gchcr/
batteries-1aib9/browse?queryText=&pageSize=50&startingIndex=50&browseQuery=true
The observed phenomenon is that when presented with randomly selected generic battery
images, the model exhibited excellent performance as shown in fig 5.1 and fig 5.2. How-
ever, when the same model was applied to predict images derived from real-world recycling
industry settings, its efficacy was notably diminished as explained in figure 5.3

5.1.2 Steps Taken

As illustrated in Figure 5.3, there were instances where very few batteries were either rec-
ognized inadequately or not identified at all. The primary factor contributing to this dis-
crepancy was the diverse backgrounds present in recycling industry images, such as floor
surfaces, dust, and conveyor belt textures, making predictions challenging. In response,
a strategy was devised to incorporate real-time images into the training process, result-
ing in improvements in prediction accuracy. All custom images are present in Github link
https://github.com/learnerrida/Battery-custom-dataset/tree/main

Figure 5.1: Trained generic dataset with generic image Predictions-1

47

https://universe.roboflow.com/school-gchcr/batteries-1aib9/browse?queryText=&pageSize=50&startingIndex=50&browseQuery=true
https://universe.roboflow.com/school-gchcr/batteries-1aib9/browse?queryText=&pageSize=50&startingIndex=50&browseQuery=true
https://github.com/learnerrida/Battery-custom-dataset/tree/main

Figure 5.2: Trained generic dataset with generic image Predictions-2

Figure 5.3: Recycling plant images with trained model

5.1.3 Inferences

The conclusion drawn from the analysis is that the utilization of custom data led to enhanced
results. Notably, the improvements in Figure of 5.4 were particularly pronounced after
training the model with a custom dataset

Figure 5.4: Recycling plant images with trained model of custom dataset

48

5.2 Comparison of image Detection Model using YOLOV5,YOLOV8
and Azure Custom AI

5.2.1 Objective:

A significant challenge in recycling industries lies in the disorganized distribution and iden-
tification of battery locations across the plant. This haphazard arrangement poses a risk of
unexpected blasts from various locations. To address this issue, a solution was proposed to
precisely identify the location of batteries. This involves capturing images from a drone cam-
era to enhance the organization and safety of the recycling plant. In the subsequent stages of
the plan, the selection of an image detection model became crucial. After conducting some
research [10], it was decided to explore both YOLOv5 for its user-friendly operation and
stability, and YOLOv8 for its reputed accuracy. The objective was to assess and determine
which model proves to be more effective for the custom dataset at hand.Simultaneously, a
request was made to evaluate the stability, mean average precision (mAP), and precision us-
ing Azure Custom AI. This consideration stems from the ease of training that this platform
offers, catering even to non-developers. The aim is to explore the viability and performance
of Azure Custom AI in comparison to the YOLOv5 and YOLOv8 models.

YOLO Model

One of the most notable advantages of training YOLOv5 and YOLOv8 includes:

• Open Source Software:Both YOLOV5 and YOLOV8 are open-source software, avail-
able for use at no cost. This accessibility contributes to their widespread adoption
and facilitates experimentation and development without financial barriers.Even in the
scenario where the software needs to be commercialized, the process is straightforward
and user-friendly.[11]

• Ease of Comparison:Comparing YOLOV5 and YOLOV8 is streamlined as the metrics
to be measured remain consistent. This simplifies the evaluation process, and results
of this comparison will be presented in the subsequent section.

Azure CustomAI

Azure AI Custom visions has the following observations:

• The implementation of Azure Custom AI stands out for its simplicity, enabling users
with no coding experience to easily train models. Nevertheless, it’s crucial to acknowl-
edge that this convenience comes at a cost. Azure Custom AI is considered one of the
pricier solutions due to charges associated with services such as Vision Studio, Custom
Vision resource, and image storage

• Another notable feature is that, in the event of incorrect predictions, immediate adjust-
ments can be made to the model by modifying the labels. This allows for enhancing
the precision of the model without the need for retraining from the beginning.

The objective is to compare the precision of these models under identical conditions, includ-
ing the baseline data set and the same proportions for training, validation, and testing data
distributions.

5.2.2 Steps Taken

A trial was performed utilizing three distinct approaches as shown in the figure 5.5

49

Figure 5.5: Experiment Approach

YOLOv5 vs YOLOV8vs Azure Custom AI

• Manually annotating the complete dataset through Roboflow and subsequently training
it with the Yolo model.

• Employing automatic annotations on the customized dataset through Grounded SAM
and Grounding Dino, followed by training the model with YOLO.

• Manually annotating the customized dataset using Azure Custom Vision specifically
tailored for battery data.

A- Manual Annotation of Data set using Roboflow

For this experiment, first of all, Data is collected and uploaded in Roboflow and then manual
annotations were done and then the data set is fed into yolov5xu.pt model for 186 MB of
data for 100 epochs.The results of Box loss,Class loss and Object loss was calculated.The
trained models are present in the following URLs.The results are displayed in fig 5.6 -5.10
YoloV5xu Trained Model for detection -
https://hub.ultralytics.com/models/LXlwdhvNAwnvMndtKGw4
YOLOv8x Trained Model for detection -
https://hub.ultralytics.com/models/YEA2yKPgWCkbpzcpj9Qr
Azure API - Is domain restricted API and hence could not share the link

50

https://hub.ultralytics.com/models/LXlwdhvNAwnvMndtKGw4
https://hub.ultralytics.com/models/YEA2yKPgWCkbpzcpj9Qr

[Yolov5]

[YOLOV8]

Figure 5.6: YOLOV5 vsYOLOV8 Box Loss

51

[Yolov5]

[YOLOV8]

Figure 5.7: YOLOV5 vsYOLOV8 object Loss

52

[Yolov5]

[YOLOV8]

Figure 5.8: YOLOV5 vsYOLOV8 class Loss

53

[Yolov5]

[YOLOV8]

Figure 5.9: Confidence Score Yolov5 vs Yolov8

54

Figure 5.10: Overall Metric Performance in YoloV5vs YOLOV8

B - Manual Detection using Azure Custom vision AI

Implementation steps

• Step1: Login to Azure portal https://www.customvision.ai/

• Step2: Create a project as shown in the figure 5.11

• Step3: Upload Images

• Step4: Unlike Roboflow,Azure requires minimum of 15 tagging of images based on the
classes. In our example, it was 6 classes like batteries,industrial batteries and so on

• Step5: Once trained,prediction of images can be done as shown in figure 5.12 and 5.13

• Step6:Overall mAP, precision and recall can be seen in the figure for same custom
dataset which is fed into Azure Custom AI training as shown in the figure 5.15

• Step7: APIs can be invoked to be used in SDKs and hence this is one of the easiest
ways to train model as shown in the figure 5.14

55

https://www.customvision.ai/

Figure 5.11: Azure Custom AI Project creation

Figure 5.12: Azure Custom AI Predictionresult1

5.2.3 Inference:

Comparison of Performance Metrics

56

Figure 5.13: Azure Custom AI Predictionresult2

Figure 5.14: Azure Custom AI API

Yolov5 vs Yolov8 vs Azure Custom AI

In the comparison between YOLOv5 and YOLOv8, the loss graphs depict the training
progress. The x-axis represents epochs, while the y-axis represents percentages. An ideal

57

Figure 5.15: Azure Custom AI Dashboard

Comparison Metrics YOLO5xu YOLOv8x Custom AI
Dataset training 296 Custom images 296 Custom images 225 Custom images

Annotations Manually using Roboflow Manually using Roboflow Manual Training
mAP50(B) 0.59 0.613 0.715

mAP50-95(B) 0.278 0.354 Common mAP
Precision 0.733 0.796 0.847
Recall 0.596 0.597 0.592

Image Size 640 640 Min:256,Scale ratio:25:1

Table 5.1: Comparison of metrics of YoloV5detection model vs YOLOV8 detection modelvs Azure
Custom AI

loss graph would show a decrease in the y-axis (loss) as the number of epochs increases.
Overfitting occurs when the loss approaches zero.
For all losses- box loss,class loss and object loss, the training model exhibits a decreasing
trend with an increasing number of epochs on the x-axis. However, the validation set does
not follow the same pattern. This discrepancy suggests that during validation, the model
recognizes that the data is not being detected as expected, leading to a drop in precision,
recall, and overall loss.

• Differences in Prediction results In the output directory, when identical images were
observed for validation, as illustrated in the figure below,fig 5.16 and fig 5.17, it is
evident that in some of the images, the YOLOV5 model failed to correctly identify the
objects and vice versa.

• The total time taken for training a dataset in YOLOV8 was comparitively lower than
YOLOV5 and based on the metrics

• Both the models exhibit Bird’s eye view of prediction proficiently well :Both YOLOV5
and YOLOV8 exhibit proficient detection capabilities for smaller batteries when ob-
served from a bird’s eye view as shown in the fig 5.18 and 5.19

• Comparison of Precision and Recall While plotting graphs of Precision and Recall for
both the models, YOLOV8 outsmarts YOLOV5 by marginal numbers as shown in the
figure 5.20

• In Azure Custom AI, the mAP (mean Average Precision) score is reported as 71.5%,
with a precision score of 84.7% and a recall of 59.2%. These scores indicate that the
model exhibits a lower rate of false positives, resulting in a higher precision score.

58

However, the higher number of false negatives contributes to a lower recall score. In
situations where there is an imbalance between recall and precision, the F1 score may
be affected, reflecting the trade-off between these two metrics.

• The reported confidence percentages for all three models are consistent at 0.25%.
YOLOv8 achieving 61.3% and Azure Custom AI achieving 71.5% for image detection
suggest effective performance of these models in identifying objects with confidence.

59

[Yolov5]

[YOLOV8]

Figure 5.16: Validation of predicted Object Detection in YoloV5 and YOLOv8

60

[Yolov5]

[YOLOV8]

Figure 5.17: Validation of predicted Object Detection in YoloV5 and YOLOv8

61

[Yolov5]

[YOLOV8]

Figure 5.18: Bird’s eye view validation of images in YoloV5 and YOLOv8

62

[Yolov5]

[YOLOV8]

Figure 5.19: Bird’s eye view validation of images in YoloV5 and YOLOv8

63

[Yolov5]

[YOLOV8]

Figure 5.20: Precision and Recall Differences in Yolov5 and Yolov8 across 100 Epochs

64

5.3 GroundingDINO

5.3.1 Objective

While GroundingDINO is designed as a zero-shot object identifier, its performance metrics
are assessed within the context of Grounded SAM. This experiment aims to evaluate the
effectiveness and capabilities of GroundingDINO in practical applications.
For image detection, data was input into GroundingDINO. GroundingDINO is a pre-trained
model that doesn’t require additional training as it is already trained on a diverse set of
images.This indicates that GroundingDINO comes pre-trained on a vast database. However,
the purpose of this experiment is to assess how well this model performs in the specific use
case of recycling industry batteries.One intriguing aspect of GroundingDINO is its ability to
classify objects without getting confused by the background. On the contrary, the different
distribution of environments and the presence of diverse objects like woods and logs in the
dataset, can indeed impact the performance of GroundingDINO. It’s crucial to recognize
that models like GroundedSAM heavily rely on the characteristics and patterns present in
their training data from GroundingDINO. In cases where the dataset includes a variety of
environments and objects not well-represented during training, the model may struggle to
accurately generalize to such scenarios.
The higher incidence of false positives, particularly in the presence of wood and logs, can
lead to a decrease in precision. Addressing this issue may involve strategies as suggested by
[12]such as:

1. Data Augmentation: Expanding the diversity of the training dataset through tech-
niques like data augmentation, ensuring the model encounters a broader range of sce-
narios during training.

2. Fine-Tuning: If feasible, fine-tuning the model on a dataset that more closely resembles
the testing environment can enhance its ability to handle specific challenges.

3. Adjusting Thresholds: Experimenting with confidence thresholds for predictions may
help in filtering out false positives, although it requires careful consideration to avoid
affecting overall recall negatively.

4. Curated Dataset: Ensuring that the dataset used for training is well-curated, balanced,
and representative of the target environment can contribute to better generalization.

By iteratively refining the model and addressing specific challenges in the dataset, the per-
formance of GroundingDINO in diverse environments can be improved.

5.3.2 Steps Taken

GroundingDINO can be installed and can be used by 4 lines of script[38].

%cd {HOME}
!git clone https://github.com/IDEA-Research/GroundingDINO.git
%cd {HOME}/GroundingDINO
!pip install -q -e .

by this code, GroundingDINO model can be downloaded directly from github .To configure
a model there are two important things which are required Configuration path and weights
which has already been downloaded in a previous step

IMAGE_NAME = "dataset/Image1.jpg"
IMAGE_PATH = os.path.join(HOME, "data", IMAGE_NAME)

65

TEXT_PROMPT = "battery. wires. cylindricalbattery. rectangularbattery."
BOX_TRESHOLD = 0.30
TEXT_TRESHOLD = 0.25

image_source, image = load_image(IMAGE_PATH)

boxes, logits, phrases = predict(
model=model,
image=image,
caption=TEXT_PROMPT,
box_threshold=BOX_TRESHOLD,
text_threshold=TEXT_TRESHOLD

)

annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)

%matplotlib inline
sv.plot_image(annotated_frame, (10, 10))

In this section of the code, an input image is provided. In the second part, a text prompt is
given to instruct the algorithm on what objects to detect. Additionally, Box Threshold and
Text Threshold are specified, indicating the desired confidence percentage for the model to
detect an object. In the example mentioned, the model is configured to detect objects with
a confidence level above 30%.

5.3.3 Inference

GroundingDINO performs well in identifying batteries of various shapes, such as cylindrical,
circular, rectangular, cubic, and cuboidal. It is capable of identifying even small batteries,
as demonstrated in the example where a tiny battery was successfully detected as shown in
fig 5.22. However, it’s important to note that GroundingDINO associates the concept of a
"battery" with its shape as shown in the figure 5.21. In cases where images contain objects
that resemble the shape of a battery, such as wood logs as shown in fig 5.22 with a rectangular
shape, the model may falsely identify them as batteries, albeit with lower confidence. In
the experiment involving approximately 150 images, GroundingDINO demonstrated strong
performance in environments with real batteries but produced false positives in environments
with different objects like wood logs. In fig 5.23,even Microwave oven is identified as a battery
falsely
The visual examples provided highlight the strengths and limitations of GroundingDINO in
battery detection:

1. Grounding DINO-Prediction 1: The model successfully predicts and identifies batteries
correctly, showcasing its robust performance in detecting batteries irrespective of the
background.(fig 5.21)

2. Grounding DINO-Prediction 2: Some wood logs with a rectangular shape are mistak-
enly identified as batteries. This indicates a limitation where the model might associate
the rectangular shape with the concept of a battery, leading to false positives.(fig 5.22)

3. Grounding DINO-Prediction3: In this case, a microwave is incorrectly detected as a
battery. This demonstrates a scenario where the model may misinterpret objects that
do not conform to the expected characteristics of a battery.(fig 5.23)

66

Figure 5.21: GroundingDINO-Prediction1

Figure 5.22: GroundingDINO-Prediction 2

67

Figure 5.23: Grounding DINO-Prediction 3

These examples emphasize the importance of understanding the context and potential chal-
lenges associated with zero shot object detection models like GroundingDINO, especially in
scenarios with diverse objects and backgrounds. Further refinement and fine-tuning may be
necessary to address specific false positive cases and improve overall accuracy.

68

Figure 5.24: Annotated Images from Roboflow

5.4 Image Segmentation using Roboflow,YOLO Models and Grounded
SAM

To address the concerns outlined in problem statement 3, a solution involves capturing images
when objects, including keyboards, bulbs, lamps, and batteries, are in motion on a conveyor
belt. The crucial aspect is to perform segmentation specifically for batteries, ensuring their
distinct identification in the midst of various materials. Therefore, the segmentation process
was executed using YOLO models. In this section, segmentation using both YOLOv5 and
YOLOv8 was undertaken, alongside instance segmentation utilizing Grounded SAM. The
outcomes of these segmentation methods were compared to determine the most effective
model for application in the product.

5.4.1 Objective

GroundedSAM employs a zero-shot image detection and segmentation technique, enabling
autonomous detection of images. Nevertheless, when applied to custom data, numerous
false positives were observed. Additionally, training data with GroundedSAM and Ground-
ingDINO becomes time-consuming, especially when dealing with large image resolutions.
Upon uploading the GroundedSAM dataset into the YOLO model for metric calculation, it
was observed that the precision obtained was lower compared to a manually annotated and
trained YOLOv8 model. In the comparison between the YOLOv5 segmentation model and
the YOLOv8 segmentation model, it was noted that YOLOv5 exhibits fast model training.
However, in terms of instance segmentation, YOLOv8 outperforms both models, demon-
strating superior performance.

5.4.2 Steps Taken

After manually annotating 60 images using Roboflow, the model was trained using yolov5s-
seg.pt. and yolov8s-seg.pt respoectively and the data set was called from the Roboflow API,
and the obtained results are detailed as follows:

5.4.3 Inference

The following table consists of many parameters and each parameter explains the differences
in performance such as :

Epochs

-All models were trained for 50 epochs

69

Figure 5.25: Instance Segmentation-Yolov8 Manually annotated images

Figure 5.26: Instance Segmentation-Yolov8 using GroundedSAM

Figure 5.27: Instance Segmentation-Yolov5 Using Manually annotated images

Figure 5.28: Instance Segmentation -Yolov5 using Grounded SAM

70

Dataset

- All Models were trained on 60 images which includes augmentations

train/box_loss

- This parameter means that more the box_loss value is more deviation exists between
Ground truth and predicted value

train/seg_loss

- This parameter means that more the loss is deviation of segmentation annotated using
smart polygons with predicted values differ a lot

train/cls_loss

- This parameter means that more the value is, more the loss of classification

train/dfl_loss

-DFL stands for distributed focal loss which is meant to optimize boundary box boundaries,
the more compact the bbox is better the segmentation and hence if the value in this factor
is more, wider is the boundary box

metrics/Precision

- Thes metrics will be repreated twice with B and M where B signifies Best of all values and
M represents Macro average.In all these rows, more the value is better the performance and
this holds true for various other metrics as follows:

• metrics/mAP50(B) Mean Average precision value with IoU confidence range less than
50

• metrics/mAP50-95(B) Mean Average precision value with IoU confidence range less
than 95 and more than 50

• metrics/precision(M)

• metrics/recall(M)

• metrics/mAP50(M)

• metrics/mAP50-95(M)

val/box_loss

- This parameter means that more the box_loss value is more deviation exists between
Ground truth and predicted value,This metrics is for Validation data

val/seg_loss

- This parameter means that more the loss is deviation of segmentation annotated using
smart polygons with predicted values differ a lot.This metrics is for Validation data

Val/cls_loss

- - This parameter means that more the value is, more the loss of classification.This metrics
is for validation

71

Segmentation YOLOV8 Grounded SAM-YOLOV8 YOLOV5 GSAMYOLOv5
epoch 50 50 50 50

Dataset 60 60 60 60
train/boxloss 1.084752 2.26512 0.11302139 0.123149373
train/segloss 2.001162 2.4467446 0.089526784 0.086745941
train/clsloss 1.5459318 2.792062 0.021174098 0.024479784
train/dflloss 1.0873678 1.88914 0.034321843 0.040543569

metrics/precision(B) 0.7138844 0.4 0.001921739 0.107298652
metrics/recall(B) 0.3027166 0.3666884 0.098039 0.096240667

metrics/mAP50(B) 0.2778142 0.167597 0.022145275 0.033259044
metrics/mAP50-95(B) 0.1613134 0.041063 0.00737086 0.008485959
metrics/precision(M) 0.6897268 0.3847366 0.004606759 0.261771252

metrics/recall(M) 0.2741694 0.2734862 0.123507451 0.175978863
metrics/mAP50(M) 0.235001 0.1480624 0.043327351 0.091815693

metrics/mAP50-95(M) 0.1137376 0.0362958 0.015972111 0.030961466
val/boxloss 1.764864 2.733034 0.12153008 0.12244308
val/segloss 3.045642 2.51341 0.0969484 0.09714994
Val/clsloss 2.975968 3.079798 0.009203312 0.011306654
val/dflloss 1.768856 2.335256 0.05549036 0.05274348

lr/pg0 0.02767023 0.051749898 0.0763492 0.0763492
lr/pg1 0.003170231 0.00174983 0.000849169 0.000864499
lr/pg2 0.003170231 0.00174983 0.000849169 0.000864499

Table 5.2: Segmentation-Comparison

val/dfl_loss

- -DFL stands for distributed focal loss which is meant to optimize boundary box boundaries,
the more compact the bbox is better the segmentation and hence if the value in this factor
is more, wider is the boundary box.This metrics is evaluated for Validation

lr/pg0

- lr stands for Learning Ratio as all models for simplification creates batches and in this case
its a learning rate for Pg0.Better the value is better the learning rate

lr/pg1

- lr stands for Learning Ratio as all models for simplification creates batches and in this case
its a learning rate for Pg1.Better the value is better the learning rate

lr/pg2

- lr stands for Learning Ratio as all models for simplification creates batches and in this case
its a learning rate for Pg2.Better the value is better the learning rate
All the Values obtained in a table is an average sum of values from 50 epochs
Again, it is clearly seen that YOLOV8 manually annotated data outperforms rest of the
model.The results of validation batches can be seen in fig 5.29

72

[Yolov5]

[Yolov8]

[GroundedSAM]

Figure 5.29: Instance Segmentation validation data of Yolov5,Yolov8 and GroundedSAM

73

5.5 Health Dashboard and Chat bot

5.5.1 Objective

A health dashboard is designed to provide users in a plant with comprehensive statistics on
batteries, including different types of batteries at different timings. This enables users to
identify patterns and trends in the battery data.

To address problem statement 4, two components were developed. Firstly, a visual dash-
board was created to provide statistics on the uploaded data. Additionally, a specialized
chat bot function was implemented, enabling users to query information from the generated
data. The dashboard was created using Stream lit App, a web application developed with
a Python library. As far as chatbot is concerned, its created by using the Lang chain with
Pine cone vector database

5.5.2 Steps Taken

In Streamlit, code can be deployed either on Streamlit Cloud or through Docker or Ku-
bernetes.For this thesis, the application is deployed on Streamlit Cloud. As part of the
prerequisites, a GitHub link needs to be created, and the code is stored in a repository,
providing access for the Streamlit app to access the GitHub code. In GitHub, after up-
loading the code, a requirements.txt file needs to be added, including all dependencies such
as matplotlib, pandas, etc. Below is a sample output graph illustrating how the dashboard
would appear. The sample code can be found at the GitHub location mentioned in the above
section.??
The dashboard is also integrated with a customized chatbot using Langchain and Pinecone
vector database. It provides specific outputs based on the input documents, enhancing the
user interaction experience. For the purpose of demonstration, A table with login details
and logout details were given as an input to show the results. In the future, a live stream
video with a count of batteries will be incorporated into the dashboard

5.5.3 Inference

Visual dashboards have a positive impact as they make it easy for users to understand pat-
terns. These patterns can be related to the type of data batch, timing, or even geographical
locations.This would also serve as an effective proof of concept package.

74

Figure 5.30: Health Dashboard

75

Figure 5.31: chatbot with langchain

76

Chapter 6

Discussions

6.1 Methodology and Approaches:

6.1.1 Effectiveness of manual annotations using Roboflow

In recent times, there has been significant progress and emphasis on the field of deep learning.
Reflecting on the past six months since the initiation of this thesis, notable improvements are
evident in the Roboflow interface. Specifically, for annotating image detections, the creation
of ground truth boxes is crucial, demanding high precision, especially in instances where
batteries are closely positioned in recycling datasets. Regarding instance segmentation,
the requirement for polygon annotations has been streamlined with the introduction of a
new feature in Roboflow known as "smart polygons." This recent addition simplifies the
segmentation annotation process, a task that previously consumed considerable time when
utilizing the polygon tool. The introduction of such features is not only intriguing but
also holds significant importance for industrial applications, where data accuracy at the
millimeter level is imperative for defect detection. Roboflow offers an additional benefit by
allowing users to convert the dataset into their preferred format. The integration of Roboflow
with Ultralytics, the developer of Yolov5 and Yolov8, proved to be an added advantage for our
project. This integration facilitated the invocation of an API, enabling seamless integration
with Ultralytics for training purposes.Ref fig 6.1

6.1.2 Impact of Auto annotations

Following this Proof of Concept (PoC) project, the intention is to develop a working pro-
totype for recycling industries. The challenge lies in collecting thousands of images and
manually annotating them, which can be a tedious task. While Roboflow offers an "auto
label" option from a previous dataset, it still involves semi-supervised learning. Looking
ahead, with the continuous advancements in computer vision, the expectation is that auto-
annotations will become a future approach to training models. This method is anticipated
to provide robust and feasible options, particularly for startup companies where allocating
resources for manual annotations may not be practical.
It is truly remarkable how technologies like Grounding DINO and Grounded SAM, embody-
ing state-of-the-art architectures, shape the future of deep learning. In the course of this
thesis, a significant challenge emerged during the training of Grounded SAM, mainly due
to its intensive computational requirements. Attempts to train the model with a dataset
comprising 294 images consistently led to system hang-ups, even with the contribution of a
single GPU in the hardware setup. In response to this constraint, the segmentation dataset
was downsized to just 29 images, which were augmented to over 60 images using various
preprocessing techniques such as flipping and contrast adjustments. This reduced dataset
was then utilized for training both YOLOv5 and YOLOv8.
Information sourced from the Ultralytics page [12] indicates that achieving optimal instance

77

Figure 6.1: Roboflow workflow

78

segmentation results with Grounded SAM necessitates pretraining on a dataset comprising
over 1000 images. However, given the recent development of Grounded SAM, future en-
hancements may lead to a reduction in computational demands, making it more viable for
training on larger datasets.

6.1.3 Comparison of Results

Image Detection

In the domain of image detection, the results displayed in Table 5.1 reveal that the mAP50(B)
is 59%, 61.3%, and 71.5% for YOLOv5, YOLOv8, and Azure Custom AI, respectively,
with manually annotated datasets. The mAP50-95(B) scores stand at 27.8% and 35.4% for
YOLOv5 and YOLOv8 models. Furthermore, when examining precision and recall, YOLOv8
with manually annotated images emerges as the top-performing model as explained in table
5.1.

Comparisons were conducted among YOLOv5, YOLOv8, and Azure Custom Vision for im-
age detection. Additionally, a comparative analysis was performed between manual segmen-
tation using YOLOv8 and YOLOv5 models and GroundedSAM data in both YOLOv8 and
YOLOv5 models to assess and contrast the results. The selection of these models for com-
parison was deliberate and based on specific considerations. Firstly, YOLO models, namely
YOLOv5 and YOLOv8, were chosen for two main reasons: 1. Both models are developed
by Ultralytics, which provides robust API support and seamless integration with tools like
Roboflow. 2. These models are considered state-of-the-art, and research papers [31][30] have
conducted comparisons between YOLOv5 and YOLOv8, with conflicting findings on which
model performs better in terms of detection capabilities.
Azure Custom AI was specifically selected for this project due to its relevance and alignment
with a similar project undertaken by Azure in Norway. The Norwegian project, known as
"esmartz," focuses on sustainable industry practices and involves the use of custom data.
This made Azure Custom AI an ideal choice for the current project, ensuring consistency
and compatibility with the goals and objectives of both initiatives. The deliberate omis-
sion of auto annotation for image detection using Grounded SAM stems from its reliance
on GroundingDINO images as input for segmenting images. The performance of Ground-
ingDINO has been rigorously tested through manual screening of all outputs, with the results
and observations elaborated in Section 5.4.

Image Segmentation

In terms of segmentation, YOLOv8 exhibited a performance of 27.78% on manually anno-
tated images, whereas Grounded SAM’s segmented images, trained on YOLOv8, achieved a
score of 16.67%. on average of metrics/mAP0.5(B) and 16.13% and 4.1% on metrics/mAP50-
95(B) . Once again, in the realm of segmentation, YOLOv8 with manual annotations show-
cased superior performance compared to other models, as outlined in Table 5.2.

6.2 challenges

Challenge1

One of the initial challenges encountered was related to the dataset. Despite the vast number
of images available in extensive datasets like ImageNet and COCO, acquiring a sufficient
number of battery images posed a significant challenge. The initial dataset was scraped
from Roboflow Universe, consisting of generic images. However, when the model was trained
on YOLOv8 and subsequently implemented as a mobile app using Ultralytics Mobile App
with a custom dataset, issues arose. The model struggled to detect batteries in diverse

79

backgrounds, and problems with image resolutions were evident. Consequently, collaboration
with the CEO of StellAI was necessary, involving the capture of real-time images. This led
to a restart of the annotation, training, and comparative analysis processes. Despite the
challenges, sourcing a battery dataset tailored to the recycling industry proved to be a
complex task.

Challenge 2

The selection of a suitable model and technology for deep learning in image detection and
segmentation posed a considerable challenge due to the abundance of state-of-the-art models.
The decision-making process involved extensive brainstorming, with a primary focus on cre-
ating a sustainable solution for industrial applications. While YOLOv6 was designed specif-
ically for industrial datasets, the versatility and recent advancements observed in YOLOv5
and YOLOv8 from Ultralytics made them potential candidates for sustainability. The choice
was further influenced by the seamless integrations these models offer with various technolo-
gies. Additionally, Microsoft Azure was considered as a plug-and-play technology, ensuring
accessibility for users without a development background. This alternative was carefully
evaluated to cater to a broader range of customers.

Challenge 3

As detailed in an earlier section, the challenge of training GroundedSAM on multiple images
with higher resolution led to the decision to train the model in multiple batches. However,
this approach resulted in challenges, such as the creation of duplicate projects in Roboflow
when collecting mini-batches of images. This added complexity and significantly extended
the time required, surpassing even the annotation process for the 300 images. Due to these
constraints, the image dataset was restricted, limiting the potential for more extensive sam-
pling. It is acknowledged that expanding the dataset could have contributed to improved
efficiency. In the Idea Research GitHub repository, issues related to the performance of
GroundedSAM are documented. There are speculations that GroundingDINO might be
contributing to the slowing down of GroundedSAM. It is suggested that waiting for this
model to mature further before retraining might be a prudent approach [38]

6.3 Dataset Considerations

Fei Fei Li, a distinguished scientist, adopted a unique perspective in 2006 by focusing on
image datasets while many others were engrossed in improving and creating new models[13]
Her groundbreaking work on the ImageNet idea, coupled with the creation of a comprehen-
sive dataset, has played a pivotal role in the flourishing field of computer vision. While the
advancements in models are awe-inspiring, it’s crucial to acknowledge the significant role
played by datasets and training datasets. In the context of this thesis, the emphasis is on
collecting a specific dataset for the recycling industry, particularly a battery dataset. Train-
ing this dataset with state-of-the-art models is expected to enhance efficiency significantly.
The plan is to continue collecting more images and continually train them on state-of-the-art
models to identify batteries effectively, serving the intended purpose.

6.4 Future Directions and Improvements:

• In prior discussions, it was emphasized that creating an exhaustive dataset is imper-
ative. The objective is to augment the database, and with each subsequent iteration
involving a new dataset and the application of transfer learning, there is an anticipation
of a progressive enhancement in the model.

80

Figure 6.2: RepViT-SAM

• The application of this product extends beyond the recycling industry; it can also find
utility in settings where battery examinations are essential, such as quality checks in a
battery manufacturing unit.

• This system’s capabilities can be further extended by incorporating robotic arms,
thereby achieving a fully autonomous ecosystem. Integration with the Robot Operating
System (ROS) would enhance the overall functionality and efficiency of the system.

• The future outlook for Grounded SAM appears promising, with several noteworthy
features on the horizon, as indicated in the [38] Github updates from the Idea Research
center. Notable features that could prove beneficial for the recycling battery industry
include:
1. Grounded-Mobile SAM: Enabling employees to scan conveyor belts directly from
their mobile devices, providing a lightweight and user-friendly solution. 2. RepViT-
SAM: This feature allows for the instant segmentation of images, as demonstrated in
the figure. A demo of this capability can be accessed via the Hugging Face like [33]

6.5 Integrations with Health Dashboard

• Within the scope of this thesis, the focus for the dashboard has been on utilizing
Streamlit and Langchain as the front-end application, with the YOLOv8 trained dataset
model serving as the input. Currently, a dashboard has been developed using the
results.csv file generated from the model. As a potential improvement, there is a plan
to incorporate a URL input feature on the webpage. If a video link is provided, the
dashboard will dynamically update the count of batteries. For instance, a sample video
has been produced using Grounded SAM, along with counters utilizing the OpenCV
library, and is accessible at the following link: Sample Video. The plan is to replace the
existing algorithm with YOLOv8 in the backend and integrate it with video streaming
capabilities in Streamlit .The advantage of employing Streamlit and the YOLO model
is the cost-effectiveness, as all components are free of charge, except for the OpenAI
API. However, it’s crucial to note that continuous training of models, maintenance

81

https://www.youtube.com/watch?v=ZUVzTaW8cXA

of libraries and software, and adaptation to evolving technology may require constant
updates and version changes in the program.

• If customers prefer to utilize the commercial product, the integration of Azure Custom
AI as the backend, Power BI as the frontend, and Microsoft Chatbot can be facilitated,
aligning with the project’s roadmap.The advantage of utilizing an Azure Custom Vision
dashboard lies in its plug-and-play functionality, easy installation, and streamlined
feedback provision to the model. However, it’s important to note that every component
of Azure comes with associated costs.

6.6 Discussion on Contributions

• To summarize the contributions and conclusions discussed in Section 1.4:

1. Custom Dataset Contribution: A significant contribution of this research is the
creation and utilization of a custom dataset focused on batteries. This dataset
serves as a valuable resource for future research in the field.

2. Proof of Concept (PoC) Development: The development of a Proof of Concept
(PoC) is a notable achievement. The PoC leverages technologies such as Streamlit
and Langchain, as elaborated in Section 5.5. This demonstrates the practical
implementation of the research findings.

3. Comparative Analysis and Recommendations: A comprehensive comparative anal-
ysis has been conducted, highlighting that YOLOv8 with manual annotations ex-
cels in both image detection and segmentation. This suggests that for commercial
applications, an alternative approach involving Azure Custom AI, PowerBI, and
a Chatbot could be considered for enhanced functionality and user interaction.

These contributions collectively form a foundation for advancements in battery-related
research, showcase practical application through the PoC, and offer insights for selecting
appropriate technologies for commercialization.

6.7 Discussion on Hypothesis

In Section 1.5, it has been discussed that while the results of GroundedSAM and
GroundingDINO are promising for generic datasets encompassing common categories
such as humans, cars, and animals, there is a debate regarding their suitability for a
custom battery dataset at the current stage. Consequently, the alternate hypothesis
suggests that YOLOv8 and Azure Custom AI, particularly when trained with manually
annotated images, offer better performance for the specific requirements of the custom
battery dataset. This comparison emphasizes the importance of choosing models and
technologies that align with the characteristics and nuances of the targeted dataset.

82

Chapter 7

Conclusions

Image detection and segmentation have indeed seen significant advancements in recent
years, driven by the continuous research and development in the field of computer vision
and deep learning. The abundance of image data and the growth of custom datasets
tailored for specific industries contribute to the progress of these technologies. The
need for fine-tuned datasets specific to certain domains, such as the recycling industry
in this case, is crucial for developing accurate and reliable models that can address
industry-specific challenges.
As technology evolves, the demand for sophisticated image processing techniques, in-
cluding detection and segmentation, is likely to increase across various sectors. Custom
datasets allow machine learning models to be trained on domain-specific patterns and
nuances, improving their performance in real-world scenarios. It’s an exciting time
for the intersection of computer vision and industry applications, and this work in the
recycling industry will be a tip of an iceberg to this ongoing progress.

GroundingDINO and Grounded SAM represent recent innovations in advanced deep
learning, demonstrating effective auto-annotations across various categories. Their re-
markable capability to detect even the smallest objects is noteworthy. However, our
experiments revealed several false positives in GroundingDINO, where it tends to gen-
eralize batteries as rectangular or cylindrical objects. This leads to instances where
even rectangular wood logs are misidentified as batteries, causing Grounded SAM to
produce false positives since it relies on Grounding DINO’s input. Therefore, based
on our hypothesis, we conclude that both GroundingDINO and Grounded SAM still
require industry-specific training datasets. Until this refinement occurs, the alternative
hypothesis remains valid, Annotating data manually on Battery datset on both Azure
Custom AI and YOLOV8 showed promising results with better performance and better
MAp score.

The comparison among YOLOv5, YOLOv8, and Azure Custom AI reveals that Azure
Custom AI and YOLOv8 exhibit superior performance. Moreover, providing more data
with complex backgrounds is expected to enhance performance efficiency even further.
Consequently, StellAI aims to present two models to its customers .In the first setup,
Azure Custom AI will operate in the backend, and the dashboard will be developed
using POWER BI. As a second model, YOLOv8 will function as a training model in
the backend, and Streamlit will serve as the front-end web UI.

83

Appendix A

Abbreviation

– AI Artificial Intelligence
– BBOX Boundingbox
– BiFPN Bidirectional Feature Pyramid Network
– CLIP The Contrastive Language Image Pre-training
– CNN Convolution Neural Network
– DeTR Detection Transformer
– DL Deep Learning
– FPN Feature Pyramid Network
– GAN Generative Adversarial Network
– GLIP Grounded Language Image Pre-Training
– GPU Graphical Processing unit
– ICT Information of Communications Technology
– LLM Large Language model
– lr Learning Rate
– PoC Proof of concept
– ReLu Rectified Linear Unit
– RNN Recurrent Neural Network
– SA-1B Segment Anything- 1 Billion
– SiLu Sigmoid Liner Unit
– SWIN Shifted Window Transformer
– UiA University i Agder
– ViT Visual Transformer
– YOLO You Only Look Once

84

Bibliography

[1] [1]Risefr.no.[Online].Available:https://risefr.no/media/publikasjoner/
upload/2019/rise-rapport-2019-61-branner-i-avfallsanlegg.pdf.[Accessed:
04-Jan-2024].. [Accessed 05-01-2024].

[2] âĂœPrecision-Recall,âĂİscikit-learn.[Online].Available:https://scikit-
learn/stable/auto_examples/model_selection/plot_precision_recall.html.
[Accessed:05-Jan-2024].. [Accessed 05-01-2024].

[3] H.Borse, âĂœCNNâĂŤquicklearn- AnalyticsVidhya- Medium, âĂİAnalyticsVidhya,
09-May-2020.[Online].Available:https://medium.com/analytics-vidhya/cnn-
quick-learn-12dced578b01.[Accessed:05-Jan-2024].. [Accessed 05-01-2024].

[4] Ultralytics,âĂœArchitectureSummary,âĂİUltralytics.com.[Online].Available:
https://docs.ultralytics.com/yolov5/tutorials/architecture_description.
[Accessed:05-Jan-2024].. [Accessed 05-01-2024].

[5] Ultralytics,âĂœloss,âĂİUltralytics.com.[Online].Available:https://docs.
ultralytics.com/reference/utils/loss.[Accessed:05-Jan-2024].. [Accessed
05-01-2024].

[6] Ultralytics,âĂœloss,âĂİUltralytics.com.[Online].Available:https://docs.
ultralytics.com/reference/utils/loss.[Accessed:05-Jan-2024].. [Accessed
05-01-2024].

[7] Introduction(nodate)Roboflow.com.Availableat:https://docs.roboflow.com/
(Accessed:December25,2023).. [Accessed 05-01-2024].

[8] S.Kirch,âĂœGLIP:Introducinglanguage-ImagePre-trainingtoobjectdetection,
âĂİTowardsDataScience,01-Sep-2023.[Online].Available:https://towardsdatascience.
com/glip-introducing-language-image-pre-training-to-object-detection-
5ddb601873aa.[Accessed:05-Jan-2024].. [Accessed 05-01-2024].

[9] GLIP:GroundedLanguage- ImagePre- training.https://github.com/microsoft/
GLIP.. [Accessed 05-01-2024].

[10] âĂœYOLOv8vs.YOLOv5:ChoosingtheBestObjectDetectionModel,âĂİAugmentedstartups.
com.[Online].Available:https://www.augmentedstartups.com/blog/yolov8-vs-
yolov5-choosing-the-best-object-detection-model.[Accessed:05-Jan-2024]..
[Accessed 05-01-2024].

[11] LICENSEatmasterÂůultralytics/yolov5.Availableathttps://github.com/ultralytics/
yolov5/blob/master/LICENSE. [Accessed 05-01-2024].

[12] Ultralytics,âĂœTipsforBestTrainingResults,âĂİUltralytics.com.[Online].Available:
https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_
results.[Accessed:05-Jan-2024].. [Accessed 05-01-2024].

[13] R.Chow,âĂœImageNet:Apioneeringvisionforcomputers,âĂİHistoryofDataScience,
27- Aug- 2021.[Online].Available:https://www.historyofdatascience.com/
imagenet- a- pioneering- vision- for- computers/.[Accessed:05- Jan- 2024]..
[Accessed 05-01-2024].

85

[1] Risefr.no. [Online]. Available: https://risefr.no/media/publikasjoner/upload/2019/rise-rapport-2019-61-branner-i-avfallsanlegg.pdf. [Accessed: 04-Jan-2024].
[1] Risefr.no. [Online]. Available: https://risefr.no/media/publikasjoner/upload/2019/rise-rapport-2019-61-branner-i-avfallsanlegg.pdf. [Accessed: 04-Jan-2024].
[1] Risefr.no. [Online]. Available: https://risefr.no/media/publikasjoner/upload/2019/rise-rapport-2019-61-branner-i-avfallsanlegg.pdf. [Accessed: 04-Jan-2024].
“Precision-Recall,” scikit-learn. [Online]. Available: https://scikit-learn/stable/auto_examples/model_selection/plot_precision_recall.html. [Accessed: 05-Jan-2024].
“Precision-Recall,” scikit-learn. [Online]. Available: https://scikit-learn/stable/auto_examples/model_selection/plot_precision_recall.html. [Accessed: 05-Jan-2024].
“Precision-Recall,” scikit-learn. [Online]. Available: https://scikit-learn/stable/auto_examples/model_selection/plot_precision_recall.html. [Accessed: 05-Jan-2024].
H. Borse, “CNN — quick learn - Analytics Vidhya - Medium,” Analytics Vidhya, 09-May-2020. [Online]. Available: https://medium.com/analytics-vidhya/cnn-quick-learn-12dced578b01. [Accessed: 05-Jan-2024].
H. Borse, “CNN — quick learn - Analytics Vidhya - Medium,” Analytics Vidhya, 09-May-2020. [Online]. Available: https://medium.com/analytics-vidhya/cnn-quick-learn-12dced578b01. [Accessed: 05-Jan-2024].
H. Borse, “CNN — quick learn - Analytics Vidhya - Medium,” Analytics Vidhya, 09-May-2020. [Online]. Available: https://medium.com/analytics-vidhya/cnn-quick-learn-12dced578b01. [Accessed: 05-Jan-2024].
Ultralytics, “Architecture Summary,” Ultralytics.com. [Online]. Available: https://docs.ultralytics.com/yolov5/tutorials/architecture_description. [Accessed: 05-Jan-2024].
Ultralytics, “Architecture Summary,” Ultralytics.com. [Online]. Available: https://docs.ultralytics.com/yolov5/tutorials/architecture_description. [Accessed: 05-Jan-2024].
Ultralytics, “Architecture Summary,” Ultralytics.com. [Online]. Available: https://docs.ultralytics.com/yolov5/tutorials/architecture_description. [Accessed: 05-Jan-2024].
Ultralytics, “loss,” Ultralytics.com. [Online]. Available: https://docs.ultralytics.com/reference/utils/loss. [Accessed: 05-Jan-2024].
Ultralytics, “loss,” Ultralytics.com. [Online]. Available: https://docs.ultralytics.com/reference/utils/loss. [Accessed: 05-Jan-2024].
Ultralytics, “loss,” Ultralytics.com. [Online]. Available: https://docs.ultralytics.com/reference/utils/loss. [Accessed: 05-Jan-2024].
Ultralytics, “loss,” Ultralytics.com. [Online]. Available: https://docs.ultralytics.com/reference/utils/loss. [Accessed: 05-Jan-2024].
Introduction (no date) Roboflow.com. Available at: https://docs.roboflow.com/ (Accessed: December 25, 2023).
Introduction (no date) Roboflow.com. Available at: https://docs.roboflow.com/ (Accessed: December 25, 2023).
S. Kirch, “GLIP: Introducing language-Image Pre-training to object detection,” Towards Data Science, 01-Sep-2023. [Online]. Available: https://towardsdatascience.com/glip-introducing-language-image-pre-training-to-object-detection-5ddb601873aa. [Accessed: 05-Jan-2024].
S. Kirch, “GLIP: Introducing language-Image Pre-training to object detection,” Towards Data Science, 01-Sep-2023. [Online]. Available: https://towardsdatascience.com/glip-introducing-language-image-pre-training-to-object-detection-5ddb601873aa. [Accessed: 05-Jan-2024].
S. Kirch, “GLIP: Introducing language-Image Pre-training to object detection,” Towards Data Science, 01-Sep-2023. [Online]. Available: https://towardsdatascience.com/glip-introducing-language-image-pre-training-to-object-detection-5ddb601873aa. [Accessed: 05-Jan-2024].
S. Kirch, “GLIP: Introducing language-Image Pre-training to object detection,” Towards Data Science, 01-Sep-2023. [Online]. Available: https://towardsdatascience.com/glip-introducing-language-image-pre-training-to-object-detection-5ddb601873aa. [Accessed: 05-Jan-2024].
GLIP: Grounded Language-Image Pre-training.https://github.com/microsoft/GLIP.
GLIP: Grounded Language-Image Pre-training.https://github.com/microsoft/GLIP.
“YOLOv8 vs. YOLOv5: Choosing the Best Object Detection Model,” Augmentedstartups.com. [Online]. Available: https://www.augmentedstartups.com/blog/yolov8-vs-yolov5-choosing-the-best-object-detection-model. [Accessed: 05-Jan-2024].
“YOLOv8 vs. YOLOv5: Choosing the Best Object Detection Model,” Augmentedstartups.com. [Online]. Available: https://www.augmentedstartups.com/blog/yolov8-vs-yolov5-choosing-the-best-object-detection-model. [Accessed: 05-Jan-2024].
“YOLOv8 vs. YOLOv5: Choosing the Best Object Detection Model,” Augmentedstartups.com. [Online]. Available: https://www.augmentedstartups.com/blog/yolov8-vs-yolov5-choosing-the-best-object-detection-model. [Accessed: 05-Jan-2024].
 LICENSE at master · ultralytics/yolov5. Available at https://github.com/ultralytics/yolov5/blob/master/LICENSE
 LICENSE at master · ultralytics/yolov5. Available at https://github.com/ultralytics/yolov5/blob/master/LICENSE
Ultralytics, “Tips for Best Training Results,” Ultralytics.com. [Online]. Available: https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results. [Accessed: 05-Jan-2024].
Ultralytics, “Tips for Best Training Results,” Ultralytics.com. [Online]. Available: https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results. [Accessed: 05-Jan-2024].
Ultralytics, “Tips for Best Training Results,” Ultralytics.com. [Online]. Available: https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results. [Accessed: 05-Jan-2024].
R. Chow, “ImageNet: A pioneering vision for computers,” History of Data Science, 27-Aug-2021. [Online]. Available: https://www.historyofdatascience.com/imagenet-a-pioneering-vision-for-computers/. [Accessed: 05-Jan-2024].
R. Chow, “ImageNet: A pioneering vision for computers,” History of Data Science, 27-Aug-2021. [Online]. Available: https://www.historyofdatascience.com/imagenet-a-pioneering-vision-for-computers/. [Accessed: 05-Jan-2024].
R. Chow, “ImageNet: A pioneering vision for computers,” History of Data Science, 27-Aug-2021. [Online]. Available: https://www.historyofdatascience.com/imagenet-a-pioneering-vision-for-computers/. [Accessed: 05-Jan-2024].

[14] Albumentations Documentation - Bounding boxes augmentation for object detection —
albumentations.ai. https://albumentations.ai/docs/getting_started/bounding_
boxes_augmentation/. [Accessed 05-01-2024].

[15] Md Zahangir Alom et al. “The history began from alexnet: A comprehensive survey on
deep learning approaches.” In: arXiv preprint arXiv:1803.01164 (2018).

[16] Jason Brownlee. “What is the Difference Between a Batch and an Epoch in a Neural
Network.” In: Machine Learning Mastery 20 (2018).

[17] Weipeng Cao et al. “A review on neural networks with random weights.” In: Neurocom-
puting 275 (2018), pp. 278–287.

[18] Ahmed Fawzy Gad. “Evaluating object detection models using mean average precision
(mAP).” In: PaperspaceBlog (2020).

[19] Muhammad Hussain. “YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complemen-
tary Nature toward Digital Manufacturing and Industrial Defect Detection.” In: Ma-
chines 11.7 (2023), p. 677.

[20] Mohammad Khorasani, Mohamed Abdou, and Javier Hernández Fernández. “Streamlit
Use Cases.” In: Web Application Development with Streamlit: Develop and Deploy Secure
and Scalable Web Applications to the Cloud Using a Pure Python Framework. Springer,
2022, pp. 309–361.

[21] Alexander Kirillov et al. “Segment anything.” In: arXiv preprint arXiv:2304.02643 (2023).

[22] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” In: nature 521.7553
(2015), pp. 436–444.

[23] Jing Li et al. “Brief introduction of back propagation (BP) neural network algorithm
and its improvement.” In: Advances in Computer Science and Information Engineering:
Volume 2. Springer. 2012, pp. 553–558.

[24] Liunian Harold Li et al. “Grounded language-image pre-training.” In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 10965–
10975.

[25] Shilong Liu et al. “Grounding dino: Marrying dino with grounded pre-training for open-
set object detection.” In: arXiv preprint arXiv:2303.05499 (2023).

[26] Ze Liu et al. “Swin transformer: Hierarchical vision transformer using shifted windows.”
In: Proceedings of the IEEE/CVF international conference on computer vision. 2021,
pp. 10012–10022.

[27] HamidReza Naseri and Vahid Mehrdad. “Novel CNN with investigation on accuracy
by modifying stride, padding, kernel size and filter numbers.” In: Multimedia Tools and
Applications (2023), pp. 1–19.

[28] Alec Radford et al. “Learning transferable visual models from natural language super-
vision.” In: International conference on machine learning. PMLR. 2021, pp. 8748–8763.

[29] Mathew Salvaris, Danielle Dean, and Wee Hyong Tok. “Deep learning with azure.”
In: Building and Deploying Artificial Intelligence Solutions on Microsoft AI Platform,
Apress (2018).

[30] Indri Purwita Sary, Safrian Andromeda, and Edmund Ucok Armin. “Performance Com-
parison of YOLOv5 and YOLOv8 Architectures in Human Detection using Aerial Im-
ages.” In: Ultima Computing: Jurnal Sistem Komputer 15.1 (2023), pp. 8–13.

[31] Burcu Selcuk and Tacha Serif. “A Comparison of YOLOv5 and YOLOv8 in the Context
of Mobile UI Detection.” In: International Conference on Mobile Web and Intelligent
Information Systems. Springer. 2023, pp. 161–174.

[32] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. “Activation functions in neural
networks.” In: Towards Data Sci 6.12 (2017), pp. 310–316.

86

https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/
https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/

[33] Spaces — huggingface.co. https://huggingface.co/docs/hub/spaces. [Accessed
05-01-2024].

[34] Mingxing Tan, Ruoming Pang, and Quoc V Le. “Efficientdet: Scalable and efficient
object detection.” In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2020, pp. 10781–10790.

[35] Daksha Uchagaonkar. YOLO v1 working explained.. — daksha.uchagaonkar. https:
//medium.com/@daksha.uchagaonkar/yolo-v1-working-explained-ec20750be682.
[Accessed 05-01-2024].

[36] Xueqiu Wang et al. “BL-YOLOv8: An Improved Road Defect Detection Model Based
on YOLOv8.” In: Sensors 23.20 (2023), p. 8361.

[37] Robert Zalosh, Pravinray Gandhi, and Adam Barowy. “Lithium-ion energy storage bat-
tery explosion incidents.” In: Journal of Loss Prevention in the Process Industries 72
(2021), p. 104560.

[38] Chaoning Zhang et al. “A survey on segment anything model (sam): Vision foundation
model meets prompt engineering.” In: arXiv preprint arXiv:2306.06211 (2023).

87

https://huggingface.co/docs/hub/spaces
https://medium.com/@daksha.uchagaonkar/yolo-v1-working-explained-ec20750be682
https://medium.com/@daksha.uchagaonkar/yolo-v1-working-explained-ec20750be682

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Introduction
	Motivation
	Thesis Goal
	Contributions
	Hypothesis
	Thesis Outline

	Background
	Deep Learning
	Activation Function
	Bias
	Weights
	Loss Functions
	Propagation in Neural networks

	Confidence Score:
	Algorithms
	Supervised Learning
	unsupervised Learning

	YOLO Architecture
	Precision
	Recall
	Average Precision
	mAP-Mean Average Precision
	epochs and Batches
	IoU
	Bounding boxes:
	Sigmoid weighted linear Unit (SiLu)
	YOLOV5 Architecture
	YOLOV8 Architecture

	Roboflow
	Azure Custom AI
	Grounded SAM
	GroundingDino
	Streamlit:
	LangChain and OpenAI API

	Methods
	Problem statement - Dataset and proposed plan of action
	Problem statement - Detection and proposed plan of action
	Experiment1
	Experiment2

	Problem statement -Segmentation and proposed plan of action
	Experiment 3
	Experiment 4

	Problem statement - Health Dashboard and proposed plan of action

	Related Literature
	Azure Custom AI
	YOLO-You Only Look Once
	GroundingDIno
	GroundedSAM

	Performance Experiments and Results
	Creation of Custom data set:
	Objective
	Steps Taken
	Inferences

	Comparison of image Detection Model using YOLOV5,YOLOV8 and Azure Custom AI
	Objective:
	Steps Taken
	Inference:

	GroundingDINO
	Objective
	Steps Taken
	Inference

	Image Segmentation using Roboflow,YOLO Models and Grounded SAM
	Objective
	Steps Taken
	Inference

	Health Dashboard and Chat bot
	Objective
	Steps Taken
	Inference

	Discussions
	 Methodology and Approaches:
	 Effectiveness of manual annotations using Roboflow
	Impact of Auto annotations
	Comparison of Results

	challenges
	Dataset Considerations
	 Future Directions and Improvements:
	Integrations with Health Dashboard
	Discussion on Contributions
	Discussion on Hypothesis

	Conclusions
	Abbreviation
	Bibliography

