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In this paper, a novel approach using a Henry Gas Solubility-based Stacked Convolutional Neural Network 
(HGS-SCNN) for hand gesture recognition using surface electromyography (sEMG) sensors is proposed. The 
stacked architecture of the CNN model helps to capture both low-level and high-level features, enabling effective 
representation learning. To begin, we generated a dataset comprising 600 samples of hand gestures. Next, we 
applied the Discrete Wavelet Transform (DWT) technique to extract features from the filtered sEMG signal. This 
step allowed us to capture both spatial and frequency information, enhancing the discriminative power of the 
extracted features. Extensive experiments are conducted to evaluate the performance of the proposed HGS-SCNN 
model. In addition, the obtained results are compared with state-of-the-art techniques, namely AOA-SCNN, GWO-

SCNN, and WOA-SCNN. The comparative analysis demonstrates that the HGS-SCNN outperforms these existing 
methods, achieving an impressive accuracy of 99.3%. The experimental results validate the effectiveness of our 
proposed approach in accurately detecting hand gestures. The combination of DWT-based feature extraction and 
the HGS-SCNN model offers robust and reliable hand gesture recognition, thereby opening new possibilities for 
intuitive human-machine interaction and applications requiring gesture-based control.
1. Introduction

Human-robot interaction (HRI) holds significant importance in ad-

vancing intelligent robotic systems, playing a crucial role in enabling 
seamless collaboration and enhancing user experience across diverse 
domains like healthcare, manufacturing, and assistive technologies [1]. 
An essential component of effective HRI is accurate hand gesture 
recognition, allowing users to interact with robots naturally and in-

tuitively by conveying commands, instructions, or intentions through 
hand movements [2]. Traditionally, vision-based techniques, involv-

ing cameras or depth sensors, have been the go-to approach for hand 
gesture recognition, although they face challenges related to lighting 
conditions, occlusions, variations in hand shapes, and applicability con-

straints in certain environments [3]. Also research is carried out on Leap 
motion controller based hand gesture detection in recent years [4].

To overcome these limitations and enhance the robustness and 
adaptability of hand gesture recognition in HRI, the potential of sur-

face electromyography (sEMG) sensors is being explored. sEMG sensors 
are capable of detecting and recording electrical signals generated by 
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muscle activation during hand movements [5]. These signals provide 
valuable insights into the underlying muscle activities, enabling the in-

terpretation of intended hand gestures. Leveraging sEMG sensors for 
efficient hand gesture classification has led to the proposal of various 
machine learning (ML) and deep learning-based techniques, which will 
be comprehensively discussed in this literature review.

Machine learning has emerged as a promising solution in various 
fields to address and solve diverse challenges [6], [7], [8], [9]. The cat-

egorization of sEMG signals using ML approaches necessitates feature 
extraction, i.e., time-domain [10] or frequency-domain features [11], 
and time-frequency domain characteristics [10]. In [12], the classifi-

cation of eight hand motions using the root mean square (RMS) as a 
feature in a linear Support Vector Machine (SVM) was performed, which 
made it possible to operate a robotic arm of 4 DoF. Altimemy et al. [13]

used Linear Discriminant Analysis and SVM to classify 12 hand mo-

tions for amputees and 15 hand movements for those with intact limbs. 
In [14], Waris et al. classified gesture data obtained over the course of 
seven days using both surface-extracted EMG signals and intramuscular 
EMG signals, demonstrating that the performance of the Artificial Neu-
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Fig. 1. Proposed hybrid DL-based hand gesture detection using sEMG.
ral Network (ANN) classifier has improved over time in comparison to 
the traditional k-nearest neighbors (KNN) and SVM classifiers.

Fourier inherent band functions (FIBFs) were created by dividing 
the sEMG signals, and statistical features were then extracted for SVM 
and KNN classifier [15]. By employing a jump motion device to capture 
the depth information, which increases the relabeling of gestures in the 
training phase, hand gesture detection may be improved. In [16], hand 
movements based on sEMG signals were classified using energy-based 
characteristics and a fine KNN. The requirement for manual feature set 
creation, which is a laborious operation and may not be sufficiently 
precise, is a major drawback of ML systems. The difficulty in choosing 
the best classifier for the specified characteristics is another problem.

Although ML algorithms have shown some promise for the catego-

rization of sEMG signals, deep learning (DL) approaches have gained 
popularity in recent publications. It is because they tend to perform 
better and instantly pick up on the key aspects [17]. As a result, the 
exoskeletons’ control system may be greatly enhanced by using DL ap-

proaches for the sEMG-based categorization.

In [18], Atzori et al. used a deep CNN architecture with two convo-

lutional layers to carry out the sEMG classification job over the NinaPro 
DB1, DB2, and DB3 datasets. Compared to the KNN, SVM, Random 
Forests, and latent Dirichlet allocation (LDA) [19] ML classifiers cur-

rently in use, the authors have demonstrated a performance gain of 
2-5%. Geng et al. [20] established that instantaneous visuals include 
patterns that are distinguishable between trials and comparable among 
samples of a single trial. In order to do this, they treated each sample 
of dimension 1x10 as an instantaneous picture and sent it into the CNN 
model as an input. Metaheuristic algorithms with deep learning models 
have gained a lot of attention in recent years [21–26].

A neural network variant that can handle sequential and tempo-

ral input is the recurrent neural network (RNN). Koch et al. employed 
a ConvLSTM cascaded using the LSTM architecture in [27] to clas-

sify hand gesture sequences. To identify the high density (HD) and 
sparse sEMG signals, a stacked RNN with two stage networks was im-

plemented in [28]. An attention-based CNN-RNN architecture that is 
capable of classifying the sEMG pictures was created by Hu et al. [29]. 
Using waveform-based classification, an LSTM model and a deep back-

propagation (BP) LSTM were contrasted in [30].

1.1. Contributions

Traditional ML and deep learning approaches for surface elec-

tromyography (sEMG) signal classification in the context of hand ges-

ture recognition, often require manual feature extraction, which is a 
laborious and time-consuming process. Additionally, selecting the most 
appropriate classifier for the specific characteristics of sEMG signals 
can be challenging. Furthermore, traditional ML and DL classifiers may 
struggle to accurately classify sEMG signals due to their inability to 
capture intricate patterns, inefficient tuning of hyperparameters, and 
2

exploit the hierarchical representations within the data. These limita-
tions hinder the accuracy, automation, and performance of sEMG signal 
classification for hand gesture recognition tasks.

This work seeks to address the following key challenges:

• Reliance on manual feature extraction, which is laborious, time-

consuming, and sub-optimal. The use of automated DWT-based 
feature extraction overcomes this.

• Inability to handle intricate spatial and temporal patterns in sEMG 
signals, due to the use of traditional ML classifiers like SVM, KNN, 
ANN.

• Lack of robustness to real-world variations in hand shapes, sizes, 
gesture dynamics etc. The large heterogeneous dataset and deep 
learning approach aim to improve generalization.

• Difficulty in tuning hyperparameters and finding optimal network 
architectures.

• Many related works only focus on limited vocabulary or hand-

crafted gestures lacking natural variability. This work uses a di-

versity of unrestrained hand gestures.

• Reliance on visual or depth cameras, which are sensitive to envi-

ronmental conditions.

• Limited accuracy and reliability compared to vision-based tech-

niques.

To overcome the above-mentioned problems, this work proposed 
a discrete wavelet transform (DWT) for automatic feature extractions 
using sEMG onset detection through moving average. After that hybrid 
DL model is proposed for the efficient classification of hand gestures. 
The proposed flow of the work is shown in Fig. 1. The contributions of 
this work are as follows:

• Dataset Generation: Creation of a comprehensive dataset of 600 
samples, providing a valuable resource for hand gesture detection 
research.

• Feature Extraction with DWT: Effective utilization of the DWT for 
extracting discriminative features from hand gesture data, improv-

ing the accuracy of the detection system.

• HGS-SCNN Model: Introduction of the novel Henry Gas Solubility-

based Stacked CNN (HGS-SCNN) model, demonstrating its superior 
performance in hand gesture detection compared to alternative 
techniques.

• Comparative Analysis: Comprehensive evaluation and comparison 
with AOA-SCNN, GWO-SCNN, and WOA-SCNN, showcasing the en-

hanced effectiveness of the HGS-SCNN approach in hand gesture 
detection.

• Accuracy: Proposed DWT-based HGS-SCNN model achieves 99.3% 
accuracy in hand gesture detection using only 2 channels of sEMG 
sensors.

The organization of the paper is structured into various sections. 
Section 2 presents a novel approach that utilizes the DWT for auto-
mated feature extraction and a Henry gas solubility algorithm based 
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Fig. 2. Working of Henry gass optimization (a) Movement of particles when P1 
pressure is applied (b) Movement of particles when P2 pressure is applied.

stacked CNN model for classification. Section 3 explains the acquisi-

tion and preparation of the sEMG dataset used for evaluation, including 
any preprocessing steps. Section 4 presents the experimental results of 
applying the proposed technique to the dataset, discussing the perfor-

mance metrics and comparing them to previous approaches. Finally, 
Section 5 summarizes the findings, highlights the contributions of the 
proposed technique, and discusses potential avenues for future research 
in the field of sEMG signal classification for hand gesture recognition.

2. Proposed technique

2.1. Henry Gas Solubility algorithm (HGS)

J.W. Henry initially presented Henry’s law in 1800. In general, the 
most solute that can dissolve in a given amount of solvent at a given 
pressure or temperature is referred to as the solubility [31]. Conse-

quently, HGS was motivated by Henry’s law’s conduct. Henry’s law may 
be used to calculate the solubility of low-solubility gases in liquids. Ad-

ditionally, the two parameters that impact solubility are temperature 
and pressure. At high temperatures, solids become more soluble, whilst 
gases become less soluble. With respect to pressure, gas solubility rises 
as pressure does. As seen in Fig. 2, the subject of this algorithm is the 
solubility of gases.

In this section, the mathematical model of Henry Gas Solubility al-

gorithm (HGS) is presented [32].

2.1.1. Initialization

The particles are randomly initialized based on the following equa-

tion:

𝑋𝑖(𝑡+ 1) =𝑋min + 𝑟 × (𝑋max −𝑋min) (1)

where 𝑋(𝑖) represents the location of the 𝑖th particles among a popu-

lation 𝑁 , 𝑟 is a number chosen at random between 0 and 1, 𝑋𝑚𝑖𝑛 and 
𝑋𝑚𝑎𝑥 are the problem’s upper and lower limits, and 𝑡 is the number of 
iterations. The Eq. (2)-(4) serves as the start value for no. of particles 𝑖, 
values of Henry’s constant of type 𝑗 (𝐻𝑗 (𝑡)), partial pressure of gas 𝑖 in 
cluster 𝑗 (𝑃𝑖, 𝑗), and 𝐸∕𝑅 constant of type 𝑗 (𝐶𝑖).

ℎ𝑗 = 𝑝1 × 𝑟 (2)

𝑃𝑖,𝑗 = 𝑝2 × 𝑟 (3)

𝐶𝑗 = 𝑝3 × 𝑟 (4)

where 𝑝1, 𝑝2, and 𝑝3 are defined as constants with values equal to 
5 × 10−2, 100, and 1 × 10−2, respectively and 𝑟 is the random number 
between 0 and 1.

2.1.2. Clustering

The particles are separated into equal clusters, each of which is as-
3

sociated with a different kind of gas. Because each cluster is made up 
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of gases that are identical to one another, they all have the same value 
for Henry’s constant (𝐻𝑗 ).

2.1.3. Evaluation

The particle that achieves the greatest equilibrium state among other 
molecules of the same kind is determined for each cluster 𝑗. The best 
particle throughout the whole swarm is then determined by ranking the 
particles in order of performance.

2.1.4. Henry coefficient updation

The solubility is updated based on the following equation:

𝑆𝑖,𝑗 (𝑡) =𝑈 ×𝐿𝑗 (𝑡+ 1) × 𝑃𝑖,𝑗 (𝑡) (5)

where, 𝑆𝑖,𝑗 represents the solubility of gas 𝑖 in cluster 𝑗, 𝑃𝑖,𝑗 is the 
partial pressure of gas 𝑖 in cluster 𝑗, and 𝑈 is a constant.

2.1.5. Position updation

The position is updated using the following equation:

𝑋𝑖,𝑗 (𝑡+ 1) =𝑋𝑖,𝑗 (𝑡) + 𝐹 × 𝑟 × 𝛾 × (𝑋𝑏𝑒𝑠𝑡,𝑗 (𝑡)

−𝑋𝑖,𝑗 (𝑡))𝐹 × 𝑟 × 𝛼 × (𝑆𝑖,𝑗 (𝑡) ×𝑋𝑏𝑒𝑠𝑡(𝑡)) (6)

In this equation, 𝑋𝑖,𝑗 denotes the location of the particle 𝑖 in the 
cluster 𝑗, 𝐹 controls the search agent’s orientation and adds diversity 
(𝑝𝑚), and 𝑟 and 𝑡 denote the iteration time and random constant, respec-

tively. The best particle in the swarm is 𝑋𝑏𝑒𝑠𝑡, whereas the best particle 
in the cluster is 𝑋𝑏𝑒𝑠𝑡,𝑗 . Additionally, 𝑎𝑙𝑝ℎ𝑎 is the impact of other parti-

cles on particle 𝑖 in cluster 𝑗 (equal to 1), 𝑏𝑒𝑡𝑎 is a constant, and 𝑔𝑎𝑚𝑚𝑎

reflects the capacity of gas 𝑗 in cluster 𝑖 to interact with other gases in 
its cluster. In contrast to 𝑆𝑏𝑒𝑠𝑡, which represents the fitness of the best 
gas in the overall system, 𝑆𝑖,𝑗 specifies the fitness of gas 𝑖 in cluster 𝑗. 
The parameters 𝑋𝑏𝑒𝑠𝑡,𝑗 and 𝑋𝑏𝑒𝑠𝑡, which denote the best particle in the 
cluster 𝑗 and the best particle in the swarm, respectively, play a critical 
role in balancing the exploration and exploitation abilities.

2.1.6. Local optimum avoidance

The number of worst agents (denoted as 𝑁𝑤) is determined using 
the following equation:

𝑁𝑤 =𝑁 × (𝑟𝑎𝑛𝑑(𝑐2 − 𝑐1) + 𝑐1) (7)

Here, 𝑁 represents the total number of search agents, and 𝑐1 and 𝑐2
are constants with values of 0.1 and 0.2, respectively.

2.2. Discrete Wavelet Transform (DWT)

DWT is a mathematical tool that decomposes a signal into a set 
of wavelet coefficients at different scales [33]. A collection of wavelet 
functions, which are the dilations and translations of a mother wavelet 
function, serve as the foundation for the DWT. A signal x(n)’s DWT is 
given by:

𝑐𝑗,𝑘 =
⟨
𝑥,𝜓𝑗,𝑘

⟩
=
∑
𝑛

𝑥(𝑛)𝜓𝑗,𝑘(𝑛) (8)

where 𝑗 and 𝑘 are integer values that define the scale and translation 
of the wavelet functions, 𝜓𝑗,𝑘(𝑛) and 𝜙𝑗,𝑘(𝑛) are the wavelet and scal-

ing functions at scale 𝑗 and translation 𝑘, and ⟨⋅, ⋅⟩ denotes the inner 
product between two functions. The mother wavelet function 𝑝𝑠𝑖(𝑛)
and scaling function 𝑝ℎ𝑖(𝑛) are dilated and translated to produce the 
wavelet and scaling functions as follows:

𝜓𝑗,𝑘(𝑛) = 2𝑗∕2𝜓
(
2𝑗𝑛− 𝑘

)
(9)

The wavelet coefficients 𝑐𝑗,𝑘 capture the high-frequency components 
of the signal at scale 𝑗 and translation 𝑘, while the scaling coefficients 
𝑑𝑗,𝑘 capture the low-frequency components of the signal at scale 𝑗 and 
translation 𝑘. The DWT can be computed iteratively by applying a se-
ries of high-pass and low-pass filters to the signal, followed by down 
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Fig. 3. Proposed stacked CNN architecture with detailed layer structure.
sampling by a factor of 2. The Daubechies 10 (db10) wavelet is a popu-

lar wavelet used in the DWT due to its good time-frequency localization 
and smoothness properties. The db10 wavelet is obtained by applying a 
series of high-pass and low-pass filters to a scaling function 𝜙(𝑛), which 
is a piecewise polynomial function of degree 9. The db10 wavelet has 
20 filter coefficients, which can be computed using the following recur-

sive equations:

ℎ0 =
1 +

√
3

4
√
2

(10)

ℎ1 =
3 +

√
3

4
√
2

(11)

ℎ2 =
3 −

√
3

4
√
2

(12)

ℎ3 =
1 −

√
3

4
√
2

(13)

ℎ4+𝑖 = (−1)𝑖ℎ3−𝑖, 𝑖 = 0,1,2,3 (14)

𝑔0 = ℎ3 (15)

𝑔1 = −ℎ2 (16)

𝑔2 = ℎ1 (17)

𝑔3 = −ℎ0 (18)

𝑔4+𝑖 = (−1)𝑖𝑔3−𝑖, 𝑖 = 0,1,2,3 (19)

where ℎ𝑖 and 𝑔𝑖 are the filter coefficients for the low-pass and high-pass 
filters, respectively. The first four coefficients, ℎ0 to ℎ3, are the coeffi-

cients for the low-pass filter, and the remaining coefficients, ℎ4 to ℎ9
and 𝑔4 to 𝑔9, are the coefficients for the high-pass filter. The remaining 
filter coefficients are obtained by applying a symmetry condition to the 
first four coefficients for both the low-pass and high-pass filters.

In this study, we specifically opted for the Daubechies 10 (db10) 
wavelet as our primary mother wavelet function for conducting the 
Discrete Wavelet Transform (DWT). The choice of db10 wavelet was 
grounded in its advantageous properties that render it particularly suit-

able for our intended analysis. Firstly, db10 exhibits remarkable time-

frequency localization, effectively capturing transient features and local 
patterns within the surface electromyography (sEMG) signals. This pre-

cision in localization is pivotal for an accurate representation of the 
signal’s dynamics. Moreover, db10 stands out for its smoothness, a char-

acteristic that circumvents the issue of abrupt discontinuities that may 
manifest with other wavelet functions. This attribute significantly con-

tributes to the stability of the feature extraction process, ensuring a 
reliable and consistent analysis of the signals. Another notable qual-

ity of db10 is its possession of 10 vanishing moments, an aspect critical 
for effectively representing complex signals by suppressing higher-order 
4

polynomial behaviors. Furthermore, the db10 wavelet encompasses a 
set of 20 filter coefficients, computed through recursive relationships 
as defined in the relevant literature. This distinctive feature equips the 
db10 wavelet with an optimal filter length, enhancing its efficacy in 
signal processing and analysis. The careful consideration of these prop-

erties collectively informed our decision to employ the db10 wavelet as 
a fundamental tool for the wavelet-based analysis of sEMG signals in 
this study.

Regarding the determination of decomposition levels for the Dis-

crete Wavelet Transform (DWT), a deliberate and empirical approach 
was taken, resulting in the application of a 4-level decomposition to the 
surface electromyography (sEMG) signals. This decision was reached 
through thorough experimentation involving various levels, ranging 
from 2 to 6, with the aim of finding the most effective and suitable depth 
for our analysis. After comprehensive testing, it became evident that 
a 4-level decomposition struck an optimal balance between frequency 
resolution and feature dimensionality for the hand gestures under exam-

ination. Lower decomposition levels were found to lack the necessary 
frequency resolution, potentially leading to an inadequate representa-

tion of signal nuances. On the other hand, higher decomposition levels 
presented a challenge by introducing excessive feature dimensions with-

out a proportional gain in informative signal characteristics. The 4-level 
decomposition was a judicious choice, offering a well-rounded solu-

tion by providing localized frequency information across discernible 
sub-bands. This localization was vital for ensuring robust and effective 
feature extraction specifically tailored to the nuances of hand gestures. 
The sub-band distribution achieved through this decomposition proved 
to be particularly conducive to the accurate and meaningful extraction 
of features from the sEMG signals associated with the hand gestures be-

ing studied. Therefore, the rationale behind selecting the Daubechies 10 
(db10) wavelet function and implementing a 4-level DWT decomposi-

tion was grounded in achieving an optimal trade-off between frequency 
resolution and feature dimensionality, ultimately enhancing the efficacy 
of the feature extraction process crucial for analyzing hand gestures in 
this research. These carefully considered design choices shed light on 
the thoughtfully constructed DWT-based feature extraction methodol-

ogy utilized in this study.

2.3. CNN

Convolutional Neural Networks (CNNs) are a class of deep learn-

ing models that have proven to be highly effective in many applica-

tions [34]. CNNs are particularly well-suited for tasks involving spatial 
and temporal data, such as images, videos, and time-series data. CNN 
network uses convolutional layers to automatically learn hierarchical 
representations of the input data, which are then fed into fully con-

nected layers for classification or regression. The detailed structure of 
stacked CNN is shown in Fig. 3.

A one-dimensional CNN is a variant of the standard CNN architec-

ture that is designed for processing one-dimensional input data, such as 

time-series data or sequences of feature vectors [35]. In a 1D CNN, the 
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Table 1

Range of hyperparameters of CNN.

Parameter Range

No. of Filters [20-29]
Filter Size in Each Layer [1-7]

Activation Functions LeakyReLu, ReLu, Tanh

Learning Rate [10−5-10−1]

Dropout Rate [0-0.7]

input data is convolved with a set of filters, each of which slides over 
the input in a single dimension. The output of each filter is then passed 
through ReLu activation, before being downsampled using max pooling 
or average pooling.

The mathematical equations for a 1D CNN can be expressed as fol-

lows. Given an input signal 𝐱 ∈ ℝ𝑇×𝐶 and a filter 𝐖𝑘 ∈ ℝ𝐹×𝐶 , where 
𝑇 is the length of the signal, 𝐶 is the number of channels, and 𝐹 is the 
filter size.

The convolution of the 𝑘-th filter with the input signal is computed 
by sliding the filter over the input channels and summing the element-

wise product at each position, including a bias term 𝑏𝑘:

(𝑊𝑘 ∗ 𝑥)[𝑡] =
𝐶∑
𝑖=1

𝐹−1∑
𝑗=0

𝑤𝑘𝑖,𝑗 ⋅ 𝑥𝑡+𝑗,𝑖 + 𝑏𝑘, 𝑡 = 1,2,… , 𝑇 − 𝐹 + 1, (20)

where 𝑤𝑘𝑖,𝑗 is the element at the 𝑖-th row and 𝑗-th column of the filter 
𝐖𝑘, 𝑥𝑡+𝑗,𝑖 is the element in the 𝑖-th channel at position 𝑡 + 𝑗 in the input 
signal, and 𝑏𝑘 is the bias term for the 𝑘-th filter.

Apply the activation function 𝑓 (⋅) to each element of the convolu-

tion result:

𝑧𝑘[𝑡] = 𝑓 ((𝑊𝑘 ∗ 𝑥)[𝑡]), 𝑡 = 1,2,… , 𝑇 − 𝐹 + 1 (21)

The activation function introduces nonlinearity into the model. The re-

sult of the convolution and activation for the 𝑘-th filter forms a feature 
map 𝐳𝑘:

𝑧𝑘 = [𝑓 ((𝑊𝑘 ∗ 𝑥)[1]), 𝑓 ((𝑊𝑘 ∗ 𝑥)[2]),… , 𝑓 ((𝑊𝑘 ∗ 𝑥)[𝑇 − 𝐹 + 1])] (22)

The feature map has a length of (𝑇 −𝐹 + 1). Repeat the above steps 
for each filter 𝑘 to obtain the complete set of feature maps 𝐳1, 𝐳2, … , 𝐳𝐾 .

𝐳𝑘 = [𝑓 ((𝑊𝑘 ∗ 𝑥)[1]), 𝑓 ((𝑊𝑘 ∗ 𝑥)[2]),… , 𝑓 ((𝑊𝑘 ∗ 𝑥)[𝑇 − 𝐹 + 1])] (23)

for 𝑘 = 1, 2, … , 𝐾 .

One of the main benefits of using 1D CNNs is their ability to learn 
meaningful features. 1D CNNs can also capture local dependencies in 
the data, allowing for the detection of patterns that may not be visible 
at the global level. Moreover, 1D CNNs can handle variable-length time 
series data and are robust to noise and missing values. Therefore, 1D 
CNNs offer a powerful and flexible approach to time series analysis that 
can yield state-of-the-art results in a wide range of applications.

2.4. Hyperparameters of SCNN

Hyperparameters are vital components that significantly influence 
the performance and optimization of a stacked CNN for classification 
tasks. They dictate the architecture and behavior of the network, and 
proper selection and optimization are crucial for enhancing accuracy, 
convergence speed, and generalization capability. The range of hyper-

parameters of SCNN is shown in Table 1.

2.4.1. Number and size of filters

The number and size of filters determine the receptive field of the 
network. While a larger number of filters can capture more diverse fea-

tures, it also increases computational complexity. Striking a balance 
between the number and size of filters is important to extract relevant 
5

features efficiently.
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2.4.2. Kernel size

The kernel size defines the size of the convolutional window moving 
across the input. A smaller kernel size can capture local details, while a 
larger kernel size can capture more global patterns. Selecting an appro-

priate kernel size depends on the characteristics of the input data and 
the complexity of the classification task.

2.4.3. Stride and padding

The stride determines the step size of the convolutional window dur-

ing the convolution operation. Larger stride values reduce the spatial 
dimensions of the output feature maps, resulting in faster processing but 
potentially losing fine-grained details. Padding can be used to preserve 
spatial dimensions by adding zeros around the input. Proper stride and 
padding selection help maintain relevant information while controlling 
computational requirements.

2.4.4. Pooling

Pooling layers reduce the spatial dimensions of the feature maps, 
aiding in translation invariance and reducing computation. Pooling can 
be performed using operations like max pooling or average pooling. 
The choice of pooling size affects the amount of downsampling and the 
retention of important features.

2.4.5. Learning rate

The learning rate determines the step size during the optimization 
process. A high learning rate may lead to overshooting and failure to 
converge, while a low learning rate can slow down the convergence or 
get stuck in local optima. Tuning the learning rate is essential to ensure 
efficient convergence and accurate classification.

2.4.6. Regularization

Regularization techniques such as dropout and weight decay are 
crucial for preventing overfitting, especially when dealing with limited 
training data. The choice of regularization strength can significantly af-

fect the model’s generalization ability.

2.5. Importance and difficulty of optimization

Optimizing the hyperparameters of a CNN is a critical aspect of 
designing an effective neural network for a specific task, such as im-

age classification. Hyperparameters are configurations that dictate the 
architecture, behavior, and training process of the neural network, dis-

tinct from the model’s learnable parameters (weights and biases). Prop-

erly chosen hyperparameters can significantly influence the network’s 
performance, convergence speed, generalization ability, and resource 
efficiency.

2.5.1. Effect on model performance

The hyperparameters, such as the number of filters, filter sizes, 
learning rates, and activation functions, directly affect the model’s abil-

ity to learn intricate patterns and features from the input data. For 
instance, an optimal learning rate can ensure faster convergence and 
better accuracy, while an unsuitable one might lead to overshooting or 
slow convergence.

2.5.2. Generalization and overfitting

Hyperparameters play a pivotal role in combating overfitting, a sit-
uation where the model learns to memorize the training data instead of 
learning useful patterns. Techniques like dropout rates and weight reg-

ularization are hyperparameters crucial for improving generalization, 
preventing overfitting, and making the model perform well on unseen 
data.

2.5.3. Search space and optimization difficulty

The space of possible hyperparameters is vast, and the effect of each 
hyperparameter is often interdependent and non-linear. This complex-
ity makes manual selection impractical. Algorithms such as grid search, 
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Fig. 4. Hyperparameter tuning flow of proposed HGS-SCNN technique.
random search, Bayesian optimization, and evolutionary methods like 
genetic algorithms attempt to navigate this expansive search space effi-

ciently.

2.5.4. Computation and time complexity

Optimizing hyperparameters involves training and evaluating multi-

ple models, making it computationally expensive and time-consuming, 
especially for deep neural networks. The need for substantial computa-

tional resources adds to the challenge, particularly when dealing with 
large datasets and intricate CNN architectures.

2.5.5. Trial and error experimentation

Finding the optimal set of hyperparameters usually involves a trial-

and-error approach, where various combinations are tested. This itera-

tive process can be laborious and requires a good understanding of the 
problem, the model, and the dataset.

2.6. Henry gass solubility based SCNN (HGS-SCNN)

As described above, the main demerit of the CNN architecture is that 
it involves a large number of hyperparameters, including the size of the 
filters, the number of filters, and the learning rate for the optimizer. 
Tuning these hyperparameters can be a time-consuming and challeng-

ing process, requiring extensive trial and error experimentation.

To address these challenges, researchers employ various techniques 
like grid search [36], random search [37], Bayesian optimization, or 
evolutionary intelligence-based methods such as genetic algorithms 
(GAs) [38], particle swarm optimization (PSO) or Grey wolf optimizer 
(GWO). These algorithms are designed to efficiently search for optimal 
hyperparameters by exploring the hyperparameter space using heuris-

tic techniques and mathematical optimization methods. In this work, we 
employed the Henry Gas Solubility (HGS) algorithm to tune the hyper-

parameters of the CNN architecture. The proposed flow of HGS based 
SCNN model is shown in Fig. 4, while the tuned hyperparameters of the 
SCNN model are shown in Table 2.

2.7. Motivation of using HGS algorithm

The selection of the Henry Gas Solubility (HGS) algorithm for hyper-
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parameter tuning in the Stacked Convolutional Neural Network (SCNN) 
Table 2

Hgs based Tuned Hyperparameters 
of SCNN.

Parameter Range

No. of Filters 64

Filter Size in Each Layer 3

Activation Functions ReLu

Learning Rate 10−2
Dropout Rate 0.5

is underpinned by the aspiration for an optimization technique that 
resonates with the intrinsic nature of the hand gesture recognition prob-

lem. The HGS algorithm, inspired by gas solubility principles, presents 
a nature-inspired optimization approach. Emulating the behavior of gas 
molecules in confined spaces, it offers a novel perspective to solving op-

timization problems. One of the pivotal motivations for employing this 
approach is its efficiency in exploring the high-dimensional hyperpa-

rameter space characteristic of SCNNs. By simulating the diffusion of 
gas molecules, the algorithm strives to efficiently navigate this space, 
crucial for discovering an optimal set of hyperparameters significantly 
impacting SCNN performance. Moreover, the gas-inspired exploration 
carries the potential to achieve global optimization, a desirable trait 
for developing a robust SCNN model with improved generalization ca-

pabilities, particularly in the domain of hand gesture recognition. This 
approach aligns seamlessly with the fundamental design principles of 
CNNs, particularly in feature extraction tasks, making it a suitable 
choice for optimizing SCNNs.

3. Dataset collection and processing

3.1. Dataset generation

The dataset consists of surface electromyography (sEMG) signals 
recorded from 2 sensors interfaced with an Arduino MEGA 2560 mi-

crocontroller. Data are collected from 5 subjects performing 6 different 
gestures and every gesture is repeated 20 times, resulting in a com-

prehensive dataset for training and evaluation. The hardware setup 
involves connecting the Arduino MEGA 2560 with MATLAB Simulink 
2022a. This integration allows for real-time data acquisition and com-
munication with the microcontroller board. Two sEMG sensors are 
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Fig. 5. Hand gestures used for dataset generation and classification.

Table 3

Specifications for the hand gesture 
dataset generation.

Variable Value

No. of Subject 5

No. of Gestures 6

No. of Channels 2

No. of Repetitions 20

Sampling Frequency (Hz) 1000

Activity Duration (s) 2

Rest Time (s) 2

connected to the Arduino MEGA, providing simultaneous recording of 
muscle activation signals from multiple hand muscles. The six hand ges-

tures used for dataset generation are shown in Fig. 5.

The sEMG sensors used in this study are non-invasive electrodes 
that detect electrical signals generated by muscle contractions. These 
sensors are carefully placed on specific hand muscles to capture the 
corresponding muscle activation patterns during hand gestures. Sub-

jects were instructed to position the sensors according to standardized 
electrode placement guidelines. A well-defined gesture protocol was 
employed to ensure consistency across data collection sessions. Each 
hand gesture consisted of an action phase and a rest phase, both lasting 
2 seconds. During the action phase, subjects were instructed to perform 
the target hand gesture, while the rest phase involved relaxation with 
no intentional muscle activity. This protocol aimed to capture the dis-

tinct sEMG patterns associated with each gesture.

Data collection sessions were conducted with 5 subjects, who were 
briefed about the experimental procedure and provided informed con-

sent. Each subject performed the 6 hand gestures, with 20 repetitions 
per gesture. The order of gestures was randomized to minimize any 
potential order effects. Subjects were given adequate rest intervals be-

tween repetitions and gestures to minimize muscle fatigue. During the 
data collection process, the sEMG signals were continuously recorded 
from the sensors at a sampling rate of 1000 Hz. This high sampling rate 
ensured capturing fine-grained details of the muscle activation signals. 
The acquired signals were transmitted in real-time from the Arduino 
MEGA to MATLAB Simulink for further processing and storage. The 
dataset generated from the data collection process comprised a total of 
120 instances for each subject (20 repetitions x 6 gestures). Considering 
the 5 subjects, the final dataset consisted of 600 instances. This suffi-

ciently large dataset facilitates robust training and evaluation of hand 
gesture recognition models. The specifications of the dataset generation 
7

are shown in Table 3.
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3.2. Filtering

Filtering is a crucial preprocessing step in enhancing the quality and 
reliability of electromyography (EMG) signals. In this study, a bandpass 
filter with a frequency range of 20 Hz to 300 Hz was employed to selec-

tively pass signals within the desired frequency band while attenuating 
frequencies outside this range. This specific frequency range was cho-

sen based on its biological relevance to muscle activation patterns and 
the need to remove low-frequency noise and high-frequency interfer-

ence [39]. By implementing the bandpass filter, unwanted noise, such 
as baseline drift and power line interference, was effectively eliminated, 
allowing for a clearer representation of the underlying muscle activity.

The implementation of the bandpass filter involved employing suit-

able digital signal processing techniques. The filter’s performance was 
evaluated by assessing its frequency response, magnitude response, and 
phase response. This evaluation ensured that the bandpass filter ef-

fectively attenuated out-of-band noise while preserving the relevant 
frequency components within the 20 Hz to 300 Hz range.

3.3. Feature extractions

The analysis of sEMG sensor data of hand gestures involves a multi-

step process to extract meaningful information and features. The initial 
step in this flow is to calculate the moving average of the signal. This 
is accomplished by applying a sliding window technique, where the 
average value of the signal within a specific window size is computed. 
The moving average helps to reduce noise and smooth out the signal, 
enhancing the visibility of underlying patterns and features related to 
hand gestures. By utilizing this technique, the overall signal quality is 
improved, enabling subsequent analysis steps to be more effective.

Following the calculation of the moving average, the next crucial 
step is EMG onset detection. EMG onset refers to the initiation of mus-

cle activity associated with the hand gesture. Detecting the precise onset 
of EMG activity is vital for accurately capturing the relevant data dur-

ing the hand gesture performance. Various techniques can be employed 
for EMG onset detection, such as amplitude threshold-based methods, 
slope-based methods, or ML algorithms. These approaches analyze the 
characteristics of the moving average signal and identify the point at 
which the EMG activity exceeds a certain threshold or exhibits a signif-

icant change, indicating the start of the hand gesture.

After identifying the EMG onset, a sample window of 300 millisec-

onds is selected from the original signal. This window represents a seg-

ment of the signal that encapsulates the duration of the hand gesture. In 
this segment, the DWT is performed to extract valuable features. DWT 
reveals both the time and frequency domain information simultane-

ously. By applying DWT to the sample window, the signal is analyzed at 
various scales or levels of resolution, providing a multi-resolution rep-

resentation of the hand gesture. Features such as amplitude, frequency 
content, and energy distribution across different frequency sub-bands 
can be extracted from the DWT coefficients. These features capture im-

portant characteristics of the hand gesture, enabling further analysis, 
classification or recognition tasks. The comparison of extracted features 
using DWT for different gestures is shown in Fig. 6.

The Discrete Wavelet Transform (DWT) plays a crucial role in the 
process of extracting distinct and discernible features from surface elec-

tromyography (sEMG) signals for hand gesture recognition. By employ-

ing wavelet functions, the DWT breaks down the signal into various fre-

quency sub-bands at different scales, revealing both time and frequency 
domain information in a simultaneous manner. The lower frequency 
bands provide insight into the global contour and overall trends present 
within the signal, while the higher frequency bands capture transient 
spikes and local patterns. Through wavelet coefficients, the distribution 
of energy across these sub-bands is made evident, showcasing how dif-

ferent gestures manifest distinct coefficient distributions. For instance, 
a pinch gesture may exhibit a higher concentration of high-frequency 

coefficients compared to a grip gesture. The advantage of wavelets lies 
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Fig. 6. Extracted features through DWT from Channel 1.
in their ability to be localized in time, enabling the capture of transient 
muscle activation spikes. The multi-resolution view that DWT offers ac-

centuates the nuances tied to gesture dynamics, revealing patterns that 
might not be visible when examining just the raw signal. Therefore, the 
DWT not only surfaces hidden patterns but also accentuates subtleties, 
providing an augmented feature space when compared to using solely 
raw sEMG data or basic statistical measures. In summary, DWT decom-

poses the signal in a manner that uncovers unique spatio-temporal and 
spectral characteristics of muscle activity associated with each gesture, 
facilitating a more robust feature extraction and discrimination com-

pared to utilizing only the original sEMG recordings. Feel free to let me 
know if this elucidation adequately conveys how DWT contributes to 
distinctive feature extraction.

3.4. Dataset pre-processing

Normalizing the data is an essential step in data preprocessing, as it 
helps to improve the performance of many ML algorithms. One of the 
most common normalization techniques is the min-max scaling tech-

nique. In this technique, the values of a feature are scaled to a range 
between 0 and 1. The min-max scaling technique is given by the fol-

lowing equation:

𝑋𝑛𝑜𝑟𝑚 =
𝑋 −𝑋min

𝑋max −𝑋min
(24)

where 𝑋 is current sample, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the min. and max. values 
of the sample, and 𝑋𝑛𝑜𝑟𝑚 is the normalized sample value.

3.5. Evaluation matrices

Evaluation matrices are commonly used to assess the performance 
of classification models, including those used for hand gesture recogni-

tion. Here, we present four widely used evaluation matrices: Accuracy, 
Precision, Specificity, and F1 score. These matrices depend upon the 
True positive (TP), True Negative (TN), False Positive (FP) and False 
Negative (FN) of the predicted classes.

3.6. Accuracy

Accuracy is the ratio of the correctly predicted samples to the total 
number of samples in the dataset;

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
(25)

3.7. Precision

Precision is a metric that indicates how well the model performs in 
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terms of minimizing false positives:
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(26)

3.8. Specificity

Specificity is a metric that indicates how well the model performs in 
terms of minimizing false negatives:

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(27)

3.9. F1 score

The F1-score is calculated as:

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(28)

These evaluation matrices help in assessing the performance of hand 
gesture classification models and provide insights into the model’s ac-

curacy, precision, specificity, and overall effectiveness.

3.10. Proposed scheme

The flow of analysis for sEMG sensor data of hand gestures involves 
multiple steps. First, the moving average of the signal is calculated to 
reduce noise and enhance the visibility of underlying patterns. Next, 
the EMG onset is detected to pinpoint the time window associated with 
the hand gesture. Subsequently, a sample window is selected, and the 
DWT is applied to extract informative features from the signal. This 
systematic approach provides a scientific framework for processing and 
analyzing sEMG data, facilitating the understanding and interpretation 
of hand gestures for various applications such as prosthetics, rehabili-

tation, or human-computer interaction systems. After feature extraction 
and pre-processing, the dataset is divided into 70-30% training and test-

ing dataset ratios. After that, the HGS-based SCNN model is trained on 
training data and tested on the testing dataset to check the performance 
of the proposed model. The detailed DWT-based HGS-SCNN scheme for 
hand gesture detection is elaborated in Fig. 7. Fig. 8 shows the loss and 
accuracy of tuned SCNN model. A detailed analysis on the results is 
presented in the next section.

4. Results and analysis

4.1. Prediction performance

The evaluation of prediction performance for different techniques 
based on stacked CNN networks (SCNN) in classifying six distinct hand 
gestures is presented in Table 4. To delve deeper into the predictive 
abilities of these techniques, a thorough analysis utilizing confusion 

matrices (as depicted in Fig. 9) and a comparative evaluation of key 
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Fig. 7. Proposed DWT-based HGS-CNN technique.

Table 4

Gesture prediction comparative analysis.

Technique Accuracy Precision Specificity F1 Score

HGS-SCNN 0.9944 0.9944 0.9989 0.9944

AOA-SCNN 0.9778 0.9778 0.9756 0.9778

WOA-SCNN 0.9611 0.9611 0.9622 0.9613

GWO-SCNN 0.9556 0.9556 0.9512 0.9557

metrics (shown in Fig. 10) is conducted. A comprehensive breakdown 
and analysis of these results are presented in the subsequent subsec-

tions.

4.1.1. Accuracy

Accuracy is a fundamental metric reflecting the proportion of cor-

rectly predicted instances out of the total. Among the techniques ana-

lyzed, HGS-SCNN stands out with the highest accuracy of 0.9944. This 
implies an outstanding ability to predict hand gestures with a staggering 
accuracy rate of 99.44%. AOA-SCNN closely follows with an accuracy 
9

of 0.9778, indicating a slightly lower but still impressive accuracy rate 
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Fig. 8. Loss and accuracy curve of the HGS tuned SCNN model.

of 97.78%. WOA-SCNN achieves an accuracy of 0.9611, demonstrat-

ing a high precision but slightly less than the previous two techniques. 
GWO-SCNN, while effective, exhibits the lowest accuracy among the 
listed techniques, with a value of 0.9556.

4.1.2. Precision

Precision is a crucial measure denoting the proportion of true pos-

itive predictions out of all predicted positives. HGS-SCNN leads in 
precision with a score of 0.9944, implying that 99.44% of the hand ges-

tures predicted as positive by HGS-SCNN are indeed correct. AOA-SCNN 
closely follows with a precision score of 0.9778, indicating a high level 
of precision in its predictions. WOA-SCNN and GWO-SCNN also demon-

strate substantial precision scores of 0.9611 and 0.9556, respectively, 
signifying a high level of correctness in their positive predictions.

4.1.3. Specificity

Specificity measures the ability to identify non-target gestures ac-

curately. HGS-SCNN excels in specificity, achieving the highest score 
of 0.9989. This suggests that HGS-SCNN identifies non-target gestures 
with an impressive accuracy rate of 99.89%. AOA-SCNN follows with 
a specificity of 0.9756, indicating a high level of accuracy in iden-

tifying non-target gestures. WOA-SCNN and GWO-SCNN also exhibit 
commendable specificity scores of 0.9622 and 0.9512, respectively, un-

derscoring their ability to discern non-target gestures with substantial 
accuracy.

4.1.4. F1 score

The F1 score, a balanced metric considering both precision and 
recall, provides a comprehensive assessment of the overall predictive 
performance. HGS-SCNN achieves an F1 score of 0.9944, suggesting a 
harmonious trade-off between precision and recall and indicating a high 
overall performance. AOA-SCNN closely follows with an F1 score of 
0.9778, representing a balanced performance in terms of precision and 
recall. WOA-SCNN and GWO-SCNN also present respectable F1 scores 
of 0.9613 and 0.9557, respectively. These scores emphasize the abil-

ity of these techniques to strike a balance between precision and recall, 
contributing to a robust overall predictive performance.

Based on the results presented in Table 4, HGS-SCNN stands out 
by showcasing superior performance compared to the other techniques. 
Several key aspects highlight its exceptional capabilities:

• High Accuracy: HGS-SCNN attains the highest accuracy among all 
the techniques, signifying its remarkable precision in predicting 

hand gestures.
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Fig. 9. Confusion matrix comparison of (a) HGS-SCNN, (b) AOA-SCNN, (c) WOA-SCNN and (d) GWO-SCNN.

Fig. 10. Bar graph comparison of competing techniques.
• High Precision: HGS-SCNN achieves an impressive precision score 
of 0.9944, indicating an extremely low false positive rate. Conse-

quently, the gestures predicted as positive by HGS-SCNN are highly 
likely to be accurate.

• High Specificity: HGS-SCNN secures the highest specificity among 
the techniques, showcasing its remarkable ability to precisely iden-

tify non-target gestures. This aspect is crucial in avoiding false 
positives.

• High F1 Score: HGS-SCNN achieves a well-balanced F1 score of 
0.9944, showcasing its adeptness in maintaining an effective trade-

off between precision and recall. This score signifies that HGS-

SCNN excels in minimizing both false positives and false negatives.

4.2. Comparative analysis

The Table 5 presented provides a comparative analysis of various 
hand gesture detection techniques found in the literature. Each tech-

nique is evaluated based on the dataset used, the specific methodology 
employed, and the accuracy achieved. Among the listed approaches, 
our proposed technique stands out as a superior solution.

Firstly, the proposed technique utilizes a comprehensive dataset 
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consisting of six hand gestures. In contrast, other references in the 
table used datasets with specific sign language gestures, spatial data, 
or a limited number of static images. The breadth and depth of our 
dataset suggest a more representative and robust training environ-

ment. Secondly, the proposed technique leverages a stacked convo-

lutional neural network (CNN) algorithm for hand gesture detection. 
CNNs have proven to be highly effective in image-related tasks, thanks 
to their ability to identify patterns and extract features from visual 
data. This choice of algorithm showcases the sophistication and ad-

vanced nature of our approach. In comparison, the other techniques 
in the table include feature selection with ANN, RBF functions, SVM 
with feature selection, and deep neural networks (DNN). While these 
techniques are valuable in their respective contexts, our utilization 
of a stacked CNN algorithm demonstrates a more cutting-edge and 
potentially more accurate approach. Lastly, the proposed technique 
achieves an outstanding accuracy of 0.993, surpassing the accuracies 
reported in the other references. The highest accuracy in the table is 
0.98, achieved by a DNN-based approach for a limited set of three 
hand gestures. The significantly higher accuracy of our proposed tech-

nique highlights its exceptional capability in accurately classifying and 
recognizing hand gestures. This level of accuracy is vital for real-

world applications where precise and reliable gesture detection is re-
quired.
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Table 5

Comparative analysis of hand gesture detection presented in literature.

Ref. Data-set Technique Used Acc.

[40] Indian Sign Language (Pictorial 
6 static colored images)

Feature Selection + NN for Classification (trained 
using hybrid meta-heuristic deer hunting + gwo)

0.97

[41] Spatial Data-set (Arabic Sign 
Language Numerals 1-9)

Radial Basis Function 0.942

[42] Static 9 gestures FS (static; based on Orientation) + SVM Classification 0.9137

[43] Six static images HOG + SVM (multi-class) 0.92

[44] Three static gestures (Rock, 
paper, scissors)

FS (static 11 points) + DNN Classification 0.98

Our approach Six Hand gestures HGS Algorithm based Stacked CNN 0.993
5. Discussion

In this section, we delve into the insights and implications drawn 
from the presented results and the comparative analysis of hand gesture 
detection techniques.

5.1. Performance comparison and interpretations

The evaluation of prediction performance using stacked CNN net-

works (SCNN) for hand gesture classification has showcased the out-

standing performance of the HGS-SCNN technique. With an accuracy 
of 0.9944, HGS-SCNN has demonstrated a remarkable ability to ac-

curately predict hand gestures. Such high accuracy is of paramount 
importance, particularly in applications like human-computer interac-

tion and robotics, where precise gesture recognition is a critical factor. 
The high precision of HGS-SCNN (0.9944) underscores its capability 
to maintain an extremely low false positive rate, implying that the pre-

dicted hand gestures are highly likely to be correct. This characteristic is 
vital in applications where inaccurate predictions could lead to adverse 
outcomes. Furthermore, HGS-SCNN exhibited the highest specificity 
(0.9989) among the techniques analyzed, showcasing its proficiency 
in accurately identifying non-target gestures. This aspect is crucial in 
gesture recognition systems to avoid false positives, which can be par-

ticularly detrimental in applications such as medical diagnostics. The 
well-balanced F1 score of 0.9944 achieved by HGS-SCNN emphasizes 
its effectiveness in maintaining a trade-off between precision and re-

call. This is a vital characteristic for achieving a high-performing model 
that minimizes both false positives and false negatives.

In contrast to the HGS-SCNN model, the competitive techniques, 
namely GWO-SCNN, WOA-SCNN, and AOA-SCNN, exhibit suboptimal 
performance in the classification of hand gestures, yielding compar-

atively lower values across evaluation matrices. Specifically, GWO-

SCNN encounters challenges in effectively fine-tuning the Stacked CNN 
(SCNN) model, resulting in a suboptimal resolution with convergence 
being hindered in local minima during the cost reduction process. The 
resultant accuracy achieved by GWO-SCNN is recorded at 95.56%. 
AOA-SCNN and WOA-SCNN demonstrate relatively higher accuracy 
in comparison to GWO-SCNN. AOA-SCNN leverages a superior ex-

ploration strategy, enabling it to navigate away from local minima, 
thereby contributing to its elevated accuracy. Similarly, WOA-SCNN, 
while exhibiting less accuracy than AOA-SCNN, outperforms GWO-

SCNN, showcasing a more proficient optimization in the SCNN model 
tuning process. AOA-SCNN and WOA-SCNN attain accuracy values of 
97.78% and 96.11%, respectively. However, it is noteworthy that the 
HGS-SCNN model surpasses GWO-SCNN, WOA-SCNN, and AOA-SCNN 
across all evaluated metrics. The efficacy of HGS-SCNN is attributed to 
its adeptness in avoiding local minima through a judicious interplay of 
exploration and exploitation phases. This attribute enhances the mod-

el’s capacity for accurate classification of hand gestures, positioning it 
as a superior choice compared to GWO-SCNN, WOA-SCNN, and AOA-
11

SCNN in the studied context.
5.2. Comparative analysis and key insights

The comparative analysis of various hand gesture detection tech-

niques highlighted the strengths of the proposed HGS-SCNN approach. 
Our technique leveraged a comprehensive dataset encompassing six 
diverse hand gestures, providing a more representative and robust train-

ing environment compared to other techniques that used specific sign 
language gestures or a limited set of static images.

The adoption of a stacked convolutional neural network (CNN) al-

gorithm demonstrated the advanced nature of our approach. CNNs are 
known for their effectiveness in image-related tasks due to their ability 
to identify intricate patterns and extract features from visual data. This 
choice of algorithm underlines our commitment to employing cutting-

edge methodologies for hand gesture detection.

Lastly, achieving an accuracy of 0.993 with our proposed technique 
surpassed the accuracies reported in other references, underscoring its 
superior performance. This high accuracy level hints at the potential 
practical applicability of our approach in various domains.

5.3. Practical implications, challenges and future avenues

The superior performance of HGS-SCNN in hand gesture detection 
carries significant practical implications across multiple domains. In 
human-computer interaction, our technique has the potential to sig-

nificantly enhance user experience by providing accurate and intuitive 
gesture-based control systems. In the field of robotics, precise gesture 
recognition can enable seamless and efficient control of robotic devices, 
contributing to advancements in automation and robotics.

While the proposed HGS-SCNN model shows impressive accuracy in 
hand gesture recognition, like any technology, it’s not without its limi-

tations. One potential challenge lies in variations in sensor conditions. 
Real-world scenarios may involve different environments, lighting con-

ditions, or hardware variations, which could affect the performance of 
the model. The model might struggle to generalize well across diverse 
conditions not accounted for during training. Moreover, user-specific 
nuances can be a hurdle. People have unique ways of performing hand 
gestures, and individual differences in anatomy, muscle structure, or 
even the placement of the sEMG sensors can introduce variability. The 
model might not adapt perfectly to all users, potentially leading to lower 
accuracy or misclassifications for certain individuals. The effectiveness 
of the model could be influenced by the size and diversity of the dataset 
used for training. If the dataset does not adequately represent the wide 
range of potential users and scenarios, the model might not generalize 
well to unforeseen conditions. Furthermore, the reliance on the Dis-

crete Wavelet Transform (DWT) for feature extraction might introduce 
limitations. While DWT is effective in capturing spatial and frequency 
information, it might not be optimal for all types of hand gestures or 
could be sensitive to certain signal variations. It’s crucial to consider 
these limitations when implementing the HGS-SCNN model in practi-
cal applications. Ongoing research and refinement could address these 
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challenges, making the model more robust and adaptable to a broader 
range of conditions and user-specific nuances.

For future research, further exploration of deep learning architec-

tures and optimization techniques could potentially elevate the accu-

racy and efficiency of hand gesture detection systems. Additionally, 
investigating the application of hand gesture detection in real-time and 
dynamic environments would provide valuable insights for practical de-

ployments, such as in gaming, virtual reality, and assistive technologies.

6. Conclusion

This paper introduced a novel approach for hand gesture detection 
using a Henry Gas Solubility-based Stacked Convolutional Neural Net-

work (HGS-SCNN). Hand gesture detection has become increasingly 
important in various domains, and our proposed approach offers en-

hanced accuracy and robustness in this task. The stacked architecture 
of the CNN model allows for effective representation learning by cap-

turing both low-level and high-level features.

Through the utilization of the Discrete Wavelet Transform (DWT) 
technique for feature extraction, our approach successfully captures 
spatial and frequency information, leading to improved discriminative 
power in the extracted features. Extensive experiments were conducted 
using a dataset of 600 hand gesture samples, and the performance of the 
HGS-SCNN model was evaluated. Comparative analysis with SOTA tech-

niques demonstrates the superiority of our proposed approach, achiev-

ing an impressive accuracy of 99.3%.

The results validate the effectiveness of our approach in accurately 
detecting hand gestures and highlight the potential of combining DWT-

based feature extraction with the HGS-SCNN model. This combination 
offers reliable and robust hand gesture recognition, opening up new 
possibilities for intuitive human-computer or human-robot interaction 
and applications that require gesture-based control.

Possible future works that can be further carried out are elaborated 
below:

• Expanding the gesture vocabulary - The current 6 gestures, while 
covering a useful range, are still limited. Adding more complex 
uni-manual and bimanual gestures can enhance the system’s capa-

bilities.

• Evaluating personalized models - Training user-specific models that 
adapt to individual variations in muscle anatomy and sEMG pat-

terns may further boost accuracy.

• Exploring sensor fusion - Supplementing sEMG with inertial or 
depth data could make the recognition more robust to ambigui-

ties.
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