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Abstract—Radio maps quantify received signal strength or
other magnitudes of the radio frequency environment at every
point of a geographical region. These maps play a vital role
in a large number of applications such as wireless network
planning, spectrum management, and optimization of commu-
nication systems. However, empirical validation of the large
number of existing radio map estimators is highly limited. To
fill this gap, a large data set of measurements has been collected
with an autonomous unmanned aerial vehicle (UAV) and a
representative subset of these estimators were evaluated on this
data. The performance-complexity trade-off and the impact of
fast fading are extensively investigated. Although sophisticated
estimators based on deep neural networks (DNNs) exhibit the
best performance, they are seen to require large volumes of
training data to offer a substantial advantage relative to more
traditional schemes. A novel algorithm that blends both kinds of
estimators is seen to enjoy the benefits of both, thereby suggesting
the potential of exploring this research direction further.

Index Terms—RF measurements, radio map estimation, un-
manned aerial vehicles (UAVs), spectrum cartography.

I. INTRODUCTION

Radio maps characterize a radio frequency (RF) environ-
ment by providing a given metric for each spatial location [1],
[2]. Examples of metrics include the received signal power,
interference power, power spectral density (PSD), electromag-
netic absorption, and channel gain, to name a few. Fig. 1
depicts an example of a power map. Radio maps offer therefore
information about signal propagation, interference sources,
and channel occupancy, which is instrumental in cellular
communications, device-to-device communications, network
planning, frequency planning, robot path planning, dynamic
spectrum access, aerial traffic management in unmanned aerial
systems, fingerprinting localization, and so on; see references
in [1]. Radio maps are estimated from RF measurements
collected across the area of interest.

So far, a large number of works have proposed algorithms
for radio map estimation (RME); see e.g. [1], [3] and refer-
ences therein. However, only a small fraction of them test their
algorithms on real data. This is the case of [4], [5], [6], and
[7], where power measurements were collected at respectively
700, 337, 124, and 1035 indoor locations and the performance
of their algorithm was compared with a small number of
benchmarks. While not adopting the most conventional RME
formulation, there were studies in related problems that also
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Fig. 1: 3D illustration of a power map constructed via grid
discretization of one of the collected measurement sets.

collected similar datasets [8]–[11]. The largest dataset by far
was collected in [9], but the algorithm proposed therein is not
compared against existing ones.

Existing experimental validation is therefore rather limited,
with only some works that compare the algorithm that they
propose with a small number of benchmarks on small data
sets. An exhaustive comparison involving a wide range of
radio map estimators is still missing. To remedy this, a
system was developed where an unmanned aerial vehicle
(UAV) equipped with a software-defined radio collected re-
ceived power measurements at more than 57,000 locations. A
representative selection of existing estimators is extensively
compared based on this data. The performance-complexity
tradeoff and the effects of fast fading are examined by means
of two problem formulations and four performance metrics. It
is corroborated that estimators based on deep neural networks
(DNNs) require large volumes of training data to outperform
traditional interpolators. The capabilities of a novel algorithm
that combines the benefits of both kinds of estimators motivate
further research in this direction.

The rest of the paper is structured as follows. Sec. II reviews
the RME problem along with some of the most popular
schemes in the literature. Sec. III describes the data collection
system and procedure used in this work. This data is then
used in Sec. IV to analyze the performance of the algorithms
in Sec. II. Finally, Sec. V outlines the main conclusions.



II. RADIO MAP ESTIMATION

Although variations of the RME problem abound, the
present work focuses on the two most frequent formulations,
where a two-dimensional power map is estimated.

A. Model

Let X ⊂ R2 comprise the Cartesian coordinates of all
points in the region of interest, typically a rectangular region
in a horizontal plane. A power map is a function that maps
a location variable x ∈ X to the received signal power (or
strength) γ(x) in a given band. This power is the result of the
contribution of one or multiple transmitters. To illustrate the
different factors that determine γ(x), suppose for a moment
that there is a single transmitter and that it radiates with power
PTx. In this case, γ(x) can be expressed as

γ (x) = PTx +G− sPL(x)− sSF(x)− sFF(x), (1)

where sPL(x), sSF(x), sFF(x), and G respectively denote the
path loss, the loss due to shadow fading, the loss due to fast
fading, and the constant gain term that aggregates the gains of
the antennas and amplifiers.

The received power is measured by one or multiple receivers
(or sensors) with isotropic antennas at N locations {xn}Nn=1 ⊂
X . The measurement at xn can be written as

γ̃n = γ (xn) + zn, (2)

where zn represents measurement noise.

B. Problem Formulation

Since the term sFF(x) in (2) is caused by multipath, it
exhibits a spatial variability at a wavelength scale, which for
contemporary communication systems are not greater than
tens of centimeters. Thus, accurately estimating sFF(x) would
arguably require a spacing between measurement locations
below the wavelength, which would in turn require a pro-
hibitively large number of measurements. For this reason, it
is common in the RME literature to assume that fast fading
is averaged out. Since the impact of such an assumption has
never been empirically analyzed, the present work considers
two common problem formulations in the literature, one where
sFF(x) is estimated and one where sFF(x) is averaged out.

1) Grid-agnostic RME: In this formulation, fast-fading
is not averaged out. Given the set of N measurements
{(xn, γ̃n)}Nn=1, the problem is to estimate γ(x), x ∈ X .

2) Grid-aware RME: The second formulation involves a
grid discretization, which indirectly averages out fast fading
and which is used by a large number of existing estimators,
such as many based on deep learning, compressed sensing,
and matrix completion. Consider an Ny × Nx rectangular
grid G =

{
xG
i,j , i = 1, . . . , Ny, j = 1, . . . , Nx

}
⊂ X , where

xG
i,j = [∆(Ny−i),∆(j−1)]⊤ and ∆ is the grid spacing. This

assignment facilitates identifying the grid with a matrix. For
each n, the measurement at xn is assigned to the nearest grid
point. Subsequently, all measurements assigned to the (i, j)-th
grid point are averaged to obtain γ̃i,j . The resulting measure-
ments are then arranged in the matrix Γ̃ ∈ RNy×Nx , whose

(i, j)-th entry equals γ̃i,j if at least one measurement has been
assigned to xG

i,j and an arbitrary value (e.g. 0) otherwise. It
is also convenient to form matrix S ∈ {0, 1}Ny×Nx , whose
(i, j)-th entry equals 1 if at least one measurement has been
assigned to xG

i,j and 0 otherwise. Since γ̃i,j is the average
of measurements acquired typically several wavelengths away,
the contribution of sFF(x) is significantly reduced.

The RME problem can be formulated as, given Γ̃, estimate
the power map without the fast-fading contribution, i.e.

γNFF (x) := PTx +G− sPL(x)− sSF(x). (3)

While a natural formulation, most grid-aware estimators can
only provide estimates of γNFF (x) for x ∈ G.

C. Radio Map Estimators

This section briefly describes the tested estimators.
1) K-Nearest Neighbors (K-NN): This algorithm simply

averages the measurements collected at the K locations with
the smallest distance to the evaluation point. Specifically, given
x, let νk(x) denote the index of the k-th nearest point among
{xn}Nn=1. For example, ν1(x) = argminn ∥xn−x∥ whereas
νN (x) = argmaxn ∥xn − x∥. Although many variants exist,
the simplest is to obtain γ̂(x) = (1/K)

∑K
k=1 γ̃νk(x).

2) Kriging: This is a common spatial interpolation tech-
nique extensively applied to RME [2], [12]–[14]. In simple
kriging, γ(x) is modeled for each x as a random vari-
able whose spatial mean µγ(x) := E[γ(x)] and covariance
Cov[γ(x), γ(x′)] are known for all x and x′. In practice,
these functions are estimated from data. The simple kriging
estimate is nothing but the linear minimum mean square error
(LMMSE) estimator of γ(x) based on γ̃ := [γ̃1, . . . , γ̃N ]⊤:

γ̂(x) = µγ(x) + Cov[γ(x), γ̃]Cov−1[γ̃, γ̃](γ̃ − E[γ̃]), (4)

where Cov[γ̃, γ̃] and Cov[γ(x), γ̃] can be found by assuming
that zn in (2) is zero-mean with variance σ2

z and uncorrelated
with zn′ for all n′ ̸= n and with γ(x) for all x [13].

3) Kernel-based Learning: Kernel-based estimators return
estimates of the form γ̂(x) =

∑N
n=1 αnκ(x,xn), where the

coefficients αn depend on the specific estimator and κ is a
kernel function, such as a Gaussian radial basis function of
width s > 0, namely κ(x,x′) := exp{−∥x− x′∥2/s}. One
of the simplest estimators is kernel ridge regression (KRR),
where {αn}Nn=1 can be obtained in closed form by solving

minimize
{αn}N

n=1

1

N

N∑
n=1

∣∣∣∣∣γ̃n −
N∑

n′=1

αn′κ(xn,xn′)

∣∣∣∣∣
2

+ ρ

N∑
n=1

α2
n.

(5)

To reduce the influence of the kernel choice, [15] proposed
a multikernel map estimator where the kernels in a given
dictionary are combined based on the measurements.

4) Deep Learning: A large number of estimators relying
on deep neural networks have been proposed [7], [8], [13],
[16]–[24]. A typical approach is to concatenate Γ̃ and S to
form a 2×Ny ×Nx tensor that is passed as input to a neural
network, which returns an Ny ×Nx matrix Γ̂ whose (i, j)-th
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entry is an estimate for γNFF(x
G
i,j). To simplify subsequent

expressions, this estimate will still be denoted as γ̂(xG
i,j).

III. DATA COLLECTION

This section details the data collection system, where the
transmitter is placed at a fixed ground location and the receiver
is on board a UAV with geolocation capabilities.

A. Transmitter

The transmitter (see Fig. 2) is a Universal Software Radio
Peripheral (USRP) B205 mini-i with a monopole antenna
of 21 cm. The USRP transmits an orthogonal frequency-
division multiplexing (OFDM) signal with 1024 subcarriers,
out of which the central 600 are used. Since the sampling
rate is 5 MHz, the effective bandwidth becomes roughly 2.93
MHz. A frame that contains 12 OFDM symbols is repeatedly
transmitted with a carrier frequency of 918 MHz.

B. Receiver

The receiver, which is a USRP B205 mini-i with the same
antenna as the transmitter (Fig. 2) placed away from the motors
to minimize the impact of self-emission [25], is installed on
a quadcopter with a Raspberry Pi companion computer. The
quadcopter was assembled using a Holybro X500 v2 frame and
a Pixhawk 4 flight controller (FC) that runs a PX4 autopilot.
The autopilot estimates the location of the vehicle by fusing
the measurements of an inertial measurement unit (IMU) and
those of a real-time kinematic (RTK) module, which have an
accuracy of around 30 cm. The UAV follows a trajectory with
a height of 7 m that comprises parallel lines spaced by 1.2 m.
Such a trajectory is designed to facilitate experiments with grid
quantization; cf. Fig. 3. To minimize changes in the channel
due to the UAV frame, the yaw angle is kept constant.

At every second, the receiver module acquires approxi-
mately 15 uniformly-spaced sample blocks of 100,000 sam-
ples. Given that the speed is 5 m/s, the average distance
between sample blocks is around 33 cm, which approximately
equals the wavelength of the transmission. This is useful to
average out fast fading, as described in Sec. II-B. Together
with each sample block, the receiver stores the location
estimates provided by the autopilot at the acquisition time.

C. Data Collection Procedure and Postprocessing

For safety reasons, the data collection takes place on
a flat agricultural terrain away from residential areas. The
transmitter is placed at a height of approximately 50 cm.
To create different propagation conditions, one or several
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Fig. 3: Grid quantization of the measurement locations in one
of the collected measurement sets. Red dots denote grid points
and small black lines connect each measurement location to
its nearest grid point.

metallic reflectors are placed on a cardboard structure where
the transmitter is located. A total of 5 measurement sets were
collected, each one corresponding to a different configuration
of the reflectors and orientation of the transmit antenna.

The acquired sample blocks are processed offline to estimate
the received power. The estimation algorithm, developed for
this project, exploits the knowledge of the transmitted signal
to minimize measurement error due to noise. The measure-
ment locations are then rotated and translated to maximize
alignment with the grid; cf. Fig. 3. Wind sometimes results
in some grid points without assigned measurements. Yet, the
alignment is sufficiently good to allow the visualization of each
measurement set as in Fig. 1, where just the grid quantization
procedure from Sec. II-B was applied. Observe that the ripple
effect of fast fading (cf. sFF(x) in (1)) has not been totally
averaged out as a result of the grid quantization. This effect is
more apparent in Fig. 4, which plots the measurements of one
column of Fig. 3 before and after grid quantization. To totally
remove this effect, one could adopt a greater grid spacing ∆,
but this would yield lower spatial map resolution.

IV. EXPERIMENTS WITH REAL DATA

The collected data is used in this section to evaluate
the performance of seven radio map estimators. Since three
of them employ deep neural networks, which require large
amounts of training data, one of the measurement sets is used
for testing and the other four for training. For training and
for Monte Carlo (MC) experiments, “patches” are generated
from each measurement set by drawing an L×L square in the
region uniformly at random and selecting the measurements
whose locations lie inside it. After translating the measurement
locations to X = [−∆/2, L − ∆/2]2, which is where G is
created when needed, the data is denoted as {(xn, γ̃n)}Nn=1.
Thus, xn, γ̃n, and N should be thought of as random variables
that take new values for each patch or MC iteration.

The compared algorithms include: 1) K-NN with K = 5
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Fig. 4: Measurements in the 12-th column of Fig. 3 vs. the y-
coordinate of their location. Orange: Measurements {γ̃i,j}j
for a fixed j = 12 vs. the y-coordinate of xG

i,j . Blue:
measurements {γ̃n}n assigned to the points in {xG

i,j}j .

nearest neighbors; 2) simple Kriging with E[γ(x)] = 0 and
Cov(sSF(x), sSF(x′)) = σ2

s2
−∥x−x′∥/δs , where σ2

s = 9 and
δs = 50 is the distance at which the correlation decays to
1/2; see e.g. [13] for additional details; 3) KRR with ρ =
10−3 and a Gaussian radial-basis function kernel with s =
10; 4) the multikernel algorithm in [15] with regularization
parameter 10−3 and 3 Laplacian kernels with kernel width
s = 10, 20, and 30; 5) three DNN estimators.

DNN estimators construct a grid with Nx = Ny = L/∆
with ∆ = 1.2 m and obtain Γ̃ and S as described in
Sec. II-B2. A forward pass yields Γ̂, which provides estimates
of the map at the grid locations. To obtain an estimate of
the map off the grid points, the value is extracted from the
estimate of the nearest grid point. Training input-output pairs
are constructed by splitting S into two parts as described in
Sec. IV-A2. To artificially increase the size of the training data
set, data augmentation is implemented by randomly applying
horizontal flipping, vertical flipping, and 90-degree rotation
to the training patches. The DNNs were implemented in
TensorFlow and trained with the Adam optimization algorithm
with a constant learning rate of 10−4 and batch size 200.
All three estimators use convolutional DNNs and they mainly
differ in their architectures. DNN 1 follows the architecture of
the mean subnetwork in [13]. With 60 M trainable parameters,
it features the highest complexity. DNN 2 follows the U-
Net architecture [19] with leaky ReLU activations, since the
original tanh does not result in a good performance. With 4
M trainable parameters, its complexity is much lower than
DNN 1. The DNN 3 has the same architecture as DNN 2 but
the KRR estimate on G is concatenated to the input tensor
to explore combinations between DNN-based and non-DNN
estimators.

Except for the DNN estimators, all algorithms use the same
parameters in all experiments. These parameters were adjusted
to yield an overall good performance in all experiments. The
DNN estimators, in turn, were separately trained for the two
different values of L used in the experiments.

Fig. 5 shows an example of map estimation for a randomly

selected patch of approximately 1,475 m2. The number of
observations, marked as black crosses, was selected so that
all estimates are of a reasonable quality.

The rest of this section considers several setups to assess
the performance of the considered estimators in both of the
problem formulations in Sec. II-B.

A. Performance Metrics

1) Grid-agnostic Estimation: When solving the problem
in Sec. II-B1, it is natural to quantify performance by the
estimation error at the locations of unobserved measurements.
Specifically, at each MC iteration, M := {(xn, γ̃n)}Nn=1 is
split into two subsets by partitioning the index set N :=
{1, 2, . . . , N} into N obs and N nobs, that is, N obs ∪N nobs = N
and N obs ∩ N nobs = ∅. The cardinality N obs := |N obs| is
fixed. The measurements with index in N obs are passed to each
estimator and the returned map estimate γ̂(x) is evaluated at
the locations {xn}n∈N nobs . The RMSE can then be defined as

RMSE :=

√√√√ 1

|N nobs|
E

[ ∑
n∈N nobs

|γ̃n − γ̂(xn)|2
]
, (6)

where the expectation E is over patches and index sets N obs
sampled uniformly at random without replacement from N .
This sampling approach, however, may not reflect the trend
in practice to have spatially clustered measurement locations.
This occurs e.g. when a cellular device can collect a large
number of measurements in a small part of X where its user
remains but no measurement where its user is not present
during the measurement acquisition stage. To capture this
effect, define the metric RMSEG as in (6) but with a different
distribution for N obs: After creating a rectangular grid with
spacing ∆, each measurement location is assigned to the near-
est grid point. Then N obs grid points are selected uniformly
at random and N obs is formed by collecting the indices of the
measurements assigned to the selected grid points.

2) Grid-aware Estimation: When solving the problem in
Sec. II-B2, it is natural to evaluate the performance on G. To
this end, at each MC iteration, Γ̃ and S are constructed as
in Sec. II-B. Let N ⊂ {1, . . . , Ny} × {1, . . . , Nx} denote the
set of values of (i, j) such that [S]i,j = 1. As before, N
is partitioned into N obs and N nobs, where N obs := |N obs| is
given. Each estimator receives N obs and {γ̃i,j}(i,j)∈N obs and
produces an estimate Γ̂. To quantify performance, consider

RMSEG-nobs :=

√√√√√ 1

|N nobs|
E

 ∑
(i,j)∈N nobs

|γ̃i,j − γ̂(xi,j)|2

,
(7)

where E is over patches and over N obs, which is drawn
uniformly at random over N .

Different estimators may emphasize the spatial smoothness
of their estimates to different extents. Thus, it is also insightful
to consider RMSEG-all, where N obs is drawn in the same way
as in RMSEG-nobs but the evaluation takes place at all grid
points in N , that is, N nobs in (7) is replaced with N .
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Fig. 5: True and estimates produced by the considered map estimators. Black crosses denote measurement locations.
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Fig. 6: Grid-agnostic performance metrics for the compared
estimators vs. the number of observations when L = 19.2 m.
The RMSEG of the multikernel estimator exceeds 10 dB and
therefore it is not visible in the bottom figure.
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Fig. 7: Grid-aware performance metrics for the compared
estimators vs. the number of observations when L = 19.2 m.

B. Monte Carlo Experiments

The metrics in Sec. IV-A are obtained next using MC
experiments where, at each iteration, a patch and a sampling
set N obs are generated as described there.

Figs. 6 and 7 depict these metrics when the patch side
is L = 19.2 m. This ensures that the test set contains a
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Fig. 8: Two of the considered performance metrics vs. the
number of observations when L = 38.4 m.

sufficiently high number of distinct patches and the training set
is sufficiently large for DNN training. It is observed in Fig. 6
that the RMSE of the best estimators approximately attains its
lowest value with just 30 observations, which amounts to one
observation for every 12 m2. From Fig. 7, RMSEG-nobs requires
a few more observations to attain the final value, but this
final error is lower. Note that, due to its definition, RMSEG-all
will continue decreasing until N obs = N for any reasonable
estimator. Even the trivial estimator that returns γ̂(xG

i,j) = γ̃i,j

for all i, j will attain RMSEG-all = 0 when N obs = N . Overall,
the estimation error of most estimators is around 6 dB for the
grid-agnostic metrics, whereas it may be as low as 3.5 dB
for RMSEG-nobs. This agrees with intuition: averaging out fast
fading reduces the spatial variability of γ(x), which renders it
an easier function to estimate. The best-performing algorithms
are based on DNNs. However, simple algorithms such as K-
NN and Kriging offer highly competitive performance. This
suggests that the benefits of using DNN estimators may not be
worth the performance gain. Nonetheless, the performance gap
is likely to increase if the DNNs are trained with more data.
It is also important to keep in mind that the same parameters
were used for each algorithm in all points of Figs. 6 and 7.
Improved performance must be expected if such parameters
are set depending on N obs.

Fig. 8 shows the MC estimates of the metrics in (6) and (7)
when L = 38.4 m. The comparison is not as reliable as the
one in Figs. 6 and 7 since the number of distinct test patches



is now just 156. Remarkably, the number of observations
per m2 to attain RMSE ≈ 6 dB is roughly the same as in
Fig. 6. RMSEG-nobs is also similar to the one in Fig. 7 for
a sufficiently large number of observations. The performance
of the DNN estimators is severely degraded with respect to
Figs. 6 and 7 because the larger L dramatically reduces the
number of training patches. Interestingly, DNN 3 yields the
best RMSE for a low N obs. This highlights the potential of
hybrid algorithms that combine DNN estimators with more
traditional interpolation techniques such as KRR.

V. CONCLUSIONS

This paper assesses the performance of a representative
subset of existing radio map estimators on real data collected
with a UAV. Two RME problem formulations were considered
and the quality of the estimates was assessed by means of four
performance metrics.

One of the most remarkable observations is the overall
good performance of simple estimators such as K-NN or
Kriging. This fact may have gone unnoticed in a large part
of the literature, where sophisticated estimators are proposed
but no comparisons with such benchmarks are presented.
One experiment also revealed the potential of combining
DNN estimators and interpolators. It was also observed that
averaging out fast fading greatly facilitates estimation.

Among the limitations of the present study, one may high-
light the following: 1) although the number of measurement
locations in the dataset is by far the largest in the literature, it
is still insufficient to train the “data-hungry” DNN estimators.
A larger performance gain relative to traditional estimators
must be expected when DNN estimators are trained on more
data. 2) All estimators used the same parameters in all exper-
iments. Performance improvements may be expected if they
are adjusted depending on the target metric and N obs. 3) Only
power maps were considered, so estimators for other classes
of maps are yet to be investigated. 4) All measurements took
place in the same frequency band, so some conclusions may
not carry over to other parts of the RF spectrum.

Future work will include more extensive data collection, a
more systematic optimization of the parameters of traditional
estimators, consideration of other classes of maps, and the
development of further hybrid estimators that combine DNNs
and more traditional approaches.
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