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Abstract

Lifecourse nutrition encompasses nourishment from early development into

parenthood. From preconception and pregnancy to childhood, late adolescence,

and reproductive years, life course nutrition explores links between dietary

exposures and health outcomes in current and future generations from a public

health perspective, usually addressing lifestyle behaviours, reproductive well‐being

and maternal‐child health strategies. However, nutritional factors that play a role in

conceiving and sustaining new life might also require a molecular perspective and

recognition of critical interactions between specific nutrients and relevant

biochemical pathways. The present perspective summarises evidence about

the links between diet during periconception and next‐generation health and

outlines the main metabolic networks involved in nutritional biology of this sensitive

time frame.
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1 | NUTRITION AND PERICONCEPTION:
AN OVERVIEW

Periconception could be defined as a 6‐month period in women

embracing oocyte growth, fertilisation, conceptus formation and

development to Week 10 of gestation (Louis et al., 2008), including a

3‐month preconception period in men for sperm formation and

maturation and fertilisation. This is the most sensitive period of

human development, and many environmental factors can modulate

normal periconception and subsequent well‐being (for a detailed

review, see Fazeli & Holt, 2017; and Simeoni et al., 2018). Among

others, nutrition in this time window is often considered critical in

terms of both short‐ and long‐term health outcomes, with respect to

the neurological, cardiometabolic and oncological disorders, from the

neonatal period to adulthood (Koletzko et al., 2019; Reijnders et al.,

2019). Recent studies investigating maternal western diet's harmful

impacts on fetal development in the nonhuman primate model

(Friedman, 2018; Wesolowski et al., 2018), as well as dietary

recommendations for pregnant women (Marshall et al., 2022), might

help set the stage for how metabolic regulators are essential in

mediating the effects of maternal diet and fetal supplies on

embryonic and fetal development. A vast repercussion of pericon-

ception diet is illustrated by a recent study where maternal over‐ or

undernutrition during the periconception affected the fertility of the

male offspring via long‐lasting metabolic alterations (Zambrano et al.,

2021). This suggests that the male reproductive system is develop-

mentally programmed while possible adverse effects of a periconcep-

tional diet could linger to children two generations away. The
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interconnection between low parental folate intake and neural tube

defects or paediatric malignancy was among the first in setting out a

scene for a periconceptional nutrition‐for‐children health framework

(Rayburn et al., 1996; Swedish Council on Health Technology

Assessment, 2007; Toren et al., 1996; Wilson et al., 2003), yet

several other critical dietary factors identified via either human or

preclinical studies could be associated with ill health in the next

generation.

For instance, maternal and paternal obesity before conception

can alter the molecular composition of both oocytes and sperm,

ultimately increasing the incidence of obesity and metabolic disorders

in offspring (Lane et al., 2015), with paternal periconceptional body

weight may also affect daughters’ breast cancer risk (Fontelles et al.,

2016). Maternal dietary intake of methyl‐group donors (e.g., choline,

folate, betaine, methionine) during the periconception period can

influence infant metabolism, growth and appetite regulation (Pauwels

et al., 2017), with impaired methylation status in parents during

periconception also associated with smaller placental growth

trajectories (Hoek et al., 2021). Poor parental nutrition during the

periconceptional can affect fertility and early development via one‐

carbon metabolic pathways that also involve the utilisation of methyl‐

group donors (Steegers‐Theunissen et al., 2013). The Rotterdam

Periconception Cohort identified weak‐to‐moderate associations

between embryonic growth and specific maternal lifestyle factors

related to diet, including vegetable and fruit intake, and alcohol

consumption (Van Dijk et al., 2018). In line with this, inadequate

periconceptional maternal vegetable intake can negatively impact

embryo development during the preimplantation period after

intracytoplasmic sperm injection treatment (Hoek et al., 2020).

Maternal Western dietary patterns (e.g., a diet high in meat, pizza,

legumes and potatoes, and low in fruits), accompanied by impaired

methylation status, were associated with a higher risk of congenital

disabilities (Vujkovic et al., 2007). Periconceptional plant consump-

tion could extend to long‐term health effects, with increased

maternal intake of vegetables, fruit and vitamin C that prevent

against behavioural problems in pre‐school children (Miyake et al.,

2020). A maternal diet rich in proinflammatory foods (such as fried

foods, sodas, refined carbohydrates and red meat) is associated with

smaller offspring birth sizes and a higher risk of offspring being born

small for gestational age (Chen et al., 2021). Maternal vitamin D

deficiency is another nutritional element associated with an increased

prevalence of heart problems in offspring (Koster et al., 2018), while

vitamin D repletion during pregnancy minimises the risk of certain

adverse outcomes, such as preterm birth and asthma in children

(Wagner & Hollis, 2018). In addition, high maternal vitamin E by diet

and supplements is associated with an increased risk of congenital

heart defects in offspring (Smedts et al., 2009).

Additional dietary factors linking periconceptional diet and

offspring health are identified from animal studies. For example,

preclinical data suggest that maternal dietary protein restriction can

lead to compensatory fetal growth changes resulting in cardiovascu-

lar, metabolic and behavioural diseases in adult offspring (Fleming

et al., 2015), as well as poor mineral density (Lanham et al., 2021). On

the contrary, chronic metabolic stress and impaired fetal develop-

ment are seen in females following periconceptional exposure to a

high‐protein diet (Mitchell et al., 2009), implying the importance of a

balanced protein intake for normal fetal growth. In addition, maternal

dietary protein perturbations during conception and early gestation

can also alter male testis development and delay puberty (Copping

et al., 2018). Maternal supply of omega‐3 polyunsaturated fatty acids

can alter mechanisms involved in oocyte and early embryo develop-

ment, including mitochondrial distribution, calcium homoeostasis and

antioxidant‐oxidant status (Wakefield et al., 2008). Interestingly, a

methyl‐deficient diet during the periconception period programs

glucose homoeostasis in adult male but not female offspring

(Maloney et al., 2011), suggesting gender‐specific changes in glucose

turnover. Intrauterine vitamin D deficiency predisposes offspring to

long‐term adipose tissue consequences and possible adverse

metabolic health complications (Belenchia et al., 2017). A few recent

reviews provide an extensive compendium of additional studies

describing the links between parental nutrition during periconception

and next‐generation health (Adair, 2014; Ashworth et al., 2009), and

several metabolic pathways might be involved in the relationship. We

outlined below the main metabolic networks involved in the

nutritional biology of this sensitive time frame.

2 | ONE‐CARBON METABOLISM

One‐carbon metabolism is a biological network that integrates

nutrient status from the environment to yield multiple biological

functions (Mentch & Locasale, 2016). This pathway appears to

be modulated via various epigenetic mechanisms related to

periconception maternal environment, influencing fetal growth and

Key messages

• Nutrition can modulate normal periconception and

subsequent well‐being, yet we still lack a fundamental

understanding of the main metabolic networks involved

in nutritional biology of this sensitive time frame.

• Besides one‐carbon metabolism, arguably a key regula-

tory network affected by periconceptional nutrition,

several other nutrition‐related intracellular signals are

recognised as important to support normal periconcep-

tion, including high‐energy phosphate metabolism, gut

microbiota‐driven factors, peroxisome proliferator‐

activated receptors, adiponectine, mechanistic target of

rapamycin and retinol‐binding protein‐4.

• To advance research related to molecular nutrition and

periconception, the scientific community must embrace

the theranostics approach in research planning and

knowledge translation, and monitor additional target

molecules and pathways.
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development (Rubini et al., 2021). S‐adenosylmethionine (SAM) is a

central player in one‐carbon metabolism, acting as a universal methyl

donor for many methylation reactions that involve lipids, DNA and

histone proteins. The SAM turnover is influenced by folate‐

homocysteine homoeostasis during early embryonic development

(Taparia et al., 2007). Several trials suggest that diet‐driven

modulation of the folate‐dependent one‐carbon metabolism during

periconception could affect fetal and neonatal health (Boyles et al.,

2008; Dominguez‐Salas et al., 2013; Liu et al., 2020; Steegers‐

Theunissen et al., 2009). Specifically, optimal regeneration of SAM

can support DNA methyltransferase activity and temporal expression

of critical genes necessary for normal embryonic development

(Finnell et al., 2002). A significant association has been found

between dietary patterns reflecting one‐carbon metabolism nutrients

intake before pregnancy and placental DNA methylation, with solid

links found for ‘varied and balanced’ or ‘vegetarian’ patterns and

methylation of genes implicated in neurodevelopment and future

growth (Lecorguillé et al., 2020; Lecorguillé et al., 2022). Candidate

genes linking maternal nutrient exposure to offspring health via one‐

carbon metabolism include over 40 different genes and regions of

interest (James et al., 2018), including DNMT1, H19, IGF2, LEP,

MEG3, NR3C1, PEG3 and RXRA. Interestingly, the biomarkers of

one‐carbon metabolism change from preconception across gestation

(Gilley et al., 2019), implying a need for a time‐sensitive dietary

approach to sustain SAM turnover.

3 | HIGH‐ENERGY PHOSPHATE
METABOLISM

The high‐energy phosphate metabolism produces cellular energy at

extremely rapid rates by transferring phosphate groups from

adenosine triphosphate and its intermediates, or from stored

creatine. Optimising high‐energy phosphagen bioenergetics during

periconception might be a major step in normal fetal and neonatal

development, particularly for tissues with high or fluctuating energy

demands, such as the brain, skeletal muscle or reproductive organs.

Creatine is a semi‐essential nutrient that plays a key role in upholding

normal phosphagen bioenergetics, with dietary creatine available

only in animal‐based foods (Ostojic & Forbes, 2022). Several recent

studies demonstrated suboptimal dietary intake of creatine in the

general population (Ostojic, 2021), implying the possible risk of

inadequate exposure to creatine during periconception. In line with

this, creatine deficit could be linked with suboptimal parental fertility

(for a detailed review, see Ostojic et al., 2022), while dietary creatine

elevates cell energy levels and increases the chance of successful

fertilisation (Fakih et al., 1986; Umehara et al., 2018). It is also

postulated that a high potential for creatine synthesis may protect

the mother from dynamic shifts in the energy required to sustain

normal embryonic or fetal development (Moore, 1991). There is an

increased requirement for maternal creatine due to the rapid growth

and increased metabolic needs of the fetus in the third trimester of

pregnancy (Muccini et al., 2021). In a retrospective case‐controlled

study, an 18% reduction in maternal serum creatine concentration

during the third trimester of pregnancy was associated with a greater

incidence of poor perinatal outcomes, which was defined by a

composite measure of small for gestational age, preterm birth and

admission to neonatal intensive care (Heazell et al., 2012). Several

human studies reported reduced creatine concentrations in the brain

of preterm infants when compared with term controls at term‐

corrected age (Koob et al., 2016). Approximately 6 out of 10

pregnant women consumed dietary creatine below the recom-

mended amounts for an adult female (Ostojic et al., 2021), suggesting

a possible risk of creatine malnutrition in this population. Interest-

ingly, maternal creatine intake mitigated neurological injury in the

fetal brain and was associated with increased neonatal survival and

improved post‐natal growth (Holtzman et al., 1998).

4 | INFLAMMATION

Maternal chronic inflammation may induce both short‐ and long‐term

metabolic reprogramming at several levels, starting from the

periconceptional period with effects on the oocyte going through

the early stages of embryonic and placental development (Parisi et al.,

2021). The systemic inflammation provoked by exposure to

lipopolysaccharides during the periconceptional period caused a

corticosterone‐independent blunting of the maternal serum proin-

flammatory cytokine response to innate immune challenge in both

male and female offspring (Williams et al., 2011). Interestingly, the

suppressed state of neonatal innate immunity was dose‐dependent

with respect to the maternal lipopolysaccharide dosage consumed.

Various dietary regimens and foods could expose future parents to

lipopolysaccharides and concomitant inflammation, including diets

low in fish, fresh vegetables, fruits and berries (Ahola et al., 2017) or

food supplements (Wassenaar & Zimmermann, 2018). Also, oocytes

from overweight/obese women had increased expression of proin-

flammatory and oxidative stress‐related genes, including chemokine

C‐X‐C motif ligand 2 (CXCL2) and dual‐specificity protein phospha-

tase 1 (DUSP1) (Ruebel et al., 2017). In line with this, a high‐fat diet

during the second half of pregnancy appears to increase the

expression of fetal liver genes associated with inflammation pheno-

type, including nuclear factor kappa B 1 (NFKB1), cytokine signalling

protein 3 (SOCS3) and DUSP1 (Plata et al., 2014). Interestingly,

dietary fructooligosaccharides could ameliorate high‐fat induced

intrauterine inflammation and improve lipid profile in the offspring

by lowering neutrophil infiltration and decreasing the expression and

production of proinflammatory cytokines, such as NFKB1,

cyclooxygenase‐2 (COX2), interleukin‐8 and transforming growth

factor beta (TGF‐β) (Mohammed et al., 2022). This perhaps extends

to other organs, with parental high‐fat, high‐sugar diet can instigate

hypothalamic inflammation in offspring, which remained until

adulthood (César et al., 2022), implying long‐term metabolic effects

of maternal and paternal proinflammatory diet.
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5 | GUT MICROBIOTA

The gut microbiota plays a significant role in human health, with diet

being recognised as a critical modulator of gut microbiota diversity

and function (Valdes et al., 2018). The current data reveal that gut

microbiota may be transmitted from mother to offspring during the

birth and its first few days of life through breastfeeding (de Brito

Alves et al., 2019). Therefore, maternal gut microbiota‐driven factors,

perhaps modulated by diet, could have implications for the

etiopathogenesis of various cardiometabolic and neurobehavioral

disorders in the next generation. For instance, exposure to

endocrine‐disrupting chemicals (EDCs) available from food may

disrupt the normal parental gut flora, which may, in turn, result in

systemic effects in offspring, with many of the bacteria whose

proportions increase with exposure to EDCs in the next generation

are associated with inflammatory bowel disease, metabolic disorders

and colorectal cancer (Javurek et al., 2016). In addition, maternal

periconceptional exposure to antibiotics provokes alterations in

offspring behaviour in the absence of maternal infection (Degroote

et al., 2016). A preclinical study demonstrated that highly fat‐fed

pregnant mice when compared with control‐fed animals were found

to be significantly enriched in microbes involved in metabolic

pathways favouring fatty acid, ketone, vitamin and bile synthesis

(Gohir et al., 2015). Another trial demonstrated that diet‐induced

changes in maternal gut microbiota and metabolomic profiles

influence the programming of offspring obesity risk in rats (Paul

et al., 2016). Also, a paternal high‐protein diet modulates body

composition, insulin sensitivity, epigenetics and gut microbiota

intergenerationally (Chleilat et al., 2021), with increased abundance

of Bifidobacterium, Akkermansia, Bacteroides and Marvinbryantia in

high protein‐consumed fathers and/or male and female adult

offspring. Still, most studies are focused on associations between

maternal gut microbiota and offspring health and thus are limited in

identifying direct mechanisms of how the gut microbiota interacts

with metabolism in other parts of the body, including fetal

metabolism.

6 | OTHER BIOLOGICAL NETWORKS

Besides one‐carbon metabolism, inflammation and high‐energy

phosphate bioenergetics, several other nutrition‐related intracellular

signals are recognised as important to support normal periconcep-

tion, including adiponectin, peroxisome proliferator‐activated recep-

tors (PPARs), proteome‐associated amino acid metabolism, growth‐

related protein kinases, fatty acids and sugar. Laudes et al. (2009)

recently found that human fetal adiponectin and retinol‐binding

protein (RBP)‐4 levels are related to birth weight and maternal

obesity, with adiponectin being more likely to have a role in perinatal

priming of obesity and insulin resistance than RBP‐4. PPARs are also

critical cellular mediators of oocyte quality and ovarian responses to

obesity‐induced insulin resistance (Minge et al., 2008), with

adipogenic‐regulating genes PPAR gamma (along with vitamin D

receptor) could be modulated by maternal diet (Belenchia et al.,

2018). Hepatic proteome‐associated amino acid metabolism and

antioxidant defence (also energy metabolism) appear to be affected

by diet during the pre‐and peri‐conception periods of development

(Maloney et al., 2013). In addition, a set of key factors regulating

growth and metabolism (such as AMP‐activated protein kinase,

phospho‐acetyl CoA carboxykinase, pyruvate dehydrogenase kinase‐

4, insulin‐like growth factor [IGF]‐2 receptor, protein kinase C alpha,

mechanistic target of rapamycin [mTOR]) are influenced by poor

maternal nutrition during periconception (Lie et al., 2013). Interest-

ingly, a recent trial suggested that the placenta could be a true

nutrient/resource sensor that orchestrates maternal and fetal signals,

with placental IGF‐1 and mTOR recognised as key signalling targets

affected by preconception maternal nutrition (Castillo‐Castrejon

et al., 2021). In addition, maternal energy intake (especially sugar)

appears to be linked with adverse impacts on fetal body composition,

not just in diabetics but also in obese mothers and those who

consume a high‐sugar diet (as well as a high‐sugar, high‐fat diet), with

possible molecular mediators include proinflammatory factors,

adipokines and cytokines (Barbour & Hernandez, 2018). Finally,

there are many potential effects of fatty acids signalling in the mother

that impact fetal development, especially the supplies of long‐

chained polyunsaturated fatty acids, linoleic and linolenic acid and

their derivatives, arachidonic acid and eicosapentaenoic acid and

docosahexaenoic acid (for a detailed review, see Best et al., 2016;

and Basak et al., 2021). The cumulative impact of these biological

networks on transgenerational health requires an extensive approach

by using time‐sensitive nutrigenomics and functional genomics in

future studies.

7 | CONCLUSION

Optimising nutrition during periconception appears to be a relevant

target for both the short and long‐term health of the next generation.

Diet during this delicate period is often substandard (Hinkle et al.,

2020), and this could compromise several key metabolic pathways

resulting in poor placental, fetal and neonatal health. One‐carbon

metabolism might be a key regulatory network affected by

periconceptional nutrition, but other pathways could also be

modulated by diet, resulting in the ill health of offspring from the

earliest moments in life. Improving our knowledge about how

periconceptional nutrition affects next‐generation health might

benefit from recognising relevant molecular networks and tackling

key modulators by healthy nutrition.
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