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A Trainable Approach to Zero-Delay Smoothing
Spline Interpolation

Emilio Ruiz-Moreno

Abstract—The task of reconstructing smooth signals from
streamed data in the form of signal samples arises in various
applications. This work addresses such a task subject to a zero-
delay response; that is, the smooth signal must be reconstructed
sequentially as soon as a data sample is available and without
having access to subsequent data. State-of-the-art approaches
solve this problem by interpolating consecutive data samples
using splines. Here, each interpolation step yields a piece that
ensures a smooth signal reconstruction while minimizing a cost
metric, typically a weighted sum between the squared residual
and a derivative-based measure of smoothness. As a result, a zero-
delay interpolation is achieved in exchange for an almost certainly
higher cumulative cost as compared to interpolating all data
samples together. This paper presents a novel approach to further
reduce this cumulative cost on average. First, we formulate a
zero-delay smoothing spline interpolation problem from a sequen-
tial decision-making perspective, allowing us to model the future
impact of each interpolated piece on the average cumulative cost.
Then, an interpolation method is proposed to exploit the temporal
dependencies between the streamed data samples. Our method is
assisted by a recurrent neural network and accordingly trained
to reduce the accumulated cost on average over a set of example
data samples collected from the same signal source generating
the signal to be reconstructed. Finally, we present extensive
experimental results for synthetic and real data showing how
our approach outperforms the abovementioned state-of-the-art.

Index Terms—Smoothing spline interpolation, stream learning,
sequential decision making, recurrent neural network.

1. INTRODUCTION

NLINE learning has been studied and applied in a
broad range of research fields, including optimization
theory [5], [6], [7], signal processing [8], and machine learning
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Fig. 1. A signal reconstructed from stream data points by different methods

and models. The symbols x; and f: represent the current time and signal
estimate, respectively. (a) Recursive least squares [1], [2] with a linear model.
(b) NORMA [3] with Gaussian kernels. (c) Smoothing myopic interpolation
with cubic Hermite splines [4].

[9], [10], [11]. Within these fields, online methods generating
a series of estimates from sequentially streamed data are espe-
cially useful to reduce complexity in large-scale problems [12],
to dynamically adapt to new patterns in the data [13], and to
enable acting under real-time requirements [14].

This work addresses the last one of the previous use cases
in the context of signal reconstruction. Specifically, it investi-
gates the use of online methods with zero-delay response for
smooth signal reconstruction. First, most physical signals are
bounded and smooth due to energy conservation [15]; hence it
is beneficial to maintain smoothness as a property during signal
reconstruction. Second, the zero-delay requirement demands
new portions of the smooth signal to be reconstructed as soon
as a new data sample is available. Consequently, a reduced con-
stant complexity per iteration [16] is required so that the online
method is executed at a higher speed than the transmission rate
at which the data samples are received. These requisites are
well-motivated since they appear in many practical problems,
such as online trajectory planning [17], [18], real-time control
systems [19], [20], and high-speed digital to analog conversion
[21], among others. Although the tasks of estimating smooth
signals or delivering a zero-delay response are separately man-
aged by most online methods, handling them together becomes
challenging, as we expound next.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/
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Some popular online methods that can be used for smooth
signal estimation are online kernel methods [22], [23] and
online Gaussian processes [24], [25]. They aim at yielding a
sequence of signal estimates with convergence guarantees or
sublinear regret [26]. To this end, they initially propose a signal
estimate which is updated (or modified) possibly globally as
new data samples arrive. Their goal is to refine the signal
estimate rather than reconstruct new portions of the smooth
signal. Therefore, neither smoothness nor even continuity
of the sequentially reconstructed signal is guaranteed. In
fact, any online method not ensuring the smoothness of the
reconstruction during the signal estimate update (even when
the signal estimate is modeled by smooth functions) suffers
from this issue, as illustrated in Fig. 1(a) and 1(b). On the
other hand, online interpolation methods can be suitable
candidates for the task of smooth signal reconstruction with
a zero-delay response. These methods use piecewise-defined
functions to model a sequence of local signal estimates. Some
of these functions allow shaping piecewise-modeled signal
estimates that can be updated by assembling a new section
(or piece) while guaranteeing the smoothness of the overall
sequentially reconstructed signal, as shown in Fig. 1(c).
Among them, piecewise polynomial functions, also known
as splines, are arguably the most representative ones [27],
[28]. Actually, splines have been used since ancient times
[29], long before their mathematical foundations were even
established [30], presumably because of their approximation
capabilities over functions of arbitrary complexity and ease
of use.

It should be noted that most recursive signal estimation meth-
ods modeling function estimates by splines as a basis expansion
[31], [32], [33], suffer from the same issues exposed before.
This is mainly because the smoothness of their signal estimate
is directly incorporated into the basis representation and not
treated as a set of continuity constraints. On the contrary, some
works [34], [35] have explored the task of interpolating sequen-
tially streamed data under real-time requirements by means of
splines subject to continuity constraints. However, the online
methods they use involve a multi-step lookahead or shifting
window mechanism, which introduces a delay. Indeed, most
online methods for spline interpolation work with local infor-
mation, for instance, a subset constituted by the last sequentially
received data samples. In this case, a delayed response allows
them to use a larger subset of sequentially received data samples
and correct the signal estimates as long as they are updated
within the delay limits. In brief, they can expand the extent
of available information at the expense of some delay. On the
other hand, and to the best of our knowledge, the only zero-
delay spline interpolation method in the literature is the myopic
approach, referred to as the “classical greedy approach” in [35],
which reduces the delay response to zero by totally ignoring any
source of forthcoming information, i.e., a purely local method.
Clearly, there is a research gap on zero-delay spline interpo-
lation methods exploiting additional nonlocal information to
achieve a better reconstruction. This motivates us to work on the
research question of whether it is possible to maintain the zero-
delay requirement while efficiently using more information than
the myopic approach.
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In this paper, we answer affirmatively to the above re-
search question by introducing a novel method for zero-delay
smoothing' spline interpolation that incorporates a priori infor-
mation about the dynamics of the signal being reconstructed.
To this end, we identify the elements of a state space-based
sequential decision-making process [36] in the context of zero-
delay smoothing spline interpolation. The proposed method
relies on a policy, i.e., a strategy, that yields a section of the
spline (action) as a function of the current condition of the so far
reconstructed signal and the last received data sample (state).
Such a policy consists of a differentiable convex optimization
layer (DCOL) [37] on top of a recurrent neural network (RNN)
[38], [39]. The DCOL allows managing continuity constraints
(for any differentiability class) at each interpolation step, thus
guaranteeing the smoothness of the signal reconstruction. The
RNN assists the signal estimate update mechanism when ap-
pending a new spline section by taking into account the effect
of each interpolated section on future interpolation steps. This
aid comes in the form of global data-driven knowledge, and it is
tailored to minimize the global cost of the smoothing interpola-
tion problem, on average. The cost is, in this case, the residual
sum of squares plus a weighted derivative-based measure of
smoothness. Lastly, our method is trainable in the sense that
it uses example time series, i.e., time series sampled from the
same signal source generating the signal to be reconstructed, to
customize the policy to the temporal dependencies (dynamics)
of the signal at hand.

The main contributions of this paper can be summarized
as follows:

o We rigorously formulate the problem of smoothing spline
interpolation from sequentially streamed data, where each
spline section has to be determined as soon as a data
sample is available and without having access to subse-
quent data (zero-delay requirement). Due to its nature, it
is formulated as a sequential decision-making problem.

o As opposed to previously proposed (myopic and not train-
able) zero-delay methods, our method trains a policy that
aims at minimizing the smoothing interpolation cost met-
ric on average. In order to capture the temporal, possi-
bly long-term, dependencies between the streamed data
samples and exploit them to reduce further the average
cost metric, an RNN able to capture the signal dynamics
is incorporated.

o The proposed policy guarantees that the reconstructed sig-
nal is smooth (a certain number of derivatives are continu-
ous over the interior of the signal domain). This is achieved
by adding a DCOL at the output of the RNN and imposing
a set of continuity constraints at each interpolation step. In
addition, such a layer admits a closed-form evaluation, re-
sulting in improved computational efficiency with respect
to off-the-shelf DCOL libraries.

o« We present extensive experimental results that validate
our approach over synthetic and real data. Additionally,
we show how our approach outperforms the state-of-the-
art (namely, myopic) zero-delay methods in terms of the
smoothing interpolation average cost metric.

Here, the term smoothing refers to a controlled trade-off between fitting
the data samples and proposing a smooth signal estimate.
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The rest of the paper is structured as follows: Sec. II intro-
duces the notation and presents some basic concepts and defi-
nitions. Then, in Sec. III, we provide our problem formulation.
Next, in Sec. IV and Sec. V, we respectively provide a solution,
a benchmark, and a baseline. Thereafter we experimentally
validate our solution in Sec. VI. Finally, Sec. VII concludes
the paper.

II. PRELIMINARIES

In this section, we present the notation and introduce the type
of data used in the paper. Afterward, we address the description
of spline-based signal estimates as well as related concepts re-
currently appearing in this work. Finally, we formally describe
the smoothing spline interpolation problem, which will be used
as a starting point for the formulation of our problem.

A. Notation

Vectors and matrices are denoted by bold lowercase and
capital letters, respectively. Given a vector v = [vy,...,vc] ",
its cth component is indicated as [v], = v.. Similarly, given a
matrix M € REXC the element in the rth row and cth column
is indicated as [M], .. The notation [v];.; refers to the sliced
vector [v;, ..., v;]T € RI71 We use Euler’s notation for the
derivative operator; thus, D’; denotes the kth derivative over
the variable .

B. Problem Data

The data considered in this paper consist of discrete time
series, or series for short, of T' terms each. We interchange-
ably refer to the terms of the series as observations. Each tth
observation o; € R? is described by its time stamp z; € R and
its value y; € R, i.e., 0y = [x¢,y;] " . The observation-associated
time stamps are set in strictly monotonically increasing order,
i.e., vy_1 < x for all terms in the series. Any two consecutive
time stamps define a time section 7; = (x¢_1, x¢]. Finally, the
initial time stamp x is set by the user.

C. Spline-Based Signal Estimates

A spline is defined as a piecewise polynomial function. We
denote any spline composed of 1" piecewise-defined functions,
or function sections, as

gi(z), ifzg<z<m

g2(x), ifar <ax<uazy

fr(@)=1. (1)

gr(z), ifzp_i<z<axr

where every tth function section g; : 7; — R is a linear combi-
nation of polynomials of the form

gi(z) =a/ p,(z), )

with combination coefficients a; € R%*! and basis vector func-
tion p, : T; — RI*! defined as

-

pi(@)=[1,(x =z 1), .., (& — 2 1)] 3)

4319

The integer d denotes the order of the spline. A spline fr is
said to have a degree of smoothness  if it has ¢ continuous
derivatives over the interior of its domain dom( fr) = Uthl Ti.
Next, Proposition 1 shows how to enforce continuity up to
degree ¢ < d in a spline-based signal estimate of order d.

Proposition 1: Given a spline expressed as in (1), we can
enforce its degree of smoothness to be ¢ < d by imposing the
following equality constraint

[at]1;¢+1 = €11, (€]

for every t € NILT! where e, € R?*! is a vector such that each
of its elements is computed as

d+1 i—1

e = 7=y Yl [I6-0

k=1

with u; £ 2 — 241, and with the exception of eq, which de-
termines the initial conditions of the reconstruction and can be
either calculated or set by the user.

Proof: see Section A in the Appendix.

D. Smoothing Spline Interpolation

Consider the space W, of functions defined over the domain
(0, z7] C R with p — 1 absolutely continuous derivatives and
with the pth derivative square integrable. Then, given a whole
series of observations {o; }7_; with T' > p and a positive hyper-
parameter 7, we can formulate the following batch optimiza-
tion problem

T
min
ew
FEW, t=1

T

(Flae) — o) 41 / (DLf(@)” dr (6)

xo
known as smoothing spline interpolation [40], [41]. The name
is due to the unique solution to the optimization problem (6)
being a spline conformed of 7" function sections, as in (1). More
specifically, the solution of (6) is a spline of order 2p — 1 with
2p — 2 continuous derivatives and natural boundary conditions
[31]. The hyperparameters 1 and p control the smoothness of
such a solution. Particularly, the integer p dictates the minimum
required degree of smoothness of the search function space W,
and the type of regularization? (second term in (6)). Regarding
7, it controls the trade-off between the squared sum of ver-
tical deviations of the signal estimate from the data and the
regularization term. Notice that as n — 0, the solution of (6)
approaches the interpolation spline while as 1 — oo, it tends to
the polynomial of order p — 1 that best fits the observations in
the least-squares sense.

On the other hand, note that the structure of the solution of
the problem (6), being a natural spline, arises organically rather
than being imposed in advance. This is a direct consequence
of its batch formulation allowing us to delimit the search space
W, to splines of order d and degree of smoothness ¢ satisfying
2p—1<dand p—1< ¢ < 2p— 2 without loss of optimality.

2Qur experimental setup focuses on p = 2, a common choice in practice,
which penalizes excessive curvature in the spline. Applications with p > 2
can also be found, e.g., trajectory planning tasks [42]. However, they are out
of the scope of this paper, as we justify in the ensuing Sec. VI-B.
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From a practical perspective, it is sufficient to choose the min-
imum required order and degree of smoothness, thus reducing
the model’s complexity. However, this trait is not necessarily
present in online settings. That is, the smoothness of the solution
does not arise naturally using online methods, and it has to be
enforced. So here, the choice of the spline order and degree of
smoothness is rather user-defined or task-oriented.

III. PROBLEM FORMULATION

Once the problem data, the description of spline-based signal
estimates, and the smoothing spline interpolation problem have
been introduced in Sec. II, we are ready to formalize the main
task of this paper, namely the trainable zero-delay smoothing
spline interpolation problem. This section fully describes the
aforementioned task from a data-driven sequential decision-
making perspective by introducing a suitable dynamic program-
ming (DP) [43] framework. To this end, we first model the
environment, define the state space and action space, and delimit
a suitable family of candidate policies. Then, we introduce the
total cost and formulate the above task as the problem of finding
the policy incurring the lowest total cost on average.

A. Characterization of the Problem Data

In our problem, the data described in Sec. II-B are observed
sequentially. Before every rth time step, the observation about
to be received o; remains undetermined but still governed by
the dynamics of the environment. In this work, we model the
dynamics of the environment as a random process Y (w, ),
where w is a sample point from a sample space €2, and x is
a value within an index set X C R, in this case, time. At time
x4, all possible outcomes form a random variable Y (w, ;) or
y; for short. If the mth sample is considered at time xy, the
outcome has a value denoted by Y (wiy,,x;) or simply ¥, ;.
Consequently, if a discrete set of time stamps is chosen, i.e.,
X ={x1,...,xr}, T random variables can be formed, and
all the information about the discrete random process Yy is
contained in the joint probability density function Py, .

B. State Space

At every time step ¢, we encode a snapshot of the observable
environment and the condition of the so-far reconstructed signal
in a vector-valued variable called state. With S denoting the
state space, each rth state s, € S is constituted by the corre-
sponding observation oy, and the condition at which the recon-
struction was left, which is specified by the vector e;_; whose
components are given as in (5), and the time instant x;_;. For-
mally, every rth state s; is expressed as s; = [0/ , e, 1,24 1] "
Since every state s; is uniquely determined once the spline
coefficients a,_1 are fixed, we can explicitly describe the state
update mechanism, by means of a deterministic mapping, as

Sep1=F(8¢,a¢,0041) . (7

Formalizing the state update mechanism in (7) allows us to
identify all visitable states seamlessly.
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C. Action Space

Immediately after receiving the 7th observation, we propose
a function section as in (2), and we implicitly select the spline
coefficients a;. This is because the function section is deter-
mined as soon as a; is chosen (the basis vector defined in (3) is
given). From this point of view, selecting the spline coefficients
of a function section can be understood as an action. Any valid
action generates a function section of the same order d as the
spline reconstruction. Formally, a; € A C R4+ for all the rth
terms, where A denotes the action space. However, if we want a
reconstructed spline that is continuous up to the ¢th derivative,
not all valid actions are appropriate. In our context, for any zth
action to be deemed admissible (or feasible), it must satisfy
the constraint in (4). Notice that the set of admissible actions
depends on the current state. Therefore, we accordingly denote
the admissible action space as A(s;).

D. Policy Space

A policy m = {p; : S — A}te{1,2,... } consists of a sequence
of functions that map states into actions. Policies are more
general than actions because they incorporate the knowledge of
the state. However, notice that not all policies return admissible
actions. Only the policies that satisfy m(s;) € A(s;) for all
time steps are termed admissible policies. Separately, station-
ary policies are policies that do not change over time, i.e.,
M= p; = p,,, for all time steps. Hence, a stationary policy
is unequivocally defined by the mapping p. Stationary policies
are suitable for making decisions in problems with a varying
horizon (varying number of time steps), assuming usually sta-
tionary environments.

These arguments motivate the use of admissible stationary
policies. However, the space of admissible stationary policies
is huge, and therefore, the problem of finding the most ade-
quate policy within it can be overwhelmingly complex. Policy
approximation techniques help reduce the pool of candidate
policies by restricting them to a certain family of policies. These
techniques tend to work best (in the sense of providing an
adequate policy) when the problem has a clear structure that
can be accommodated into the policy. In our case, we aim to
incorporate the temporal dependencies across the observations
into the policy, as well as the notion of smoothness discussed
in Sec. II-D. To this end, we resort to parametric policy ap-
proximation [10] denoting any approximated stationary policy
as pg, where the vector @ € RY contains the P parameters
constituting the aforenamed policy. The set II of parametric
stationary policies that return admissible actions is, therefore,
the space of policies of interest to this work.

E. Total Expected Cost

The following Proposition 2 shows that the smoothing spline
interpolation objective introduced in Sec. II-D, equation (6), can
be expressed as a summation where each term depends on a
single action, resembling the sequence of instantaneous costs
in a typical DP formulation.
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Proposition 2: The objective of the optimization problem
(6) can be equivalently computed additively as

T
3 (al pi(ar) —v:)” +na) Mia, ®)

t=1

where M, € SiJrl with elements given by

0
[Mt]i’j: 7+J 2p—1

W Hk (@ —Fk)(j—k) otherwise,

ifi<porj<p

(€))

being Ut £ Tt — Tt—1.

Proof: See Section B in the Appendix.

Based on Proposition 2, we can express the objective of the
smoothing spline interpolation problem (6), as the total cost
Z;‘ll k(8¢, ay), with costrk : § x A — R given by
(10)

2
K(st,at) = (a:pt(xt) - Z/t) +na; May,

where M, is constructed as in (9). This is because each rth state-
action pair contains all necessary information. From here and
under a given policy of interest pq, as described in Sec. III-D,
the metric

T

2

an

ytNPY

St»#e St ] )

denotes the fotal expected cost incurred by following such
a policy from a given initial state s, and traveling all the
remaining states s; € S; via (7). The expectation in (11) is
performed over the random process modeling the dynamics of
the environment through the observations within the states.

F. Policy Search by Cost Optimization

Computing the expectation in (11) is computationally expen-
sive or even intractable when the underlying random process
generating the series of observations is unknown. Instead, we
can rely on sample average approximation of example series
collected from past realizations of the process. The sample
average approaches the expectation as the number of examples
grows. In this way, we can determine a data-driven policy by
solving the following optimization problem

(12a)

S. 10! Syt = F (Sm,t—1, Mg (Sm,t—1), Om,t) , Ym,t, (12b)
NB(sm,t) € A(Sm,t)7vm7 t7 (12C)

where the integer M denotes the number of example series,
indexed by m, and where all the initial states s,,, o as well as
all observations o, ; are given.

IV. PROPOSED SOLUTION

The previous Sec. III has provided the necessary definitions
and considerations to arrive at a rigorous problem formulation.
An exact solution to the problem (12) is probably impossible to
obtain in practice, mainly due to the complexity of the search
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space II. There are multiple possibilities regarding the policy
approximation and optimization techniques that can be taken
towards obtaining a near-optimal solution to (12). This section
presents a specific set of design choices based on the current
state-of-the-art. In particular, we rely on a policy parametriza-
tion through cost parametrization technique, borrowed from
the DP literature, in synergy with an RNN architecture. Then
we make use of backpropagation through time (BPTT) [44], a
gradient computation technique borrowed from the deep learn-
ing literature [45]. Our proposed solution can effectively solve
the problem formulated in Sec. III-F for p < 2. The remaining
configurations manifest instability issues, and even though they
may be solvable, they lie outside of the scope of the current
paper as further discussed in the following Sec. VI-B.

Future developments in the DP or deep learning areas, such as
new policy approximation approaches, neural architectures, or
optimizers, can possibly render the techniques proposed in this
section obsolete but will not affect the validity of the problem
formulated in Sec. III-F.

A. Policy Form

Parametric policy approximation via parametric cost function
approximation (CFA) [10] is a method that seeks through the
policy space, in our case II, among those policies defined as
an optimization problem with parametrized objectives. In this
work, we are interested in CFA-based policies of the form

Ho(sm,e) =arg _min

Sm,t

) {H(Smjv a) + J9(3m7t7 a; hm,t)} )
(13)

where the map x denotes the cost described in (10), and the
mapping Jg : S x A x Rf — R is a parametric cost-to-go ap-
proximation involving P parameters contained in the vector 6.
Regarding the vector h,, ; € RY, it represents a latent state
value at the rth time step of an mth example series. The latent
state may encode relevant information from past observations
and can be viewed as a policy memory [46], [47], [48].

We aim for a cost-to-go approximation Jg, which penalizes
those actions that are distant from the output of a certain RNN.
The main reason behind this approach is that an RNN that
successfully captures the temporal dynamics of the environment
has the potential to pull towards actions that yield a low ex-
pected total cost. So, it is constructed as follows

a— Op1
"“m,t

where A € R,.. The vectors 7, ; € R4=¢, and h,,: € RH rep-

resent the outputs and latent state of an RNN, Ry : S; X R7

RI=¢ x RH | respectively. They are obtained from the follow-
ing relation

2

) (14)
2

JB(Sm,tv a; hm,t) =\

Tm
RG’(Sm,t; hm,t) = |:h "’ :| ; (15)
m,t+1
with 6 = [, OIT]T and @' € RP~!, exemplified in Fig. 2. From
now on, we refer to the policy in (13) with cost-to-go as in
(14) as the RNN-based policy. Finally, notice that besides being
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Fig. 2. Visual representation of our RNN architecture satisfying the relation
in (15). The elements onto the gray shaded area constitute the mapping Rg/.
The CAT cell stands for a concatenation operation.

parametric, the RNN-based policy is admissible and stationary
by design.

B. Policy Evaluation

Evaluating the proposed policy involves solving the opti-
mization problem stated in (13). Notice that both the cost
built as in (10), and the cost-to-go approximation Jg described
in (14), are convex with respect to the actions and hence, the
objective in (13) is convex too. Moreover, the admissible action
set, described in Sec. III-C, is convex. Therefore, the optimiza-
tion problem in (13) is convex thus, any locally optimal action
is globally optimal [49].

Additionally, the optimization problem in (13) has been de-
signed to admit a closed-form solution. Closed-form evalua-
tions can usually be computed faster and more precisely than
solutions obtained from numerical methods, and thus, they are
more suitable under zero-delay requirements. See Section C in
the Appendix for the derivation of the closed-form evaluation.

C. Policy Training

As explained in Sec. IV-A, we have reduced the search space
of problem (12) by restricting the policy space to a family of
policies of the form given in (13). Specifically, from searching
a function pg in the function space II, we have narrowed the
problem down to that of finding a vector 6 in the vector space
RP. In fact, tuning the proposed policy parameters by solving
the optimization problem (12) is commonly referred to as policy
training. Unfortunately, the objective (12a) is non-convex with
respect to the parameters in 6. As a reasonable solution, we
rely on a gradient-based optimizer aiming to converge to a high-
performance local minimum.

From a deep learning perspective, the policy evaluation pre-
sented in Sec. IV-B can be understood as a forward pass of
a DCOL on top of an RNN, and hence, it is trained using
BPTT via automatic differentiation [50]. This point of view is
schematized in Fig. 3, where traveling the given mth series,
by following a policy pg, allows to construct the cumulative
objective in (12a) used for training. Additionally, and thanks
to the closed-form policy evaluation discussed in Sec. IV-B,
computing and propagating the gradient of the th action a; with
respect to the parameters contained in 6 is done avoiding the
need of unrolling numerical optimizers [51] or using specific
numerical tools for DCOLs such as CVXPY Layers [37].
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Fig. 3. Rolled representation of the environment-agent system. The sampler
cell samples the random process modeling the dynamics of the environment.
The interpolator cell performs the reconstruction, evaluates the cost, and
updates the states. The agent cell contains the policy and the RNN. The
blue-shaded area encompasses the environment. The cost (in gray) is used
during the training phase but not for evaluation.

V. BENCHMARK AND BASELINE METHODS

Recall from Sec. II-D that the batch formulation provides the
optimal reconstruction with hindsight. The batch solution can
be found by solving the optimization problem (6), but only once
all time-series data are available. Thus, it cannot be used for
zero-delay interpolation. Conceptually, online methods achieve
a zero-delay response at the expense of incurring higher or equal
loss than the batch solution. For this reason, the batch solution
is used here as a baseline.

On the other hand, as stated in the Introduction and to the
best of our knowledge, there is no related work to our trainable
zero-delay smoothing interpolation approach in the literature.
One could consider that the closest approach is the interpolation
method known as myopic. This is a local method in the sense
that it only focuses on the last received data sample while
completely ignoring the distribution of future arriving data. For
this reason, the myopic method is used here as a benchmark. In
this sense, our proposed method must outperform the myopic
method to be deemed acceptable.

A. Myopic Benchmark

A policy that chooses the action that minimizes the current
or instantaneous cost is commonly referred to as myopic. It can
be constructed as

wp(sy) =arg min ){m(st,a)}, (16)

acA(s,

with cost k as in (10) and admissible action set as described in
Sec. III-C. Notice that since the myopic policy does not contain
trainable parameters, it does not need to be trained. Moreover,
the myopic approach is carried out as a parameterless CFA-
based policy, hence, becoming a particular case of (13). For this
reason, it also admits a unique and closed-form evaluation. See
Section C in the Appendix for more details.

VI. EXPERIMENTS

In this section, we experimentally validate the effectiveness
of the proposed RNN-based policy, introduced in Sec. IV. To
this end, we first describe the time-series datasets used. Then,
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we outline the possible policy configurations, i.e., the possible
types of splines as well as the RNN architecture. Afterward, we
report how the experiments have been carried out. Finally, we
present and comment on the experimental results.

A. Problem Data Description

For these experiments, we use a synthetic dataset and five real
datasets. Each dataset consists of a time series of 28800 signal
samples which has been split into 288 series of 100 samples
each, except for the first real dataset which contains 57600
samples split into 576 series.

The synthetic dataset is first generated as a uniformly ar-
ranged realization of a given autoregressive process AR(2) with
white Gaussian noise A(0,0.1). Then, the resulting series is
compressed via PI [52] with CompDev = 0.1, CompMax = oo
and CompMin = 0. As a result, the series time stamps are not
uniformly distributed anymore.

The first real dataset (R1) consists of a series of household
minute-averaged active power consumption (in Kilowatts) [53].
The second real dataset (R2) is a quantized and PI-compressed
(and hence not uniformly sampled) time series measuring an
oil separation deposit pressure® (in Bar). For the third real
dataset (R3) [54], a cooling fan with weights on its blades is
used to generate vibrations which are recorded by an attached
accelerometer. The vibration samples are recorded every 20 mil-
liseconds. We use the accelerometer recorded x-values (which
are standardized) for the rotation speeds ranging from 5 to
40 rpm. The fourth real dataset (R4) [55] monitors the skin
temperature (in Celsius degrees) of a volunteer subject through
a wearable device every 4 minutes. The fifth and last real
dataset (R5) [56] consists of a sensor within a sensor network
deployed in a lab, collecting the temperature-corrected relative
humidity in percentage. The sampling rate is non-uniform and
ranges from deciseconds to tens of seconds. Finally, it is worth
mentioning that the datasets R4 and RS contain gaps (several
orders of magnitude wider than the average sampling period) of
missing data that we have shortened to avoid instability in the
reconstruction. In similar cases where the available raw data is
of low quality, thorough and task-specific data preprocessing
techniques are assumed. This can improve the performance
results as described in the ensuing Sec. VI-D.

B. Policy Configuration

We experimentally observe that the myopic policy described
in Sec. V-A is not stable for values of p > 2. Recall that the
value of p affects the policy cost, set as in (10), and delimits
the order and degree of smoothness of the spline signal estimate,
as explained in Sec. II-C. We also observe instability under the
myopic policy for p = 2 with a spline signal estimate of order
d = 3 and degree of smoothness ¢ = 2. Consequently, our pro-
posed RNN-based policy is unstable for the same p values and
spline configurations since it implicitly uses the myopic policy
as a guided starting point. This can be seen by comparing (16)
and (13) with a near-zero initial value of \. Although further

3Data collected from Lundin’s offshore oil and gas platform Edvard-Grieg.
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theoretical instability studies, alternative policy architectures, or
low-delay approaches can contribute to solving the instability
issue, they lie outside of the scope of this paper. Nonetheless, we
have maintained the general problem formulation as a starting
point for future works to take over. On the other hand, the
interpolation problem with p = 1 is not interesting since it leads
to linear interpolation. Therefore, in the present work, we focus
on the smoothing interpolation problem with p =2 and with
the remaining stable spline configurations, within the search
function space described in Sec. II-D, which can lead to op-
timal reconstructions. Those spline configurations, hereinafter
specified by the shorthand notation (d, () of the order and
degree of smoothness of the spline, correspond to (3,1) and
(4,2). Accordingly, the notation Myopic(d, ¢) or RNN(d, ¢)
refers to the type of policy besides the spline configuration.

Regarding the RNN architecture shaping the approxi-
mated cost-to-go within the RNN-based policy, introduced in
Sec. IV-A and illustrated in Fig. 2, we set a preprocessing
step that forwards the time length, i.e. u; = x; — x4_1, of the
rth time section 7;, instead of directly using the time stamps.
This preprocessing step makes the architecture invariant to time
shifts in the set of time stamps. In our experiments, the recur-
rent unit consists of two stacked gated recurrent unit (GRU)
layers [57], with a latent state (hidden state) of size 16 and an
input of size 16. The input and output layers are set as linear
layers to match the required dimensionality, i.e., to match the
input size after the preprocessing step and to match the order
of the spline minus the number of constrained coefficients as
output size.

C. Experimental Setup

The datasets are randomly divided into 192 series for train-
ing, 64 for validation, and 32 for testing. Except for the R1
dataset, which has been divided in the same proportion but in
relation to its data size. The benefits of this train-validation-
test partition are two-fold: i) the policy becomes more robust
against unknown initial conditions, and ii) we can validate
the reconstruction against an optimal batch solution (shorter
sequences are computationally tractable using batch optimiza-
tion). All series within a dataset are standardized for imple-
mentation convenience. To avoid data leaking, the mean and
standard deviation of their respective training partition are used
for the standardization. In other words, we compute the mean
and variance of the training partition and assume them to be
the moments of the true data distribution. The standardization
of series is useful to enforce the RNN unit to focus on the
fluctuations of the signal values rather than on their magni-
tude. Finally, the RNN-based policy has been trained using
the adaptive moments (Adam) optimizer [58], with 81 = 0.9,
B2 = 0.999, without weight decay, and a learning rate of 0.001
over mini-batches of 32 time series each (double mini-batch
size in the case of R1).

D. Results and Discussion

Some of the training-validation curves are presented in
Fig. 4. As expected, we observe that randomly initialized
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Fig. 4. Some of the training-validation curves for the considered RNN-based policy configurations (d, ¢) and 7 values for each dataset. The legends (T)

and (V) refer to the training and validation partitions, respectively. The loss metric is the average total cost per function section (see Sec. III-E). The shaded

areas represent one standard deviation.

RNN-based policies (except for the parameter A\, which con-
trols the length of the initial performance gap, as discussed
in Sec. VI-B, and is manually initialized) only outperform the
myopic policy after training. We also observe wider (in relative
terms) standard deviations in those datasets with more abrupt
changes, either from the nature of the data, as in R1, or due
to missing data and posterior preprocessing, as in the case
of R4 and RS5. This phenomenon appears also to be caused
by highly non-uniform sampling rates, as in R5. But in this
case, the width seems to decrease as the policy yields more
accurate estimates. This implies that the RNN-based policy
is able to learn how to adapt under non-uniform sampling
rates properly.

Once the RNN-based policy has been trained, we measure its
performance with respect to the myopic policy (as the bench-
mark) and the batch reconstruction (as the baseline) through an
improvement metric defined as

IigM_gR

- , 17
Iy — B {17

where s, {r, {p denote the loss metric displayed in Fig. 4
but over the test partition for the myopic, the RNN-based
policies and the batch solution, respectively. Acceptable per-
formances yield improvement values in (0,1], being I =1
the best possible value, whereas nonpositive improvement val-
ues indicate a deficient performance. The standard deviation

of the improvement metric is then estimated through error

propagation, i.e.,
a1 \* a1 \? a1 \?

o= () ot () e () o
with 057, or, and op denoting the standard deviation of
the respective loss metrics over the test partition. The im-
provement results are summarized in Table I. From Fig. 4
and Table I, it can be observed that the policy configurations
with the highest improvement scores over each of the consid-
ered dataset test partitions are in agreement with their corre-
sponding validation curves. Table I also shows standard per-
formance descriptors such as the mean squared error (MSE)
and mean absolute error (MAE). See Section D in the Ap-
pendix for their computation. Note that for most of the ex-
periments that we have carried out, the RNN-based policy
outperforms, in terms of the MSE and MAE metrics, the
myopic policy while it falls behind the batch policy. This ob-
servation experimentally justifies the smoothness assumption in
our formulation.

Regarding the parameter A\ € R introduced in (14), it can
be understood as the confidence of the RNN-based policy in
its ability to foresee incoming data samples. In this way, it also
quantifies the importance of the RNN architecture (detailed in
Fig. 2) in the reconstruction task. As an illustration, Fig. 5 shows
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TABLE I

PERFORMANCE METRICS AVERAGED OVER THE TEST PARTITIONS, FOR DIFFERENT 1) VALUES AND POLICY CONFIGURATIONS WITH p = 2. RECALL THAT
THE IMPROVEMENT METRIC (17) REPORTS THE GAIN OF ANY RNN(d, ¢) CONFIGURATION OVER ITS CORRESPONDING MYOPIC(d, o) (AS A BENCHMARK)
AND BATCH(d, ) (AS THE BASELINE) CONFIGURATIONS

[ n=0.1 i n=1 i n =10 |
Dataset H Configuration H MSE [ MAE [ Improvement H MSE [ MAE [ Improvement H MSE [ MAE [ Improvement l
Myopic(3,1) 0.49 0.60 0.31 0.46 0.64 0.63
Batch(3,1) 0.41 0.56 71.5% 4+ 2.8% 0.26 0.44 51.1% + 3.9% 0.22 0.39 78.1% +2.5%
Synthetic RNN(3,1) 0.29 0.47 0.25 0.42 0.28 0.43
Myopic(4, 2) 0.50 0.60 0.38 0.50 0.83 0.71
Batch(4, 2) 0.41 0.56 64.8% + 2.6% 0.26 0.44 53.0% + 3.6% 0.22 0.39 81.0% + 2.6%
RNN(4, 2) 0.28 0.44 0.27 0.43 0.30 0.44
Myopic(3,1) || 009 | 0.13 020 | 022 044 | 040
Batch(3, 1) 0.06 0.11 59.4% =+ 20.3% 0.07 0.12 81.3% + 8.2% 0.10 0.16 75.5% + 8.2%
R1 RNN(3,1) 0.07 0.12 0.10 0.15 0.19 0.24
Myopic(4,2) || 0.13 | 0.16 029 | 027 051 | 043
Batch(4, 2) 0.06 0.11 59.6% + 17.0% 0.07 0.12 78.6% + 8.6% 0.10 0.16 72.9% + 8.5%
RNN(4, 2) 0.08 0.13 0.12 0.17 0.23 0.27
Myopic(3,1) 0.42 0.50 0.40 0.48 0.32 0.42
Batch(3,1) 0.27 0.40 67.3% + 6.4% 0.26 0.39 52.2% + 7.1% 0.23 0.37 68.8% + 5.7%
R2 RNN(3,1) 0.23 0.36 0.23 0.37 0.20 0.34
Myopic(4, 2) 0.65 0.62 0.58 0.59 0.39 0.47
Batch(4, 2) 0.27 0.40 70.1% £+ 3.9% 0.26 0.39 52.0% + 5.4% 0.23 0.37 73.5% + 4.0%
RNN(4, 2) 0.21 0.35 0.22 0.36 0.21 0.35
Myopic(3,1) || 460 | 1.80 290 | 1.40 180 | 1.09
Batch(3,1) 3.10 1.40 76.3% + 4.4% 2.35 1.30 81.3% + 5.3% 1.66 1.06 65.6% + 11.6%
R3 RNN(3,1 2.56 1.30 1.56 1.02 1.40 0.96
Myopic(4,2) || 6.30 | 2.10 302 | 143 189 | 110
Batch(4, 2) 3.10 1.40 69.7% + 4.4% 2.36 1.26 88.9% + 3.9% 1.66 1.06 80.8% + 9.0%
RNN(4, 2) 1.80 1.00 1.43 0.95 1.52 1.00
Myopic(3,1) 4.5¢-3 | 2.8e-2 4.1e-3 | 2.7e-2 3.6e-3 | 2.5e-2
Batch(3, 1) 2.7e-3 | 2.3e-2 13.7% £+ 57.3% 2.6e-3 | 2.2e-2 | —61.8% £ 94.4% || 2.4e-3 | 2.0e-2 | 16.5% + 54.5%
R4 RNN(3,1) 7.1e-3 | 6.8e-2 6.0e-3 | 5.6e-2 3.2e-3 | 3.1e-2
Myopic(4,2) 6.9e-3 | 3.6e-2 5.7e-3 | 3.2e-2 4.9e-3 | 3.0e-2
Batch(4, 2) 2.7e-3 | 2.3e-2 | —35.5% £ 78.5% 2.6e-3 | 2.2e-2 65.7% + 25.5% 2.4e-2 | 2.0e-2 | 19.5% + 51.5%
RNN(4, 2) 3.7e-3 | 3.3e-2 4.1e-3 | 3.1e-2 3.5e-3 | 2.7e-2
Myopic(3,1) 2.7e-4 | 9.3e-3 6.0e-4 | 1.3e-2 7.1e-3 | 3.8e-2
Batch(3,1) 1.8e-4 | 7.8e-3 | —55.4% + 101.6% 1.7e-4 | 7.7e-3 26.3% + 59.8% 2.6e-4 | 9.1e-3 | 88.2% +7.1%
RS RNN(3,1) 2.3e-4 | 8.7e-3 3.1e-4 | 1.0e-2 3.2e-3 | 3.0e-2
Myopic(4, 2) 4.7e-4 | 1.1e-2 9.7e-4 | 1.7e-2 I.1e-2 | 4.8e-2
Batch(4, 2) 1.8e-4 | 7.8e-3 —13.3% 4+ 68.2% 1.7e-4 | 7.7e-3 39.8% + 41.9% 2.6e-4 | 9.1e-3 | 85.1% + 7.5%
RNN(4, 2) 2.9e-4 | 9.7e-3 6.1e-4 | l.4e-2 5.4e-3 | 3.6e-2
1.0 : the training curves corresponding to the parameter A\ for the
— Synthetic, =10, (4, 2) policy configurations presented in Fig. 4.
084 — E;: Z; 160_6'(?;1’1;) On the other hand, we observe a competitive performance in
—— R3, =10, (4, 2) terms of the execution time of the RNN-based policy evaluation
—— R4, =10, (4, 2) (forward pass) as compared to their myopic counterpart. Our
0.6 —— R5,7=10.0,(3, 1) evaluation time results are summarized in Fig. 6, where the
~< policies are implemented in Python 3.8.8. and the experiment

0.44

0.21

0.0

Fig. 5.
elements
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Epoch

Training curves of the parameter A\ € Ry introduced in (14). The
displayed coincide with those shown in Fig. 4.

is done in a 2018 laptop with a 2.7 GHz Quad-Core Intel
Core i7 processor and 16 GB 2133 MHz LPDDR3 memory.
Regarding memory complexity, the myopic policy is param-
eterless (see Sec. V-A), and our configuration of the RNN-
based policy (see Sec. VI-B) contains approximately 3400
trainable parameters, which is arguably a reduced model size for
most tasks.

Finally, and for the sake of completeness, Fig. 7 shows a
snapshot of a zero-delay smooth signal reconstruction alongside
its two first derivatives using our proposed method.
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Fig. 6. Box plot of the policy execution time per interpolation step over the

test partitions and 7 values {0.1, 1, 10}. It illustrates (excluding outliers) the
minimum, first quartile, median, third quartile, and maximum.
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Fig. 7. Snapshot of a reconstructed time series from the test partition of the

synthetic dataset. Both of the presented policies have been trained over the
training partition before reconstruction.

VII. CONCLUSION

In this paper, we propose a method for zero-delay smoothing
spline interpolation. Our method relies on a parametric policy,
named the RNN-based policy, specifically engineered for the
zero-delay interpolation task. As new data samples arrive, this
policy yields piecewise polynomial functions used for smooth
signal reconstruction. Our experiments show that the RNN-
based policy can learn the dynamics of the target signal and
efficiently incorporate them (in terms of improved accuracy and
reduced response time) into the reconstruction task.

This work can be seen as a proof of concept with several
immediate follow-ups. The flexibility in our policy design al-
lows extending this work to multivariate time series with a
moderate increase in complexity. It is also possible to generalize
the problem data, e.g., quantization intervals instead of data
points, as well as to accommodate additional constraints as long
as the convexity of the policy evaluation problem is preserved.
Lastly, we notice that our work provides the foundation and can

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

be tailored effectively for reconstructing non-stationary signals
by borrowing reinforcement learning techniques.

APPENDIX
A. Proof of Proposition 1

Recall from Sec. II-C that every spline fr, as in (1), is
composed of 7" function sections and 7" — 1 contact points. We
say that two consecutive function sections have a contact of
order ¢ if they have ¢ equal derivatives at the contact point.
Then, guaranteeing a degree of smoothness ¢ for a given spline
fr is equivalent to ensuring that all its contact points are at least
of order ( since every tth function section g, as in (2), is already
smooth over the interior of its domain 7;. In practice, this can
be ensured by imposing the following equality constraints

lim DYg,_i(z)=

T—=T,

m*}xt—l

19)

for every k € NI%¢l and t € N2T], From here, notice that the
kth derivative of every tth function section g; can be com-
puted as

DY gi(z) = a," [DE[p(@)], - DE [py(2)]an]

Also, notice from the definition in (3) that the ith component
of the tth basis vector function p, equals

(20)

p,(z)]; = (z — 1), 1)

for all ¢ € [1,d + 1]. From this point, the kth derivative of each
ith component of the basis vector function p, can be straight-
forwardly computed as

k
D [p,(2)]; = (x — m¢—1)" ' F _H(z‘ 5. @

Now observe that

k! ifi=k41,

lim DFp,(z)], =
+ 2 [Pe(@)]; otherwise.

Ty 0

(23)

Therefore, from the relations in (20) and (23), the right hand
term in (19) can be equivalently computed as

d+1
lim Dfg(z)=Y [a)], lim D}[p,(z)], (24a)
=T, i—1 T—=T,
=k (@, - (24b)

Separately, we can define a vector e; € R?T! whose compo-
nents are constructed as

1

led]pyr = o 1Lm_D§g g:() (25a)
1 d+1 ] k

=2 ladui™ 7 TG —9) (25b)
Ti=1 j=1

for every k € NO-¢] and t € NOTT with w, £ 2, — 24_1, and
where the step (25b) uses the relations described in (20) and
(22). On the other hand, ey encodes the initial boundary condi-
tions of the reconstruction and can be set by the user in advance
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or calculated. Finally, by dividing both sides of the equality
constraint in (19) by k!, using the relations derived in (24)
and (25), and appropriately renaming the indices we obtain the
Proposition 1.

B. Proof of Proposition 2

Recall from Sec. II-D that the solution to the optimization
problem stated in (6) is a spline function in W,. This fact
allows us to reduce the search function space without loss of
optimality. In fact, we can incorporate the spline form of the
solution into the objective functional as far as we ensure the
required minimum degree of smoothness of the solution, for
example, via (19). From here, we can equivalently compute the
regularization term in the objective in (6) (second term) as

/T 7_(Dpr dx—Z/ (D’ gi(x 2dx .
t=1 1t

Separately, and making use of the definition of function
section in (2), we obtain the following relation

(26)

| ra@yae= [ (Dralpa)de @
" - a?Mtat, (27b)

with
MJi; = [ Dlpy@)], Delp(a)], do.  (28)

Tt
From the relation in (22), it is clear that the first p rows and
columns of the matrix defined in (28) are zero valued. Then, we
can compute the rest of the elements in the matrix M, € S jl_ﬂ
as follows

P
(M) ; = H

Tt PN
)J—Fk / (z — )20 gy
Tt—1

(29a)

(vp — @p_q)tHI—271 f[(
p— Z_
t+j5—2p—1 P

k)(j — k). (29b)
On the other hand, the sum of squared residuals in the ob-
jective in (6) (first term) can be equivalently computed as

Z fT xt
t=1

from the definition of spline, see relation (1).

Summing up, the result stated in Proposition 2 can be
reached starting from the objective in (6) then following the
relations in (26), (27) alongside (29) and (30).

T
= Z (ge(ze) — yt)2 ) (30)
t=1

C. Closed-Form Policy Evaluation

Notice that both the proposed policy in (13) and the myopic
policy in (16) can be equivalently evaluated by solving the
following quadratic convex problem
{aTAta + b:a} ,

p(sy) =arg min 31

acA(sy)
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TABLE II
TERMS IN (31). THE NOTATION IS SHARED WITH THE REST OF THE PAPER
WITH THE INCORPORATION OF Py 2 p, (x¢)p,(x:) T AND
v 2 [0;+1,rt ]

A \ by |
Myopic Py +nM; —2y1py (1)
RNN Py +nMe+ Mgy | —2(yepy (o) + Avy)

where the terms A, € ST and b, € R**! take different values
for the different policy variations as described in the Table II.
The form in (31) is displayed as an intermediate step for the
sake of clarity, and the dependencies with example time series
(indexed by m) and the policy parameters (contained in @) have
been omitted for the sake of notation. Then, we relocate the
equality constraints (presented in (4) and satisfied by the actions
in the admissible set A(s;)) in the objective of (31), by restating

w=lan)+ L
Odfgo (81

or equivalently, by setting a = Bie;_1 + Boax where the
components of e;_; are described in (5), the matrices
By 2 [Ip41,0(p41)x(d—p)] | EREIVXEHD and - By £
[0(d—)x(p11), La—y] T € RUEFDX(A=9) are defined for the
sake of notation, and where @ € R%~%. After some algebraic
steps, both policies can be equivalently evaluated as

(32)

_ |€t-1
l*l’(st) - |: oy :| ) (33)
where the vector a; € R4~¢ is obtained from
TRT
oy =arg min {a B, A,Bsa (34a)
acRd—¢

+2 (ellBlTAth + bng) o

(34b)

with closed-form solution given by
T - L
ar=— (B3 AiB:) (B:ABiew1+5Bibi ). (35)
being B;—Ath € Si;“’.

D. Boostrap Method for Estimating the MSE and MAE

When the data distribution, or in our case, the underlying
(assumed) smooth process, is unknown, we cannot follow the
standard MSE and MAE computation procedure because the
original function ¢ € W, is also unknown. Instead, we only
have access to a certain dataset of test samples, e.g., D =
{(z4, 1/1($t))}tT:1- Following a bootstrap-inspired method [59],
we choose a subset B C D for the signal reconstruction and
use the complementary set 3,i.e., BUB=Dand BNB=0to
estimate the MSE and MAE performance metrics. Mathemati-
cally, this can be expressed as

LS (faan) — w()?,

MSE (f5) = &
i€B

(36a)
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Fig. 8. [Illustration of the residuals used to estimate the MSE via boot-
strapping. The test partition comes from the synthetic data and has been
reconstructed with a Myopic(3,1) policy with n =1 and p = 2. B contains
90% of the test partition and B the remaining 10%.

MAE (f5) = |;| S [fa(@) — @), (36b)
i€B

where fj is the signal estimate constructed from the test data
subset B. This procedure is illustrated in Fig. 8.

Notice that it is important to partition the test data because
any test data sample used for the signal reconstruction cannot
be used to compute the performance metrics. Otherwise, this
results in data leakage. On the other hand, due to the lack of
data samples, the performance metrics estimated in this way
may not be as accurate as if we had larger test sets or, more
specifically, large test sets with higher temporal resolution.
Thus, to reduce the variance of the MSE and MAE estimators,
we repeat the procedure for several randomly chosen partitions
B, B with replacement (i.e., they may repeat) and average the
result. Particularly, we perform 10 repetitions.
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