

Accepted manuscript

Ruiz-Moreno, E. & Beferull-Lozano, B. (2023). An online multiple kernel parallelizable
learning scheme. IEEE Signal Processing Letters, 31, 121-125.
https://doi.org/10.1109/LSP.2023.3343185

Published in: IEEE Signal Processing Letters

DOI: https://doi.org/10.1109/LSP.2023.3343185

AURA:

Copyright: © 2023 IEEE

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Machine Learning for Signal Reconstruction from Streaming Time-series Data

An Online Multiple Kernel Parallelizable Learning

Scheme

Emilio Ruiz-Moreno and Baltasar Beferull-Lozano

Abstract — The performance of reproducing kernel Hilbert space-
based methods is known to be sensitive to the choice of the reproducing
kernel. Choosing an adequate reproducing kernel can be challenging and
computationally demanding, especially in data-rich tasks without prior
information about the solution domain. In this paper, we propose a
learning scheme that scalably combines several single kernel-based on-
line methods to reduce the kernel-selection bias. The proposed learning
scheme applies to any task formulated as a regularized empirical risk
minimization convex problem. More specifically, our learning scheme is
based on a multi-kernel learning formulation that can be applied to widen
any single-kernel solution space, thus increasing the possibility of finding
higher-performance solutions. In addition, it is parallelizable, allowing
for the distribution of the computational load across different computing
units. We show experimentally that the proposed learning scheme out-
performs the combined single-kernel online methods separately in terms
of the cumulative regularized least squares cost metric.

B.1 Introduction

Reproducing kernel Hilbert space (RKHS)-based methods allow modeling highly
non-linear relationships at a moderate computational cost [60]. Thanks to their
simplicity and generality, they have been successfully adopted in a wide range of
signal-processing applications [90, 91].

The performance of any RKHS-based method strongly relies on a preselected
reproducing kernel (RK). The efficient selection of an adequate RK presumes some
task-specific prior information, such as knowledge about the data domain, invari-
ant data transformations, geometrical data structures, or some properties of the
underlying data generating process [92]. For example, spline interpolation RKs
are best suited for smooth data [24, 78]. Similarly, radial basis RKs can perform
poorly if their associated hyperparameters are not properly tuned to the task. The
kernel-selection issue cannot be easily mitigated via cross-validation [93] because the
associated computational load grows prohibitively with the number of RKs. On the
other hand, efficiently computable approximations of the leave-one-out error [61] or
hyperparameter optimization techniques [94] usually involve non-convexity and may
lead to undesirable local minima.

Multi-kernel methods compensate for the lack of task-specific prior information
using a predefined set of RKs known as dictionary. The dictionary can be formed by
integrating different types of RKs, the same RK with different hyperparameter val-
ues, or a mix of both. Typically, the preselected RK is constructed as a combination
of several RKs from the dictionary [62]. Therefore, how the dictionary is formed
and how the preselected RK is constructed have a pivotal impact on the resulting
accuracy and complexity of the method. For instance, the larger the dictionary

54

PAPER B

is, the more likely it is to reduce the kernel-selection bias compared to a particu-
lar RK or hyperparameter choice. In addition, larger dictionaries allow for greater
adaptability when learning from data samples since, in practice, these samples may
come from a combination of different sources. On the other hand, increasing the
dictionary size becomes computationally demanding or even prohibitive. For this
reason, a commonly sought goal for multi-kernel methods is to find a compromise
between performance and a computationally light and compact representation of
the proposed solution in terms of the dictionary elements [95].

Another related scaling issue that also applies to single-kernel methods is the
curse of kernelization, i.e., potentially unbounded linear growth in model size with
the amount of data [82]. This drawback is generally addressed through online ap-
proaches, which may rely on sparsification procedures [96, 97, 98, 99, 100] or dimen-
sionality reduction approximations [101, 102], among others [103].

In this context, some works [104, 105, 106] have explored the use of online meth-
ods for determining the optimal solution associated with each single RK within
the dictionary, as well as the best combination of these single-kernel solutions un-
der a given task. Following a conceptually similar approach, this paper proposes
a novel multi-kernel learning scheme that can be parallelized across RKs by effi-
ciently combining the solution of several single RK-based online methods running
concurrently. This provides scalability with respect to the number of data samples
and adaptability across different data patterns. Moreover, it allows to distribute the
computational load across different computing units as the dictionary size increases.
Our proposed scheme applies to any task that can be formulated as a regularized
empirical risk minimization (RERM) convex problem [39, 107]. Finally, the perfor-
mance of the proposed learning scheme is experimentally validated in terms of the
cumulative regularized least squares cost metric.

B.2 Problem formulation

Supervised learning is arguably one of the core topics in machine learning [108].
Many supervised learning tasks can be formulated as RERM convex problems whose
solution admits a kernel representation. That is, given a set of N data samples
S = {(x(n), y(n))}Nn=1 ⊆ X × Y , and an RKHS1 H ⊆ YX , the goal is to find a
function estimate f ∈ H minimizing the following regularized functional cost

Cη (f ;S) =
N∑

n=1

ℓ
(
f(x(n)), y(n)

)
+
η

2
∥f∥2H, (B.1)

where the loss ℓ : Y2 → R ∪ {∞} is a proper convex function used as a goodness-
of-fit metric, the regularizer ∥ · ∥2H : H → R is the squared RKHS H induced norm,
and the hyperparameter η ∈ R+ controls the model complexity of the solution.

Under a multi-kernel learning framework, one typically constructs a valid RK
by adequately combining the RKs within a preselected dictionary [62]. Particularly,
finding the RK within a convex hull of P positive definite RKs that yields the
function estimate incurring the lowest functional cost (B.1) is equivalent to obtaining
a solution from H built as the RKHS direct sum H1 ⊕ · · · ⊕ HP , where each pth

1The notation YX refers to the set of functions from X to Y.

55

Machine Learning for Signal Reconstruction from Streaming Time-series Data

ENVIRONMENT

METHOD

𝑥 ! , 𝑦 !

𝒞" 𝑓 ! ; 𝒮#
!

𝒮#
!

𝑓 !$%

𝜽 !$% , 𝒇 !$%

𝜽 ! , 𝒇 !

Figure B.1: Visual description of the online setting considered.

RKHS Hp = span{kp(x, ·) : x ∈ X}, being kp : X 2 → R its associated RK [109]. The
solution f ∈ H that minimizes (B.1), can be expressed without loss of generality
as f = θ⊤f , where f = [f1, . . . , fP]

⊤ ∈ H1:P , with H1:P ≜ H1 × · · · × HP and
θ = [θ1, . . . , θP]

⊤ ∈ ∆P−1, with ∆P−1 ≜ {β ∈ RP : β ⪰ 0 and 1⊤β = 1} denoting a
simplex [110]. Thus, the RERM problem posed before becomes

min
θ∈∆P−1,f∈H1:P

Cη (f ;S) (B.2a)

subject to: f = θ⊤f . (B.2b)

Optimization problem (B.2) is bi-convex, meaning that it is convex in θ for a fixed
f and vice-versa. Still, it is not jointly convex in both optimization variables. It can
be tackled via specialized methods that primarily exploit the convex substructures
of the problem [111]. However, these methods do not scale well with the number of
RKs and data samples, denoted as P and N , respectively.

This paper presents a method to solve efficiently (B.2) for large P and N .

B.3 Proposed solution

This section describes how to synergize an online formulation and an upper bound
on the objective (B.2a) to solve (B.2) scalably with respect to N and P .

B.3.1 Online setting

Online settings [63, 64] can be adopted to solve (B.2) achieving low run-time com-
plexity with respect to N while incurring a certain tolerable (cumulative) cost. They
usually trade-off solution accuracy for speed, e.g., by processing only a few samples
every iteration, for low memory complexity, e.g., by discarding samples after a few
processing steps, or for model complexity control, i.e., bounded model size regardless
of whether N increases.

The online setting considered in this work can be cast as a method-environment
iterative game [112]. The data samples in S are assumed to be available sequentially.
Then, at each iteration step n, the method chooses a function estimate f (n) ∈
H1⊕ · · ·⊕HP expressible as f (n) = θ(n)

⊤
f (n) with θ(n) ∈ ∆P−1 and f (n) ∈ H1:P . In

response, the environment penalizes the proposed function estimate f (n) with the
incurred cost Cη(f (n);S(n)

L), where S(n)
L = {(x(i), y(i))}ni=nL

⊆ S is a sliding window

of L data samples and nL ≜ max{n − L + 1, 1}. Finally, once the nth function

56

PAPER B

Algorithm 3 (Quadratic program) Projection onto simplex.

Input: The function estimate components {f (n)
p }Pp=1, the data window S(n−1)

L and
the loss ℓ.

1: Set the components of a and b as in (B.5).
2: Sort b in ascending order, denoted as u: u1 ≤ u2 ≤ · · · ≤ uP and rearrange a

accordingly into v.

3: Find ρ = max

{
1 ≤ j ≤ P : uj −

∑j
i=1

ui
vi

+2∑j
i=1

1
vi

< 0

}
.

4: Define µ = −
2+

∑ρ
i=1

ui
vi∑ρ

i=1
1
vi

.

5: Compute θp = max
{
− 1

2ap
(bp + µ), 0

}
for p = 1, . . . , P .

Output: θ.

estimate f (n) is chosen, the method receives the nth data window S(n)
L , which can

be used at the next iteration2 step n+1. Fig. B.1 visually describes the procedure.

B.3.2 Upper bound on the functional cost

As we show next, we can improve scalability with respect to the number of RKs, by
making use of the following upper bound:

Cη(f ;S) =
N∑

n=1

ℓ
(
θ⊤f(x(n)), y(n)

)
+
η

2
∥θ⊤f∥2H (B.3a)

≤
N∑

n=1

P∑
p=1

θpℓ
(
fp(x

(n)), y(n)
)
+ θ2p

η

2
∥fp∥2Hp

(B.3b)

≜ C̆η(θ,f ;S). (B.3c)

The first upper-bounded term in (B.3b) follows directly from Jensen’s inequality
[113], whereas the second term is obtained by invoking the definition of the RKHS
direct sum norm [114]. Even though the second term in (B.3b) could have also been
upper bounded through Jensen’s inequality, as in [110], exploiting the definition of
the RKHS direct sum norm, leads to a tighter bound because θ2p ≤ θp for θp ∈ [0, 1].

The key advantage of the upper bound cost (B.3c) is that it is separable across
the P RKs within the dictionary, hence allowing for parallelization at the expense
of some loss in optimality, albeit with still satisfactory performance.

B.3.3 Parallelizable learning scheme

Our proposed learning scheme consists of executing at each iteration step n the
following consecutive operations:

1) Every pth function estimate component f
(n)
p is chosen through a single-kernel

online method operating over the pth RK within the dictionary. The methods
are selected by the user, and they can be different for each RK as long as all of

2At the first iteration step n = 1, the method has not received any data sample, thus f (1) is set
as some arbitrary initial function estimate.

57

Machine Learning for Signal Reconstruction from Streaming Time-series Data

them adopt the online setting described in Sec. B.3.1. For example, stochastic
gradient descent methods for function estimation [12], and associated variants [81,
1], can be readily used. Since the function estimate components of f (n) can be
computed in parallel across P different computing units, the computational cost
can be distributed.

2) Next, the convex weights in θ(n) are chosen as the ones that minimize the

partially evaluated upper bound cost (B.3c) at f (n) and S(n−1)
L , referred from now

on as learning cost. Mathematically,

θ(n) = arg
θ∈∆P−1
min C̆η

(
θ,f (n);S(n−1)

L

)
(B.4a)

= arg
θ∈∆P−1
min θ⊤A(n)θ + b(n)

⊤
θ, (B.4b)

where A(n) ≜ diag(a(n)) ∈ SP
++, with a

(n) ∈ RP
+, and b

(n) ∈ RP whose components
are computed3 as

a(n)p =
η

2

∥∥f (n)
p

∥∥2
Hp
, (B.5a)

b(n)p =
∑

i∈I(n−1)
L

ℓ
(
f (n)
p (x(i)), y(i)

)
, (B.5b)

for all p ∈ N[1,P], where I(n−1)
L corresponds to the index set associated with the data

samples in S(n−1)
L . We adapt the projection onto the simplex algorithm discussed in

[115, 116, 117] by extending its applicability to any quadratic problem described by a
diagonal positive definite matrix with simplex constraints. As a result, the proposed
Algorithm 3 can solve (B.4) exactly. Its computational complexity is bottlenecked
by a sorting step; that is, an asymptotic average complexity O(P logP) [118]. It
should be mentioned that this complexity can be further reduced to O(P) on average
by using a randomized pivot algorithm variation that identifies the parameter ρ
(Algorithm 3, line 3) using a divide and conquer procedure instead of sorting
[119], but this is out of the scope of the present paper.

3) Finally, the function estimate f (n) = θ(n)
⊤
f (n) is proposed.

In summary, our scheme can be seen as a higher-level learner that iteratively
chooses the lowest incurring learning cost combination of function estimates provided
by lower-level learners, namely, single RK methods.

B.4 Performance analysis

Under an online setting, as the one described in Sec. B.3.1, the incurred cost accu-
mulated over time receives the name of cumulative cost (CC). In our case, the CC

up to the nth time step is given by
∑n

i=1 Cη(f (i);S(i)
L). From here, recall that every

ith function estimate f (i) is proposed via Sec. B.3.3, before the ith data window
S(i)
L becomes available; thus, the CC is a measure of performance protecting against

overfitting. Intuitively, the lower the growth of the incurred CC with respect to n,

3Notice that nothing prevents f
(n)
p to be zero-valued and thus A(n) from being singular and

positive semi-definite. However, we can always setA(n) = diag(a(n))+δIP where δ is an arbitrarily
small positive value.

58

PAPER B

the better the expected performance over unseen data. In fact, popular measures of
performance, such as the dynamic regret, are constructed as the difference between
the CC incurred by the sequence of function estimates proposed by a method and
a sequence of comparators [66].

In order to validate our scheme experimentally, we pose a signal reconstruction
online problem from synthetically generated streaming data. Specifically, we use
the squared loss, i.e., ℓ(f(x), y) = (f(x)− y)2, and a dictionary of P = 20 Gaussian
kernels, i.e., kp(x, t) = exp

(
−1

2
(x− t)2/σ2

p

)
, with different widths σp linearly spaced

between 0.1 and 10. The method associated with each RK is an augmented naive
online Rreg minimization algorithm (NORMA) [12] with a window length of L = 10
data samples, a budget of τ = 100 kernel expansion terms (beyond the allowed bud-
get we truncate the oldest terms of the kernel expansion), and a fixed learning rate
λNORMA = 0.05. That is, before any possible truncation, each nth function estimate
associated with the pth RK is constructed as f

(n)
p =

∑n−1
i=1 α

(n)
p,i kp(x

(i), ·), where each
α
(n)
p,i ∈ R denotes a kernel-expansion coefficient obtained from the following NORMA

update:

f (n)
p = f (n−1)

p − λNORMA ∂f Cη
(
f ;S(n−1)

L

)∣∣∣
f=f

(n−1)
p

, (B.6)

which, after some algebraic steps, leads to the next closed-form update rule:

α
(n)
i =

−λNORMA ℓ

′(n−1)
p,i if i = n− 1,

γα
(n−1)
i − λNORMA ℓ

′(n−1)
p,i if i ∈ I(n−1)

L \{n− 1},
γα

(n−1)
i otherwise,

(B.7)

where ℓ
′(n)
p,i ≜ ℓ′

(
f
(n)
p (x(i)), y(i)

)
= 2

(
f (n)(x(i))− y(i)

)
and γ ≜ (1 − λNORMAη) ∈

R(0,1)
+ . The regularization parameter is chosen as η = 0.01. Lastly, the data sam-

ples have been generated via a stable AR(1) process y(n) = φy(n−1) + u(n), with

φ = 0.5488135, u(n)
iid∼ N (0, 0.71519837), y(0) = 0 and unit time stamps uniformly

arranged in time, i.e., x(n) = n.
Additionally, we compare our scheme with the online multiple kernel regression

(OMKR) algorithm [104], arguably the closest approach conceptually. More specifi-
cally, we compare against the budget OMKR gradient-based variant method over the
same experimental setting described above. Briefly, the considered OMKR method
can be described, at each iteration step n, by the following three-stage scheme:

1) The set of function estimates, in this case, regressors proposed by each one of
the P NORMAs, is updated as (B.7) and collected in f (n) ∈ H1:P .

2) Then, the P weights for combining the multiple regressors are updated as

w(n) = w(n−1) − λ
(n)
OMKR ∇w Cη

(
w⊤f (n);S(n−1)

L

)∣∣∣
w=w(n−1)

. (B.8)

In this case, we use an initial learning rate λ
(1)
OMKR = 8 · 10−4 that is halved every

50 steps until a minimum value of 10−5. After some algebraic manipulations and
making use of the definition of the RKHS direct sum norm [114], the evaluated
gradient in (B.8) equals to∑

i∈I(n−1)
L

f (n)(x(i))ℓ′
(
w(n−1)⊤f (n)(x(i)), y(i)

)
+ ηA(n)w(n−1). (B.9)

59

Machine Learning for Signal Reconstruction from Streaming Time-series Data

0 100 200 300 400 500
Time step n

Cu
m

ul
at

iv
e

co
st

L ·n

f (n)

f
(n)
OMKR

f (n)
p for p= 1, , 20

Figure B.2: Cumulative cost up to time step n incurred by our learning scheme, the
OMKR algorithm, and the combined single RK NORMA regressors individually.
The dashed-dotted line L · n is shown as a reference.

The matrix A(n) corresponds to the one introduced in (B.5a), and the initial com-
bination weights are set as w(1) = 0P .

3) Finally, the function estimate f (n) = w(n)⊤f (n) is proposed.

Unlike our scheme, the OMKR algorithm can eventually learn any linear combi-
nation of single-kernel function estimates. However, due to the additive nature of the
update step in (B.8), the OMKR algorithm usually suffers from slow convergence

rates. Moreover, it requires a sequence of learning rates λ
(n)
OMKR whose tuning in-

volves optimization techniques or task-specific knowledge, hence adversely affecting
performance, e.g., poor learning or instabilities, if not carried out adequately.

Our experimental results in Fig. B.2 show that the CC incurred by our proposed
learning scheme outperforms the lowest CC incurred by any of the combined single
RK NORMA regressors separately. In the same figure, it can also be observed that
our scheme incurs a CC that increases at a lower rate than the one incurred by
the OMKR algorithm, thus allowing our scheme to outperform the best NORMA
regressor much sooner. The reason behind this observation is arguably the additive
nature of the OMKR algorithm, which requires numerous updates to completely re-
move the residual contributions of irrelevant regressors. For example, see in Fig. B.3
the “spiky” shape of the OMKR signal estimate due to some regressors constructed
with a narrow-valued σp RK.

Regarding computational resources, both the OMKR algorithm and our scheme
can be parallelized across the RKs within the dictionary, which in our experiments
means a constant time complexity O(τ), and a combination step of complexity O(P)
and O(P logP), respectively. However, as mentioned in Sec. B.3.3, the complexity
of our scheme can be further reduced to O(P) on average, making both of the
compared approaches computationally equivalent.

60

PAPER B

0 10 20 30 40
Time

0
f (42)

f (42)
p+

f (42)
p−

Data point

f
(42)
OMKR

Figure B.3: Snapshot of the 42nd signal estimate obtained by the OMKR algorithm,
our learning scheme, and the best and the worst of the combined single RK NORMA
regressors (denoted by the indices p+ and p−, respectively) in terms of the so-far
(n = 42) incurred cumulative cost.

B.5 Conclusion

We present a multi-kernel learning scheme that experimentally outperforms the best
of the combined single RK methods, in terms of the cumulative regularized least
squares cost metric, with a comparable computational load per computing unit.
This corroborates the ability of the proposed scheme to effectively accommodate
a larger function space (from which to draw function estimates) of multi-kernel
methods while keeping the lower computational complexity of online single RK
methods. Furthermore, although Algorithm 3 has been expressly designed for the
task discussed in this paper, it can be used to solve any other problem that accepts
a formulation as in (B.4b).

Correctness of Algorithm 1

A Lagrangian of problem (B.4) is

L(θ,λ, µ) = θ⊤diag(a(n))θ + b(n)
⊤
θ − λ⊤θ + µ(1⊤θ − 1), (B.10)

being µ ∈ R and λ ∈ RP the Lagrange multipliers associated with the equality and
inequality constraints, respectively. At the optimal solution θ(n), the following KKT
conditions [120] hold:

61

Machine Learning for Signal Reconstruction from Streaming Time-series Data

2θ(n)p a(n)p + b(n)p − λp + µ = 0, p = 1, . . . , P (B.11a)

θ(n)p ≥ 0, p = 1, . . . , P (B.11b)

λp ≥ 0, p = 1, . . . , P (B.11c)

λpθ
(n)
p = 0, p = 1, . . . , P (B.11d)

P∑
p=1

θ(n)p = 1. (B.11e)

From the complementary slackness, stated in (B.11d), we can deduce that if the
primal inequality constraint in (B.11b) is slacked, i.e., greater than zero, then λp = 0
and from the stationarity condition (B.11a), the solution fulfils

θ(n)p = − 1

2a
(n)
p

(b(n)p + µ) > 0. (B.12)

On the other hand, if the primal inequality constraint is tight, i.e., θ
(n)
p = 0, then

the dual constraint (B.11c) is not binding. Again, from the stationarity condition
in (B.11a), we can identify those non-binding constraints as those that satisfy the
following expression:

b(n)p + µ = λp ≥ 0. (B.13)

In this way, it is clear from (B.13) that the components of the optimal solution
that are zero, if any, correspond to the larger components of b(n). Without loss of
generality, we can assume that the components of b(n) are sorted in ascending order
as long as the components of a(n) are rearranged accordingly. Thus, by comparing
b(n) with the solution as follows:

b
(n)
1 ≤ · · · ≤ b(n)ρ ≤ b

(n)
ρ+1 ≤ · · · ≤ b

(n)
P ,

θ
(n)
ρ+1 = · · · = θ

(n)
P = 0,

(B.14)

it can be concluded that the index ρ ∈ N[1,P] determines the number of components
in the solution that are nonzero. From here, and rewriting the equality primal
constraint (B.11e) as

P∑
p=1

θ(n)p =

ρ∑
p=1

θ(n)p = −1

2

ρ∑
p=1

1

a
(n)
p

(b(n)p + µ) = 1, (B.15)

the Lagrangian multiplier associated with the equality constraint can be isolated
and computed as

µ = −
2 +

∑ρ
p=1

b
(n)
p

a
(n)
p∑ρ

p=1
1

a
(n)
p

, (B.16)

as long as the index ρ is known.

Theorem 1: Let ρ be the number of positive components in the solution of opti-
mization problem (4), then

ρ = max

{
1 ≤ j ≤ P : bj −

2 +
∑j

i=1
bi
ai∑j

i=1
1
ai

< 0

}
, (B.17)

where b is obtained by sorting b(n) components in ascending order and a corresponds
to a(n) rearranged accordingly.

62

PAPER B

Proof. Let us first define the quantities φj ≜ bj − (2 +
∑j

i=1
bi
ai
)/
∑j

i=1
1
ai

and

sj:k ≜
∑k

i=j
1
ai
. Then, the goal is to show that j = ρ is the largest index in {1, . . . , P}

for which φj remains negative.
For j < ρ, we have that

φj =
1

s1:j

(
s1:jbj −

(
2 +

j∑
i=1

bi
ai

))
(B.18a)

=
1

s1:j

(
s1:jbj − 2−

ρ∑
i=1

bi
ai

+

ρ∑
i=j+1

bi
ai

)
(B.18b)

=
1

s1:j

(
s1:jbj + s1:ρµ+

ρ∑
i=j+1

bi
ai

)
(B.18c)

= bj + µ+
1

s1:j

ρ∑
i=j+1

1

ai
(µ+ bi) < 0, (B.18d)

where in step (B.18b) we use the equivalence
∑j

i=1
bi
ai

=
∑ρ

i=1
bi
ai
−
∑ρ

i=j+1
bi
ai
. Next,

in step (B.18c), we make use of the relation in (B.16). Finally, the step (B.18d)
holds thanks to the relation in (B.12) and because s1:j, ai ≥ 0 ∀i, j.

For j = ρ, and thanks to (B.12), we have φρ = bρ + µ < 0. Then, using the
relation in (B.16), we can verify that (B.17) holds.

For j > ρ, we can follow similar algebraic steps as in (B.18) to obtain

φj =
1

s1:j

(
s1:ρ(bj + µ) +

j∑
i=ρ+1

1

ai
(bj − bi)

)
≥ 0. (B.19)

The inequality in (B.19) holds thanks to the relation in (B.13) and the fact that
bj ≥ bi ∀i.

63

	IEEE-II
	Paper II Extracted

