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Abstract

Nowadays, deploying cyber-physical networked systems generates tremendous streams
of data, with data rates increasing as time goes by. This trend is especially no-
ticeable in several fairly automated sectors, such as energy or telecommunications.
Compared to the last decades, this represents not only an additional large volume of
data to explore and the need for more efficient and scalable data analysis methods
but also raises additional challenges in the design and analysis of real-time stream-
ing data processing algorithms. In many applications of interest, it is required to
process a sequence of samples from multiple, possibly correlated, data time series
that are acquired at different sampling rates and which may be quantized in ampli-
tude at different resolutions. A commonly sought goal is to obtain a low-error signal
reconstruction that can be uniformly resampled with a temporal resolution as fine
as desired, hence facilitating subsequent data analyses.

This Ph.D. thesis consists of a compendium of four papers that incrementally
investigate the task of sequentially reconstructing a signal from a stream of multi-
variate time series of quantization intervals under several requirements encountered
in practice and detailed next.

First, we investigate how to track signals from streams of quantization intervals
while enforcing low model complexity in the function estimation. Specifically, we ex-
plore the use of reproducing kernel Hilbert space-based online regression techniques
expressly tailored for such a task. More specifically, the core techniques we devise
and employ are influenced by the abundant theoretical and practical benefits in the
literature about proximal operators and multiple kernel approaches.

Second, we require the signal to be sequentially reconstructed, subject to smooth-
ness constraints, and as soon as a data sample is available (zero-delay response).
These well-motivated requirements appear in many practical problems, including on-
line trajectory planning, real-time control systems, and high-speed digital-to-analog
conversion. We address this challenge through a novel spline-based approach under-
pinned by a sequential decision-making framework and assisted with deep learning
techniques. Specifically, we use recurrent neural networks to capture the temporal
dependencies among data, helping to reduce the roughness of the reconstruction on
average.

Finally, we analyze the requirement of consistency, which amounts to exploiting
all available information about the signal source and acquisition system to optimize
some figure of reconstruction merit. In our context, consistency means guaranteeing
that the reconstruction lies within the acquired quantization intervals. Consistency
has been proven to entail a profitable-in-practice asymptotic error-rate decay as the
sampling rate increases. Particularly, we investigate the impact of consistency on
zero-delay reconstruction and also incorporate the idea of exploiting the spatiotem-
poral dependencies among multivariate signals.
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Sammendrag

I dag genererer utplassering av cyberfysiske nettverkssystemer enorme datastrømmer,
med datahastigheter som øker etter hvert som tiden g̊ar. Denne trenden er spesielt
merkbar i flere ganske automatiserte sektorer, som energi eller telekommunikasjon.
Sammenlignet med de siste ti̊arene representerer dette ikke bare et ekstra stort
volum av data å utforske og et behov for mer effektive og skalerbare dataanal-
ysemetoder, men reiser ogs̊a ytterligere utfordringer i utformingen og analysen av
sanntids strømnings databehandling algoritmer. I mange applikasjoner av interesse
er det nødvendig å behandle en sekvens av prøver fra flere, muligens korrelerte,
datatidsserier som er innhentet ved forskjellige samplingshastigheter og som kan
kvantiseres i amplitude ved forskjellige oppløsninger. Et vanlig mål er å oppn̊a
en rekonstruksjon med lav feilsignal som kan uniformt gjensamples med en s̊a fin
temporal oppløsning som ønsket, og dermed fasilitere etterfølgende dataanalyser.

Denne Ph.D. avhandlingen best̊ar av et kompendium av fire artikler som inkre-
mentelt undersøker oppgaven med å sekvensielt rekonstruere et signal fra en strøm
av multivariate tidsserier av kvantiseringsintervaller under flere krav som møtes i
praksis og detaljert deretter.

Først undersøker vi hvordan vi kan spore signaler fra strømmer av kvantiser-
ingsintervaller mens vi h̊andhever lav modellkompleksitet i funksjonsestimeringen.
Spesielt utforsker vi bruken av reproducing kernel Hilbert-rombaserte online re-
gresjonsteknikker som er spesielt skreddersydd for en slik oppgave. Mer spesifikt er
kjerneteknikkene vi utarbeider og bruker p̊avirket av de mange teoretiske og prak-
tiske fordelene i litteraturen om proksimale operatører og flere kjernetilnærminger.

For det andre krever vi at signalet rekonstrueres sekvensielt, underlagt jevnhets-
begrensninger, og s̊a snart en dataprøve er tilgjengelig (null-forsinkelsesrespons).
Disse godt motiverte kravene dukker opp i mange praktiske problemer, inkludert
online baneplanlegging, sanntidskontrollsystemer og høyhastighets digital-til-analog
konvertering. Vi takler denne utfordringen gjennom en ny spline-basert tilnærming
underbygget av et sekvensielt beslutningsrammeverk og assistert med dyplæring-
steknikker. Spesifikt bruker vi recurrent nevrale nettverk for å fange opp de tidsmes-
sige avhengighetene mellom data, og bidrar til å redusere grovheten til rekonstruk-
sjonen i gjennomsnitt.

Til slutt analyserer vi kravet om konsistens, som utgjør å utnytte all tilgjengelig
informasjon om signalkilden og innsamlingssystemet for å optimalisere noen form
for rekonstruksjonsverdi. I v̊ar sammenheng betyr konsistens å garantere at rekon-
struksjonen ligger innenfor de innhentede kvantiseringsintervallene. Konsistens har
vist lønnsom praktisk asymptotisk fofall av feilraten n̊ar samplingsfrekvensen øker.
Spesielt undersøker vi virkningen av konsistens p̊a null-forsinkelsesrekonstruksjon
og inkluderer ogs̊a ideen om å utnytte de spatiotemporale avhengighetene blant
multivariate signaler.
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Paper C E. Ruiz-Moreno, L. M. López-Ramos and B. Beferull-Lozano, “A trainable
approach to zero-delay smoothing spline interpolation,” IEEE Transactions
on Signal Processing, vol. 71, pp. 4317-4329, 2023.
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Chapter 1

Introduction

The study of temporal measurements is a matter of great importance in many do-
mains of applied science and engineering, such as statistics or signal processing. In
this context, time series are the object of study, consisting of a sequence of data
samples or observations indexed in time order. Accordingly, the study techniques
are usually referred to as methods for time-series analysis.

This chapter motivates the importance of methods for time series analysis, reveals
some related research gaps, and discusses possible research avenues to address them.

1.1 Motivation

Streaming data can be understood as a time series whose terms are continuously
generated, possibly from different sources. Streaming data is of paramount value and
necessity in the present day, being applied in a broad range of industries, including
finance, transportation, or the industrial Internet of Things, among others [15].

In many practical tasks involving streaming data, the ground truth behind the
process being measured is unknown. Instead, one only has access to the received
time series observations. These observations may be very different in nature for each
task, for instance, real-valued, discrete, or even symbolic data.
When dealing with physical phenomena, the observed data samples are collected
through a data acquisition system, usually comprised of a set of networked sensors
and a computing unit. In this way, and due to the acquisition system limitations,
the resulting observations typically consist of signal values sampled in time and
quantized in amplitude, not necessarily uniformly for both.
A common goal for these tasks is to recover the ground truth process from the
sequence of observations, for example, via some function approximation method,
with the lowest possible error.

In most cases of interest, the required methods must account for large data
volumes and, hence, be able to run online, sometimes under real-time constraints.
Such constraints become prevalent when a safety-critical application requires in-
stantaneous decisions based on the latest received data. Also, highly-competitive
settings, such as algorithmic trading [16], give an advantage to those methods that
minimize the latency between signal acquisition and order execution. In user-facing
applications, avoiding delay is positive for user experience and system usability. For
instance, virtual reality devices rely on real-time signal processing to ensure a seam-
less and immersive experience [17]. A fast response of actuators based on sensor
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input is also beneficial on board drones, power grids, or wind turbines.
On the other hand, these methods must be suitable for time series, possibly

multiple ones concurrently, of misaligned, non-uniformly sampled, and quantized
intervals. This is because patterns from connected systems can improve processing
results. Moreover, misaligned samples occur frequently, for example, in informa-
tion fusion from different sensors [18] or when synchronization between devices is
challenging.

Finally, and whenever possible, it is convenient that these methods exploit prior
information about the underlying physical process, such as the smoothness and low
model complexity shared by most physical signals and their spatiotemporal dynam-
ics, to reduce the reconstruction error. Keeping the smooth nature and complexity
of the signal reconstruction low is important to avoid artifacts or misleading inter-
pretations that worsen its generality over unseen data.

1.2 Summarized State-of-the-art

Online optimization methods for signal reconstruction problems generating a series
of function estimates from streaming data are useful to reduce computational com-
plexity in large-scale problems [19], to dynamically adapt to new patterns in the
data [20], and also to enable acting under real-time constraints [21].

Among them, online kernel-based penalized regression approaches stand out in
popularity, mostly because they allow estimating functions of arbitrary complexity
by finding non-linear patterns at a moderate computational cost [12, 22]. Within the
considered framework of streamed time series, several sliding window kernel-based
methods have been proposed to increase the reliability of the signal estimation by
processing consecutive observations concurrently.
Arguably, the most suited approach to tackle our posed problem is the one presented
in [23], which can provide a low-delay response by running a single processing it-
eration over the quantized data samples within a sliding window every time an
observation is received.
However, it cannot guarantee that the estimated signal passes through all the ob-
served quantization intervals, thus yielding function estimates inconsistent with the
acquisition system. Another issue is that explicit regularization is not included, and
therefore, the reduced model complexity associated with smooth and bounded un-
derlying physical signals is not fully promoted. Lastly, function estimates modeled
as a kernel expansion make it challenging to guarantee smoothness in a sequentially
reconstructed signal; thus, using them as tracking systems rather than for smooth
signal reconstructions is preferable.

On the other hand, online interpolation methods can be suitable candidates
for overcoming the aforementioned issues. These methods typically use piecewise-
defined functions to model a sequence of local signal estimates [24, 6]. Piecewise-
modeled signal estimates can be updated every time an observation is received by as-
sembling a new function piece while guaranteeing smoothness and a low-complexity
model.
Several studies have explored the use of spline-based online interpolation methods
from streaming data under real-time constraints [25, 26]. However, most of the ex-
isting spline-based online interpolation methods require a multi-step lookahead or
sliding window mechanism, leading to a delay.
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To the best of our knowledge, the only existing spline-based zero-delay interpolation
method in the literature is the myopic approach (referred to as the “classical greedy
approach” in [26]), a purely local method; thus, it does not exploit nonlocal informa-
tion for improved signal reconstruction. For instance, it cannot accommodate the
possible long-term spatiotemporal relationships within any multivariate time series.

Finally, consistent signal reconstruction methods exploit all available knowledge
about the underlying physical signal, such as the signal class (e.g., bandlimited
signals) and the acquisition process (e.g., analog-to-digital converters), to improve
the error-rate decay as the sampling rate increases. These have been proven useful
under offline settings [27, 28]. However, there is a research gap regarding online
consistent signal reconstruction methods.

1.3 Research Questions

The motivation for this thesis work can be summarized in the following research
questions derived from the current State-of-the-art:

RQ1 Can we design an online kernel-based method to reliably track the underlying
physical signal from a univariate time series of quantization intervals?

RQ2 In addition to satisfying the low model complexity (implicitly imposed) in
RQ1, if we require a more strict zero-delay response constraint and smoothness
in the reconstructed signal, how can we exploit the temporal dependencies of
univariate time series of data points to achieve an accurate spline-based signal
reconstruction?

RQ3 Besides the previous requirements in RQ1 and RQ2, how can we ensure a
consistent signal reconstruction while exploiting the spatiotemporal relations
of multivariate time series of quantization intervals to achieve an accuracy-
improved spline-based signal reconstruction?

1.4 Outline

This Ph.D. thesis consists of a compendium of four papers. These papers have
been either published or submitted for publication in peer-reviewed international
conference proceedings and journals. They can be found in the appendices of this
thesis. The thesis is divided into five chapters, including the present one.

Chapter 1 introduces the thesis topic, motivates its importance, summarizes
the state-of-the-art, and exposes several research gaps and possible research paths
to address them. The key theoretical concepts in the compendium of papers are
discussed in Chapter 2. Next, Chapter 3 summarizes papers A and B, which
address the RQ1. Similarly, Chapter 4 summarizes papers C and D, addressing
the RQ2 and the RQ3, respectively. Finally, Chapter 5 concludes the paper and
presents the future work.
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Chapter 2

Background Theory

This thesis work makes use of several machine-learning techniques as auxiliary tools
to attain real-time signal reconstruction from streaming data. This background the-
ory chapter is meant to cover the basic idea behind those techniques, serving as a
prelude for the compendium of papers attached in the appendices.
Accordingly, the connection, in the context of this Ph.D. thesis, between the con-
cepts discussed next is purposely omitted for the sake of conciseness and is instead
established and detailed in the ensuing thesis chapters.

2.1 Definitions and Terminology

This section covers key definitions and technical terminology used in this Ph.D.
thesis. Specifically, some concepts related to acquisition systems, such as quanti-
zation or, more generally, uncertainty intervals, and some others related to signal
reconstruction methods, such as delay, smoothness, and spline models.

2.1.1 Quantization

In signal processing, quantization is the process of partitioning the image domain of
a given signal by mapping measured signal values, often from a continuous set, to
values in a countable smaller set, possibly finite [29]. It is commonly used to reduce
signal data size for more efficient storing, faster processing, and transmission.

Any device or algorithm that performs quantization can be referred to as a
quantizer. For example, a uniform mid-tread quantizer, which quantizes the signal
values at any tth time stamp ψ(xt), with a quantization stepsize ∆, as

yt = round

(
ψ(xt)

∆

)
∆, (2.1)

where round() denotes the round function. In this case, the tuple xt, yt, and ∆ can
describe any of the resulting quantized signal values.

2.1.2 Uncertainty intervals

An uncertainty interval can be defined as a continuous region in the image domain
of the underlying signal being acquired that reflects our confidence, or knowledge,
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Figure 2.1: Example streams of uncertainty intervals. In a), we have intervals of dif-
ferent sizes that can overlap (in the image domain), thus not necessarily partitioning
the image domain; an example of such data is safety regions in a trajectory curve.
In b) and c), we respectively show a stream of non-uniform and uniform (ϵt = ϵ for
all time steps) quantization intervals. Finally, in d), we present a stream of data
points, where ϵt = 0, for all time steps.

about the signal acquisition at a given time stamp. It is also the primary data type
considered in this Ph.D. work, which we sometimes refer to as a data sample.

For a formal definition, consider a stream of uncertainty intervals; then, the
tth observed uncertainty interval is expressed as ot = [xt, yt, ϵt]

⊤, where xt ∈ R
denotes its time stamp, yt ∈ R is the center of the interval, and ϵt ∈ R+ stands for
the interval half step. This definition encompasses many data types encountered
in practice, such as safety regions, quantization intervals, and data points (data
samples with no uncertainty in the image domain), as illustrated in Fig. 2.1.

Even though the methods proposed in Paper A, Paper B, and Paper D are
designed to work with any uncertainty interval, in this Ph.D. thesis, we restrict to
(not necessarily uniform) quantization intervals as a common use case.

2.1.3 Zero-delay Response

In machine learning, online learning is a well-established paradigm devised for se-
quential data [30, 31]. Online learning methods are typically used to alleviate the
computational complexity of “offline” algorithms, i.e., those techniques designed to
work over the entire data set at once, usually over huge data sets in practice. Sim-
ilarly, they are also used in tasks where adapting to new patterns in the data or
satisfying real-time constraints is required.

In the context of online learning for signal reconstruction, delay can be under-
stood as i) the difference between the time a sample is received and the time its
corresponding signal reconstruction is delivered and ii) the number of samples that
are necessary to process before a signal reconstruction is proposed.
This thesis adopts the concept of delay in terms of the number of samples. There-
fore, an algorithm sequentially reconstructing a signal without waiting for the next
sample is deemed as operating under a zero-delay response.
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2.1.4 Smoothness

Given a univariate function, its smoothness refers to the number of continuous
derivatives it has over the interior of its domain. At the very minimum, a func-
tion could be considered smooth if it is differentiable (and hence continuous) every-
where. At the other end, it might also possess derivatives of all orders in its domain,
in which case it is said to be infinitely differentiable.

In addition, the term smoothness is usually used as the opposite of the concept
of roughness, a derivative-based metric that quantifies the model complexity of cer-
tain smooth functions [32]. Mathematically, given a space of functions Fρ over the
domain dom(f) with ρ − 1 absolutely continuous derivatives and with a squared
integrable ρ-th derivative, their roughness rρ : Fρ → R is computed as

rρ(f) =

∫
dom(f)

(Dρ
xf(x))

2 dx. (2.2)

In summary, the word “smoothness” may refer to the fact that the roughness
of a function is minimized or to the fact that the function has a certain number of
continuous derivatives. This Ph.D. thesis deals with both these distinct but related
concepts since, to minimize the ρ-roughness, we need the function to be at least
(ρ− 1)-smooth. Whenever the meaning is unclear from the context, the latter will
be referred to as the degree of smoothness.

2.1.5 Spline models

By convention, a spline model is defined as a piecewise polynomial function. In this
thesis work, we denote any one-dimensional spline composed of T function pieces as

fT (x) =


g1(x), if x0 < x ≤ x1,

g2(x), if x1 < x ≤ x2,
...

gT (x), if xT−1 < x ≤ xT ,

(2.3)

where every tth function piece, or function section, gt : (xt−1, xt] → R is a polynomial
of the form

gt(x) = a
⊤
t pt(x), (2.4)

with combination coefficients at ∈ Rd+1 and basis vector function pt : (xt−1, xt] →
Rd+1 given by

pt(x) = [1, (x− xt−1), . . . , (x− xt−1)
d]⊤, (2.5)

where the positive integer d denotes the order of the spline.
On the other hand, a spline model is said to have a degree of smoothness φ ∈
N if it has φ continuous derivatives over the interior of its domain dom(fT ) =⋂T

t=1(xt−1, xt]. Some spline configurations with different order and degree of smooth-
ness are illustrated in Fig. 2.2.

It is worth mentioning that there are many alternative ways of equivalently rep-
resenting the spline model in (2.3); for instance, by using overlapping basis functions
implicitly accommodating the smoothing constraints, such as in B-splines or cardi-
nal splines models [33]. Although these alternative representations are equivalent,
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Figure 2.2: Example of interpolation splines. The asterisks represent data points;
in this case, they also coincide with the spline knots (joint points).
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Figure 2.3: Physical analogy of a smoothing spline [6]. The asterisks represent data
points, while the black points represent the spline knots. Here, the smoothing spline
can be viewed as a strip hooked up to the data points by ideal springs (for small
elongations).
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it is preferable to use the piecewise representation for some tasks since we can di-
rectly impose continuity constraints into the model representation. Otherwise, the
continuity constraints are embedded into the basis expansion, hence making such a
task cumbersome, as further discussed in Paper C.

2.1.5.1 Smoothing spline interpolation

Let us analyze the naming conventions that constitute the notion of “smoothing
spline interpolation” by parts. The term “smoothing” refers to a controlled trade-
off between fitting data points and proposing a smooth (low complexity) signal
estimate. By “interpolation,” one usually refers to estimating new data within the
time domain delimited by the range of known data points rather than simply con-
necting them.
On the other hand, “interpolation splines” and “smoothing splines” may seem com-
pletely different constructs, especially from an implementation perspective, since the
former passes through the known data points and the latter does not necessarily.
However, by construction, “interpolation splines” can be seen as a particular limit
case of “smoothing splines.”
This is because the smoothing spline is defined as

fT (x) = arg min
f∈Fρ

T∑
t=1

(f(xt)− yt)
2 +

η

2
rρ(f), (2.6)

where the class of functions Fρ and roughness metric rρ, are the same as introduced
in Sec. 2.1.4. Thus, notice that as the parameter η → 0, the smoothing spline
converges to the interpolating spline. Some intuition behind the smoothing spline,
defined in (2.6), is provided in Fig. 2.3.

2.2 Proximal Algorithms

Suppose we are given a differentiable convex function f : RD → R whose minimum
value(s) cannot be found in closed form or that finding them is computationally
prohibitive. In this case, one can resort to iterative methods [34].
Roughly, an iterative method is an algorithm that generates a sequence of iterates,
e.g., {x1,x2, . . . }. These algorithms are typically devised so that the sequence of
iterates converges to an optimal solution, denoted as x∗ = arg minx∈RDf(x), as the
number of iterations, or steps, increases.

Arguably, the most emblematic iterative algorithm is the gradient descent algo-
rithm [35], whose core program is exposed next in Algorithm 1.

Algorithm 1 Gradient Descent

Input: Initial x1, a convergence criterion and a step-size sequence {ηj}j or rule.
1: for i = 1, 2, . . . do
2: xi+1 = xi − ηi ∇f(xi).
3: Break if the convergence criterion is satisfied.
4: end for

Output: The last iterate.
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proximations for D = 1.

𝑥! 𝑥"

𝑔!

𝑔",$
𝑔",%

𝑓 𝑥

Figure 2.5: Example of subgradients for D = 1. At xA the function f is differen-
tiable, and gA is the unique derivative. On the other hand, at the point xB the
function f is non-differentiable and has many subgradients (for convenience, only
two subgradients gB,1 and gB,2 are shown).
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The descending step in Algorithm 1 (line 2) admits several interpretations. One of
them, which allows for a more in-depth comparison analysis later on, is the following:
From the second-order Taylor approximation around xi, i.e.,

f(x) ≃ f̃(x) = f(xi) +∇f(xi)
⊤(x− xi) +

1

2
(x− xi)

⊤H(f(xi))(x− xi), (2.7)

we can replace the Hessian H(f(xi)) for a more computationally friendly value 1
ηi
ID,

where ID is the identity matrix of size D and ηi is a positive real parameter closely
related to the curvature of a quadratic approximation, obtaining

f(x) ≃ f̃ηi(x) = f(xi) +∇f(xi)
⊤(x− xi) +

1

2ηi
∥x− xi∥22. (2.8)

Then the next iterate is given by xi+1 = arg minx∈RD f̃ηi(x), which can be found
as the stationary point satisfying that

∇f̃ηi(xi+1) = 0, (2.9a)

or, equivalently, ∇f(xi) +
1

ηi
(x− xi) = 0. (2.9b)

The corresponding visual representation is provided in Fig. 2.4.
In many applications, the objective function f may be non-differentiable. In

such cases, it is not possible to compute the gradient everywhere; thus the gradient
descent method cannot be used. On the contrary, the subgradient method is a simple
algorithm for minimizing non-differentiable convex functions [36].
The main difference with respect to gradient descent lies in the “descending” step
in Algorithm 1 (line 2). Instead, the subgradient method iterates as

xi+1 = xi − ηi gi, (2.10)

where gi is any subgradient of f at xi, that is, any vector in RD such that

f(x) ≥ f(xi) + g
⊤
i (x− xi) , (2.11)

is satisfied, as illustrated in Fig. 2.5.
However, the subgradient method is not a descent method; that is, the function
value at the next iterate can increase, hence slowing the convergence compared to
gradient descent methods.

Differently, proximal algorithms can deal with a non-smooth function f while
matching the gradient descent algorithm convergence rate [37]. They make use of
the proximal operator, in this case, a mapping proxηf : v ∈ RD 7→ proxηf (v) ∈ RD

that comprises between minimizing f and being near to a given point v, where η
can be seen as a trade-off parameter between these terms.
In proximal algorithms, the equivalent to the descending step in Algorithm 1 (line
2) at each iteration consists of evaluating the proximity (prox) operator of a func-
tion, which involves solving a convex optimization subproblem. This subproblem
can be solved with standard optimization methods, but it often admits closed-form
representations or can be solved very quickly with specialized methods [37].

As an example, consider a convex non-differentiable function f that can be de-
composed as f(x) = g(x) + h(x), where g is convex and differentiable and h is also
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convex but not necessarily differentiable.
Similarly to the gradient descent method, we can perform a Taylor expansion of
only the differentiable term in the objective, i.e., we expand g around the iterate
xi and use the stationary point of the resulting approximation as the next iterate.
Mathematically,

xi+1 = arg min
x∈RD

{
g(xi +∇g(xi)

⊤(x− xi) +
1

2η
∥x− xi∥22 + h(x)

}
(2.12a)

= arg min
x∈RD

{
1

2η
∥x− (xi − η∇g(xi))∥22 + h(x)

}
(2.12b)

≜ proxηh (xi − η∇g(xi)) , (2.12c)

where the algebraic step (2.12c) applies the definition of the prox operator.
This algorithm is known in the literature as the proximal gradient descent method
or the proximal forward-backward iterative scheme [38].

2.3 Learning with Kernels

Empirical risk minimization (ERM) is arguably one of the most popular supervised
approaches to designing learning algorithms [39]. The general idea consists of min-
imizing the empirical loss

1

T

T∑
t=1

ℓ(f(xt), yt), (2.13)

as a proxy for the expected loss

E
x,y∼p(x,y)

[ℓ(f(x), y)], (2.14)

since, in most cases, the expectation cannot be obtained due to a prohibitive com-
putational cost or because the joint probability p(x, y) is unknown.

To put the above algorithmic idea into practice, one needs to fix a suitable func-
tion space and then minimize the empirical loss over it. Additionally, the function
space should allow feasible computations and be rich (encompassing a large number
of candidate functions) when the model complexity is unknown a priori. Here, the
space of linear functions is conceivably the simplest example.

On the other hand, if the function space is too rich, solving an ERM problem can
cause overfitting, i.e., poor generalization to unseen data. Fortunately, regularization
techniques can enforce stability (by reducing the model complexity) and promote
generalization [40]. One possible way to do this is by adding a regularization term
(penalizing a metric of the complexity of the learned function) to the empirical loss.

2.3.1 Beyond Linear Models

Suppose we have a set of data points S = {(xt, yt)}Tt=1, where xt, yt ∈ R, to which
we want to fit a linear model f : x ∈ R 7→ wx ∈ R, with w ∈ R. Then, if certain
conditions, such as a linear relationship between the independent and dependent
variables in the data set, are not met, the linear model provides inaccurate solution
estimates, as shown in Fig. 2.6.
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(a) Accurate fit.

(b) Underfit. The space of linear functions is not rich enough to properly capture the
data relationships.

Figure 2.6: Linear model fit via ridge regression for two different data sets.
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Figure 2.7: Geometrical interpretation of the feature map. On the left is the input
space, where the model f is seen as a non-linear function. On the right is the feature
space, where the model is seen as linear with respect to the coefficients in w.
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Figure 2.8: Fit of a quadratic function as a linear combination of features via ridge
regression.

At this point, one may wonder whether it is possible to learn a linear model from a
richer function space to overcome underfitting. The answer is yes.

In general, we can use any feature map ϕ(x) = [φ1(x), . . . , φF (x)]
⊤, where

φi : RD → R and ϕ : RD → RF (usually for F >> D). This leads to non-linear
models in the input space but linear in the feature space of the form

f(x) = w⊤ϕ(x) =
F∑
i=1

wiφi(x), (2.15)

where w ∈ RF . This is illustrated in Fig. 2.7.
As an example, the regression problem posed before in Fig. 2.6b corresponds to
D = 1 and can be solved with a feature map in F = 3 of the form ϕ(x) = [1, x, x2]⊤,
as shown in Fig. 2.8.

On the other hand, thanks to the Representer Theorem [41], we know that for
any given loss ℓ : R2 → R the solution to the optimization problem

w∗ = arg min
w∈RF

1

T

T∑
t=1

ℓ(ϕ(xt)
⊤w, yt) +

η

2
∥w∥22, (2.16)

can be written as w∗ = α⊤Φ, where Φ = [ϕ(x1), . . . ,ϕ(xT )]
⊤ ∈ RT×F is the data

matrix in the feature space, and α ∈ RT is some real-valued vector of coefficients.
Then, the solution model is of the form

f(x) = ϕ(x)⊤w∗ (2.17a)

= ϕ(x)⊤Φ⊤α (2.17b)

=
T∑
t=1

αtϕ(x)
⊤ϕ(xt), (2.17c)

that is, f(x) is expressed by using inner products between feature vectors.
In fact, we do not even need to explicitly define a feature map ϕ, but only a repro-
ducing kernel function k(x,xt) = ϕ(x)

⊤ϕ(xt). This procedure is commonly referred
to in the literature as the kernel trick [42].

Finally, every kernel is associated with a unique reproducing kernel Hilbert space
(RKHS), and conversely. The RKHS theory is outstanding; the underlying defini-
tions are conceptually simple yet powerful and broadly applicable in practice [43].
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2.4 Finite Horizon Stochastic Dynamic Program-

ming

There exist several classes of techniques for optimal decision-making in dynamic
state spaces. Classical control theories, discrete-time dynamic programming (DP),
and machine learning-based approaches, often referred to as reinforcement learning
[44], aim to determine the best possible action or sequence of actions in a given
situation, considering the evolution of states of a dynamic environment over time.
In this section, we will delve into deterministic and stochastic DP.

Deterministic dynamic programming problems involve a discrete-time dynamic
system of the form

st+1 = Ft(st,at), for t = 0, . . . , T − 1, (2.18)

where t is the time index, st is the tth state, at is the tth action, Ft describes
the state update mechanism at time step t, and T is the total number of steps or
horizon.
The set of all possible states st is referred to as the state space at time t. It can be
any set and can depend on t; this generality is one of the great strengths of the DP
methodology [45]. Similarly, the set of all possible actions at is called the action
space at time t. Again, it can be any set and can depend on t. The problem also
involves an additive real-valued cost function in the sense that the cost incurred at
time t, denoted by gt(st,at), accumulates over time, and may depend on t. For a
given initial state s0, the total cost of an action sequence {a0, . . . ,aT−1} is

J(s0;a0, . . . ,aT−1) = gT (sT ) +
T−1∑
t=0

gt(st,at), (2.19)

where gT (sT ) is a terminal cost incurred at the end of the process.
The objective is to minimize the total cost (2.19) over all sequences of feasible
actions.

The finite-horizon stochastic DP problem differs from the deterministic version
primarily in the nature of the discrete-time dynamic system that governs the evolu-
tion of the states. This system includes a random variable wt, which accounts for the
uncertainty and is characterized by a probability distribution pt(·|st,at) that may
depend explicitly on st and at, but is independent of prior values of wt−1, . . . , w0.
In this case, the state update mechanism is of the form

st+1 = Ft(st,at, wt), for t = 0, . . . , T − 1, (2.20)

and the cost per time step gt also depends on the corresponding random uncertain
variable wt. Additionally, one optimizes the expected cost not over sequences of
actions but rather over policies or decision strategies that consist of a sequence of
functions π = {µ0, . . . , µT−1} mapping states into actions.
Policies are more general objects than sequences of actions. In the presence of
stochastic uncertainty, policies often incur a lower cost than any fixed sequence of
actions since they allow choices of actions that incorporate knowledge of the current
state. Without this knowledge, the agent may not act appropriately, and the cost
can be adversely affected. In other words, policies encode the necessary knowledge
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Figure 2.9: Illustration of a T -steps finite horizon stochastic dynamic programming
problem.

to adapt to any state of the environment and minimize the expected cost.
The general idea is visually summarized in Fig. 2.9.

Thus, for given cost functions gt for t = 0, . . . , T , the expected total incurred
cost by following a given policy π starting at s0 is

Jπ(s0) = E

[
gT (sT ) +

T−1∑
t=0

gt(st, µt(st), wt)

]
, (2.21)

where the expectation is taken over all random variables st and wt.
An optimal policy, denoted as π∗, is the one that minimizes (2.21), that is, π∗ =
arg minπ∈Π Jπ(s0), where Π is the set of all policies.

On the other hand, Bellman’s principle of optimality says that the tail of an opti-
mal sequence is optimal for the tail subproblem [46]. That is, the tail {a∗

t , · · · ,a∗
T−1}

of an optimal sequence of actions {a∗
0, · · · ,a∗

T−1} is optimal for the tail subproblem
that starts at the state s∗t of the optimal trajectory of states {s∗1, · · · , s∗T}, as shown
in Fig. 2.10.

0

𝒔!∗
Tail subproblem

𝑡 𝑇
𝑎#∗ , ⋯ , 𝑎!∗, ⋯ , 𝑎$%&∗

Optimal sequence of actions

Figure 2.10: Illustration of the principle of optimality.

Based on the principle of optimality, we can compute the tth optimal action a∗
t =

µ∗
t (st) by a backward induction process, as

µ∗
t (st) ∈ arg min

a∈A(st)
E
[
gt(st,a, wt) + J∗

t+1(Ft(st,a, wt))
]
, (2.22)

where A(st) denotes the set of feasible actions from the state st, and J∗
t+1 is the

optimal cost-to-go from the (t+ 1)th step.
However, computing the optimal cost-to-go can be computationally expensive. This
motivates (suboptimal) approximation techniques, where, for example, one replaces
J∗
t with an approximate cost-to-go function, denoted as J̃t, that is less complex to

obtain.
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2.4.1 Policy Parametrization Through Cost Parametriza-
tion

Suppose we start a backward induction procedure with a parametric cost-to-go func-
tion approximation J̃t(st;θ), for every step t, where θ is a vector of P trainable
parameters. Then, we can obtain an approximation in policy space of parametric
policies π̃ = {µ̃0, . . . , µ̃T−1} defined through the following optimization problem

µ̃t(st;θ) ∈ arg min
a∈A(st)

E
[
gt(st,a, wt) + J̃t+1 (Ft(st,a, wt);θ)

]
. (2.23)

An important issue here is the computation of the expected value and the mini-
mization over a ∈ A(st). Both of these operations may involve substantial computa-
tional load, which is of particular concern when the minimization is to be performed
online.
One possibility to eliminate the expected value from the expression (2.23) is to
choose a typical value (depending on the application) of uncertain variable w̃t, and
use the action that solves the resulting deterministic problem. On top of this, both
the cost functions gt and cost-to-go function approximations J̃t can be chosen so the
optimization problem (2.23) admits a closed-form solution. Moreover, gt and J̃t can
also be chosen to be stationary, i.e., g ≡ gt = gt+1 and J̃ ≡ J̃t = J̃t+1, for all time
steps, which is a more suitable choice for tasks of variable horizon (undetermined
number of time steps), such as those involving streaming data.

2.5 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of neural networks designed to
process sequential data [47]. RNNs find applications in domains ranging from time
series forecasting and natural language processing to multimedia analysis and control
systems. They specialize in handling data sequences with a length that would be
impractical for other types of neural networks. Furthermore, most RNNs have the
ability to process sequences of varying length.
The key idea behind RNNs is sharing parameters across different parts of the model.
If an RNN had separate parameters for each sequence data term, it would neither
be able to generalize to sequences of arbitrary length nor to share learned behaviors
across different terms. Such sharing is particularly important when a specific piece
of information can occur at multiple positions within the data sequence. There is a
wide variety of RNNs; some representative examples are shown in Fig. 2.11.

Computing the gradient through an RNN is straightforward. One can apply the
backpropagation algorithm to the unrolled computational graph of the RNN. This
is known as backpropagation through time (BPTT) [48]. Gradients obtained by
BPTT may then be used together with any gradient-based optimizer to train an
RNN.

The mathematical challenge of learning long-term dependencies in RNNs is that
gradients propagated over many steps tend to either vanish or explode [49]. In the
scalar case, this implies multiplying a weight w by itself many times. The product
w · w · · ·w will either vanish or explode depending on the magnitude of w.

On the other hand, even if we assume that the parameter values are such that the
RNN is stable, the difficulty with long-term dependencies arises from the exponen-
tially smaller weights given to long-term interactions (involving the multiplication of
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(a) Many-to-many RNN (b) Many-to-one RNN (c) One-to-many RNN

Figure 2.11: Common RNN architectures. From darker blue (bottom) to lighter
(top), we have the input, the hidden layer, and the output. The dashed empty cell
represents an initial hidden state. Some practical applications for the architectures
in Fig. 2.11a, Fig. 2.11b, and Fig. 2.11c are time-series forecasting [7], sentiment
analysis [8], and image captioning [9], respectively.

many Jacobians) compared to short-term ones. Whenever the model can represent
long-term dependencies, the gradient related to a long-term interaction has an ex-
ponentially smaller magnitude than the gradient related to a short-term interaction.
This means not that it is impossible to learn but that it might take a very long time
to learn long-term dependencies because these dependencies will tend to be hidden
by the fluctuations arising from short-term dependencies.
Nowadays, one of the most effective models for data sequences used in practical ap-
plications is the gated RNNs. They are based on creating paths through time with
derivatives that seldom vanish nor explode. This is done through a mechanism that
adds or subtracts (instead of multiplying) relevant or irrelevant information to the
shared state. Noticeable examples of gated RNNs are the long short-term memory
(LSTM) [50] architecture and the gated recurrent unit (GRU) [51].

2.6 Consistent Signal Estimates

Given a bandlimited signal ψ, it is well known that we can ensure a reversible dis-
cretization in time by sampling at, or above, its Nyquist sampling rate [52, 53]. In
practice, one cannot avoid an additional discretization in amplitude due to the physi-
cal limitations of acquisition systems, causing an irreversible loss of information and,
therefore, making a perfect signal reconstruction no longer possible. These phys-
ical limitations of acquisition systems are typically modeled through quantization
mappings.

Even though quantization is a deterministic operation, the signal reconstruction
error can be analyzed effectively from a stochastic point of view when certain as-
sumptions are met [54, 55]. Under these assumptions, low-pass filtering reduces the
mean squared error (MSE) of a reconstructed signal f by a factor proportional to
the squared quantization step size ∆2 and inversely proportional to the oversampling
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Figure 2.12: Geometric representation of the set of consistent signal estimatesQ(y)∩
V .

ratio R. That is,

E
[
∥f − ψ∥22

]
∝ ∆2

R
, (2.24)

where the expectation is taken over the amplitude of the reconstruction error, mod-
eled as a uniform random variable [54].

On the other hand, deterministic analyses, based on deterministic bounds over
the quantization levels, show that it is possible to reconstruct quantized signals
with a squared norm error that is asymptotically proportional to the square of the
quantization step size and inversely proportional to the square of the oversampling
ratio, that is

∥f − ψ∥22 = O
(
∆2

R2

)
, (2.25)

via consistent signal estimates [27, 56].
In this case, a consistent signal estimate f is a bandlimited function that passes
through all quantization intervals obtained after acquiring ψ.
More rigorously, the acquired signal ψ = [ψ(x1), . . . , ψ(xT )]

⊤ ∈ RT is known only
through its quantized version y ≜ q(ψ) = [q(ψ(x1)), . . . , q(ψ(xT ))]

⊤. Thus, the
full information available about the acquisition of ψ is that ψ ∈ Q(y), where
Q(y) is the set of possible input signals with quantized version y. As an ex-
ample, when q is a uniform mid-tread quantizer with quantization step ∆, i.e.,
q(ψ(xt)) = round(ψ(xt)/∆) ·∆, Q(y) is a hypercube in RT of side ∆, see Fig. 2.12.
On the other hand, we additionally know that ψ belongs to the space of bandlimited
signals V . Hence, the elements of Q(y)∩ V (illustrated in Fig. 2.12) are referred to
as consistent signal estimates of ψ.

The behavior presented in (2.25) indicates that when a uniformly quantized and
oversampled signal is reconstructed using consistent estimates, the reconstruction
error can be reduced at the same asymptotic rate by either increasing the over-
sampling ratio R or decreasing the quantization step size ∆. This balanced signal
reconstruction error-rate decay has important practical implications. For instance,
in practice, it is more convenient to increase the oversampling ratio because the
implementation cost (including monetary cost) of the analog circuitry necessary for
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halving the quantization step size is much higher than that for doubling the over-
sampling ratio [57].

In more general settings, one can consider non-uniform quantization (the hyper-
cube in Fig. 2.12 becomes a rectangular hyper-parallelepiped), and a different signal
space than V ; for example, the space of non-bandlimited signals with finite rate of
innovation [58], such as signals modeled by a train of delta functions or splines. This
can be done so that the trend behavior in (2.25) is met [59, 28].

20



Chapter 3

Kernel-based Signal Tracking from
Univariate Time Series of
Quantization Intervals

This chapter summarizes Paper A and Paper B and delves into the synergies between
them for the task of tracking univariate time series of quantization intervals via
kernel-based online regression. The background theory relevant to this chapter can
be found in Sec. 2.1, 2.2, and 2.3.

3.1 Motivation

Regression techniques based on reproducing kernels have shown remarkable suc-
cess under stochastic optimization frameworks [60, 22]. However, most kernel-based
methods in the literature are unsuited for tracking streamed quantized data via re-
gression under dynamic environments. This shortcoming can primarily be attributed
to the lack of flexibility in selecting the best-suited functional cost or to the mathe-
matical structure of the regression problem not being adequately exploited.
In Paper A, we overcome these issues by introducing a novel method consisting of an
online regression problem whose functional cost can accommodate quantized data
and a stochastic proximal method that leverages its mathematical structure.

On the other hand, the choice of the reproducing kernel can significantly affect
the performance of the proposed method in Paper A. Selecting an appropriate repro-
ducing kernel can result in a computational challenge [61], especially when dealing
with data-rich tasks without prior information about the solution domain.
We address this challenge in Paper B by devising a learning scheme combining sev-
eral single kernel-based online methods, including the one proposed in Paper A. Our
learning scheme uses a multi-kernel learning formulation [62], which can expand the
solution space, thereby increasing the plausibility of finding higher-performance so-
lutions while reducing the kernel-selection bias. Additionally, our learning scheme
is parallelizable, allowing for the distribution of computational load across multiple
computing units.
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Figure 3.1: Visual representation of the online setting in Paper A and Paper B.

3.2 Problem Formulation

Online settings can be adopted to achieve low run-time complexity in exchange for a
tolerable loss of accuracy [63, 64], e.g., by processing only a few data samples every
iteration or discarding data samples after a few processing steps.
Paper A and Paper B share the same online setting core in their problem formulation,
as summarized next.

Given a possibly infinite sequence S of quantization intervals, acquired at strictly
increasing and non-necessarily equispaced time stamps, consider the following online
setting, where the quantization intervals become available sequentially:
At each step n, the learner proposes a function estimate, which we denote as f (n).
In response, an adversary penalizes the proposed function estimate with an incurred
cost C(f (n);S(n)

L ), where S(n)
L ⊆ S denotes a sliding data window of (at most) length

L. Then, the adversary reveals the nth data window S(n)
L to the learner, which can

be used at the next step n+ 1. This online setting is illustrated in Fig. 3.1.

It is worth mentioning that, in this case, both the learner and the adversary
know the “shape” of the functional cost C. Moreover, at step n, the learner uses
the previously proposed function estimate f (n−1) to compute f (n), except at n = 1
for which no quantization interval has been received yet and thus, f (1) is chosen
arbitrarily.

3.3 Proposed Solution

The functional cost considered in Paper A penalizes a given trade-off between a
weighted sum of distances to the quantization intervals within a sliding data win-
dow and the model complexity of the function estimate.
Particularly, each of the distances to the quantization intervals are computed through
the distance functional

d(f ;Hi) = inf
h∈Hi

∥f − h∥H, (3.1)

where H is the RKHS under consideration and

Hi ≜ {h ∈ H : |h(xi)− yi| ≤ ϵi}, (3.2)

is the hyperslab associated with the ith quantization interval, i.e., the set of all
functions h ∈ H that pass through the ith quantization interval.
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Regarding the term accounting for the model complexity, we use the squared Hilbert
norm, i.e., ∥f∥2H.

As a result, the functional cost in Paper A consists of a composite of a non-
smooth and a smooth function term. Motivated by this mathematical structure,
our proposed Windowed Online Regularized cost Minimization (WORM) algorithm
uses the stochastic proximal average functional gradient descent method due to its
favorable convergence performance [65, 37].

3.3.1 Proposed Learning Scheme

COMBINATION

WORM 1 WORM 2 WORM 𝑃⋯

𝑓 !

𝑓"
!

𝑓#
! 𝑓$

!

Figure 3.2: Visual representation, at the nth step, of the learning scheme proposed
in Paper B for a set of P WORM methods.

In Paper B, we propose a learning scheme that can be seen as a higher-level learner
that iteratively chooses the lowest incurring “learning” cost1 convex combination
of function estimates provided by lower-level learners, e.g., several P WORM al-
gorithms, over different reproducing kernels or kernel hyperparameters, running in
parallel. The complexity of the combination step we devise can scale down to linearly
with P on average, i.e., O(P ). Fig. 3.2 illustrates this learning scheme.

3.4 Performance Analyses

Under an online setting, as described in Sec. 3.2, the incurred cost accumulated
over time steps receives the name of cumulative cost. As an illustration, suppose
that the sequence S contains N terms; then, the cumulative cost is computed as∑N

n=1 C(f (n),S(n)
L ).

Notice that the cumulative cost is a measure of performance against overfitting.
This is because every nth function estimate f (n) must be proposed before the nth
sliding data window S(n)

L becomes available to the learner, see Fig. 3.1.
Popular performance metrics are constructed from the cumulative cost [66]. For
instance, the dynamic regret metric is defined as

Reg(f (1), . . . , f (N)) ≜
N∑

n=1

C(f (n);S(n)
L )− C(f (n)

∗ ;S(n)
L ), (3.3)

1Learning cost refers to a cost incurred while “learning” over a revealed sliding data window.
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Figure 3.3: Signal tracking using learning scheme proposed in Paper B and P = 10
WORM algorithms with Gaussian kernels, i.e., k(x, t) = exp(−(x − t)2/σ2), with
different widths σ spanning from 0.015 to 0.1, with a window of length L = 15, a
regularization parameter of 0.2 and a learning rate of 2. The best and the worst
individual WORM algorithms, in terms of the cumulative cost up to time step n (as
shown in Fig. 3.4), are denoted by the indices p+ and p−, respectively. The data
samples have been randomly sampled from f(x) = sin(2πx2) + cos(πx) + 3sin(πx)
and uniformly quantized with a half stepsize ϵ = 0.2.
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Figure 3.4: Cummulative cost up to time step n, i.e.,
∑n

i=1 C(f (n);S(n)
L ), for the

functional cost proposed in Paper A, and introduced in Sec. 3.3, for the P = 10
WORM algorithms and proposed learning scheme discussed in Fig. 3.3. As we can
see, the proposed learning scheme in Paper B outperforms the best of the individual
WORM algorithms used eventually.

where f
(n)
∗ = arg minf C(f ;S(n)

L ), and it indicates how well the sequence of function

estimates {f (n)}Nn=1 matches the sequence of optimal decisions {f (n)
∗ }Nn=1.

In Paper A, we derive a theoretical upper bound for the dynamic regret incurred
by the WORM algorithm.
On the other hand, Paper B shows experimentally how the proposed learning scheme
outperforms the best combination of some single-kernel methods in terms of the reg-
ularized least squares cumulative cost.

For an example explicitly combining our proposed WORM algorithm and our
proposed learning scheme, see Fig. 3.3 and Fig. 3.4.

3.5 Contributions

This section summarizes the main contributions of Paper A (♡) and Paper B (♣).

♡ We design a novel online algorithm calledWORM to minimize a non-differentiable
windowed cost assisted by the proximal average functional gradient descent
method. We consider this algorithm for the problem of regression-based track-
ing of quantized signals.

♡ We provide tracking performance guarantees for WORM through a dynamic
regret theoretical upper bound and experimental performance analyses using
synthetic data.

♣ We present a multi-kernel learning scheme that combines online single kernel-
based methods, outperforming the best of them individually in terms of the
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cumulative regularized least squares cost metric, with a comparable computa-
tional load per computing unit. This corroborates the ability of the proposed
scheme to effectively accommodate a larger function space (from which to draw
function estimates) of multi-kernel methods while keeping the lower computa-
tional complexity of online single-kernel-based methods.
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Chapter 4

Zero-delay Spline Interpolation
Policies

This chapter summarizes Paper C and Paper D and delves into the common aspects
between them for the task of zero-delay smoothing spline interpolation from stream-
ing time-series data. The background theory relevant to this chapter can be found
in Sec. 2.1, 2.4, 2.5 and 2.6.

4.1 Motivation

In the previous Ch. 3, we address the task of tracking signals from univariate time
series of quantization intervals. However, some tasks may impose more demanding
requisites, such as zero-delay response and smoothness in the reconstruction; for
instance, online trajectory planning [67, 68], real-time control systems [69, 70], and
high-speed digital to analog conversion [71], among others.
Unlike RKHS-based online methods, online interpolation methods can be suitable
candidates for smooth signal reconstruction under zero-delay response and low model
complexity requirements. This is because interpolation methods allow shaping
piecewise-modeled signal estimates by sequentially assembling new function pieces.
Piecewise polynomial functions, or splines, are arguably the most widely used ones
[72, 73, 74, 75], presumably because of their model simplicity and approximation
capabilities over functions of arbitrary complexity.

Based on this, Paper C presents a novel approach to zero-delay smoothing spline
interpolation underpinned by a sequential decision-making framework [76]. This
approach allows us to model the impact of each decision (i.e., each interpolated
function piece) on future interpolations and, therefore, on the cumulative average
cost, in this case, a roughness-based metric, resulting in a more accurate recon-
struction. Then, an interpolation technique is proposed, assisted by an RNN that
exploits the temporal dependencies between streamed data points to minimize the
accumulated cost on average.
On the other hand, the method proposed in Paper C is unsuitable for quantized
data or multivariate time series; these limitations are addressed in Paper D.
As a result, the proposed method in Paper D achieves one of the main goals of this
thesis, namely, the zero-delay smooth signal reconstruction from streamed multi-
variate time series of quantization intervals.

The rest of this section presents the state-of-the-art on the zero-delay smooth
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(a) Signal estimates and reconstruction proposed by NORMA. The reconstructed signal
has inevitable discontinuities even though each of the successive signal estimates is con-
tinuous (and infinitely smooth).
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(b) Every successive signal estimate, in this case, the T th signal estimate, is constructed
as a kernel expansion of overlapping terms. Each one of the expansion terms is plotted
with a continuous colored line.

Figure 4.1: Example of the limitation of an online RKHS-based method, in this case,
the naive online Rreg (regularized risk) minimization algorithm (NORMA) with a
Gaussian kernel, for guaranteeing the smoothness of the reconstruction.
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Figure 4.2: The reproducing kernel shown in (4.4) “centered” at different pivot
points xt.

signal reconstruction from streaming data points problem and further describes the
limitations of RKHS-based methods for such tasks.

4.1.1 State-of-the-art

Some works have explored how to sequentially interpolate streaming data under real-
time requirements using splines [25, 26]. However, the online methods developed in
these works involve a sliding data window, which introduces a delay. This is because
a delayed response allows them to successively correct the signal estimates as long
as they are updated within the delay limits.
To the best of our knowledge, the myopic approach introduced in Ch. 1 is the only
spline interpolation method that operates under a zero-delay response. However, this
approach completely disregards any information that the past samples contain about
the forthcoming data samples. As a result, signal reconstruction tasks under zero-
delay response and smoothness requirements may be adversely affected since any of
the current reconstructed signal portions can confine the future portions through
the continuity constraints, thus affecting their accuracy through suboptimal results,
possibly resulting in instabilities. This drawback is further explained in Paper C.

4.1.2 Limitation of RKHS-based Approaches

Online RKHS-based methods aim at yielding a sequence of signal estimates with
regret guarantees [77]. To this end, they initially propose a signal estimate that
is updated, possibly globally (along the whole timespan of the received data sam-
ples), as new data samples arrive. Their goal is to refine the signal estimate rather
than to reconstruct new signal pieces smoothly. Therefore, neither smoothness nor
continuity of the sequentially reconstructed signal is guaranteed.
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As shown in Fig. 4.1, any spline-based signal estimate constructed as a repro-
ducing kernel (basis) expansion suffers from overlapping between kernels. That is,
if the tth expansion term αtk(xt, x) is non-zero, then, when added (or updated), it
will affect the output of the overall expansion (signal estimate) and, hence, does not
guarantee the continuity of the reconstruction. This happens for any valid kernel,
and Fig. 4.1 illustrates it for the case of a Gaussian reproducing kernel.
As a closely related example, the smoothing spline interpolation problem introduced
in Sec. 2.1.5.1 can be equivalently formulated using an RKHS framework [24]. That
is,

minimize
f∈Hρ

T∑
t=1

(f(xt)− yt)
2 + η∥f∥2Hρ

, (4.1)

where (xt, yt) is the tth data point of a given sequence of T terms, η ≥ 0 is the
regularization hyperparameter, and Hρ is the RKHS induced by the inner product

⟨f, h⟩Hρ =

∫ 1

0

Dρ
xf(x)D

ρ
xh(x) dx, (4.2)

with corresponding RKHS norm ∥f∥Hρ =
√
⟨f, f⟩Hρ . It is well known, thanks to

the Representer Theorem [60], that the solution to (4.1) is of the form

fT (x) =
T∑
t=1

αtkρ(xt, x), (4.3)

where αt ∈ R, for t = 1, . . . , T , are the kernel expansion coefficients and kρ : [0, 1]
2 →

R is the reproducing kernel associated withHρ. For convenience, let us choose ρ = 2.
Then, the reproducing kernel associated to H2 [24, 78] is given by

k2(xt, x) =
1

2
max{xt, x}min2{xt, x} −

1

6
min3{xt, x}. (4.4)

The “shape” of the reproducing kernel in (4.4) is shown in Fig. 4.2. From the figure,
one can notice that there is an overlap among different expansion terms over the
whole time domain with non-zero values.

4.2 Problem Formulation

Paper C shows that interpolating a sequence of data points under a zero-delay
response and smoothness requirements can be done with a given decision strategy
or policy, where the resulting action takes the form of spline coefficients. From
this observation, we pose the problem of finding the policy that achieves the lowest
incurred cost on average from any time series of data points acquired from a given
signal source, formulated as a policy search by cost minimization [45].
More specifically, the cost mentioned above consists of a weighted sum between the
sum of squared residuals and a derivative-based measure of roughness, as in the
smoothing spline interpolation problem described in (2.6), but from an action-state
representation. All the remaining details are fully explained in Paper C.

Paper D formulates a similar problem to Paper C but is oriented to multivariate
time series of uncertainty intervals and subject to consistency in the signal recon-
struction. In this way, an additional component of the problem formulation in Paper
D is how to properly extend the concept of consistency to an online setting.
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Figure 4.3: Action-state interpretation of the smoothing spline interpolation prob-
lem. The tth state st contains the necessary information to continue the interpola-
tion task from time stamp xt−1, that is, st = [xt−1, xt, yt, e

⊤
t−1]

⊤. The tth action at

are the coefficients of the tth function section gt, and in our case the are computed
through a parametric policy as at = µθ(st).

In the ensuing sections, we use the content of Paper C as the common thread.
Nevertheless, we include and expand the main contributions in Paper D when con-
venient.

4.3 Proposed Solution

The problem of finding the most suitable policy inside the space of candidate policies
can be overwhelmingly complex due to the diversity and large number of available
policies within [45]. Policy approximation techniques can help to reduce the policy
space effectively. These techniques tend to work best (in the sense of providing an
adequate policy) when the problem has a clear structure that can be accommodated
into the policy. In our case, we aim to incorporate the temporal dependencies across
the observations and the smoothness requirement.
Specifically, in Paper C, we propose a family of parametrized policies through cost
parametrization. The temporal dependencies are captured thanks to an RNN in-
corporated into the policy design, and the smoothness requirement is imposed as a
constraint in a differentiable convex optimization layer (DCOL) [14].

Mathematically, the proposed policy takes the following form:

µθ(st) = arg min
a∈A(st)⊆Rd+1

{κη(st,a) + Jθ(st,a;ht)} , (4.5)

where st represents the tth state representation of the interpolation task; in this case,
st = [xt−1, xt, yt, e

⊤
t−1]

⊤, where each vector et−1 ∈ Rφ+1 contains φ + 1 continuity
constraint values. Accordingly, A(st) is the set of spline coefficients a ∈ Rd+1 that
satisfy the continuity constraints in et−1 at time step t. A more visual explanation
is provided in Fig. 4.3.
On the other hand, κη is the action-state representation of the smoothing spline
interpolation cost in (2.6), and computing Jθ involves evaluating an RNN with latent
state at time step t denoted by ht ∈ RH . Moreover, κη, Jθ and A(·) are chosen such
that evaluating the policy in (4.5) consists in solving a convex optimization problem
that admits a closed-form solution that can be differentiated.
In this way, we can understand the evaluation of µθ as a forward pass of a DCOL.
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Figure 4.4: Snapshot at time x25 of a zero-delay smoothing spline interpolation
using the policy proposed in Paper C. The signal reconstruction is done using only
the center of the quantization intervals. Consequently, the policy is unaware of the
quantization step sizes and thus cannot enforce consistency. The image is borrowed
from Paper D for the sake of illustration.

4.3.1 Enforcing Consistency

The family of policies proposed in Paper C is only suitable for data points and
not for any other uncertainty interval, including quantized data. As a result, the
information contained within the quantization intervals is ignored, as shown in Fig.
4.4.
On the other hand, and as discussed in Sec. 2.6, consistent signal reconstruction
methods [27, 28] exploit such information and have proved profitable (in the sense
of implementation cost) in practice [57].

Paper D successfully extends the family of policies proposed in Paper C to deal
with quantized data while ensuring consistency. This is done by formalizing the
concept of consistent signal reconstruction from streaming data under zero-delay
response requirements. In this way, our formulation generalizes the concept of con-
sistency beyond offline settings rather than establishing a new one.

4.3.2 Multivariate Case

The family of candidate policies proposed in Paper C successfully exploits temporal
relationships within univariate time series. However, they ignore any possible spa-
tial relationships among multivariate time series. Paper D fixes this limitation by
adequately extending the family of policies proposed in Paper C again. The overall
idea is shown in Fig. 4.5.

4.4 Performance Analyses

Both of the proposed methods in Paper C and Paper D are compared with respect
to the state-of-the-art, i.e., the myopic approach, and the best possible solution
(obtained under an offline setting in practice) in terms of a roughness-based cost.
The results show a considerable improvement with respect to the state-of-the-art.
On the other hand, the experimental results in paper D, describing the benefits
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Figure 4.5: Snapshot at time xt of a multivariate time series of quantization inter-
vals (aligned in time across series) being reconstructed. The policy that achieves a
zero-delay consistent signal reconstruction while accounting for the spatiotemporal
dependencies among data samples is represented visually as a microprocessor. The
upper indices (n) on the signal estimates refer to the series they reconstruct. The
green shaded areas indicate the currently reconstructed portion of the multivariate
signal, while the red ones represent the future. The image is borrowed from paper
D for illustration purposes.

of zero-delay consistently reconstructed signals, agree with the expected behavior
known for offline settings.

Specifically, we experimentally find that the MSE of a consistent zero-delay re-
construction fcons decreases roughly at the same rate regardless of whether we reduce
the quantization step size ∆ or increase the oversampling ratio R (possible thanks
to the finite rate of innovation of spline-based signals), as

MSE(fcons) ∝
∆0.99±0.09

R0.812±0.008
. (4.6)

Moreover, the error-rate decay in (4.6) roughly doubles (in logarithmic scale) the one
achieved by an inconsistent zero-delay reconstruction finc, such as the one proposed
in Paper C and illustrated in Fig. 4.4, with respect to the oversampling ratio R.
Expressly,

MSE(finc) ∝
1

R0.435±0.002
. (4.7)

Finally, we observe that the proposed algorithms could not find stable policy
configurations for certain polynomial orders and degrees of smoothness of the spline.
However, these instabilities also manifest in the myopic configuration (existing before
our method), hinting at a more fundamental problem that requires further research.

4.5 Contributions

This section summarizes the main contributions of Paper C (♢) and Paper D (♠).

♢ We rigorously formulate the problem of smoothing spline interpolation from
streaming data, where each spline section has to be determined as soon as a
data sample is available and without having access to subsequent data (zero-
delay response requirement). Due to its nature, it is formulated as a sequential
decision-making problem.
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♢ Unlike previously proposed zero-delay methods (e.g., the myopic approach,
which is not trainable), our method trains a policy to minimize the smoothing
interpolation problem cost metric on average. To capture the temporal, pos-
sibly long-term, dependencies between the streamed data samples and exploit
them to reduce the cost metric on average, we incorporate an RNN able to
capture the temporal signal dynamics.

♢ The proposed policy guarantees that the reconstructed signal is smooth. This
is achieved by adding a DCOL at the output of the RNN and imposing a
set of continuity constraints at each interpolation step. In addition, such a
layer admits a closed-form evaluation, resulting in improved computational
efficiency with respect to off-the-shelf DCOL libraries.

♢ We present extensive experimental results that validate the zero-delay smooth-
ing spline interpolation approach over synthetic and real data. Additionally,
we show how such an approach outperforms the state-of-the-art (namely, the
myopic approach) zero-delay methods in terms of the smoothing spline inter-
polation problem cost metric on average.

♠ We formalize the concept of consistent signal reconstruction from streaming
data under zero-delay response requirements. The resulting formulation gen-
eralizes the concept of consistency beyond offline settings.

♠ To the best of our knowledge, Paper D devises the first trainable method for
zero-delay signal reconstruction from multivariate time series of quantization
intervals, which can also enforce consistency.

♠ We show experimentally that the reconstruction error incurred by the zero-
delay consistent signal reconstruction proposed method decays at the same
rate by decreasing the quantization step size or increasing the oversampling
ratio. Moreover, the error-rate decay slope with respect to the oversampling
ratio doubles (in logarithmic scale) the one obtained with a similar zero-delay
smooth signal reconstruction method that does not enforce consistency.
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Chapter 5

Concluding Remarks

5.1 Conclusion

In this Ph.D. thesis, we address the problem of signal reconstruction from streamed
multivariate time series of quantization intervals subject to zero-delay and smooth-
ness requirements.
Although most existing algorithms can manage the problem requirements of esti-
mating smooth signals or delivering a zero-delay response separately, addressing
them together becomes challenging. This challenge is the core concept of this dis-
sertation, and it has been solved incrementally through Papers A to D. A summary
of the requirements satisfied by the proposed methods is provided in Table 5.1.

Table 5.1: Scope of the methods proposed in the compendium of papers.

Zero-delay Quantization Smooth Consistency Multivariate

Paper A, B1 Ë 2 Ë é é é

Paper C Ë é Ë é é

Paper D Ë Ë Ë Ë Ë

5.2 Future Work

The work discussed in this dissertation can serve as the foundation and motivation
for some noteworthy research directions.

5.2.1 Fundamental Research on Zero-delay Smoothing Spline
Instability Issues

We experimentally observe that the myopic policy described in Paper C is not stable
for a degree of smoothness greater than 2, that is, smooth above the second derivative
regardless of the spline order. We also observe instability under the myopic policy

1Considering that the learning scheme is applied to the algorithm proposed in Paper A.
2The sliding window can be shrunk to the length of one data sample.
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(a) Batch solution with a spline of order 3 and degree of smoothness 2. No observed
instability issues.

0 1 2 3 4 5 6 7

0

5

Si
gn

al
 v

al
ue

0 1 2 3 4 5 6 7

0

50

1s
t d

er
iv

at
iv

e

0 1 2 3 4 5 6 7
Time

0

100

2n
d 

de
riv

at
iv

e

(b) Myopic policy with a spline of order 3 and degree of smoothness 2. Instability is
observed.
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(c) Myopic policy with a spline of order 4 and degree of smoothness 2. No observed
instability issues.

Figure 5.1: Instability issues suffered by the myopic policy against a stable config-
uration and the batch solution, for a degree of smoothness 2.
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for a spline signal estimate of order 3 and degree of smoothness 2. This is illustrated
in Fig. 5.1.
Our proposed methods in Paper C and Paper D are unstable for the same spline
configurations since they implicitly use the myopic policy as a guided starting point.

This motivates further theoretical instability studies, the design of alternative
policy architectures, or the exploration of low-delay approaches by relaxing the zero-
delay constraint.

5.2.2 Real-time Safe Trajectory Planning

Suppose a trajectory planning problem is subject to passing through safety boxes of
any dimension, e.g., spatial dimensions, angles, etc., at a given set of time instants.
Then, the safety boxes can be seen as a set of temporarily aligned intervals, one for
each dimension separately. In other words, a trajectory planning problem subject
to safety boxes at certain time instants can be formulated as a signal reconstruction
from a multivariate time series of uncertainty intervals that can overlap, as shown
in Fig. 5.2.

For this reason, real-time safe trajectory planning tasks can benefit from the
method proposed in Paper D.
This is because, in addition to passing through all safety boxes, even when the next
safety box is revealed only one time step ahead, the proposed method can ensure
smoothness, e.g., a continuous acceleration, and low-model complexity, e.g., damped
oscillations.

5.2.3 Compression for Reconstruction and Inference

Piecewise polynomial approximation techniques can be used for time-series compres-
sion [79]. Normally, they divide a time series into several segments of variable length
and find the best polynomial approximating them (according to some metric). One
of their main advantages is that, despite the compression being lossy, a maximum
deviation from the original (uncompressed) data can be fixed in advance to enforce
a certain reconstruction accuracy.

We believe our proposed technique in Paper D can be readily adapted to compress
streaming time-series data under a maximum reconstruction deviation and real-time
constraints once the stability issue is fixed. The compressed space would consist of
a set of interdependent spline coefficients due to the smoothness constraints (fixing
some degrees of freedom); therefore, only a few coefficients must be stored.
For example, suppose we want to use a quadratic spline with tth function section
given by gt(x) = at,1 + at,2(x− xt−1) + at,3(x− xt−1)

2 and continuity up to the first
derivative, i.e., the following recursive relations

gt(xt) = gt+1(xt) → at+1,1 = at,1 + at,2ut + at,3u
2
t , (5.1a)

g′t(xt) = g′t+1(xt) → at+1,2 = at,2 + 2at,3ut, (5.1b)

are satisfied, where ut ≜ xt − xt−1. Then the coefficients {at,1}t and {at,2}t can be
obtained from an initial tuple {a0,1, a0,2, a0,3}, and the sequences {xt}t and {at,3}t
through the recursive relations in (5.1).
From here, notice that if most of the stored coefficients {at,3}t are zero-valued, we
can achieve competitive compression ratios. This can be done, for instance, by
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(a) Two-dimensional trajectory. The blue squared boxes represent safety regions that must
be visited. The red rounded boxes represent dangerous areas that should be avoided.
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(b) Decomposition of the 2-dimensional trajectory from Fig. 5.2a in a multivariate time
series. The safety boxes become uncertainty intervals that can overlap.

Figure 5.2: Two-dimensional representation of a zero-delay safe trajectory plan-
ning task. The method proposed in Paper D can ensure that the trajectory passes
through the safety regions at a given instant and promotes low-model complexity
and smoothness.
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promoting sparsity through a cost term.
In this case, the reconstruction step would recover all coefficients via (5.1) and then
evaluate the spline model. Moreover, it would not only recover the original data but
an estimate of intermediate points with a time resolution as high as desired.

On the other hand, some tasks may benefit from working directly in the com-
pressed state (without the need for the reconstruction step). For those tasks, we
might be interested in promoting a certain task-dependent performance metric and
not only sparsity. We refer to this type of compression as compression for inference,
and Fig. 5.3 illustrates how the architecture of our model can be adapted for such
purposes.

INTERPOLATOR

SPARSITY
 COST

INFERENCE
COST

+ +

𝒂!, 𝒐!
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Figure 5.3: Architecture prototype of the proposed spline-based compressor for infer-
ence. The INTERPOLATOR cell may contain trainable parameters, and it ensures
a spline reconstruction under a given maximum deviation. The SCALE cell acts as
a user-defined trade-off hyperparameter. The notations st, at, and ot refer to the
tth state, action, and observation, respectively. The components in the gray dashed
rounded box are used only during the training phase.
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Title: Tracking of quantized signals based on online kernel regression

Authors: Emilio Ruiz-Moreno and Baltasar Beferull-Lozano

Conference: IEEE International Workshop on Machine Learning for Signal
Processing
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Tracking of quantized signals based on online ker-

nel regression

Emilio Ruiz-Moreno and Baltasar Beferull-Lozano

Abstract — Kernel-based approaches have achieved noticeable success
as non-parametric regression methods under the framework of stochastic
optimization. However, most of the kernel-based methods in the lit-
erature are not suitable to track sequentially streamed quantized data
samples from dynamic environments. This shortcoming occurs mainly
for two reasons: first, their poor versatility in tracking variables that
may change unpredictably over time, primarily because of their lack of
flexibility when choosing a functional cost that best suits the associated
regression problem; second, their indifference to the smoothness of the
underlying physical signal generating those samples. This work intro-
duces a novel algorithm constituted by an online regression problem that
accounts for these two drawbacks and a stochastic proximal method that
exploits its structure. In addition, we provide tracking guarantees by
analyzing the dynamic regret of our algorithm. Finally, we present some
experimental results that support our theoretical analysis and show that
our algorithm has a favorable performance compared to the state-of-the-
art.

A.1 Introduction

Regression problems are some of the most important problems due to their numerous
applications and relevance in a wide range of fields. In practice, regression problems
are usually formulated as convex optimization problems with strongly convex objec-
tives over feasible convex sets. Besides being one of the most benign settings, this
formulation includes significant instances of interest, such as those arising in regu-
larized regression [19], for example, to reduce the complexity of the reconstruction
by promoting smoothness. Because of this, such strongly convex objectives are com-
monly set as the sum of a convex loss, which reflects how far the solution lies from
the data samples, and a strongly convex regularizer, which controls the complex-
ity of the solution. On the other hand, most real-world scenarios where regression
techniques may be useful occur under dynamic environments. This fact motivates
the design of online methods. They allow tracking over time the underlying target
signals in a recursive manner with reduced memory and computational needs.

In particular, this paper focuses on sequentially streamed quantized signals.
When the underlying physical process generating the signal data samples is un-
known, as usual in practice, instead of blindly selecting a certain ad-hoc parametric
regression model, the target signal can be estimated from the data samples. This
can be done by means of non-parametric regression methods at the expense of a
certain memory and computational cost that can be controlled.

Under the mathematical framework of Reproducing Kernel Hilbert Spaces (RKHSs)
and thanks to the Representer Theorem [80], such a non-parametric estimate can
be constructed from a pre-selected reproducing kernel with a complexity that grows
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linearly with the number of data samples. Regression with kernels and its online vari-
ants have been widely studied in the literature [60, 22]. Their main strength is that
they are able to find non-linear patterns at a reasonable computational cost. The
Naive Online regularized Risk Minimization Algorithm (NORMA) [12] is arguably
the most representative algorithm from the stochastic approximation kernel-based
perspective. In its standard form, it concentrates all the novelty in the new expan-
sion coefficient of the signal estimate. However, intuitively, it seems reasonable to
distribute the novelty among several expansion coefficients that contribute to the
signal estimate instead. In this way, the novelty and correction of previous estimate
errors are integrated, more ergonomically, in the signal estimate.

To the best of our knowledge, most of the existing literature has focused on con-
trolling the signal estimate complexity rather than focusing on strategies to control
the error in the estimates. Examples of research works controlling complexity are
truncation [12] and model-order control via dictionary refining [81], among others
[82, 83]. Only some works have studied reducing the signal estimate errors by means
of a sliding window scheme [84, 23, 85]. However, in [84], the selection criterion to
choose among all possible function estimates is least squares making it unsuitable
for more general settings, such as incorporating quantization intervals instead of
signal values. Similarly, in [23], even though its selection criterion allows certain
freedom, regularization is not encouraged and therefore, the smoothness of the un-
derlying physical signal is not fully promoted. Lastly, in [85], the selection criterion
is constructed as a regularized augmentation of instantaneous loss-data pairs. As a
result, it naturally extends NORMA in a sliding window scheme. Nonetheless, in
this work, we present a novel algorithm constituted by a robust selection criterion
alongside a conveniently engineered optimization method that outperforms all these
algorithms for the task of regression-based tracking of quantized signals.

The paper is structured as follows: Sec. A.2 presents the windowed cost and
formulates the problem from a learner-adversary perspective. Then, in Sec. A.3, we
provide our main contribution: a novel method to minimize the windowed cost via
proximal average functional gradient descent. The resulting approach, a novel algo-
rithm called WORM, is used for the practical use case of regression-based tracking
of quantized signals. Next, in Sec. A.4, we provide its tracking guarantees through
a dynamic regret analysis. Finally, in Sec. A.5, we analyze the experimental perfor-
mance of our algorithm using synthetic data, and Sec. A.6 concludes the paper.

A.2 Problem formulation

Given a possibly endless sequence S = {(xi, yi)}Ni=1 of data samples (xi, yi) ∈
X × Y ⊆ R2, with strictly increasing and non necessarily equispaced timestamps
{xi}Ni=1, consider an online learning setting where the data samples become available
sequentially. Under this scenario, online regression problems can be understood as
an interplay between an algorithm (or learner) and an adversary (or environment)
[86, 87]. At each step n ∈ N, an algorithm proposes a function estimate, which we
denote as fn, from an RKHS H. In response, an adversary selects a functional cost
Cn : H → R and penalizes the proposed function estimate with the incurred cost
Cn(fn). Then, the adversary reveals relevant information about the form of Cn that
is used by the algorithm at the next step.

Unlike most of the previous work, which uses an instantaneous functional cost,
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i.e., a functional evaluated over one data sample, we formulate the hypothesis that
a concurrent functional cost, i.e., a functional that considers up to L ∈ N data
samples simultaneously, may lead to better performance at the expense of a higher
but bounded computational cost.

In order to test our hypothesis, we first consider a proper convex instantaneous
loss ℓn : H → R ∪ {∞} given by

ℓn(f) ≜ ℓ(⟨f, k(xn, ·)⟩H, yn) = ℓ(f(xn), yn), (A.1)

where k(xn, ·) is the reproducing kernel associated with the RKHS H centered at
xn. Notice that the equality in (A.1) holds thanks to the reproducing property [12].
Consequently, we define the so-called windowed cost as a composite of a weighted
arithmetic mean of an instantaneous loss as in (A.1), computed over L consecutive
data samples and the squared Hilbert norm associated to H as the regularizer, i.e.,

Cn(f) ≜ Ln(f) +
λ

2
∥f∥2H, (A.2)

with regularization parameter λ > 0 and where the windowed loss Ln : H → R∪{∞}
is given by

Ln(f) =
n∑

i=ln

ω
(n)
i ℓi(f), (A.3)

where ln = max{1, n−L+1} and
∑n

i=ln
ω
(n)
i = 1 with ω

(n)
i ≥ 0. Finally, the RKHS

H, the instantaneous loss ℓ, the regularizer parameter λ and the tuning routine of
the convex weights {ω(n)

i }ni=ln
are specified by the user.

A.2.1 Performance analysis

The performance of an online algorithm can be measured by comparing the total
cost incurred by the algorithm, given by

∑N
n=1 Cn(fn), and the total corresponding

cost incurred by a genie that knows all the costs in advance, that is,
∑N

n=1 Cn(f ∗
n),

where f ∗
n = arg minf∈HCn(f). Such a metric, referred to as dynamic regret, is defined

as

RegN ≜
N∑

n=1

Cn(fn)− Cn(f ∗
n). (A.4)

The dynamic regret captures how well the sequence of function estimates {fn}Nn=1

matches the sequence of optimal decisions in environments that may change unpre-
dictably over time. In general, obtaining a bound on the dynamic regret may not be
possible [66]. However, under some mild assumptions on the sequence of functional
costs, it is possible to derive worst-case bounds in terms of the cumulative variation
of the optimal function estimates

CN =
N∑

n=2

∥f ∗
n − f ∗

n−1∥H. (A.5)

In fact, some interesting bounds can be derived if we consider specific rates of
variability [86], namely, from zero cumulative variation to a steady tracking error.
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A.3 Proposed solution

The smoothness of a windowed cost, as in (A.2), depends on whether or not its
instantaneous loss is smooth. Steepest descent methods have been traditionally
used for differentiable problems. As for non-differentiable problems, they can be
handled, in principle, via the subgradient method and its variants. However, when
the cost consists of a composite of a smooth and a non-smooth term, proximal
gradient descent methods are preferable because they provide faster convergence
as compared to subgradient methods [37]. Therefore, if the instantaneous loss is
a proximable1 non-smooth functional, we propose to minimize the windowed cost
via proximal average functional gradient descent due to its favorable convergence
performance [88].

A.3.1 Stochastic proximal average functional gradient de-
scent

Our proposed algorithm, theWindowed Online Regularized cost Minimization (WORM),
makes use of the stochastic proximal average functional gradient descent. Encour-
aged by the windowed loss in (A.3), it exploits the concept of the so-called proximal
average functional. Let us first to introduce some definitions to motivate our algo-
rithm:

Given an RKHS H, a closed proper convex functional ℓ : H → R ∪ {∞} and
a real parameter η > 0, the Moreau envelope of ℓ with smoothing parameter η, is
defined as

Mη
ℓ (h) ≜ inf

g∈H

{
ℓ(g) +

1

2η
∥g − h∥2H

}
, (A.6)

for all h ∈ H. The Moreau envelope is a smooth functional that is continuously
differentiable (even if ℓ is not), and such that the set of minimizers of ℓ and Mη

ℓ are
the same. Thus, the problems of minimizing ℓ and Mη

ℓ can be shown to be equivalent
[37]. In addition, a derivative step with respect to the Moreau envelope corresponds
to a proximal step with respect to the original function, i.e.,

∂Mη
ℓ = η−1 (I− proxηℓ ) , (A.7)

where I : H → H is the identity operator and proxηℓ : H → H is the proximal
operator defined as

proxηℓ (h) ≜ arg min
g∈H

{
ℓ(g) +

1

2η
∥g − h∥2H

}
, (A.8)

for all h ∈ H. Notice that since the objective in (A.8) is strongly convex, the
proximal map is single-valued.

Next, we denote by Lη
n the so-called proximal average functional of the windowed

loss in (A.3) at instant n with real parameter η > 0, as the unique closed proper
convex functional such that

Mη
Lη
n
=

n∑
i=ln

ω
(n)
i Mη

ℓi
, (A.9)

1Its proximal operator can be computed efficiently.
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where ℓi ≜ ℓ(f(xi), yi) for all f ∈ H. Even though it is possible to derive an explicit
expression for the proximal average functional from its definition (definition 4.1,
[65]), for the sake of clarity, and since only its existence is needed for the algorithm,
we do not include its explicit form here.

At each iteration n, our algorithm executes the steps:

f̄n = fn − η∂f
λ

2
∥f∥2H

∣∣∣∣
f=fn

, (A.10a)

fn+1 = proxηLη
n
(f̄n), (A.10b)

with 0 ≤ η < λ−1. The first algorithm step (A.10a) is equivalent to f̄n = ρfn with
ρ ≜ (1 − ηλ) ∈ [0, 1). The proximal operator proxηLη

n
: H → H, can be readily

computed by differentiating both sides of the definition in (A.9) while applying the
Moreau envelope property given by (A.7), getting

proxηLη
n
=

n∑
i=ln

ω
(n)
i proxηℓi . (A.11)

The remaining steps depend on the choice of the instantaneous loss. In particular,
since we are interested in quantized signals, an adequate functional instantaneous
loss must not penalize the function estimates that pass through the intervals. We
develop further this reasoning in Sec. A.3.2.

A.3.2 Application to online regression of quantized signals

Consider the sequence of quantization intervals, where the ith quantization interval
is given by its timestamp xi ∈ R, center yi ∈ R and quantization half step-size
ϵ ∈ R+. Subsequently, we can construct its associated sequence of closed hyperslabs,
each one of them defined as the convex set

Hi ≜ {f ∈ H : |f(xi)− yi| ≤ ϵ}, (A.12)

that contains all the functions in H passing through the ith quantization interval,
and use the metric distance functional to the ith hyperslab

di(f) ≜ inf
h∈Hi

∥f − h∥H = ∥f − PHi
(f)∥H, (A.13)

as an instantaneous loss to discern between all possible function candidates f ∈ H.
The mapping PHi

: H → Hi stands for the metric projection onto Hi and can be
expressed as PHi

(f) = f − βik(xi, ·) (example 38, [23]), where every coefficient βi is
computed as

βi =


f(xi)−yi−ϵ
k(xi,xi)

, if f(xi) > yi + ϵ,

0, if |f(xi)− yi| ≤ ϵ,
f(xi)−yi+ϵ
k(xi,xi)

, if f(xi) < yi − ϵ.

(A.14)

For practical purposes, the relation in (A.13) can be equivalently computed as

di(f) = |βi|k(xi, xi)
1
2 .
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Regarding the tuning routine of the convex weights in (A.3), recall that if the
set {i ∈ [ln, n] : f̄n /∈ Hi} = ∅, any choice of convex weights incurs zero windowed
loss. If not, each convex weight is tuned as

ω
(n)
i =

di(f̄n)
m∑n

j=ln
dj(f̄n)m

=
|β̄(n)

i |mk(xi, xi)
m
2∑n

j=ln
|β̄(n)

j |mk(xj, xj)
m
2

, (A.15)

where β̄
(n)
i comes from the metric projection map PHi

(f̄n) and m is a user predefined
non-negative real power. In this way, if m = 0 the convex weights are all equal. On
the other hand, when m tends to infinity, only the weight associated to the largest
distance is considered. Thus, the power m allows, with a range of flexibility, to
weigh more those windowed loss terms in which the intermediate update f̄n incurs
a larger loss.

Accordingly, from the proximal operator of the metric distance (Chapter 6, [89])
with parameter η, i.e.,

proxηdi(f̄n) = f̄n +min

{
1,

η

di(f̄n)

}
(PHi

(f̄n)− f̄n) (A.16)

and the proximal average decomposition in (A.11), we can rewrite the algorithm
step (A.10b) as

fn+1 = f̄n −
n∑

i=ln

ω
(n)
i min

{
1,

η

di(f̄n)

}
β̄
(n)
i k(xi, ·). (A.17)

Finally, assuming that the algorithm does not have access to any a priori infor-
mation when it encounters the first data sample, we can set f1 = 0. Then, from the
algorithm step (A.10a), substituting each function estimate by its kernel expansion,

i.e., fn =
∑n−1

i=1 α
(n)
i k(xi, ·) and identifying terms in (A.17), we obtain the following

closed-form update rule for the non-parametric coefficients

α
(n+1)
i =

{
ρα

(n)
i − ω

(n)
i Γ

(n)
η,i if i ∈ [1, n− 1],

−ω(n)
i Γ

(n)
η,i if i = n,

(A.18)

where Γ
(n)
η,i ≜ min

{
|β̄(n)

i |, ηk(xi, xi)−
1
2

}
sign(β̄

(n)
i ) if i ∈ [ln, n] and equals zero other-

wise.

A.3.2.1 Sparsification

The WORM algorithm, like many other kernel-based algorithms, suffers from the
curse of kernelization [82], i.e., unbounded linear growth in model size and update
time with the amount of data. For the considered application in Sec. A.3.2, a simple
complexity control mechanism as kernel series truncation allows to preserve, to some
extent, both performance as well as theoretical tracking guarantees, as we show in
Secs. A.4 and A.5. Thus, given a user-defined truncation parameter τ ∈ N, such
that τ > L, if the number of effective coefficients constituting the function estimate
fn exceeds τ , we remove the older expansion term, i.e.,

en = α
(n)
n−τk(xn−τ , ·), (A.19)
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where α
(n)
n−τ = ρn−τ+Lα

(n−τ+L)
n−τ . For the sake of illustration, consider a Gaussian

reproducing kernel, i.e., k(x, t) = exp(−(x−t)2/(2σ2)) with positive width σ. Then,
the contribution of the truncated term en at timestamp xn depends on the ratio
(xn−τ −xn)2/σ2; hence, a bigger ratio implies a smaller truncation error. Truncating
before the algorithm step (A.10a) allows distributing the effects of the truncation
error among the elements within the window. Algorithm 2 describes in pseudocode
our truncated WORM algorithm.

Algorithm 2 truncated WORM

Input: The data tuples {(xn, yn)}Nn , the quantization half step-size ϵ, an RKHS H,
the window length L, the regularization parameter λ, the learning rate η, the
power m and the truncation parameter τ .

1: Set α := queue([ ],maxlen = τ).
2: for n = 1, 2, . . . do
3: Append one zero to the queue α.
4: Set α := (1− ηλ)α.
5: Set ζL := {max{1, n− L+ 1}, . . . , n} and

ζτ := {max{1, n− τ + 1}, . . . , n}.
6: for i in ζL do
7: Compute f̄(xi) :=

∑
j∈ζτ αj−max{n−τ,0}k(xj, xi)

8: Compute β̄i w.r.t. f̄ as in (A.14).
9: end for
10: Set ζf̄ := {i ∈ ζL : β̄i ̸= 0}.
11: for i in ζf̄n do
12: Compute the convex weights ωi as in (A.15).

13: Compute Γη,i := min{|β̄i|, ηk(xi, xi)−
1
2}sign(β̄i).

14: Update αi := αi − ωiΓη,i.
15: end for
Output: The vector α, which yields the function estimate

fn =
∑n−1

i=max{1,n−τ+1} αi−max{n−τ,0}k(xi, ·).
16: end for

A.4 Dynamic regret analysis

In this section, we derive a theoretical upper bound for the dynamic regret incurred
by the truncated WORM algorithm. As a standard assumption [87], suppose that
the norms ∥C ′

n(fn)∥H are bounded by a positive constant G, i.e.,

sup
fn∈H,n∈[1,N ]

∥C ′
n(fn)∥H ≤ G. (A.20)

For the sake of notation, we omit the sub-index H in inner products and norms
since the RKHS is clear by context. Considering the assumption in (A.20) and the
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first order convexity condition of the windowed cost,

RegN =
N∑

n=1

Cn(fn)− Cn(f ∗
n) ≤

N∑
n=1

⟨C ′
n(fn), fn − f ∗

n⟩

≤
N∑

n=1

∥C ′
n(fn)∥∥fn − f ∗

n∥ ≤ G

N∑
n=1

∥fn − f ∗
n∥,

(A.21)

it is clear that the dynamic regret is bounded above.
Consider the distance between the function estimate fn+1 and the optimal esti-

mate f ∗
n = arg minf∈HCn(fn), i.e.,

∥fn+1 − f ∗
n∥ = ∥proxηLη

n
(f̄n)− proxηLη

n
(f̄ ∗

n)∥. (A.22)

Hence, from the relation (A.22), the firmly non-expansiveness of the proximal op-
erator [37], and the method step (A.10a) with truncation, we achieve the following
inequality

∥fn+1 − f ∗
n∥ ≤ ρ∥fn − en − f ∗

n∥ ≤ ρ∥fn − f ∗
n∥+ ρ∥en∥, (A.23)

with coefficient ρ ≜ (1− ηλ) ∈ [0, 1). Finally, we can rewrite

N∑
n=1

∥fn − f ∗
n∥ = ∥f1 − f ∗

1∥+
N∑

n=2

∥fn − f ∗
n∥

= ∥f1 − f ∗
1∥+

N∑
n=2

∥fn − f ∗
n−1 + f ∗

n−1 − f ∗
n∥

≤ ∥f1 − f ∗
1∥+

N∑
n=2

∥fn − f ∗
n−1∥+

N∑
n=2

∥f ∗
n − f ∗

n−1∥

≤ ∥f1 − f ∗
1∥+ ρ

N∑
n=2

∥fn−1 − f ∗
n−1∥+ CN + ρEN (A.24a)

≤ ∥f1 − f ∗
1∥+ ρ

N∑
n=1

∥fn − f ∗
n∥+ CN + ρEN , (A.24b)

where the step (A.24a) comes after using the relation (A.23), the definition of cu-
mulative variation in (A.5), and renaming the cumulative truncation error EN ≜∑N

n=2 ∥en∥. In step (A.24b), we rename the summation index and add the positive
term ρ∥fN − f ∗

N∥ to the right hand-side of the inequality.
Regrouping the terms in (A.24), leads to

N∑
n=1

∥fn − f ∗
n∥ ≤ 1

1− ρ
(∥f1 − f ∗

1∥+ CN + ρEN) (A.25)

and substituting the relation obtained in (A.25) into the inequality (A.21), allows
to upper-bound the dynamic regret as

RegN ≤ G

1− ρ
(∥f1 − f ∗

1∥+ CN + ρEN) . (A.26)
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Figure A.1: Average q-inconsistency of the sequence of function estimates {fn}100n=1

over 500 different quantized signals.

This result explicitly shows the trade-off between tracking accuracy and model
complexity [85]. In other words, without truncation, the dynamic regret reduces to
RegN ≤ O(1 + CN), depending entirely on the environment. On the other hand, if
we control the complexity of the function estimates via any truncation strategy such
that the norm of the truncation error is upper bounded by a positive constant, i.e.,
supn∈[1,N ]∥en∥ ≤ δ, the dynamic regret reduces to RegN ≤ O(CN + δT ), leading to
a steady tracking error in well-behaved environments.

A.5 Experimental results

As suggested in Sec. A.1, we compare the performance of our algorithm WORM
with the KAPSM algorithm [23] and the augmented version of NORMA proposed
in [85]. Moreover, since complexity control methods aim to limit the model order
of the function estimate by lower-order approximations, we do not consider here
any of them in order to isolate their effects on the performance of the algorithms.
However, we have considered the truncated version of the WORM algorithm in our
experiments to show that even a low complexity control technique such as truncation
may lead to competitive performance.

Considering the application described in Section A.3.2, we have generated quan-
tized versions of 500 realizations of a given AR(1) process. Each realization has
been carried out for 100 data samples. In turn, each sample has been computed
recurrently via zn = φzn−1 + un with z0 = 0, parameter φ = 0.9 and Gaussian noise
un ∼ N (0, 1). The center of the quantization intervals is computed by means of
yn = round(zn/ϵ) · ϵ with quantization half-step ϵ = 0.5. The corresponding times-
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Figure A.2: Average complexity of the sequence of function estimates {fn}100n=1 over
500 different quantized signals.
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Figure A.3: Comparison of regression plots for the last function estimate f100, over
the last 45 data samples of a synthetically generated quantized signal.
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tamps {xn}100n=1 are uniformly arranged. For the sake of illustration, we use a Gaus-
sian reproducing kernel, i.e., k(x, t) = exp(−(x − t)2/(2σ2)), with σ = 3. All four
algorithms use the same window length L = 10. As to the augmented NORMA, the
WORM algorithm and its truncated version, all use the same learning rate η = 1.5
and regularization parameter λ = 0.005. We restrict the truncated WORM func-
tion estimates expansion to a maximum of 30 terms, i.e., τ = 30. Both versions
of WORM use the power m = 2. For the augmented NORMA, the instantaneous
loss terms within the nth window are equally weighted with the weight min{n, L}−1

and ∂fdi(fn) = sign(β
(n)
i )k(xi, xi)

− 1
2k(xi, ·) is used as a valid functional subgradient.

We also define the q-inconsistency, i.e.,
∑n

i=qn
di(fn), with qn = max{n − q + 1, 1}

and q = 20, and use the squared Hilbert norm, ∥fn∥2H =
∑n

i,j=τn
α
(n)
i α

(n)
j k(xi, xj),

with τn = max{n − τ + 1, 1}, as performance metrics for the function estimates.
The first metric measures how far is the function estimate of falling into the last q
received quantization intervals. The second metric measures the function estimate
complexity.

As shown in Fig. A.1 and Fig. A.2, there is a trade-off between q-inconsistency
and complexity. The WORM algorithm successfully balances both altogether. As
to its truncated version, the same experimental results show that the complexity
can be successfully controlled at the expense of little accuracy. Finally, Fig. A.3
shows a snapshot of the last function estimate f100 for each algorithm.

A.6 Conclusion

In this paper, we propose a novel algorithm, WORM, for regression-based tracking
of quantized signals. We derive a theoretical dynamic regret bound for WORM that
ensures tracking guarantees. Our experiment shows that WORM provides better
signal reconstruction in terms of consistency and smoothness altogether compared
to the state-of-the-art.
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An Online Multiple Kernel Parallelizable Learning

Scheme

Emilio Ruiz-Moreno and Baltasar Beferull-Lozano

Abstract — The performance of reproducing kernel Hilbert space-
based methods is known to be sensitive to the choice of the reproducing
kernel. Choosing an adequate reproducing kernel can be challenging and
computationally demanding, especially in data-rich tasks without prior
information about the solution domain. In this paper, we propose a
learning scheme that scalably combines several single kernel-based on-
line methods to reduce the kernel-selection bias. The proposed learning
scheme applies to any task formulated as a regularized empirical risk
minimization convex problem. More specifically, our learning scheme is
based on a multi-kernel learning formulation that can be applied to widen
any single-kernel solution space, thus increasing the possibility of finding
higher-performance solutions. In addition, it is parallelizable, allowing
for the distribution of the computational load across different computing
units. We show experimentally that the proposed learning scheme out-
performs the combined single-kernel online methods separately in terms
of the cumulative regularized least squares cost metric.

B.1 Introduction

Reproducing kernel Hilbert space (RKHS)-based methods allow modeling highly
non-linear relationships at a moderate computational cost [60]. Thanks to their
simplicity and generality, they have been successfully adopted in a wide range of
signal-processing applications [90, 91].

The performance of any RKHS-based method strongly relies on a preselected
reproducing kernel (RK). The efficient selection of an adequate RK presumes some
task-specific prior information, such as knowledge about the data domain, invari-
ant data transformations, geometrical data structures, or some properties of the
underlying data generating process [92]. For example, spline interpolation RKs
are best suited for smooth data [24, 78]. Similarly, radial basis RKs can perform
poorly if their associated hyperparameters are not properly tuned to the task. The
kernel-selection issue cannot be easily mitigated via cross-validation [93] because the
associated computational load grows prohibitively with the number of RKs. On the
other hand, efficiently computable approximations of the leave-one-out error [61] or
hyperparameter optimization techniques [94] usually involve non-convexity and may
lead to undesirable local minima.

Multi-kernel methods compensate for the lack of task-specific prior information
using a predefined set of RKs known as dictionary. The dictionary can be formed by
integrating different types of RKs, the same RK with different hyperparameter val-
ues, or a mix of both. Typically, the preselected RK is constructed as a combination
of several RKs from the dictionary [62]. Therefore, how the dictionary is formed
and how the preselected RK is constructed have a pivotal impact on the resulting
accuracy and complexity of the method. For instance, the larger the dictionary
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is, the more likely it is to reduce the kernel-selection bias compared to a particu-
lar RK or hyperparameter choice. In addition, larger dictionaries allow for greater
adaptability when learning from data samples since, in practice, these samples may
come from a combination of different sources. On the other hand, increasing the
dictionary size becomes computationally demanding or even prohibitive. For this
reason, a commonly sought goal for multi-kernel methods is to find a compromise
between performance and a computationally light and compact representation of
the proposed solution in terms of the dictionary elements [95].

Another related scaling issue that also applies to single-kernel methods is the
curse of kernelization, i.e., potentially unbounded linear growth in model size with
the amount of data [82]. This drawback is generally addressed through online ap-
proaches, which may rely on sparsification procedures [96, 97, 98, 99, 100] or dimen-
sionality reduction approximations [101, 102], among others [103].

In this context, some works [104, 105, 106] have explored the use of online meth-
ods for determining the optimal solution associated with each single RK within
the dictionary, as well as the best combination of these single-kernel solutions un-
der a given task. Following a conceptually similar approach, this paper proposes
a novel multi-kernel learning scheme that can be parallelized across RKs by effi-
ciently combining the solution of several single RK-based online methods running
concurrently. This provides scalability with respect to the number of data samples
and adaptability across different data patterns. Moreover, it allows to distribute the
computational load across different computing units as the dictionary size increases.
Our proposed scheme applies to any task that can be formulated as a regularized
empirical risk minimization (RERM) convex problem [39, 107]. Finally, the perfor-
mance of the proposed learning scheme is experimentally validated in terms of the
cumulative regularized least squares cost metric.

B.2 Problem formulation

Supervised learning is arguably one of the core topics in machine learning [108].
Many supervised learning tasks can be formulated as RERM convex problems whose
solution admits a kernel representation. That is, given a set of N data samples
S = {(x(n), y(n))}Nn=1 ⊆ X × Y , and an RKHS1 H ⊆ YX , the goal is to find a
function estimate f ∈ H minimizing the following regularized functional cost

Cη (f ;S) =
N∑

n=1

ℓ
(
f(x(n)), y(n)

)
+
η

2
∥f∥2H, (B.1)

where the loss ℓ : Y2 → R ∪ {∞} is a proper convex function used as a goodness-
of-fit metric, the regularizer ∥ · ∥2H : H → R is the squared RKHS H induced norm,
and the hyperparameter η ∈ R+ controls the model complexity of the solution.

Under a multi-kernel learning framework, one typically constructs a valid RK
by adequately combining the RKs within a preselected dictionary [62]. Particularly,
finding the RK within a convex hull of P positive definite RKs that yields the
function estimate incurring the lowest functional cost (B.1) is equivalent to obtaining
a solution from H built as the RKHS direct sum H1 ⊕ · · · ⊕ HP , where each pth

1The notation YX refers to the set of functions from X to Y.
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Figure B.1: Visual description of the online setting considered.

RKHS Hp = span{kp(x, ·) : x ∈ X}, being kp : X 2 → R its associated RK [109]. The
solution f ∈ H that minimizes (B.1), can be expressed without loss of generality
as f = θ⊤f , where f = [f1, . . . , fP ]

⊤ ∈ H1:P , with H1:P ≜ H1 × · · · × HP and
θ = [θ1, . . . , θP ]

⊤ ∈ ∆P−1, with ∆P−1 ≜ {β ∈ RP : β ⪰ 0 and 1⊤β = 1} denoting a
simplex [110]. Thus, the RERM problem posed before becomes

min
θ∈∆P−1,f∈H1:P

Cη (f ;S) (B.2a)

subject to: f = θ⊤f . (B.2b)

Optimization problem (B.2) is bi-convex, meaning that it is convex in θ for a fixed
f and vice-versa. Still, it is not jointly convex in both optimization variables. It can
be tackled via specialized methods that primarily exploit the convex substructures
of the problem [111]. However, these methods do not scale well with the number of
RKs and data samples, denoted as P and N , respectively.

This paper presents a method to solve efficiently (B.2) for large P and N .

B.3 Proposed solution

This section describes how to synergize an online formulation and an upper bound
on the objective (B.2a) to solve (B.2) scalably with respect to N and P .

B.3.1 Online setting

Online settings [63, 64] can be adopted to solve (B.2) achieving low run-time com-
plexity with respect to N while incurring a certain tolerable (cumulative) cost. They
usually trade-off solution accuracy for speed, e.g., by processing only a few samples
every iteration, for low memory complexity, e.g., by discarding samples after a few
processing steps, or for model complexity control, i.e., bounded model size regardless
of whether N increases.

The online setting considered in this work can be cast as a method-environment
iterative game [112]. The data samples in S are assumed to be available sequentially.
Then, at each iteration step n, the method chooses a function estimate f (n) ∈
H1⊕ · · ·⊕HP expressible as f (n) = θ(n)

⊤
f (n) with θ(n) ∈ ∆P−1 and f (n) ∈ H1:P . In

response, the environment penalizes the proposed function estimate f (n) with the
incurred cost Cη(f (n);S(n)

L ), where S(n)
L = {(x(i), y(i))}ni=nL

⊆ S is a sliding window

of L data samples and nL ≜ max{n − L + 1, 1}. Finally, once the nth function
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Algorithm 3 (Quadratic program) Projection onto simplex.

Input: The function estimate components {f (n)
p }Pp=1, the data window S(n−1)

L and
the loss ℓ.

1: Set the components of a and b as in (B.5).
2: Sort b in ascending order, denoted as u: u1 ≤ u2 ≤ · · · ≤ uP and rearrange a

accordingly into v.

3: Find ρ = max

{
1 ≤ j ≤ P : uj −

∑j
i=1

ui
vi

+2∑j
i=1

1
vi

< 0

}
.

4: Define µ = −
2+

∑ρ
i=1

ui
vi∑ρ

i=1
1
vi

.

5: Compute θp = max
{
− 1

2ap
(bp + µ), 0

}
for p = 1, . . . , P .

Output: θ.

estimate f (n) is chosen, the method receives the nth data window S(n)
L , which can

be used at the next iteration2 step n+1. Fig. B.1 visually describes the procedure.

B.3.2 Upper bound on the functional cost

As we show next, we can improve scalability with respect to the number of RKs, by
making use of the following upper bound:

Cη(f ;S) =
N∑

n=1

ℓ
(
θ⊤f(x(n)), y(n)

)
+
η

2
∥θ⊤f∥2H (B.3a)

≤
N∑

n=1

P∑
p=1

θpℓ
(
fp(x

(n)), y(n)
)
+ θ2p

η

2
∥fp∥2Hp

(B.3b)

≜ C̆η(θ,f ;S). (B.3c)

The first upper-bounded term in (B.3b) follows directly from Jensen’s inequality
[113], whereas the second term is obtained by invoking the definition of the RKHS
direct sum norm [114]. Even though the second term in (B.3b) could have also been
upper bounded through Jensen’s inequality, as in [110], exploiting the definition of
the RKHS direct sum norm, leads to a tighter bound because θ2p ≤ θp for θp ∈ [0, 1].

The key advantage of the upper bound cost (B.3c) is that it is separable across
the P RKs within the dictionary, hence allowing for parallelization at the expense
of some loss in optimality, albeit with still satisfactory performance.

B.3.3 Parallelizable learning scheme

Our proposed learning scheme consists of executing at each iteration step n the
following consecutive operations:

1) Every pth function estimate component f
(n)
p is chosen through a single-kernel

online method operating over the pth RK within the dictionary. The methods
are selected by the user, and they can be different for each RK as long as all of

2At the first iteration step n = 1, the method has not received any data sample, thus f (1) is set
as some arbitrary initial function estimate.
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them adopt the online setting described in Sec. B.3.1. For example, stochastic
gradient descent methods for function estimation [12], and associated variants [81,
1], can be readily used. Since the function estimate components of f (n) can be
computed in parallel across P different computing units, the computational cost
can be distributed.

2) Next, the convex weights in θ(n) are chosen as the ones that minimize the

partially evaluated upper bound cost (B.3c) at f (n) and S(n−1)
L , referred from now

on as learning cost. Mathematically,

θ(n) = arg
θ∈∆P−1
min C̆η

(
θ,f (n);S(n−1)

L

)
(B.4a)

= arg
θ∈∆P−1
min θ⊤A(n)θ + b(n)

⊤
θ, (B.4b)

where A(n) ≜ diag(a(n)) ∈ SP
++, with a

(n) ∈ RP
+, and b

(n) ∈ RP whose components
are computed3 as

a(n)p =
η

2

∥∥f (n)
p

∥∥2
Hp
, (B.5a)

b(n)p =
∑

i∈I(n−1)
L

ℓ
(
f (n)
p (x(i)), y(i)

)
, (B.5b)

for all p ∈ N[1,P ], where I(n−1)
L corresponds to the index set associated with the data

samples in S(n−1)
L . We adapt the projection onto the simplex algorithm discussed in

[115, 116, 117] by extending its applicability to any quadratic problem described by a
diagonal positive definite matrix with simplex constraints. As a result, the proposed
Algorithm 3 can solve (B.4) exactly. Its computational complexity is bottlenecked
by a sorting step; that is, an asymptotic average complexity O(P logP ) [118]. It
should be mentioned that this complexity can be further reduced to O(P ) on average
by using a randomized pivot algorithm variation that identifies the parameter ρ
(Algorithm 3, line 3) using a divide and conquer procedure instead of sorting
[119], but this is out of the scope of the present paper.

3) Finally, the function estimate f (n) = θ(n)
⊤
f (n) is proposed.

In summary, our scheme can be seen as a higher-level learner that iteratively
chooses the lowest incurring learning cost combination of function estimates provided
by lower-level learners, namely, single RK methods.

B.4 Performance analysis

Under an online setting, as the one described in Sec. B.3.1, the incurred cost accu-
mulated over time receives the name of cumulative cost (CC). In our case, the CC

up to the nth time step is given by
∑n

i=1 Cη(f (i);S(i)
L ). From here, recall that every

ith function estimate f (i) is proposed via Sec. B.3.3, before the ith data window
S(i)
L becomes available; thus, the CC is a measure of performance protecting against

overfitting. Intuitively, the lower the growth of the incurred CC with respect to n,

3Notice that nothing prevents f
(n)
p to be zero-valued and thus A(n) from being singular and

positive semi-definite. However, we can always setA(n) = diag(a(n))+δIP where δ is an arbitrarily
small positive value.
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the better the expected performance over unseen data. In fact, popular measures of
performance, such as the dynamic regret, are constructed as the difference between
the CC incurred by the sequence of function estimates proposed by a method and
a sequence of comparators [66].

In order to validate our scheme experimentally, we pose a signal reconstruction
online problem from synthetically generated streaming data. Specifically, we use
the squared loss, i.e., ℓ(f(x), y) = (f(x)− y)2, and a dictionary of P = 20 Gaussian
kernels, i.e., kp(x, t) = exp

(
−1

2
(x− t)2/σ2

p

)
, with different widths σp linearly spaced

between 0.1 and 10. The method associated with each RK is an augmented naive
online Rreg minimization algorithm (NORMA) [12] with a window length of L = 10
data samples, a budget of τ = 100 kernel expansion terms (beyond the allowed bud-
get we truncate the oldest terms of the kernel expansion), and a fixed learning rate
λNORMA = 0.05. That is, before any possible truncation, each nth function estimate
associated with the pth RK is constructed as f

(n)
p =

∑n−1
i=1 α

(n)
p,i kp(x

(i), ·), where each
α
(n)
p,i ∈ R denotes a kernel-expansion coefficient obtained from the following NORMA

update:

f (n)
p = f (n−1)

p − λNORMA ∂f Cη
(
f ;S(n−1)

L

)∣∣∣
f=f

(n−1)
p

, (B.6)

which, after some algebraic steps, leads to the next closed-form update rule:

α
(n)
i =


−λNORMA ℓ

′(n−1)
p,i if i = n− 1,

γα
(n−1)
i − λNORMA ℓ

′(n−1)
p,i if i ∈ I(n−1)

L \{n− 1},
γα

(n−1)
i otherwise,

(B.7)

where ℓ
′(n)
p,i ≜ ℓ′

(
f
(n)
p (x(i)), y(i)

)
= 2

(
f (n)(x(i))− y(i)

)
and γ ≜ (1 − λNORMAη) ∈

R(0,1)
+ . The regularization parameter is chosen as η = 0.01. Lastly, the data sam-

ples have been generated via a stable AR(1) process y(n) = φy(n−1) + u(n), with

φ = 0.5488135, u(n)
iid∼ N (0, 0.71519837), y(0) = 0 and unit time stamps uniformly

arranged in time, i.e., x(n) = n.
Additionally, we compare our scheme with the online multiple kernel regression

(OMKR) algorithm [104], arguably the closest approach conceptually. More specifi-
cally, we compare against the budget OMKR gradient-based variant method over the
same experimental setting described above. Briefly, the considered OMKR method
can be described, at each iteration step n, by the following three-stage scheme:

1) The set of function estimates, in this case, regressors proposed by each one of
the P NORMAs, is updated as (B.7) and collected in f (n) ∈ H1:P .

2) Then, the P weights for combining the multiple regressors are updated as

w(n) = w(n−1) − λ
(n)
OMKR ∇w Cη

(
w⊤f (n);S(n−1)

L

)∣∣∣
w=w(n−1)

. (B.8)

In this case, we use an initial learning rate λ
(1)
OMKR = 8 · 10−4 that is halved every

50 steps until a minimum value of 10−5. After some algebraic manipulations and
making use of the definition of the RKHS direct sum norm [114], the evaluated
gradient in (B.8) equals to∑

i∈I(n−1)
L

f (n)(x(i))ℓ′
(
w(n−1)⊤f (n)(x(i)), y(i)

)
+ ηA(n)w(n−1). (B.9)
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Figure B.2: Cumulative cost up to time step n incurred by our learning scheme, the
OMKR algorithm, and the combined single RK NORMA regressors individually.
The dashed-dotted line L · n is shown as a reference.

The matrix A(n) corresponds to the one introduced in (B.5a), and the initial com-
bination weights are set as w(1) = 0P .

3) Finally, the function estimate f (n) = w(n)⊤f (n) is proposed.

Unlike our scheme, the OMKR algorithm can eventually learn any linear combi-
nation of single-kernel function estimates. However, due to the additive nature of the
update step in (B.8), the OMKR algorithm usually suffers from slow convergence

rates. Moreover, it requires a sequence of learning rates λ
(n)
OMKR whose tuning in-

volves optimization techniques or task-specific knowledge, hence adversely affecting
performance, e.g., poor learning or instabilities, if not carried out adequately.

Our experimental results in Fig. B.2 show that the CC incurred by our proposed
learning scheme outperforms the lowest CC incurred by any of the combined single
RK NORMA regressors separately. In the same figure, it can also be observed that
our scheme incurs a CC that increases at a lower rate than the one incurred by
the OMKR algorithm, thus allowing our scheme to outperform the best NORMA
regressor much sooner. The reason behind this observation is arguably the additive
nature of the OMKR algorithm, which requires numerous updates to completely re-
move the residual contributions of irrelevant regressors. For example, see in Fig. B.3
the “spiky” shape of the OMKR signal estimate due to some regressors constructed
with a narrow-valued σp RK.

Regarding computational resources, both the OMKR algorithm and our scheme
can be parallelized across the RKs within the dictionary, which in our experiments
means a constant time complexity O(τ), and a combination step of complexity O(P )
and O(P logP ), respectively. However, as mentioned in Sec. B.3.3, the complexity
of our scheme can be further reduced to O(P ) on average, making both of the
compared approaches computationally equivalent.
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Figure B.3: Snapshot of the 42nd signal estimate obtained by the OMKR algorithm,
our learning scheme, and the best and the worst of the combined single RK NORMA
regressors (denoted by the indices p+ and p−, respectively) in terms of the so-far
(n = 42) incurred cumulative cost.

B.5 Conclusion

We present a multi-kernel learning scheme that experimentally outperforms the best
of the combined single RK methods, in terms of the cumulative regularized least
squares cost metric, with a comparable computational load per computing unit.
This corroborates the ability of the proposed scheme to effectively accommodate
a larger function space (from which to draw function estimates) of multi-kernel
methods while keeping the lower computational complexity of online single RK
methods. Furthermore, although Algorithm 3 has been expressly designed for the
task discussed in this paper, it can be used to solve any other problem that accepts
a formulation as in (B.4b).

Correctness of Algorithm 1

A Lagrangian of problem (B.4) is

L(θ,λ, µ) = θ⊤diag(a(n))θ + b(n)
⊤
θ − λ⊤θ + µ(1⊤θ − 1), (B.10)

being µ ∈ R and λ ∈ RP the Lagrange multipliers associated with the equality and
inequality constraints, respectively. At the optimal solution θ(n), the following KKT
conditions [120] hold:
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2θ(n)p a(n)p + b(n)p − λp + µ = 0, p = 1, . . . , P (B.11a)

θ(n)p ≥ 0, p = 1, . . . , P (B.11b)

λp ≥ 0, p = 1, . . . , P (B.11c)

λpθ
(n)
p = 0, p = 1, . . . , P (B.11d)

P∑
p=1

θ(n)p = 1. (B.11e)

From the complementary slackness, stated in (B.11d), we can deduce that if the
primal inequality constraint in (B.11b) is slacked, i.e., greater than zero, then λp = 0
and from the stationarity condition (B.11a), the solution fulfils

θ(n)p = − 1

2a
(n)
p

(b(n)p + µ) > 0. (B.12)

On the other hand, if the primal inequality constraint is tight, i.e., θ
(n)
p = 0, then

the dual constraint (B.11c) is not binding. Again, from the stationarity condition
in (B.11a), we can identify those non-binding constraints as those that satisfy the
following expression:

b(n)p + µ = λp ≥ 0. (B.13)

In this way, it is clear from (B.13) that the components of the optimal solution
that are zero, if any, correspond to the larger components of b(n). Without loss of
generality, we can assume that the components of b(n) are sorted in ascending order
as long as the components of a(n) are rearranged accordingly. Thus, by comparing
b(n) with the solution as follows:

b
(n)
1 ≤ · · · ≤ b(n)ρ ≤ b

(n)
ρ+1 ≤ · · · ≤ b

(n)
P ,

θ
(n)
ρ+1 = · · · = θ

(n)
P = 0,

(B.14)

it can be concluded that the index ρ ∈ N[1,P ] determines the number of components
in the solution that are nonzero. From here, and rewriting the equality primal
constraint (B.11e) as

P∑
p=1

θ(n)p =

ρ∑
p=1

θ(n)p = −1

2

ρ∑
p=1

1

a
(n)
p

(b(n)p + µ) = 1, (B.15)

the Lagrangian multiplier associated with the equality constraint can be isolated
and computed as

µ = −
2 +

∑ρ
p=1

b
(n)
p

a
(n)
p∑ρ

p=1
1

a
(n)
p

, (B.16)

as long as the index ρ is known.

Theorem 1: Let ρ be the number of positive components in the solution of opti-
mization problem (4), then

ρ = max

{
1 ≤ j ≤ P : bj −

2 +
∑j

i=1
bi
ai∑j

i=1
1
ai

< 0

}
, (B.17)

where b is obtained by sorting b(n) components in ascending order and a corresponds
to a(n) rearranged accordingly.
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Proof. Let us first define the quantities φj ≜ bj − (2 +
∑j

i=1
bi
ai
)/
∑j

i=1
1
ai

and

sj:k ≜
∑k

i=j
1
ai
. Then, the goal is to show that j = ρ is the largest index in {1, . . . , P}

for which φj remains negative.
For j < ρ, we have that

φj =
1

s1:j

(
s1:jbj −

(
2 +

j∑
i=1

bi
ai

))
(B.18a)

=
1

s1:j

(
s1:jbj − 2−

ρ∑
i=1

bi
ai

+

ρ∑
i=j+1

bi
ai

)
(B.18b)

=
1

s1:j

(
s1:jbj + s1:ρµ+

ρ∑
i=j+1

bi
ai

)
(B.18c)

= bj + µ+
1

s1:j

ρ∑
i=j+1

1

ai
(µ+ bi) < 0, (B.18d)

where in step (B.18b) we use the equivalence
∑j

i=1
bi
ai

=
∑ρ

i=1
bi
ai
−
∑ρ

i=j+1
bi
ai
. Next,

in step (B.18c), we make use of the relation in (B.16). Finally, the step (B.18d)
holds thanks to the relation in (B.12) and because s1:j, ai ≥ 0 ∀i, j.

For j = ρ, and thanks to (B.12), we have φρ = bρ + µ < 0. Then, using the
relation in (B.16), we can verify that (B.17) holds.

For j > ρ, we can follow similar algebraic steps as in (B.18) to obtain

φj =
1

s1:j

(
s1:ρ(bj + µ) +

j∑
i=ρ+1

1

ai
(bj − bi)

)
≥ 0. (B.19)

The inequality in (B.19) holds thanks to the relation in (B.13) and the fact that
bj ≥ bi ∀i.
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A Trainable Approach to Zero-delay Smoothing

Spline Interpolation

Emilio Ruiz-Moreno, Luis Miguel López-Ramos and Baltasar Beferull-Lozano

Abstract — The task of reconstructing smooth signals from streamed
data in the form of signal samples arises in various applications. This
work addresses such a task subject to a zero-delay response; that is, the
smooth signal must be reconstructed sequentially as soon as a data sam-
ple is available and without having access to subsequent data. State-of-
the-art approaches solve this problem by interpolating consecutive data
samples using splines. Here, each interpolation step yields a piece that
ensures a smooth signal reconstruction while minimizing a cost metric,
typically a weighted sum between the squared residual and a derivative-
based measure of smoothness. As a result, a zero-delay interpolation is
achieved in exchange for an almost certainly higher cumulative cost as
compared to interpolating all data samples together. This paper presents
a novel approach to further reduce this cumulative cost on average. First,
we formulate a zero-delay smoothing spline interpolation problem from
a sequential decision-making perspective, allowing us to model the fu-
ture impact of each interpolated piece on the average cumulative cost.
Then, an interpolation method is proposed to exploit the temporal de-
pendencies between the streamed data samples. Our method is assisted
by a recurrent neural network and accordingly trained to reduce the ac-
cumulated cost on average over a set of example data samples collected
from the same signal source generating the signal to be reconstructed.
Finally, we present extensive experimental results for synthetic and real
data showing how our approach outperforms the abovementioned state-
of-the-art.

C.1 Introduction

Online learning has been studied and applied in a broad range of research fields,
including optimization theory [30, 63, 64], signal processing [121], and machine
learning [122, 45, 44]. Within these fields, online methods generating a series of
estimates from sequentially streamed data are especially useful to reduce complex-
ity in large-scale problems [19], to dynamically adapt to new patterns in the data
[20], and to enable acting under real-time requirements [21].

This work addresses the last one of the previous use cases in the context of
signal reconstruction. Specifically, it investigates the use of online methods with
zero-delay response for smooth signal reconstruction. First, most physical signals
are bounded and smooth due to energy conservation [123]; hence it is beneficial to
maintain smoothness as a property during signal reconstruction. Second, the zero-
delay requirement demands new portions of the smooth signal to be reconstructed as
soon as a new data sample is available. Consequently, a reduced constant complexity
per iteration [124] is required so that the online method is executed at a higher
speed than the transmission rate at which the data samples are received. These
requisites are well-motivated since they appear in many practical problems, such as
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ft 2
ft 1

ft
Data sample

Reconstruction
Future

Figure C.1: A signal reconstructed from stream data points by different methods
and models. The symbols xt and ft represent the current time and signal estimate,
respectively. a) Recursive least squares [10, 11] with a linear model. b) NORMA
[12] with Gaussian kernels. c) Smoothing myopic interpolation with cubic Hermite
splines [13].

online trajectory planning [67, 68], real-time control systems [69, 70], and high-speed
digital to analog conversion [71], among others. Although the tasks of estimating
smooth signals or delivering a zero-delay response are separately managed by most
online methods, handling them together becomes challenging, as we expound next.

Some popular online methods that can be used for smooth signal estimation are
online kernel methods [60, 1] and online Gaussian processes [125, 126]. They aim
at yielding a sequence of signal estimates with convergence guarantees or sublinear
regret [77]. To this end, they initially propose a signal estimate which is updated
(or modified) possibly globally as new data samples arrive. Their goal is to re-
fine the signal estimate rather than reconstruct new portions of the smooth signal.
Therefore, neither smoothness nor even continuity of the sequentially reconstructed
signal is guaranteed. In fact, any online method not ensuring the smoothness of
the reconstruction during the signal estimate update (even when the signal esti-
mate is modeled by smooth functions) suffers from this issue, as illustrated in Fig.
C.1a) and C.1b). On the other hand, online interpolation methods can be suitable
candidates for the task of smooth signal reconstruction with a zero-delay response.
These methods use piecewise-defined functions to model a sequence of local signal
estimates. Some of these functions allow shaping piecewise-modeled signal estimates
that can be updated by assembling a new section (or piece) while guaranteeing the
smoothness of the overall sequentially reconstructed signal, as shown in Fig. C.1c).
Among them, piecewise polynomial functions, also known as splines, are arguably
the most representative ones [73, 75]. Actually, splines have been used since ancient
times [74], long before their mathematical foundations were even established [72],
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presumably because of their approximation capabilities over functions of arbitrary
complexity and ease of use.

It should be noted that most recursive signal estimation methods modeling func-
tion estimates by splines as a basis expansion [24, 33, 127], suffer from the same
issues exposed before. This is mainly because the smoothness of their signal es-
timate is directly incorporated into the basis representation and not treated as a
set of continuity constraints. On the contrary, some works [25, 26] have explored
the task of interpolating sequentially streamed data under real-time requirements
by means of splines subject to continuity constraints. However, the online meth-
ods they use involve a multi-step lookahead or shifting window mechanism, which
introduces a delay. Indeed, most online methods for spline interpolation work with
local information, for instance, a subset constituted by the last sequentially received
data samples. In this case, a delayed response allows them to use a larger subset of
sequentially received data samples and correct the signal estimates as long as they
are updated within the delay limits. In brief, they can expand the extent of available
information at the expense of some delay. On the other hand, and to the best of
our knowledge, the only zero-delay spline interpolation method in the literature is
the myopic approach, referred to as the “classical greedy approach” in [26], which
reduces the delay response to zero by totally ignoring any source of forthcoming in-
formation, i.e., a purely local method. Clearly, there is a research gap on zero-delay
spline interpolation methods exploiting additional nonlocal information to achieve
a better reconstruction. This motivates us to work on the research question of
whether it is possible to maintain the zero-delay requirement while efficiently using
more information than the myopic approach.

In this paper, we answer affirmatively to the above research question by introduc-
ing a novel method for zero-delay smoothing1 spline interpolation that incorporates
a priori information about the dynamics of the signal being reconstructed. To this
end, we identify the elements of a state space-based sequential decision-making pro-
cess [128] in the context of zero-delay smoothing spline interpolation. The proposed
method relies on a policy, i.e., a strategy, that yields a section of the spline (action)
as a function of the current condition of the so far reconstructed signal and the last
received data sample (state). Such a policy consists of a differentiable convex opti-
mization layer (DCOL) [14] on top of a recurrent neural network (RNN) [129, 130].
The DCOL allows managing continuity constraints (for any differentiability class)
at each interpolation step, thus guaranteeing the smoothness of the signal recon-
struction. The RNN assists the signal estimate update mechanism when appending
a new spline section by taking into account the effect of each interpolated section on
future interpolation steps. This aid comes in the form of global data-driven knowl-
edge, and it is tailored to minimize the global cost of the smoothing interpolation
problem, on average. The cost is, in this case, the residual sum of squares plus a
weighted derivative-based measure of smoothness. Lastly, our method is trainable
in the sense that it uses example time series, i.e., time series sampled from the same
signal source generating the signal to be reconstructed, to customize the policy to
the temporal dependencies (dynamics) of the signal at hand.

The main contributions of this paper can be summarized as follows:

• We rigorously formulate the problem of smoothing spline interpolation from

1Here, the term smoothing refers to a controlled trade-off between fitting the data samples and
proposing a smooth signal estimate.
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sequentially streamed data, where each spline section has to be determined as
soon as a data sample is available and without having access to subsequent data
(zero-delay requirement). Due to its nature, it is formulated as a sequential
decision-making problem.

• As opposed to previously proposed (myopic and not trainable) zero-delay
methods, our method trains a policy that aims at minimizing the smooth-
ing interpolation cost metric on average. In order to capture the temporal,
possibly long-term, dependencies between the streamed data samples and ex-
ploit them to reduce further the average cost metric, an RNN able to capture
the signal dynamics is incorporated.

• The proposed policy guarantees that the reconstructed signal is smooth (a
certain number of derivatives are continuous over the interior of the signal
domain). This is achieved by adding a DCOL at the output of the RNN
and imposing a set of continuity constraints at each interpolation step. In
addition, such a layer admits a closed-form evaluation, resulting in improved
computational efficiency with respect to off-the-shelf DCOL libraries.

• We present extensive experimental results that validate our approach over syn-
thetic and real data. Additionally, we show how our approach outperforms the
state-of-the-art (namely, myopic) zero-delay methods in terms of the smooth-
ing interpolation average cost metric.

The rest of the paper is structured as follows: Sec. C.2 introduces the notation
and presents some basic concepts and definitions. Then, in Sec. C.3, we provide
our problem formulation. Next, in Sec. C.4 and Sec. C.5, we respectively provide
a solution, a benchmark, and a baseline. Thereafter we experimentally validate our
solution in Sec. C.6. Finally, Sec. C.7 concludes the paper.

C.2 Preliminaries

In this section, we present the notation and introduce the type of data used in the
paper. Afterward, we address the description of spline-based signal estimates as well
as related concepts recurrently appearing in this work. Finally, we formally describe
the smoothing spline interpolation problem, which will be used as a starting point
for the formulation of our problem.

C.2.1 Notation

Vectors and matrices are denoted by bold lowercase and capital letters, respectively.
Given a vector v = [v1, . . . , vC ]

⊤, its cth component is indicated as [v]c ≜ vc. Simi-
larly, given a matrixM ∈ RR×C , the element in the rth row and cth column is indi-
cated as [M ]r,c. The notation [v]i:j refers to the sliced vector [vi, . . . , vj]

⊤ ∈ Rj−i+1.
We use Euler’s notation for the derivative operator; thus, Dk

x denotes the kth deriva-
tive over the variable x.
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C.2.2 Problem data

The data considered in this paper consist of discrete time series, or series for short,
of T terms each. We interchangeably refer to the terms of the series as observations.
Each tth observation ot ∈ R2 is described by its time stamp xt ∈ R and its value
yt ∈ R, i.e., ot = [xt, yt]

⊤. The observation-associated time stamps are set in strictly
monotonically increasing order, i.e., xt−1 < xt for all terms in the series. Any two
consecutive time stamps define a time section Tt = (xt−1, xt]. Finally, the initial
time stamp x0 is set by the user.

C.2.3 Spline-based signal estimates

A spline is defined as a piecewise polynomial function. We denote any spline com-
posed of T piecewise-defined functions, or function sections, as

fT (x) =


g1(x), if x0 < x ≤ x1

g2(x), if x1 < x ≤ x2
...

gT (x), if xT−1 < x ≤ xT

(C.1)

where every tth function section gt : Tt → R is a linear combination of polynomials
of the form

gt(x) = a
⊤
t pt(x), (C.2)

with combination coefficients at ∈ Rd+1 and basis vector function pt : Tt → Rd+1

defined as

pt(x) =
[
1, (x− xt−1), . . . , (x− xt−1)

d
]⊤
, (C.3)

The integer d denotes the order of the spline. A spline fT is said to have a degree
of smoothness φ if it has φ continuous derivatives over the interior of its domain
dom(fT ) =

⋃T
t=1 Tt. Next, Proposition 1 shows how to enforce continuity up to

degree φ ≤ d in a spline-based signal estimate of order d.

Proposition 1: Given a spline expressed as in (C.1), we can enforce its degree of
smoothness to be φ ≤ d by imposing the following equality constraint

[at]1:φ+1 = et−1, (C.4)

for every t ∈ N[1,T ], where et ∈ Rφ+1 is a vector such that each of its elements is
computed as

[et]i =
1

(i− 1)!

d+1∑
j=1

[at]j u
j−i
t

i−1∏
k=1

(j − k), (C.5)

with ut ≜ xt − xt−1, and with the exception of e0, which determines the initial
conditions of the reconstruction and can be either calculated or set by the user.

Proof : see Appendix C.8.
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C.2.4 Smoothing spline interpolation

Consider the space Wρ of functions defined over the domain (x0, xT ] ⊆ R with
ρ − 1 absolutely continuous derivatives and with the ρth derivative square inte-
grable. Then, given a whole series of observations {ot}Tt=1 with T ≥ ρ and a positive
hyperparameter η, we can formulate the following batch optimization problem

min
f∈Wρ

T∑
t=1

(f(xt)− yt)
2 + η

∫ xT

x0

(Dρ
xf(x))

2 dx (C.6)

known as smoothing spline interpolation [131, 6]. The name is due to the unique
solution to the optimization problem (C.6) being a spline conformed of T function
sections, as in (C.1). More specifically, the solution of (C.6) is a spline of order
2ρ−1 with 2ρ−2 continuous derivatives and natural boundary conditions [24]. The
hyperparameters η and ρ control the smoothness of such a solution. Particularly, the
integer ρ dictates the minimum required degree of smoothness of the search function
space Wρ and the type of regularization2 (second term in (C.6)). Regarding η, it
controls the trade-off between the squared sum of vertical deviations of the signal
estimate from the data and the regularization term. Notice that as η → 0, the
solution of (C.6) approaches the interpolation spline while as η → ∞, it tends to
the polynomial of order ρ − 1 that best fits the observations in the least-squares
sense.

On the other hand, note that the structure of the solution of the problem (C.6),
being a natural spline, arises organically rather than being imposed in advance. This
is a direct consequence of its batch formulation allowing us to delimit the search
space Wρ to splines of order d and degree of smoothness φ satisfying 2ρ − 1 ≤ d
and ρ− 1 ≤ φ ≤ 2ρ− 2 without loss of optimality. From a practical perspective, it
is sufficient to choose the minimum required order and degree of smoothness, thus
reducing the model’s complexity. However, this trait is not necessarily present in
online settings. That is, the smoothness of the solution does not arise naturally
using online methods, and it has to be enforced. So here, the choice of the spline
order and degree of smoothness is rather user-defined or task-oriented.

C.3 Problem formulation

Once the problem data, the description of spline-based signal estimates, and the
smoothing spline interpolation problem have been introduced in Sec. C.2, we are
ready to formalize the main task of this paper, namely the trainable zero-delay
smoothing spline interpolation problem. This section fully describes the aforemen-
tioned task from a data-driven sequential decision-making perspective by introduc-
ing a suitable dynamic programming (DP) [46] framework. To this end, we first
model the environment, define the state space and action space, and delimit a suit-
able family of candidate policies. Then we introduce the total cost and formulate
the above task as the problem of finding the policy incurring the lowest total cost
on average.

2Our experimental setup focuses on ρ = 2, a common choice in practice, which penalizes
excessive curvature in the spline. Applications with ρ > 2 can also be found, e.g., trajectory
planning tasks [132]. However, they are out of the scope of this paper, as we justify in the ensuing
Sec. C.6.2.
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C.3.1 Characterization of the problem data

In our problem, the data described in Sec. C.2.2 are observed sequentially. Before
every tth time step, the observation about to be received ot remains undetermined
but still governed by the dynamics of the environment. In this work, we model the
dynamics of the environment as a random process Y (ω, x), where ω is a sample point
from a sample space Ω, and x is a value within an index set X ⊆ R, in this case,
time. At time xt, all possible outcomes form a random variable Y (ω, xt) or yt for
short. If the mth sample is considered at time xt, the outcome has a value denoted
by Y (ωm, xt) or simply ym,t. Consequently, if a discrete set of time stamps is chosen,
i.e., X = {x1, . . . , xT}, T random variables can be formed, and all the information
about the discrete random process YX is contained in the joint probability density
function PYX .

C.3.2 State space

At every time step t, we encode a snapshot of the observable environment and
the condition of the so-far reconstructed signal in a vector-valued variable called
state. With S denoting the state space, each tth state st ∈ S is constituted by the
corresponding observation ot, and the condition at which the reconstruction was left,
which is specified by the vector et−1 whose components are given as in (C.5), and the
time instant xt−1. Formally, every tth state st is expressed as st = [o⊤t , e

⊤
t−1, xt−1]

⊤.
Since every state st is uniquely determined once the spline coefficients at−1 are fixed,
we can explicitly describe the state update mechanism, by means of a deterministic
mapping, as

st+1 = F (st,at,ot+1) . (C.7)

Formalizing the state update mechanism in (C.7) allows us to identify all visitable
states seamlessly.

C.3.3 Action space

Immediately after receiving the tth observation, we propose a function section as in
(C.2), and we implicitly select the spline coefficients at. This is because the function
section is determined as soon as at is chosen (the basis vector defined in (C.3) is
given). From this point of view, selecting the spline coefficients of a function section
can be understood as an action. Any valid action generates a function section of the
same order d as the spline reconstruction. Formally, at ∈ A ⊆ Rd+1 for all the tth
terms, where A denotes the action space. However, if we want a reconstructed spline
that is continuous up to the φth derivative, not all valid actions are appropriate.
In our context, for any tth action to be deemed admissible (or feasible), it must
satisfy the constraint in (C.4). Notice that the set of admissible actions depends on
the current state. Therefore, we accordingly denote the admissible action space as
A(st).

C.3.4 Policy space

A policy π = {µt : S → A}t∈{1,2,... } consists of a sequence of functions that map
states into actions. Policies are more general than actions because they incorporate
the knowledge of the state. However, notice that not all policies return admissible
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actions. Only the policies that satisfy π(st) ∈ A(st) for all time steps are termed
admissible policies. Separately, stationary policies are policies that do not change
over time, i.e., µ ≡ µt = µt+1 for all time steps. Hence, a stationary policy is
unequivocally defined by the mapping µ. Stationary policies are suitable for mak-
ing decisions in problems with a varying horizon (varying number of time steps),
assuming usually stationary environments.

These arguments motivate the use of admissible stationary policies. However,
the space of admissible stationary policies is huge, and therefore, the problem of
finding the most adequate policy within it can be overwhelmingly complex. Policy
approximation techniques help reduce the pool of candidate policies by restricting
them to a certain family of policies. These techniques tend to work best (in the
sense of providing an adequate policy) when the problem has a clear structure that
can be accommodated into the policy. In our case, we aim to incorporate the
temporal dependencies across the observations into the policy, as well as the notion
of smoothness discussed in Sec. C.2.4. To this end, we resort to parametric policy
approximation [45] denoting any approximated stationary policy as µθ, where the
vector θ ∈ RP contains the P parameters constituting the aforenamed policy. The
set Π of parametric stationary policies that return admissible actions is, therefore,
the space of policies of interest to this work.

C.3.5 Total expected cost

The following Proposition 2 shows that the smoothing spline interpolation ob-
jective introduced in Sec. C.2.4, equation (C.6), can be expressed as a summation
where each term depends on a single action, resembling the sequence of instanta-
neous costs in a typical DP formulation.

Proposition 2: The objective of the optimization problem (C.6) can be equivalently
computed additively as

T∑
t=1

(
a⊤
t pt(xt)− yt

)2
+ η a⊤

t Mtat, (C.8)

where Mt ∈ Sd+1
+ with elements given by

[Mt]i,j =

{
0 if i ≤ ρ or j ≤ ρ
ui+j−2ρ−1
t

i+j−2ρ−1

∏ρ
k=1(i− k)(j − k) otherwise,

(C.9)

being ut ≜ xt − xt−1.
Proof : See Appendix C.9.

Based on Proposition 2, we can express the objective of the smoothing spline
interpolation problem (C.6), as the total cost

∑T
t=1 κ(st,at), with cost κ : S×A → R

given by

κ(st,at) =
(
a⊤
t pt(xt)− yt

)2
+ η a⊤

t Mtat, (C.10)

where Mt is constructed as in (C.9). This is because each tth state-action pair
contains all necessary information. From here and under a given policy of interest
µθ, as described in Sec. C.3.4, the metric

E
yt∼PYX

[
T∑
t=1

κ (st,µθ(st))

]
, (C.11)
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denotes the total expected cost incurred by following such a policy from a given
initial state s0, and traveling all the remaining states st ∈ St via (C.7). The ex-
pectation in (C.11) is performed over the random process modeling the dynamics of
the environment through the observations within the states.

C.3.6 Policy search by cost optimization

Computing the expectation in (C.11) is computationally expensive or even intractable
when the underlying random process generating the series of observations is un-
known. Instead, we can rely on sample average approximation of example series
collected from past realizations of the process. The sample average approaches the
expectation as the number of examples grows. In this way, we can determine a
data-driven policy by solving the following optimization problem

arg min
µθ∈Π

M∑
m=1

T∑
t=1

κ (sm,t,µθ(sm,t)) (C.12a)

s. to: sm,t = F (sm,t−1,µθ(sm,t−1),om,t) ,∀m, t, (C.12b)

µθ(sm,t) ∈ A(sm,t),∀m, t, (C.12c)

where the integerM denotes the number of example series, indexed bym, and where
all the initial states sm,0 as well as all observations om,t are given.

C.4 Proposed solution

The previous Sec. C.3 has provided the necessary definitions and considerations to
arrive at a rigorous problem formulation. An exact solution to the problem (C.12)
is probably impossible to obtain in practice, mainly due to the complexity of the
search space Π. There are multiple possibilities regarding the policy approximation
and optimization techniques that can be taken towards obtaining a near-optimal
solution to (C.12). This section presents a specific set of design choices based on the
current state-of-the-art. In particular, we rely on a policy parametrization through
cost parametrization technique, borrowed from the DP literature, in synergy with
an RNN architecture. Then we make use of backpropagation through time (BPTT)
[48], a gradient computation technique borrowed from the deep learning literature
[47]. Our proposed solution can effectively solve the problem formulated in Sec.
C.3.6 for ρ ≤ 2. The remaining configurations manifest instability issues, and even
though they may be solvable, they lie outside of the scope of the current paper as
further discussed in the following Sec. C.6.2.

Future developments in the DP or deep learning areas, such as new policy ap-
proximation approaches, neural architectures, or optimizers, can possibly render the
techniques proposed in this section obsolete but will not affect the validity of the
problem formulated in Sec. C.3.6.

C.4.1 Policy form

Parametric policy approximation via parametric cost function approximation (CFA)
[45] is a method that seeks through the policy space, in our case Π, among those
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Figure C.2: Visual representation of our RNN architecture satisfying the relation in
(C.15). The elements onto the gray shaded area constitute the mapping Rθ′ . The
CAT cell stands for a concatenation operation.

policies defined as an optimization problem with parametrized objectives. In this
work, we are interested in CFA-based policies of the form

µθ(sm,t) = arg min
a∈A(sm,t)

{κ(sm,t,a) + Jθ(sm,t,a;hm,t)} , (C.13)

where the map κ denotes the cost described in (C.10), and the mapping Jθ : S ×
A × RH → R is a parametric cost-to-go approximation involving P parameters
contained in the vector θ. Regarding the vector hm,t ∈ RH , it represents a latent
state value at the tth time step of an mth example series. The latent state may
encode relevant information from past observations and can be viewed as a policy
memory [133, 134, 135].

We aim for a cost-to-go approximation Jθ, which penalizes those actions that are
distant from the output of a certain RNN. The main reason behind this approach is
that an RNN that successfully captures the temporal dynamics of the environment
has the potential to pull towards actions that yield a low expected total cost. So, it
is constructed as follows

Jθ(sm,t,a;hm,t) = λ

∥∥∥∥a−
[
0φ+1

rm,t

]∥∥∥∥2
2

, (C.14)

where λ ∈ R+. The vectors rm,t ∈ Rd−φ, and hm,t ∈ RH represent the outputs and
latent state of an RNN, Rθ′ : St×RH → Rd−φ×RH , respectively. They are obtained
from the following relation

Rθ′(sm,t;hm,t) =

[
rm,t

hm,t+1

]
, (C.15)

with θ = [λ,θ′⊤]⊤ and θ′ ∈ RP−1, exemplified in Fig. C.2. From now on, we
refer to the policy in (C.13) with cost-to-go as in (C.14) as the RNN-based policy.
Finally, notice that besides being parametric, the RNN-based policy is admissible
and stationary by design.
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Figure C.3: Rolled representation of the environment-agent system. The sampler
cell samples the random process modeling the dynamics of the environment. The
interpolator cell performs the reconstruction, evaluates the cost, and updates the
states. The agent cell contains the policy and the RNN. The blue-shaded area
encompasses the environment. The cost (in gray) is used during the training phase
but not for evaluation.

C.4.2 Policy evaluation

Evaluating the proposed policy involves solving the optimization problem stated in
(C.13). Notice that both the cost κ built as in (C.10), and the cost-to-go approx-
imation Jθ described in (C.14), are convex with respect to the actions and hence,
the objective in (C.13) is convex too. Moreover, the admissible action set, described
in Sec. C.3.3, is convex. Therefore, the optimization problem in (C.13) is convex
thus, any locally optimal action is globally optimal [113].

Additionally, the optimization problem in (C.13) has been designed to admit a
closed-form solution. Closed-form evaluations can usually be computed faster and
more precisely than solutions obtained from numerical methods, and thus, they are
more suitable under zero-delay requirements. See Appendix C.10 for the derivation
of the closed-form evaluation.

C.4.3 Policy training

As explained in Sec. C.4.1, we have reduced the search space of problem (C.12)
by restricting the policy space to a family of policies of the form given in (C.13).
Specifically, from searching a function µθ in the function space Π, we have narrowed
the problem down to that of finding a vector θ in the vector space RP . In fact,
tuning the proposed policy parameters by solving the optimization problem (C.12)
is commonly referred to as policy training. Unfortunately, the objective (C.12a)
is non-convex with respect to the parameters in θ. As a reasonable solution, we
rely on a gradient-based optimizer aiming to converge to a high-performance local
minimum.

From a deep learning perspective, the policy evaluation presented in Sec. C.4.2
can be understood as a forward pass of a DCOL on top of an RNN, and hence,
it is trained using BPTT via automatic differentiation [136]. This point of view is
schematized in Fig. C.3, where traveling the given mth series, by following a policy
µθ, allows to construct the cumulative objective in (C.12a) used for training. Ad-
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ditionally, and thanks to the closed-form policy evaluation discussed in Sec. C.4.2,
computing and propagating the gradient of the tth action at with respect to the pa-
rameters contained in θ is done avoiding the need of unrolling numerical optimizers
[137] or using specific numerical tools for DCOLs such as CVXPY Layers [14].

C.5 Benchmark and baseline methods

Recall from Sec. C.2.4 that the batch formulation provides the optimal reconstruc-
tion with hindsight. The batch solution can be found by solving the optimization
problem (C.6), but only once all time-series data are available. Thus, it cannot be
used for zero-delay interpolation. Conceptually, online methods achieve a zero-delay
response at the expense of incurring higher or equal loss than the batch solution.
For this reason, the batch solution is used here as a baseline.

On the other hand, as stated in the Introduction and to the best of our knowledge,
there is no related work to our trainable zero-delay smoothing interpolation approach
in the literature. One could consider that the closest approach is the interpolation
method known as myopic. This is a local method in the sense that it only focuses
on the last received data sample while completely ignoring the distribution of future
arriving data. For this reason, the myopic method is used here as a benchmark. In
this sense, our proposed method must outperform the myopic method to be deemed
acceptable.

C.5.1 Myopic benchmark

A policy that chooses the action that minimizes the current or instantaneous cost
is commonly referred to as myopic. It can be constructed as

µ(st) = arg min
a∈A(st)

{κ(st,a)} , (C.16)

with cost κ as in (C.10) and admissible action set as described in Sec. C.3.3. Notice
that since the myopic policy does not contain trainable parameters, it does not need
to be trained. Moreover, the myopic approach is carried out as a parameterless
CFA-based policy, hence, becoming a particular case of (C.13). For this reason,
it also admits a unique and closed-form evaluation. See Appendix C.10 for more
details.

C.6 Experiments

In this section, we experimentally validate the effectiveness of the proposed RNN-
based policy, introduced in Sec. C.4. To this end, we first describe the time-
series datasets used. Then, we outline the possible policy configurations, i.e., the
possible types of splines as well as the RNN architecture. Afterward, we report how
the experiments have been carried out. Finally, we present and comment on the
experimental results.
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(a) (4,2), η = 10, and synthetic dataset.
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(b) (3,1), η = 1, and R1.
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(c) (4,2), η = 10, and R2.
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(d) (4,2), η = 1, and R3.
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(e) (4,2), η = 1, and R4.
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(f) (3,1), η = 10, and R5.

Figure C.4: Some of the training-validation curves for the considered RNN-based
policy configurations (d, φ) and η values for each dataset. The legends (T) and (V)
refer to the training and validation partitions, respectively. The loss metric is the
average total cost per function section (see Sec. C.3.5). The shaded areas represent
one standard deviation.
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Table C.1: Performance metrics averaged over the test partitions, for different η
values and policy configurations with ρ = 2. Recall that the improvement met-
ric (C.17) reports the gain of any RNN(d, φ) configuration over its corresponding
Myopic(d, φ) (as a benchmark) and batch(d, φ) (as the baseline) configurations.

η = 0.1 η = 1 η = 10

Dataset Configuration MSE MAE Improvement MSE MAE Improvement MSE MAE Improvement

Synthetic

Myopic(3, 1) 0.49 0.60

71.5% ± 2.8%

0.31 0.46

51.1% ± 3.9%

0.64 0.63

78.1% ± 2.5%Batch(3, 1) 0.41 0.56 0.26 0.44 0.22 0.39

RNN(3, 1) 0.29 0.47 0.25 0.42 0.28 0.43

Myopic(4, 2) 0.50 0.60

64.8% ± 2.6%

0.38 0.50

53.0% ± 3.6%

0.83 0.71

81.0% ± 2.6%Batch(4, 2) 0.41 0.56 0.26 0.44 0.22 0.39

RNN(4, 2) 0.28 0.44 0.27 0.43 0.30 0.44

R1

Myopic(3, 1) 0.09 0.13

59.4% ± 20.3%

0.20 0.22

81.3% ± 8.2%

0.44 0.40

75.5% ± 8.2%Batch(3, 1) 0.06 0.11 0.07 0.12 0.10 0.16

RNN(3, 1) 0.07 0.12 0.10 0.15 0.19 0.24

Myopic(4, 2) 0.13 0.16

59.6% ± 17.0%

0.29 0.27

78.6% ± 8.6%

0.51 0.43

72.9% ± 8.5%Batch(4, 2) 0.06 0.11 0.07 0.12 0.10 0.16

RNN(4, 2) 0.08 0.13 0.12 0.17 0.23 0.27

R2

Myopic(3, 1) 0.42 0.50

67.3% ± 6.4%

0.40 0.48

52.2% ± 7.1%

0.32 0.42

68.8% ± 5.7%Batch(3, 1) 0.27 0.40 0.26 0.39 0.23 0.37

RNN(3, 1) 0.23 0.36 0.23 0.37 0.20 0.34

Myopic(4, 2) 0.65 0.62

70.1% ± 3.9%

0.58 0.59

52.0% ± 5.4%

0.39 0.47

73.5% ± 4.0%Batch(4, 2) 0.27 0.40 0.26 0.39 0.23 0.37

RNN(4, 2) 0.21 0.35 0.22 0.36 0.21 0.35

R3

Myopic(3, 1) 4.60 1.80

76.3% ± 4.4%

2.90 1.40

81.3% ± 5.3%

1.80 1.09

65.6% ± 11.6%Batch(3, 1) 3.10 1.40 2.35 1.30 1.66 1.06

RNN(3, 1) 2.56 1.30 1.56 1.02 1.40 0.96

Myopic(4, 2) 6.30 2.10

69.7% ± 4.4%

3.02 1.43

88.9% ± 3.9%

1.89 1.10

80.8% ± 9.0%Batch(4, 2) 3.10 1.40 2.36 1.26 1.66 1.06

RNN(4, 2) 1.80 1.00 1.43 0.95 1.52 1.00

R4

Myopic(3, 1) 4.5e-3 2.8e-2

13.7% ± 57.3%

4.1e-3 2.7e-2

−61.8% ± 94.4%

3.6e-3 2.5e-2

16.5% ± 54.5%Batch(3, 1) 2.7e-3 2.3e-2 2.6e-3 2.2e-2 2.4e-3 2.0e-2

RNN(3, 1) 7.1e-3 6.8e-2 6.0e-3 5.6e-2 3.2e-3 3.1e-2

Myopic(4, 2) 6.9e-3 3.6e-2

−35.5% ± 78.5%

5.7e-3 3.2e-2

65.7% ± 25.5%

4.9e-3 3.0e-2

19.5% ± 51.5%Batch(4, 2) 2.7e-3 2.3e-2 2.6e-3 2.2e-2 2.4e-2 2.0e-2

RNN(4, 2) 3.7e-3 3.3e-2 4.1e-3 3.1e-2 3.5e-3 2.7e-2

R5

Myopic(3, 1) 2.7e-4 9.3e-3

−55.4% ± 101.6%

6.0e-4 1.3e-2

26.3% ± 59.8%

7.1e-3 3.8e-2

88.2% ± 7.1%Batch(3, 1) 1.8e-4 7.8e-3 1.7e-4 7.7e-3 2.6e-4 9.1e-3

RNN(3, 1) 2.3e-4 8.7e-3 3.1e-4 1.0e-2 3.2e-3 3.0e-2

Myopic(4, 2) 4.7e-4 1.1e-2

−13.3% ± 68.2%

9.7e-4 1.7e-2

39.8% ± 41.9%

1.1e-2 4.8e-2

85.1% ± 7.5%Batch(4, 2) 1.8e-4 7.8e-3 1.7e-4 7.7e-3 2.6e-4 9.1e-3

RNN(4, 2) 2.9e-4 9.7e-3 6.1e-4 1.4e-2 5.4e-3 3.6e-2
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C.6.1 Problem data description

For these experiments, we use a synthetic dataset and five real datasets. Each
dataset consists of a time series of 28800 signal samples which has been split into
288 series of 100 samples each, except for the first real dataset which contains 57600
samples split into 576 series.

The synthetic dataset is first generated as a uniformly arranged realization of a
given autoregressive process AR(2) with white Gaussian noise N (0, 0.1). Then, the
resulting series is compressed via PI [138] with CompDev = 0.1, CompMax = ∞
and CompMin = 0. As a result, the series time stamps are not uniformly distributed
anymore.

The first real dataset (R1) consists of a series of household minute-averaged active
power consumption (in Kilowatts) [139]. The second real dataset (R2) is a quantized
and PI-compressed (and hence not uniformly sampled) time series measuring an
oil separation deposit pressure3 (in Bar). For the third real dataset (R3) [140],
a cooling fan with weights on its blades is used to generate vibrations which are
recorded by an attached accelerometer. The vibration samples are recorded every 20
milliseconds. We use the accelerometer recorded x-values (which are standardized)
for the rotation speeds ranging from 5 to 40 rpm. The fourth real dataset (R4) [141]
monitors the skin temperature (in Celsius degrees) of a volunteer subject through a
wearable device every 4 minutes. The fifth and last real dataset (R5) [142] consists
of a sensor within a sensor network deployed in a lab, collecting the temperature-
corrected relative humidity in percentage. The sampling rate is non-uniform and
ranges from deciseconds to tens of seconds. Finally, it is worth mentioning that
the datasets R4 and R5 contain gaps (several orders of magnitude wider than the
average sampling period) of missing data that we have shortened to avoid instability
in the reconstruction. In similar cases where the available raw data is of low quality,
thorough and task-specific data preprocessing techniques are assumed. This can
improve the performance results as described in the ensuing Sec. C.6.4.

C.6.2 Policy configuration

We experimentally observe that the myopic policy described in Sec. C.5.1 is not
stable for values of ρ > 2. Recall that the value of ρ affects the policy cost, set
as in (C.10), and delimits the order and degree of smoothness of the spline signal
estimate, as explained in Sec. C.2.3. We also observe instability under the myopic
policy for ρ = 2 with a spline signal estimate of order d = 3 and degree of smoothness
φ = 2. Consequently, our proposed RNN-based policy is unstable for the same ρ
values and spline configurations since it implicitly uses the myopic policy as a guided
starting point. This can be seen by comparing (C.16) and (C.13) with a near-
zero initial value of λ. Although further theoretical instability studies, alternative
policy architectures, or low-delay approaches can contribute to solving the instability
issue, they lie outside of the scope of this paper. Nonetheless, we have maintained
the general problem formulation as a starting point for future works to take over.
On the other hand, the interpolation problem with ρ = 1 is not interesting since
it leads to linear interpolation. Therefore, in the present work, we focus on the
smoothing interpolation problem with ρ = 2 and with the remaining stable spline

3Data collected from Lundin’s offshore oil and gas platform Edvard-Grieg.
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configurations, within the search function space described in Sec. C.2.4, which can
lead to optimal reconstructions. Those spline configurations, hereinafter specified
by the shorthand notation (d, φ) of the order and degree of smoothness of the spline,
correspond to (3,1) and (4,2). Accordingly, the notation Myopic(d, φ) or RNN(d, φ)
refers to the type of policy besides the spline configuration.

Regarding the RNN architecture shaping the approximated cost-to-go within the
RNN-based policy, introduced in Sec. C.4.1 and illustrated in Fig. C.2, we set a
preprocessing step that forwards the time length, i.e. ut = xt − xt−1, of the tth
time section Tt, instead of directly using the time stamps. This preprocessing step
makes the architecture invariant to time shifts in the set of time stamps. In our
experiments, the recurrent unit consists of two stacked gated recurrent unit (GRU)
layers [51], with a latent state (hidden state) of size 16 and an input of size 16. The
input and output layers are set as linear layers to match the required dimensionality,
i.e., to match the input size after the preprocessing step and to match the order of
the spline minus the number of constrained coefficients as output size.

C.6.3 Experimental setup

The datasets are randomly divided into 192 series for training, 64 for validation,
and 32 for testing. Except for the R1 dataset, which has been divided in the same
proportion but in relation to its data size. The benefits of this train-validation-test
partition are two-fold: i) the policy becomes more robust against unknown initial
conditions, and ii) we can validate the reconstruction against an optimal batch
solution (shorter sequences are computationally tractable using batch optimization).
All series within a dataset are standardized for implementation convenience. To
avoid data leaking, the mean and standard deviation of their respective training
partition are used for the standardization. In other words, we compute the mean
and variance of the training partition and assume them to be the moments of the
true data distribution. The standardization of series is useful to enforce the RNN
unit to focus on the fluctuations of the signal values rather than on their magnitude.
Finally, the RNN-based policy has been trained using the adaptive moments (Adam)
optimizer [143], with β1 = 0.9, β2 = 0.999, without weight decay, and a learning
rate of 0.001 over mini-batches of 32 time series each (double mini-batch size in the
case of R1).

C.6.4 Results and discussion

Some of the training-validation curves are presented in Fig. C.4. As expected, we
observe that randomly initialized RNN-based policies (except for the parameter λ,
which controls the length of the initial performance gap, as discussed in Sec. C.6.2,
and is manually initialized) only outperform the myopic policy after training. We
also observe wider (in relative terms) standard deviations in those datasets with
more abrupt changes, either from the nature of the data, as in R1, or due to missing
data and posterior preprocessing, as in the case of R4 and R5. This phenomenon
appears also to be caused by highly non-uniform sampling rates, as in R5. But in this
case, the width seems to decrease as the policy yields more accurate estimates. This
implies that the RNN-based policy is able to learn how to adapt under non-uniform
sampling rates properly.
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Figure C.5: Training curves of the parameter λ ∈ R+ introduced in (C.14). The
elements displayed coincide with those shown in Fig. C.4.
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Figure C.6: Box plot of the policy execution time per interpolation step over the test
partitions and η values {0.1, 1, 10}. It illustrates (excluding outliers) the minimum,
first quartile, median, third quartile, and maximum.
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Once the RNN-based policy has been trained, we measure its performance with
respect to the myopic policy (as the benchmark) and the batch reconstruction (as
the baseline) through an improvement metric defined as

I =
ℓM − ℓR
ℓM − ℓB

, (C.17)

where ℓM , ℓR, ℓB denote the loss metric displayed in Fig. C.4 but over the test
partition for the myopic, the RNN-based policies and the batch solution, respec-
tively. Acceptable performances yield improvement values in (0, 1], being I = 1
the best possible value, whereas nonpositive improvement values indicate a deficient
performance. The standard deviation of the improvement metric is then estimated
through error propagation, i.e.,

σI =

√(
∂I

∂ℓM

)2

σ2
M +

(
∂I

∂ℓR

)2

σ2
R +

(
∂I

∂ℓB

)2

σ2
B, (C.18)

with σM , σR, and σB denoting the standard deviation of the respective loss metrics
over the test partition. The improvement results are summarized in Table C.1.
From Fig. C.4 and Table C.1, it can be observed that the policy configurations with
the highest improvement scores over each of the considered dataset test partitions
are in agreement with their corresponding validation curves. Table C.1 also shows
standard performance descriptors such as the mean squared error (MSE) and mean
absolute error (MAE). See Appendix C.11 for their computation. Note that for most
of the experiments that we have carried out, the RNN-based policy outperforms, in
terms of the MSE and MAE metrics, the myopic policy while it falls behind the
batch policy. This observation experimentally justifies the smoothness assumption
in our formulation.

Regarding the parameter λ ∈ R+ introduced in (C.14), it can be understood
as the confidence of the RNN-based policy in its ability to foresee incoming data
samples. In this way, it also quantifies the importance of the RNN architecture
(detailed in Fig. C.2) in the reconstruction task. As an illustration, Fig. C.5 shows
the training curves corresponding to the parameter λ for the policy configurations
presented in Fig. C.4.

On the other hand, we observe a competitive performance in terms of the ex-
ecution time of the RNN-based policy evaluation (forward pass) as compared to
their myopic counterpart. Our evaluation time results are summarized in Fig. C.6,
where the policies are implemented in Python 3.8.8. and the experiment is done
in a 2018 laptop with a 2.7 GHz Quad-Core Intel Core i7 processor and 16 GB
2133 MHz LPDDR3 memory. Regarding memory complexity, the myopic policy is
parameterless (see Sec. C.5.1), and our configuration of the RNN-based policy (see
Sec. C.6.2) contains approximately 3400 trainable parameters, which is arguably a
reduced model size for most tasks.

Finally, and for the sake of completeness, Fig. C.7 shows a snapshot of a zero-
delay smooth signal reconstruction alongside its two first derivatives using our pro-
posed method.
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Figure C.7: Snapshot of a reconstructed time series from the test partition of the
synthetic dataset. Both of the presented policies have been trained over the training
partition before reconstruction.

C.7 Conclusion

In this paper, we propose a method for zero-delay smoothing spline interpolation.
Our method relies on a parametric policy, named the RNN-based policy, specifically
engineered for the zero-delay interpolation task. As new data samples arrive, this
policy yields piecewise polynomial functions used for smooth signal reconstruction.
Our experiments show that the RNN-based policy can learn the dynamics of the
target signal and efficiently incorporate them (in terms of improved accuracy and
reduced response time) into the reconstruction task.

This work can be seen as a proof of concept with several immediate follow-
ups. The flexibility in our policy design allows extending this work to multivariate
time series with a moderate increase in complexity. It is also possible to generalize
the problem data, e.g., quantization intervals instead of data points, as well as to
accommodate additional constraints as long as the convexity of the policy evaluation
problem is preserved. Lastly, we notice that our work provides the foundation and
can be tailored effectively for reconstructing non-stationary signals by borrowing
reinforcement learning techniques.

C.8 Proof of Proposition 1

Recall from Sec. C.2.3 that every spline fT , as in (C.1), is composed of T function
sections and T − 1 contact points. We say that two consecutive function sections
have a contact of order φ if they have φ equal derivatives at the contact point. Then,
guaranteeing a degree of smoothness φ for a given spline fT is equivalent to ensuring
that all its contact points are at least of order φ since every tth function section gt,
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as in (C.2), is already smooth over the interior of its domain Tt. In practice, this
can be ensured by imposing the following equality constraints

lim
x→x−

t−1

Dk
x gt−1(x) = lim

x→x+
t−1

Dk
x gt(x), (C.19)

for every k ∈ N[0,φ] and t ∈ N[2,T ]. From here, notice that the kth derivative of every
tth function section gt can be computed as

Dk
x gt(x) = at

⊤ [Dk
x [pt(x)]1 , . . . , D

k
x [pt(x)]d+1

]⊤
. (C.20)

Also, notice from the definition in (C.3) that the ith component of the tth basis
vector function pt equals

[pt(x)]i = (x− xt−1)
i−1, (C.21)

for all i ∈ [1, d + 1]. From this point, the kth derivative of each ith component of
the basis vector function pt can be straightforwardly computed as

Dk
x [pt(x)]i = (x− xt−1)

i−1−k

k∏
j=1

(i− j) . (C.22)

Now observe that

lim
x→x+

t−1

Dk
x [pt(x)]i =

{
k! if i = k + 1,

0 otherwise.
(C.23)

Therefore, from the relations in (C.20) and (C.23), the right hand term in (C.19)
can be equivalently computed as

lim
x→x+

t−1

Dk
x gt(x) =

d+1∑
i=1

[at]i lim
x→x+

t−1

Dk
x [pt(x)]i (C.24a)

= k! [at]k+1 . (C.24b)

Separately, we can define a vector et ∈ Rφ+1 whose components are constructed
as

[et]k+1 ≜
1

k!
lim
x→x−

t

Dk
x gt(x) (C.25a)

=
1

k!

d+1∑
i=1

[at]i u
i−1−k
t

k∏
j=1

(i− j), (C.25b)

for every k ∈ N[0,φ] and t ∈ N[1,T ] with ut ≜ xt − xt−1, and where the step (C.25b)
uses the relations described in (C.20) and (C.22). On the other hand, e0 encodes
the initial boundary conditions of the reconstruction and can be set by the user in
advance or calculated. Finally, by dividing both sides of the equality constraint in
(C.19) by k!, using the relations derived in (C.24) and (C.25), and appropriately
renaming the indices we obtain the Proposition 1.
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C.9 Proof of Proposition 2

Recall from Sec. C.2.4 that the solution to the optimization problem stated in (C.6)
is a spline function in Wρ. This fact allows us to reduce the search function space
without loss of optimality. In fact, we can incorporate the spline form of the solution
into the objective functional as far as we ensure the required minimum degree of
smoothness of the solution, for example, via (C.19). From here, we can equivalently
compute the regularization term in the objective in (C.6) (second term) as∫

⋃T
t=1 Tt

(Dρ
x fT (x))

2 dx =
T∑
t=1

∫
Tt
(Dρ

x gt(x))
2 dx . (C.26)

Separately, and making use of the definition of function section in (C.2), we
obtain the following relation∫

Tt
(Dρ

x gt(x))
2 dx =

∫
Tt

(
Dρ

x a
⊤
t pt(x)

)2
dx (C.27a)

= a⊤
t Mtat, (C.27b)

with

[Mt]i,j =

∫
Tt
Dρ

x [pt(x)]i D
ρ
x [pt(x)]j dx . (C.28)

From the relation in (C.22), it is clear that the first ρ rows and columns of the matrix
defined in (C.28) are zero valued. Then, we can compute the rest of the elements in
the matrix Mt ∈ Sd+1

+ as follows

[Mt]i,j =

ρ∏
k=1

(i− k)(j − k)

∫ xt

xt−1

(x− xt−1)
i+j−2(ρ+1) dx (C.29a)

=
(xt − xt−1)

i+j−2ρ−1

i+ j − 2ρ− 1

ρ∏
k=1

(i− k)(j − k) . (C.29b)

On the other hand, the sum of squared residuals in the objective in (C.6) (first
term) can be equivalently computed as

T∑
t=1

(fT (xt)− yt)
2 =

T∑
t=1

(gt(xt)− yt)
2 , (C.30)

from the definition of spline, see relation (C.1).
Summing up, the result stated in Proposition 2 can be reached starting from

the objective in (C.6) then following the relations in (C.26), (C.27) alongside (C.29)
and (C.30).

C.10 Closed-form policy evaluation

Notice that both the proposed policy in (C.13) and the myopic policy in (C.16) can
be equivalently evaluated by solving the following quadratic convex problem

µ(st) = arg min
a∈A(st)

{
a⊤Ata+ b⊤t a

}
, (C.31)
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Table C.2: Terms in (C.31). The notation is shared with the rest of the paper with
the incorporation of Pt ≜ pt(xt)pt(xt)⊤ and vt ≜ [0⊤

φ+1, rt
⊤]⊤.

At bt

Myopic Pt + ηMt −2ytpt(xt)

RNN Pt + ηMt + λId+1 −2(ytpt(xt) + λvt)

where the terms At ∈ Sd+1
+ and bt ∈ Rd+1 take different values for the different

policy variations as described in the Table C.2. The form in (C.31) is displayed as
an intermediate step for the sake of clarity, and the dependencies with example time
series (indexed by m) and the policy parameters (contained in θ) have been omitted
for the sake of notation. Then, we relocate the equality constraints (presented in
(C.4) and satisfied by the actions in the admissible set A(st)) in the objective of
(C.31), by restating

a =

[
et−1

0d−φ

]
+

[
0φ+1

α

]
, (C.32)

or equivalently, by setting a = B1et−1 + B2α where the components of et−1 are
described in (C.5), the matrices B1 ≜ [Iφ+1,0(φ+1)×(d−φ)]

⊤ ∈ R(d+1)×(φ+1) and B2 ≜
[0(d−φ)×(φ+1), Id−φ]

⊤ ∈ R(d+1)×(d−φ) are defined for the sake of notation, and where
α ∈ Rd−φ. After some algebraic steps, both policies can be equivalently evaluated
as

µ(st) =

[
et−1

αt

]
, (C.33)

where the vector αt ∈ Rd−φ is obtained from

αt = arg min
a∈Rd−φ

{α⊤B⊤
2 AtB2α (C.34a)

+ 2
(
e⊤t−1B

⊤
1 AtB2 + b

⊤
t B2

)
α}, (C.34b)

with closed-form solution given by

αt = −
(
B⊤

2 AtB2

)−1
(
B2AtB1et−1 +

1

2
B⊤

2 bt

)
, (C.35)

being B⊤
2 AtB2 ∈ Sd−φ

++ .

C.11 Boostrap method for estimating the MSE

and MAE

When the data distribution, or in our case, the underlying (assumed) smooth pro-
cess, is unknown, we cannot follow the standard MSE and MAE computation pro-
cedure because the original function ψ ∈ Wρ is also unknown. Instead, we only

have access to a certain dataset of test samples, e.g., D = {(xt, ψ(xt))}Tt=1. Fol-
lowing a bootstrap-inspired method [144], we choose a subset B ⊆ D for the signal
reconstruction and use the complementary set B, i.e., B ∪ B = D and B ∩ B = ∅
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Time

Residual
fB

B
B

Figure C.8: Illustration of the residuals used to estimate the MSE via bootstrapping.
The test partition comes from the synthetic data and has been reconstructed with
a Myopic(3,1) policy with η = 1 and ρ = 2. B contains 90% of the test partition
and B the remaining 10%.

to estimate the MSE and MAE performance metrics. Mathematically, this can be
expressed as:

MSE (fB) =
1

|B|

∑
i∈B

(fB(xi)− ψ(xi))
2 , (C.36a)

MAE (fB) =
1

|B|

∑
i∈B

|fB(xi)− ψ(xi)| , (C.36b)

where fB is the signal estimate constructed from the test data subset B. This
procedure is illustrated in Fig. C.8.

Notice that it is important to partition the test data because any test data
sample used for the signal reconstruction cannot be used to compute the performance
metrics. Otherwise, this results in data leakage. On the other hand, due to the
lack of data samples, the performance metrics estimated in this way, may not be
as accurate as if we had larger test sets, or more specifically, large test sets with
higher temporal resolution. Thus, to reduce the variance of the MSE and MAE
estimators, we repeat the procedure for several randomly chosen partitions B, B̄
with replacement (i.e. they may repeat) and average the result. Particularly, we
perform 10 repetitions.
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Consistent Signal Reconstruction from Streaming

Multivariate Time Series

Emilio Ruiz-Moreno, Luis Miguel López-Ramos and Baltasar Beferull-Lozano

Abstract — Digitalizing real-world analog signals typically involves
sampling in time and discretizing in amplitude. Subsequent signal re-
constructions inevitably incur an error that depends on the amplitude
resolution and the temporal density of the acquired samples. From an
implementation viewpoint, consistent signal reconstruction methods have
proven a profitable error-rate decay as the sampling rate increases. De-
spite that, these results are obtained under offline settings. Therefore, a
research gap exists regarding methods for consistent signal reconstruction
from data streams. Solving this problem is of great importance because
such methods could run at a lower computational cost than the exist-
ing offline ones or be used under real-time requirements without losing
the benefits of ensuring consistency. In this paper, we formalize for the
first time the concept of consistent signal reconstruction from streaming
time series data. Then, we present a signal reconstruction method able
to enforce consistency and also exploit the spatiotemporal dependencies
of streaming multivariate time series data to further reduce the signal
reconstruction error. Our experiments show that our proposed method
achieves a favorable error-rate decay with the sampling rate compared to
a similar but non-consistent reconstruction.

D.1 Introduction

Most real-world physical quantities can only be observed by sampling their continuous-
time waveforms (analog signals). If the analog signal is bandlimited, i.e., its spectral
density has bounded support, we can ensure a reversible discretization in time by
sampling at, or above, its Nyquist sampling rate [52, 53]. This is a universal suffi-
cient condition but not necessary for all signals: some non-bandlimited signals can
be perfectly reconstructed after uniformly sampled at, or above, its finite rate of in-
novation. Examples of such signals are streams of Dirac delta functions and splines
[58]. Nonetheless, we can only observe a modified version of the sampled analog
signal in practice because of the physical limitations of acquisition systems. For
instance, acquisition systems such as analog-to-digital converters (ADCs) introduce
both a sampling and a quantization step. The consequent discretization in ampli-
tude causes an irreversible loss of information, making perfect signal reconstruction
no longer possible.

Even though quantization is a deterministic operation, the signal reconstruction
error-rate decay dependencies can be analyzed effectively from a stochastic point
of view. For example, the reconstruction error caused by a uniform quantizer can
be well approximated and modeled as an additive uniform white noise source in-
dependent of the input signal when certain assumptions are met [54, 55]. Under
these assumptions, the quantization noise spectral density is constant. Thus, if an
analog signal ψ is bandlimited, we can reduce the amount of in-band quantization
noise by sampling above its Nyquist sampling rate (oversampling). Accordingly, we
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(a) Snapshot at time xt of a multivariate signal being converted from analog to digital. The
acquired data samples form a streamed multivariate time series of quantization intervals.
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(b) Snapshot at time xt of the multivariate time series from Fig. D.1a being reconstructed.
The consistent signal reconstruction method is represented visually as a microprocessor.
The green shaded area indicates the currently reconstructed portion of the signal, while
the red represents the future.

Figure D.1: Illustration of the considered signal acquisition-reconstruction process
spanning from time 0 to X. Stationary spatial relationships are represented as edges
in a graph with black dotted lines.

91



Machine Learning for Signal Reconstruction from Streaming Time-series Data

can reduce the reconstruction error by digitally filtering out the quantization noise
above the original signal bandwidth. In this scenario, it is well known that low-pass
filtering reduces the mean squared error (MSE) of a reconstructed signal f by a fac-
tor proportional to the squared quantization step size ∆2 and inversely proportional
to the oversampling ratio R. Formally,

E
[
∥f − ψ∥22

]
∝ ∆2

R
, (D.1)

where the expectation is taken over the amplitude of the reconstruction error, mod-
eled as a uniform random variable [54]. The result shown in (D.1) is useful for
identifying the main factors that influence the signal reconstruction error-rate de-
cay under an oversampling regime. However, it does not reflect the effects of any
quantization scheme or reconstruction method other than uniform quantization and
linear decoding, i.e., low-pass filtering of the quantized signal at a cut-off frequency.

In contrast, deterministic analyses, based on deterministic bounds over the quan-
tization levels, show that it is possible to reconstruct quantized signals with a squared
norm error that is asymptotically proportional to the square of the quantization step
size and inversely proportional to the square of the oversampling ratio, that is

∥f − ψ∥22 = O
(
∆2

R2

)
. (D.2)

The trend in (D.2) can be achieved by performing signal reconstruction via con-
sistent signal estimates, where the term “consistent” here means coherent with all
available knowledge about the original analog signal and the acquisition system.
This has been shown for bandlimited signals [27, 56], and non-bandlimited signals
with finite rate of innovation [28]. The behavior presented in (D.2) suggests that
when a uniformly quantized and oversampled signal is reconstructed using consis-
tent estimates, the reconstruction error can be asymptotically reduced at the same
rate by either increasing the oversampling ratio or decreasing the quantization step
size. This balanced signal reconstruction error-rate decay has important implica-
tions. For instance, in practice, it is more convenient to increase the oversampling
ratio because the implementation cost of the analog circuitry necessary for halving
the quantization step size is much higher than that for doubling the oversampling
ratio [57].

Notwithstanding the above, consistent signal reconstructions usually require so-
phisticated methods that are far more computationally complex than linear decod-
ing, thus hindering their practical implementation. Only a few previous studies
have explored how to alleviate the computational complexity of yielding consistent
reconstructions while maintaining the asymptotic behavior established in (D.2). For
example, in [59], linear decoding computational complexity is achieved by using dif-
ferent quantization step sizes, while the difficulty lies in the design of the quantiza-
tion scheme. As another example, the authors of [145] design a subtractive dithering
method aimed at recursively solving an overdetermined system of linear equations
set up from quantized data described by frames1. However, the resulting signal
estimates are only guaranteed to be consistent with the most recently analyzed
frame representation in the recursion. In summary, there seems to be a research gap

1Frames provide redundant and usually non-unique representations of vectors [146, 147].
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regarding low-complexity consistent signal reconstruction methods under uniform
quantization schemes.

Online strategies seem a reasonable approach to fill this research gap as they
allow for a low runtime complexity with respect to the number of acquired sam-
ples. They can also be used to deal with streaming data sequentially, possibly under
real-time requirements, in exchange for sacrificing some accuracy in the solution.
To the best of our knowledge, there are no consistent signal reconstruction methods
designed under online settings or for sequentially reconstructing streaming data sam-
ples. Consequently, there are no studies about their error-rate decay dependencies
either.

This paper aims to cover the aforementioned gap. To this end, we focus on a class
of multivariate, non-bandlimited, temporally and spatially interdependent smooth
signals with a finite rate of innovation that can be expressed in terms of splines. This
is justified because most signals of interest are smooth, usually elapse within a finite
timespan, and rarely occur in complete isolation. Then, we consider an ADC that
uniformly samples and quantizes these multivariate signals, resulting in streamed
multivariate time series of quantization intervals, as illustrated in Fig. D.1a. From
here, our goal is to design a consistent signal reconstruction approach from streaming
data that satisfies two key requirements: i) signal smoothness, in agreement with the
signals under consideration, and ii) a zero-delay response, i.e., the ability to process
streaming data samples as they arrive and before the next sample is available. The
considered requirements are of great importance in practice since they arise naturally
in a wide range of signal reconstruction problems, ranging from high-speed digital
to analog conversion [71] to online trajectory planning [67, 148], among others.

Concretely, this paper presents the first approach to zero-delay consistent signal
reconstruction from a streaming multivariate time series of quantization intervals
(see Fig. D.1b), as well as an extensive experimental study of its error-rate decay
dependencies. Specifically, our approach follows the strategy presented in [3], which
describes how to formulate a smoothing spline interpolation problem from streaming
data under a sequential decision-making perspective and zero-delay requirements.
In [3], a stationary parametric policy, i.e., a time-invariant decision strategy, based
on tunable parameters on top of a recurrent neural network (RNN) [130] is devised.
Then, the policy is trained over a set of representative streaming data to reduce
a given trade-off between the sum of squared residuals and the roughness, i.e., a
derivative-based measure of the model complexity [32], of the reconstructed signal.
However, that strategy is intended for univariate and noisy data samples and fails to
ensure consistency in the reconstruction as well as to exploit the spatial dependencies
of multivariate streaming data.

The work in this paper considerably differs from the work in [3]. This is because
our zero-delay consistent signal reconstructions are obtained by optimizing a differ-
ent objective than the one introduced in [3]. Furthermore, the resulting optimization
problem contains additional constraints to ensure consistency, such as enforcing the
reconstructed signal to pass through quantization intervals, thus requiring to seek
solutions in different feasible sets. These facts also substantially change the proce-
dure in which the solution is found. Moreover, the multivariate analysis presented
in this paper allows us to reach additional results and conclusions that would not
be available after merely extending the approach in [3] to multivariate signals. Con-
cretely, offline consistent signal reconstructions do not benefit from a multivariate
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formulation (due to separability), whereas our zero-delay consistent signal recon-
struction does improve (in terms of the error-rate decay) when incorporating the
spatial relations among the multiple time series of quantization intervals. There-
fore, the extension to the multivariate case provides new insights that improve our
understanding of online consistent signal reconstructions.

The main contributions of this paper can be summarized as follows:

• We formalize the concept of consistent signal reconstruction from streaming
data under zero-delay response requirements. As a result, our formulation
generalizes the concept of consistency beyond offline settings.

• To the best of our knowledge, we devise the first consistent method for zero-
delay signal reconstruction from streaming multivariate time series. The method
can enforce consistency in a closed-form step allowing for a faster and more
convenient implementation than numerical alternatives.

• We show experimentally that the reconstruction error incurred by our pro-
posed method decays at the same rate by decreasing the quantization step
size or increasing the oversampling ratio. Moreover, the error-rate decay slope
with respect to the oversampling ratio doubles (in logarithmic scale) the one
obtained with a similar zero-delay smooth signal reconstruction method that
does not enforce consistency.

• Additionally, we observe that the error-rate decay incurred by our method does
improve when incorporating the spatial relationships among the multiple time
series, whereas offline consistent signal reconstructions do not benefit from a
multivariate formulation.

The rest of the paper is organized as follows. Sec. D.2 introduces the main
notation used throughout the paper. Sec. D.3 formalizes the notion of consistency
and presents the concept of consistent signal reconstruction from streaming data
under zero-delay requirements. Then, Sec. D.4 describes our proposed method from
a sequential decision-making perspective, and Sec. D.5 analyzes its error-rate decay
behavior experimentally. Finally, Sec. D.6 concludes the paper.

D.2 Mathematical notation

This section introduces the mathematical notation most recurrently used throughout
the paper.

Vectors and matrices are represented in bold lowercase and bold capital letters,
respectively. Given a vector v = [v1, . . . , vC ]

⊤ its cth component is indicated as
[v]c ≜ vc. Similarly, given a matrix M ∈ RR×C , the element in the rth row and
cth column is indicated as [M ]r,c. The notation [v]i:j refers to the sliced vector
[vi, . . . , vj] ∈ Rj−i+1. We use Euler’s notation for the derivative operator; thus, Dk

x

denotes the kth derivative over the variable x. Lastly, we refer to functions f as
elements of a function space or explicitly allude to its domain and codomain with
the compact notation f(x), depending on the context.
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D.3 Consistency

This section describes and models the function space comprising the signals consid-
ered in this work and the acquisition system. Accordingly, we identify and define
the set of consistent signal estimates and introduce the related concept of consistent
signal reconstruction from streaming acquired data.

D.3.1 Function space of multivariate smooth signals

Most real-world physical processes are bounded and smooth due to energy con-
servation [123]. Moreover, most of them occur within a certain finite time lapse.
Therefore, we assume any real-world process-associated measurable quantity to be
described by smooth and non-bandlimited signals.

Let us define Wρ as the function space of real functions defined over the domain
(0, X] ⊆ R with ρ − 1 absolutely continuous derivatives and with the ρth deriva-
tive square integrable. Then, any of the aforementioned real-world signals can be
accurately modeled by a function ψ ∈ Wρ. In practice, ψ can be approximated, or
reconstructed, from a set of T∗ uniformly sampled measurements {ψ(tX/T∗)}T∗

t=1 as
follows

f∗ ≜ arg min
f∈Wρ

∫ X

0

(Dρ
xf(x))

2 dx (D.3a)

subject to: f

(
tX

T∗

)
= ψ

(
tX

T∗

)
, ∀t ∈ N[1,T∗], (D.3b)

where the metric used as objective in (D.3a) is usually referred to as roughness and
f∗ is unique as long as T∗ ≥ ρ [149, 150]. Actually, any function ψ ∈ Wρ with
roughness bounded by an arbitrary constant is known to satisfy

sup
x∈[X/T∗,X)

∣∣Dk
xψ(x)−Dk

xf∗(x)
∣∣ ≤ const ·

(
X

T∗

)ρ−k

, (D.4)

for all k ∈ {0, . . . , ρ− 1} [24]. That is, the reconstruction error, up to the (ρ− 1)th
derivative, is upper bounded by a term inversely proportional to the number T∗ of
measurements.

Since the reconstruction error in (D.4) can be made arbitrarily small by increas-
ing the number of samples T∗, we restrict ourselves without loss of generality to those
signals in Wρ whose approximation, as in (D.3), is exact, i.e., the left-hand term in
(D.4) is zero-valued for all allowed kth derivatives. The function space where such
signals of interest belong is denoted as Vρ ⊆ Wρ, and turns out to be constituted
by splines, i.e., piecewise polynomial functions, of order 2ρ− 1 with T∗ knots (joint
points) at X∗ = {tX/T∗}T∗

t=1 [24].
On the other hand, more than one signal often concurrently stems from the

same physical process. Given that, one can expect spatial interdependencies among
them. For this reason, this work deals with multivariate signals of the form Ψ =
[ψ(1), . . . , ψ(N)]⊤ with ψ(n) ∈ Vρn for all n ∈ N[1,N ], namely, Ψ ∈ Vρ1 × · · · × VρN .
However, and for the sake of simplicity in the notation, we rather focus on those
multivariate signals in Vρ×· · ·×Vρ = VN

ρ , i.e., same order ρ across all N dimensions,
since the considered formulation can be easily adapted to the presented general case.
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D.3.2 Acquisition system and irreversibility

Thanks to the reconstruction procedure presented in (D.3), a multivariate signal
Ψ ∈ VN

ρ can be reversibly sampled despite being non-bandlimited. That is, we
can recover the multivariate signal Ψ from finitely many measurements as long as
they contain its set of knots, namely, the signal values Ψ(x) sampled at x ∈ X∗.
For example, we can measure the knots by sampling uniformly at a rate ν∗ =
T∗/X. In fact, any uniform sampling rate ν = Rν∗, with R being a positive integer
oversampling ratio, measures all the knots in X∗ because X = {tν−1}RT∗

t=1 ⊇ X∗.
Ideally, these measurements would be acquired through an infinite amplitude-

resolution sampling mechanism, namely, an ideal sampler. However, this is impos-
sible in practice due to the physical limitations of measuring devices [151]. Instead,
the usual procedure is to assume an ideal sampler and then model the resulting finite
amplitude-resolution measurements as the outcome of a quantization mapping. In
this work, we assume an ideal sampler working at a uniform sampling rate ν followed
by a uniform midtread quantizer with a quantization step size ∆(n) for each of the
n signals.

The resulting acquired data consists of a streaming multivariate time series of
N time series of length T = RT∗. We refer to every tth term of the streaming
multivariate time series as an observation, ot. Every tth observation is constructed
from N quantization intervals described by their time stamp xt = tX/T ∈ X ,

common for all intervals of the tth observation, their center y
(n)
t ∈ R, and half

quantization step size ϵ(n) = ∆(n)/2 ∈ R+. Formally, ot = [xt,y
⊤
t , ϵ

⊤]⊤ where

yt = [y
(1)
t , . . . , y

(N)
t ]⊤ and ϵ = [ϵ(1), . . . , ϵ(N)]⊤.

Unfortunately, the acquisition system under consideration is irreversible. That
is, the multivariate signals in VN

ρ may not be perfectly recovered from a finite set
of measurements anymore if acquired as described above. This drawback is two-
sourced. First, the sampler works sequentially. Thus, intermediate acquisition stages
are irreversible because not all knots, i.e., the multivariate signal values at X∗, have
been measured yet. Second, the quantization step is a many-to-one mapping, i.e.,
non-injective and hence, not invertible. Consequently, incurring a reconstruction
error in this context is unavoidable.

D.3.3 Consistent signal estimate

As stated in the previous Sec. D.3.2, it is generally impossible to recover a multi-
variate signal Ψ ∈ VN

ρ from its stream of observations. Nevertheless, we can select
a relatively reduced set of functions where the multivariate signal Ψ lies. Specifi-
cally, for every nth time series and for any of its ith quantization intervals we can
construct its associated hyperslab H(n)

i ⊆ Vρ as

H(n)
i =

{
h ∈ Vρ :

∣∣∣h(xi)− y
(n)
i

∣∣∣ ≤ ϵ(n)
}
. (D.5)

Then, at time step t, we can state that each signal ψ(n) belongs to the intersection
of its so-far constructed hyperslabs. That is, ψ(n) ∈ H(n)

1:t with H(n)
1:t ≜

⋂t
i=1H

(n)
i , as

illustrated in Fig. D.2a. In this context, any signal estimate described by a function
drawn from H(n)

1:t is called a consistent signal estimate at time step t, or simply
consistent signal estimate, when clear by context. This is because any reacquisition,
i.e., processing the newly estimated signal through the same acquisition system
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(a) Intersection of hyperslabs as a Venn diagram. At time step t, the functions within the

area enclosed by the dotted black line, H(n)
1:t , describe current consistent signal estimates.
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(b) Comparison between the ongoing reconstructed signals using a non-consistent (NC)
and a consistent (C) method. Fig. D.2a illustrates how both methods produce a sequence

of consistent signal estimates, namely, {f̃ (n)
t }Tt=1 and {f (n)

t }Tt=1. However, the sequence

{f̃ (n)
t }Tt=1 does not lead to a consistent signal reconstruction, while the sequence {f (n)

t }Tt=1

does.

Figure D.2: Visual representation of a consistent signal estimate and a consistent
signal reconstruction.
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until the same time step t, leads to the same set of already received t quantization
intervals. Equivalently, any signal estimate is conventionally referred to as consistent
if and only if: i) it passes through all the (so-far) received quantization intervals,
and ii) it is described by a function in Vρ [57].

Recall from Sec. D.3.1 that Vρ is constituted by splines of order 2ρ − 1, with
ρ − 1 continuous derivatives and T∗ knots located at time stamps in X∗. For this
reason, we construct every nth signal estimate as a spline composed of T pieces, or
function sections, as

f (n)(x) =


g
(n)
1 (x), if 0 < x ≤ x1

g
(n)
2 (x), if x1 < x ≤ x2
...

g
(n)
T (x), if xT−1 < x ≤ xT

(D.6)

where every tth function section g
(n)
t : (xt−1, xt] → R is a linear combination of

polynomials of the form

g
(n)
t (x) = a

(n)
t

⊤
pt(x), (D.7)

with combination coefficients a
(n)
t ∈ R2ρ and basis vector function pt : (xt−1, xt] →

R2ρ defined as

pt(x) =
[
1, (x− xt−1), . . . , (x− xt−1)

2ρ−1
]⊤
. (D.8)

Then, the remaining requirements for f (n) to belong to Vρ are that the location of
its knots must cover all time stamps in X∗ and that it has to be continuous up to the
(ρ − 1)th derivative. By design, the knots of f (n) lie at X hence, covering all time
stamps in X∗ since X∗ ⊆ X . Regarding its continuity, for f (n) to be (ρ− 1)-smooth,
the function sections must satisfy

lim
x→x−

t−1

Dk
x g

(n)
t−1(x) = lim

x→x+
t−1

Dk
x g

(n)
t (x), (D.9)

for every k ∈ [0, ρ−1] and t ∈ [2, T ]. This can be ensured by imposing the following
equality constraint [

a
(n)
t

]
1:ρ

= e
(n)
t−1, (D.10)

for each t ∈ N[1,T ], where e
(n)
t ∈ Rρ is a vector with elements given by

[e
(n)
t ]i =

1

(i− 1)!

2ρ∑
j=1

[
a
(n)
t

]
j
uj−i
t

i−1∏
k=1

(j − k), (D.11)

where ut ≜ xt−xt−1, except u1 = x1, and where e
(n)
0 determines the initial boundary

conditions of the signal estimate ([3, Proposition 1]).
In this way, any signal estimate f (n) constructed as in (D.6), and satisfying (D.9),

belongs to Vρ. Additionally, and as stated before, if at time step t it passes through

all the so-far received quantization intervals, i.e., f (n) satisfies |f (n)(xi)− y
(n)
i | ≤ ϵ(n)

for all i ∈ {1, . . . , t}, or equivalently f (n) ∈ H(n)
1:t , then it is a consistent signal

estimate at time step t.
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D.3.4 Zero-delay consistent signal reconstruction

Recall that the acquisition system modeled in Sec. D.3.2 generates a stream of
observations. In this paper, we pursue its converse reconstruction approach; that
is, our goal is to sequentially reconstruct a signal Ψ ∈ VN

ρ as its observations are
received. To this end, we devise a zero-delay multivariate signal reconstruction
method. In this context, our objective is to yield a sequence of signal estimates
in VN

ρ , where the tth multivariate signal estimate ft = [f
(1)
t , . . . , f

(N)
t ]⊤ is used to

reconstruct the multivariate time series between the last two received observations,
i.e., ot−1 and ot. Moreover, every reconstruction step has to be performed as soon as
the tth observation is received and without knowing the to-be-received observations2.

From the discussion in Sec. D.3.3, one may expect to obtain a consistent signal
reconstruction using a zero-delay signal reconstruction method that generates a
sequence of consistent signal estimates. That is, for each nth time series every tth
signal estimate f

(n)
t belongs toH(n)

1:t . However, it is important to notice that a method
producing a sequence of consistent signal estimates does not necessarily achieve a
consistent reconstruction. This is because guaranteeing a consistent reconstruction
requires the sequence of signal estimates to fulfill additional requisites. Specifically,
every two consecutive consistent signal estimates, namely f

(n)
t−1 and f

(n)
t , must ensure

smoothness at the takeover time stamp xt−1, as shown in Fig. D.2b. Formally, a
consistent signal reconstruction is attainable from a sequence of consistent signal
estimates {f (n)

t }Tt=1 if they satisfy that c
(n)
t ∈ H(n)

1:t , where

c
(n)
t (x) =

{
f
(n)
t−1(x) if 0 < x ≤ xt−1,

f
(n)
t (x) if xt−1 < x ≤ X,

(D.12)

for all t ∈ N[2,T ].
In our case, the presented zero-delay reconstruction methods can yield a consis-

tent signal reconstruction by sequentially updating the spline-based signal estimate
coefficients. Concretely, if at every time step t, we update the remaining T − t
spline coefficients, i.e., a

(n)
i for i = t, . . . , T subject to satisfying the corresponding

continuity constraints in (D.10), and subject to passing through the last received

quantization interval, i.e., the tth spline coefficients obey |a(n)
t

⊤
pt(xt)− y

(n)
t | ≤ ϵ(n),

then the resulting signal estimate update f
(n)
t is part of a sequence satisfying (D.12).

In this way, the overall signal reconstruction, i.e., the reconstructed signal at the last
time step T , is completely described by the last consistent signal estimate f

(n)
T . In

practice, updating just the tth spline coefficients at every time step t (temporarily
ignoring the T − t remaining coefficients) eventually leads to the same consistent
signal reconstruction.

Given this, notice that the core difference between the offline consistent signal
reconstruction methods discussed in Sec. D.1 and our approach lies in the fact that
we explicitly account for the sequential nature of the acquisition system. This is
conceptually more challenging than assuming that all data samples are available in
advance since in the sequential case we cannot achieve a consistent signal recon-
struction with just a single consistent signal estimate, but with a sequence of them,

2For the sake of completeness, implementing a zero-delay signal reconstruction method also
requires a reduced constant complexity per iteration to guarantee the required execution speed
and scalability [124].
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subject to (D.12), instead. This significant difference opens the question of whether
a method for zero-delay consistent signal reconstruction has the corresponding ben-
efits in the reconstruction error-rate decay behavior as the offline consistent ones
have [27, 56, 59, 28]. We anticipate a positive answer to the posed question, but
before presenting such an outcome, we introduce our zero-delay consistent signal
reconstruction approach in detail.

D.4 Zero-delay spline interpolation

This section introduces a zero-delay spline interpolation approach based on policy
training that, differently from [3], can accommodate multivariate quantized data
and enforce consistency as defined in Sec. D.3.

D.4.1 A trainable multivariate approach to zero-delay spline
interpolation

The problem of reconstructing a multivariate time series of quantization intervals
using a sequence of spline-based signal estimates under smoothness and zero-delay
requirements can be formalized from a sequential decision-making perspective as
follows. At time step t, we encode the condition of the so-far reconstructed signal,
and the last received quantization interval in a vector-valued variable referred to as
the tth state st ∈ S, being S the state space. Every tth state is constructed as

st = [xt−1,o
⊤
t , e

⊤
t−1]

⊤ with et−1 = [e
(1)
t−1

⊤
, . . . , e

(N)
t−1

⊤
]⊤ where every nth component

e
(n)
t−1 represents the right hand term at (D.10). In fact, every tth state is fully

determined once all nth spline coefficients a
(n)
t are fixed, and the tth observation ot

is received. This can be explicitly described by a state update mechanism through a
deterministic mapping, as st+1 = F (st,at,ot+1), allowing us to identify all visitable
states handily. On the other hand, selecting all nth spline coefficients at time step
t can be understood as an action. This is because every nth function section g

(n)
t ,

as defined in (D.7), is fully determined as soon as a
(n)
t is chosen and hence so is the

resulting piece of the subsequent signal reconstruction. Explicitly, we construct every

tth action by concatenating all nth spline coefficients, i.e., at = [a
(1)
t

⊤
, . . . ,a

(N)
t

⊤
]⊤,

and denote the action space as A ⊆ R2Nρ. We distinctively indicate the set of
actions accessible from a given state st as the admissible action set A(st) ⊆ A.
In particular, we select the tth action through a stationary parametric policy µθ :
S → A. Stationary policies do not change over time, and they are suitable for
making decisions in problems governed by stationary spatiotemporal dynamics and
with varying time steps. On the other hand, policy parametrization helps to reduce
the pool of candidate policies and allows, with some flexibility, to accommodate the
problem structure, e.g., spatiotemporal dynamics and constraints, into the policy.

In this context, any reconstructed signal can be assessed and therefore compared
by computing a cumulative cost K : S ×A → R through the traversed state-action
pairs by following a given policy µθ. From here, we can tune the policy parameters
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Table D.1: Per time-series cost κ(·, ·) and admissible action setA(·) for the consistent
(■) and smoothing (□) policy variations.

Per time-series cost evaluated at the tth state-action pair

a
(n)
t

⊤
Mta

(n)
t(

p⊤t (xt)a
(n)
t − y

(n)
t

)2
+ η a

(n)
t

⊤
Mta

(n)
t , with η > 0

Admissible action set for the tth state

{a ∈ A :
∣∣∣p⊤t (xt)a(n) − y

(n)
t

∣∣∣ ≤ ϵ(n),

[a(n)]1:ρ = e
(n)
t−1, ∀n ∈ [1, N ]

}
{
a ∈ A : [a(n)]1:ρ = e

(n)
t−1, ∀n ∈ [1, N ]

}
via policy training by solving the following optimization problem

arg min
θ∈RP

M∑
m=1

T∑
t=1

K (sm,t,µθ(sm,t)) (D.13a)

s. to: sm,t = F (sm,t−1,µθ(sm,t−1),om,t) ,∀m, t, (D.13b)

µθ(sm,t) ∈ A(sm,t),∀m, t, (D.13c)

where the integerM denotes the number of example multivariate time series, indexed
by m, and where all the stream of observations om,t and initial states sm,0 are
given. Thus, if a sufficiently large collection of representative multivariate time
series is available, one expects the trained policy to outperform, on average, any
other policy with different parameter values when tested over a previously unseen
stream of observations.

D.4.2 Policy architectures and variations

In this work, we are interested in stationary parametric policies of the form

µθ(st) = arg min
a∈A(st)

{K(st,a) + Jθ(st,a;ht)} , (D.14)

where K denotes the same cost used in the objective (D.13a), and the map Jθ :
S × A × RL → R is a parametric approximation of the cost-to-go [45]. Here,
ht ∈ RL represents a latent state, common for all N time series at the tth time step,
and it plays the role of policy memory [133, 134, 135]. Notice that the choice of Jθ
determines the architecture of the policy, i.e., the relation between the P parameters
within θ. In this work, we adopt three possible policy architectures.

First, we consider a myopic policy consisting of a parameterless policy architec-
ture where Jθ(st,a;ht) = 0 for all t. The myopic policy is arguably the simplest
architecture-wise but ignores the cost-effect of current actions in future decisions.
Second, we suggest an RNN-based policy corresponding to the following parametric
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cost-to-go approximation

Jθ(st,a;ht) =
N∑

n=1

λn

∥∥∥∥a(n) −
[
0ρ

r
(n)
t

]∥∥∥∥2
2

, (D.15)

where the vectors r
(n)
t ∈ Rρ, for all n ∈ N[1,N ], and ht represent the output value and

latent state of an RNN Rθ′ : S × RL → RNρ × RL, respectively. They are obtained
through the following relation

Rθ′(st;ht) =

[
rt
ht+1

]
, (D.16)

where rt = [r
(1)
t

⊤
, . . . , r

(N)
t

⊤
]⊤, θ′ ∈ RP−N and θ = [λ1, . . . , λN ,θ

′⊤]⊤ ∈ RN
+ ×RP−N .

The vector 0ρ is used in (D.15) to disregard the components of every a(n) that are
already decided by imposing the continuity constraints in (D.10). The RNN-based
policy promotes actions close, in the sense of a Euclidean distance, to the output
of a certain RNN, in this case, Rθ′ . Thus, an RNN that successfully captures the
spatiotemporal dynamics of the process generating the multivariate time series can
lead to admissible actions with a reduced-cost effect in future decisions. Finally, we
utilize a batch policy, or solution, involving an exact cost-to-go approximation. The
name of the policy comes from the fact that you need the whole batch of streaming
observations in advance to construct the exact cost-to-go, i.e., solving (D.3). Thus,
in practice, it cannot be used under zero-delay requirements. The batch solution is
parameterless, and by definition, it yields the signal reconstruction with the lowest
possible cost.

From the presented policy architectures, notice that we can build different pol-
icy variations depending on the choice of the cost K and admissible set A(·). In
this work, we devise a policy yielding consistent signal reconstructions and present
another policy variation designed to reconstruct noisy data smoothly but not consis-
tently. Both presented policy variations, called from now on consistent and smooth-
ing, respectively, are based on the fact that the roughness, as expressed in (D.3a),
can be equivalently computed from a trajectory of state-action pairs, as we have
shown in our previous work ([3, Proposition 2]). Specifically, the roughness of a

spline-based signal estimate fT = [f
(1)
T , . . . , f

(N)
T ]⊤ over the domain (0, X] can be

computed as
N∑

n=1

∫ X

0

(
Dρ

xf
(n)
T (x)

)2
dx =

T∑
t=1

N∑
n=1

a
(n)
t

⊤
Mta

(n)
t , (D.17)

where the elements of Mt ∈ S2ρ
+ are obtained through

[Mt]i,j =

{
0 if i ≤ ρ or j ≤ ρ,

ui+j−2ρ−1
t

∏ρ
k=1(i−k)(j−k)

i+j−2ρ−1
otherwise,

(D.18)

with ut ≜ xt − xt−1, except u1 = x1. Similarly, we can construct a roughness-aware
penalization from a cost of the form

K(st,at) =
N∑

n=1

κ
(
s
(n)
t ,a

(n)
t

)
, (D.19)
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Figure D.3: Snapshot of an ongoing signal reconstruction using the smoothing policy
variation.
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Figure D.4: Conceptualization of the hyperplane projection P
Ĥ

(n)
t

in the inner prod-

uct space
(
Rρ, ⟨·, ·⟩

D
(n)
t

)
.

where s
(n)
t is an auxiliar per time-series state constructed from the tth state, st =

[xt−1,o
⊤
t , e

⊤
t−1]

⊤, as s
(n)
t = [xt−1, xt, y

(n)
t , ϵ(n), e

(n)
t−1

⊤
]⊤ and where κ denotes a per

time-series cost. Table D.1 summarizes our proposed policy variations.

Briefly, the consistent policy variation ensures smoothness while enforcing that
the reconstructed signal passes through the quantization intervals, thus yielding a
consistent signal reconstruction. On the other hand, the smoothing policy variation
extends the smoothing interpolation approach, introduced in our previous work [3],
to multivariate time series. Specifically, it aims to reduce the squared residuals
with the center of the intervals while promoting smoothness, but it does not enforce
that the ongoingly reconstructed signal passes through the quantization intervals,
as illustrated in Fig. D.3, hence neither consistency.

D.4.3 Policy evaluation

By design, evaluating the considered policies involves solving optimization problem
(D.14). The myopic and RNN-based policy architectures, in any of their variations
given in Table D.1, can be equivalently evaluated by solving the following quadratic
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Table D.2: Terms of the quadratic form for the smoothing policy variation. This
notation is shared with the rest of the paper with the incorporation of Pt ≜

pt(xt)pt(xt)
⊤ and v

(n)
t ≜ [0⊤

ρ , r
(n)
t

⊤
]⊤.

A
(n)
t b

(n)
t

Myopic Pt + ηMt −2y
(n)
t pt(xt)

RNN Pt + ηMt + λnI2ρ −2(y
(n)
t pt(xt) + λnv

(n)
t )

Table D.3: Terms of the quadratic form for the consistent policy variation. Same
notation as Table D.2.

A
(n)
t b

(n)
t

Myopic Mt 02ρ

RNN Mt + λnI2ρ −2λnv
(n)
t
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Figure D.5: Representation of a tth forward pass of our RNN-based policy. CAT
refers to a vector concatenation layer. Evaluating the policy consists of solving a
convex optimization problem with respect to a, see (D.14) and Sec. D.4.3. There-
fore, its last step can be seen as a convex optimization layer [14].
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convex problem

µθ(st) = arg min
a∈A(st)

{
N∑

n=1

a(n)⊤A
(n)
t a

(n) + b
(n)
t

⊤
a(n)

}
, (D.20)

where the terms A
(n)
t ∈ S2ρ

+ and b
(n)
t ∈ R2ρ depend on the chosen policy architecture

and variation, as displayed in Tables D.2 and D.3. The policy evaluation in (D.20)
is presented as an intermediate step for clarity. Then, after some algebraic steps, it
can be equivalently reformulated as

µθ(st) = arg min
a∈A(st)

{
N∑

n=1

∥a(n) −α(n)
t ∥2

D
(n)
t

}
(D.21)

where every D
(n)
t ∈ Sρ

++ and α
(n)
t ∈ Rρ are computed from the elements of the tth

state, through A
(n)
t and b

(n)
t , as

D
(n)
t = B⊤

2 A
(n)
t B2, (D.22)

and

α
(n)
t = −D(n)

t

−1
(
B2A

(n)
t B1e

(n)
t−1 +

1

2
B⊤

2 b
(n)
t

)
, (D.23)

for all n ∈ N[1,N ] and t ∈ N[1,T ]. The auxiliary matrices B1 ≜ [Iρ,0ρ×ρ]
⊤ ∈ R2ρ×ρ

and B2 ≜ [0ρ×ρ, Iρ]
⊤ ∈ R2ρ×ρ are defined for notational brevity. The evaluation

form in (D.21) is analytically preferable since it corresponds to a minimum norm
problem or a hyperslab projection problem [23, 1], for the smoothing or consistent
policy variations, respectively. This is because the aforementioned problems admit
the following closed-form solution

µθ(st) =

a
(1)
t

∗

...

a
(N)
t

∗

 , with a(n)
t

∗
=

[
e
(n)
t−1

ζ
(n)
t

(
α

(n)
t

)] , ∀n, (D.24)

where ζ
(n)
t : Rρ → Rρ is the identity operator for the smoothing policy variation and

the projection onto the hyperslab

H̃(n)
t ≜

{
β ∈ Rρ :

∣∣∣β⊤qt − w
(n)
t

∣∣∣ ≤ ϵ(n)
}
, (D.25)

for the consistent one, where qt ≜ [pt(xt)]ρ+1:2ρ and w
(n)
t ≜ y

(n)
t −e(n)t−1

⊤
[pt(xt)]1:ρ for

all t ∈ N[1,T ] and n ∈ N[1,N ]. Every hyperslab H̃(n)
t can be visualized as the set of all

points which belong between and onto the hyperplanes

Ĥ
(n)
t ≜

{
β ∈ Rρ : β⊤qt = w(n) + ϵ(n)

}
, (D.26a)

Ȟ
(n)
t ≜

{
β ∈ Rρ : β⊤qt = w(n) − ϵ(n)

}
. (D.26b)

Based on this observation, the projection onto the hyperslab H̃(n)
t can be com-

puted as

ζ
(n)
t (β) =


P
Ĥ

(n)
t

(β), if β⊤qt > w
(n)
t + ϵ(n),

β, if
∣∣∣β⊤qt − w

(n)
t

∣∣∣ ≤ ϵ(n),

P
Ȟ

(n)
t

(β), if β⊤qt < w
(n)
t − ϵ(n),

(D.27)
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where P
Ĥ

(n)
t

: Rρ → Ĥ
(n)
t and P

Ȟ
(n)
t

: Rρ → Ȟ
(n)
t denote the projections onto the

hyperplanes Ĥ
(n)
t and Ȟ

(n)
t , respectively. These projections can be computed in

closed form as

P
Ĥ

(n)
t

(β) = β −
(
β⊤qt − w

(n)
t − ϵ(n)

) (
D

(n)
t

)−1

qt

q⊤t

(
D

(n)
t

)−1

qt

, (D.28a)

P
Ȟ

(n)
t

(β) = β −
(
β⊤qt − w

(n)
t + ϵ(n)

) (
D

(n)
t

)−1

qt

q⊤t

(
D

(n)
t

)−1

qt

. (D.28b)

See Fig. D.4 for some intuition behind the closed-form projection in (D.28a). The
same reasoning applies to the other hyperplane.

D.4.4 Policy training

Unlike the myopic policy architecture and batch solution, which are parameterless,
the RNN-based architecture requires to be tuned, in this case, through (D.13),
for adequate performance. Since evaluating the RNN-based policy can be seen as
performing a forward pass from a deep learning point of view [47], the policy training
problem (D.13) can be tackled via backpropagation through time [48]. Here, the
closed-form evaluation described in Sec. D.4.3 allows us to compute and propagate
the gradient of the tth action at with respect to the parameters contained in θ
without the need of unrolling numerical optimizers [137] or other specialized tools
[14]. An overall scheme of our chosen RNN-based policy and its components can be
found in Fig. D.5.

D.5 Error-rate decay

In this section, we experimentally analyze the signal reconstruction error-rate decay
incurred by the consistent variation of the RNN-based policy (see Sec. D.4.2),
with respect to the oversampling ratio and quantization step size of the acquisition
system. To this end, we first set a specific function space of multivariate smooth
signals, as described in Sec. D.3.1. For simplicity, we fix the dimensionality of the
multivariate signal to N = 2, and specify the roughness by choosing ρ = 2. Then, we
describe a form to generate multivariate signals from V2

2 . These multivariate signals,
along with an acquisition system with given oversampling ratio and quantization
stepsize values, shape the time series data of the experiment. Separately, we use the
myopic policy architecture as a benchmark, or base method, which does not exploit
the spatiotemporal dependencies among time series, and the batch solution as a
baseline, or best possible performance indicator. The central goal of this section is
to compare the performance of the RNN-based policy architecture that considers
the possible spatial relations between the time series (multivariate) against a policy
based on the same RNN architecture but ignoring the spatial relations (univariate).
This is done for both policy variations: consistent and smoothing.
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Figure D.6: Scheme of the acyclic VAR(1) process generating the 2 series of knots
for any mth sequence. The thickness of the arrows represents the magnitude of the
autoregressive parameters.

D.5.1 Data generation

Unlike real-world acquired signals, which usually include uncertainty due to uniden-
tified external noise sources or lack of knowledge about their underlying generating
process, synthetic signals can be generated in a controlled environment. On the one
hand, synthetic data is usually a simplified version of real-world data, hence not
always accurately representing the real world. On the other hand, the mechanisms
used to generate synthetic data are fully known. This is especially convenient in
studies involving irreversible transformations such as quantization since there is no
other unidentified source of error than the quantization and reconstruction meth-
ods at work. In this paper, we use synthetically generated multivariate time series
to delimit, as much as possible, the dependencies between the reconstruction error
and the reconstruction method used. Moreover, the synthetic data we use is com-
plex enough to accommodate the smooth behavior as well as the spatiotemporal
dependencies assumed in Sec. D.3.1.

First, we generate M = 288 sequences composed of N = 2 series of T∗ = 100
knots each, where every knot has been computed recurrently from a stable vec-
tor autoregressive VAR(1) process zm,t = Φzm,t−1 + wm,t with autoregressive pa-
rameters Φ ∈ R2, being [Φ]1,2 = 0 to avoid self feedback, Gaussian innovation
wm,t ∼ N

(
0, diag([0.1, 0.1]⊤)

)
and where zm,0 = 02 for all m ∈ N[1,M ]. In this way,

the resulting sequences of knots inherit the spatiotemporal relations of the VAR(1)
generator process, as illustrated in Fig. D.6. Second, each series of knots is arranged
uniformly, with a unitary period 1/ν∗ = 1, and is interpolated with cubic natural
splines, which are the smoothest interpolators in terms of the ρ = 2 roughness [6].
Lastly, the resulting continuous signals are uniformly sampled at a frequency ν =
Rν∗ = R with a natural oversampling ratio R spanning from 1 to 5 and quantized by
a uniform midtread quantizer, with a half-step size ϵ ∈ {0.1, 0.08, 0.06, 0.04, 0.02}.
As a result, we generate a dataset consisting of 288 multivariate time series with
elements of the form ỹ

(n)
m,t = round(z

(n)
m,t/2ϵ)2ϵ for every n ∈ {1, 2}, m ∈ N[1,288] and

t ∈ N[1,T ], where T = 100R.

D.5.2 Experimental setup

The dataset is divided into 196 samples for training, 64 for validation, and 32 for
testing. Then, to avoid data leaking, the whole dataset is standardized along each
time series with the mean γ

(n)
tr and standard deviation σ

(n)
tr of the training partition.

Explicitly, y
(n)
m,t = (ỹ

(n)
m,t − γ

(n)
tr )/σ

(n)
tr and ϵ(n) = ϵ/σ

(n)
tr for all n ∈ {1, 2}, m ∈ N[1,288]

and t ∈ N[1,100R], resulting in quantization intervals as described in Sec. D.3.2. The
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Figure D.7: Training-validation curves for the consistent variation of the RNN-based
policy. The loss metric is the average total cost per function section computed from
the per time-series cost presented in Table D.1.

RNN-based policy architecture consists of 2 stacked gated recurrent units (GRU)
layers [51], with a latent state of size L = 48 and an input of size 32. The input and
output layers are set as linear layers matching the required dimensionality, see Fig.
D.5 for a visual representation, which accordingly varies depending on whether we
reconstruct multivariate time series as a multivariate signal or as separate individual
univariate signals. Lastly, the RNN-based policies have been trained using the
adaptive moments (Adam) optimizer [143], with an exponential decay rate for the
first moment estimates of β1 = 0.9 and the second-moment estimates of β2 = 0.999,
without weight decay, a learning rate of 0.002 and with a gradient norm clip value
of 0.1 over mini-batches of 32 samples.

D.5.3 Results and discussion

The training-validation curves obtained for the consistent variation of the RNN-
based policy, from data acquired with R = 1 and ϵ = 0.1, are presented in Fig. D.7.
As expected, the consistent RNN-based policy outperforms the consistent myopic
policy for both the multivariate and univariate reconstruction cases. Moreover, the
multivariate reconstruction outperforms the univariate one, illustrating the model
capabilities to successfully exploit spatial dependencies (and not only the temporal
ones) from multivariate time series.

Regarding the reconstruction error-rate decay behavior, we have computed the
average MSE over all time series in the test set. This has been done for every consid-
ered policy architecture (once they are trained, if applicable) and policy variation.
As shown in Fig. D.8, we have presented the results by grouping the consistent
and smoothing policy variations versus the quantization half-step size ϵ (with fixed
R = 1) or versus the oversampling ratio R (with fixed ϵ = 0.1). The slope of the
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(b) Smoothing policy variation.

Figure D.8: Average MSE decay curves over the test set in log-log scale. The fitting
curves are log-linear functions adjusted from the multivariate average MSE values.
The shaded area represents the confidence in the slope of the fit. The values in Fig.
D.8b have been computed for an η = 0.001.
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fitting curve reflects the average error-rate decay in logarithmic scale incurred by the
multivariate reconstructions of the RNN-based policies. In the case of the consistent
policy variation, the module of the quotient between the slope obtained by varying
the quantization step size (0.99 ± 0.09) over the slope obtained by increasing the
oversampling ratio (−0.812 ± 0.008) is 1.22 ± 0.11. This quotient ratio is only (at
most within) two standard deviations from a unit value, suggesting that the bal-
anced error-rate decay property can be achieved for consistent reconstructions even
under zero-delay requirements. As to the smoothing policy variation (with slope
−0.435 ± 0.002), we are interested in its relative performance with respect to the
consistent one. Here, the quotient ratio between the slopes of the fits is 1.87± 0.02,
meaning that the error-rate decay for the consistent policy variation is nearly dou-
bled with respect to the smoothing one. Again as expected, a property of offline
consistency manifests even under zero-delay requirements.

D.6 Conclusion

This paper designs a method for zero-delay signal reconstruction from streaming
multivariate time series of quantization intervals, both for the smoothing and con-
sistent discussed variants. The error-rate decay behavior of the proposed methods
has been empirically analyzed showing that the error incurred by the consistent
variant decreases nearly twice (in logarithmic scale) as fast as the error incurred
by the (non-consistent) smoothing variant, as the oversampling ratio is increased.
Moreover, the former error rate is practically the same as the rate the error de-
creases when the quantization step size is reduced, which is advantageous from an
implementation perspective. Finally, we also observe that successfully exploiting
the spatiotemporal dependencies of the streaming quantized data, in this case via
policy training, helps to reduce the average signal reconstruction error.
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[3] E. Ruiz-Moreno, L. M. López-Ramos, and B. Beferull-Lozano, “A trainable
approach to zero-delay smoothing spline interpolation,” IEEE Transactions
on Signal Processing, vol. 71, pp. 4317–4329, 2023.
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