
ScienceDirect

Available online at www.sciencedirect.com

Procedia CIRP 120 (2023) 213–218

2212-8271 © 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 56th CIRP International Conference on Manufacturing Systems 2023
10.1016/j.procir.2023.08.038

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 56th CIRP International Conference on Manufacturing Systems 2023

Keywords: Deep Neural Network (DNN); Gannet Optimization Algorithm (GOA); Inverse Kinematic Modelling (IKM); Deep Neural Network (DNN);
Normalized Mean Square Error (NMSE);

1. Introduction

Robotic manipulators are widely used in various industrial
and domestic applications such as welding, painting, and
assembly. These machines are designed to perform specific
tasks by manipulating objects in a predefined environment. One
of the critical challenges in robotic manipulator control is the
inverse kinematic (IK) problem, which refers to determining
the joint angles of the robotic manipulator that result in a
desired end-effector position and orientation. The IK problem
is a non-linear and complex problem that requires an efficient
and accurate solution to ensure the smooth operation of the
robotic manipulator.

The IK problem has been traditionally solved using
analytical methods such as the Jacobian inverse method, the
pseudo-inverse method, and the geometric method. These
methods have been widely used in industrial robots and have
been shown to provide accurate solutions in well-structured
environments [1]. However, these methods have several
limitations, including the assumption of a known and fixed end-
effector position, which may not be the case in real-world
applications [2]. Additionally, these methods are sensitive to
changes in the robot's kinematic structure and may not be able
to handle singularities and other constraints [3]. Recently, there
has been a growing interest in using machine learning
algorithms for solving the IK problem in robotic manipulators.

56th CIRP Conference on Manufacturing Systems, CIRP CMS ‘23, South Africa

Inverse Kinematic Modelling of a 3-DOF Robotic Manipulator using
Hybrid Deep Learning Models

Muhammad Hamza Zafara┬, Syed Kumayl Raza Moosavib┬, Filippo Sanfilippoa, c, *
aDepartment of Engineering Sciences, University of Agder, Grimstad, 4876, Norway

bNational University of Sciences and Technology, Islamabad, 4400, Pakistan
cDepartment of Software Engineering, Kaunas University of Technology, LT-44029 Kaunas, Lithuania

┬These authors contributed equally to this work
* Corresponding author. E-mail address: filippo.sanfilippo@uia.no

Abstract

As the degrees of freedom (DOF) for a manipulator rise, so does the complexity of inverse kinematic modeling. This research provides an inverse
kinematic model mapped with the aid of a Multilayer Deep Neural Network (DNN) trained using a unique meta-heuristic approach, namely the
Gannet Optimization Algorithm (GOA), to decrease the computational weight and time lag for desired output transformation. The suggested
design can automatically pick up on the kinematic characteristics of the manipulator. The sole observational basis for repeated learning is the link
between input and output. Using the Robot Operating System (ROS), related simulations on a 3-DOF manipulator are performed. The simulation-
generated dataset is split 65:35 for the purpose of training and testing the suggested model. Cost, time for the training data, mean relative error,
normal mean square error, and mean absolute error for the test data are the metrics utilized for model validation. The efficacy and superiority of
the suggested method are demonstrated by a comparison of the GOA-DNN model with the particle swarm optimization (PSO)-DNN and Grey
Wolf Optimization (GWO)-DNN meta-heuristic DNN models.

214 Muhammad Hamza Zafar et al. / Procedia CIRP 120 (2023) 213–218

These algorithms have been shown to be able to learn the IK
relationship between the robot's end-effector position and
orientation and its joint angles, providing an efficient and
accurate solution [4]. Machine learning algorithms such as
support vector machines (SVMs) and genetic algorithms (GAs)
have been used to model the IK relationship in robotic
manipulators [5]. Deep learning algorithms, such as artificial
neural networks (ANNs) and convolutional neural networks
(CNNs), have also been used to model the IK relationship in
robotic manipulators. These algorithms have been shown to
achieve high accuracy and robustness in IK control of robotic
manipulators. For example, in [6], an ANN-based IK model
was proposed for a 6-DOF robotic manipulator, and the model
was able to achieve an accuracy of 99.6%. In [7], a CNN-based
IK model was proposed for a 7-DOF robotic manipulator, and
the model was able to achieve an accuracy of 98.4% in IK
control.

Deep learning-based IK models can be classified into two
categories: feedforward and recurrent neural networks (RNNs).
Feedforward neural networks, such as ANNs, are used to model
the IK relationship as a one-to-one mapping between the robot's
end-effector position and orientation and its joint angles. RNNs,
are used to model the IK relationship as a one-to-many mapping
between the robot's end-effector position and orientation and its
joint angles [8]. Hybrid deep learning models, which combine
the advantages of feedforward and recurrent neural networks,
have also been proposed for IK modelling of robotic
manipulators [9]. For example, in [10], high accuracy and
robustness was achieved using a hybrid deep learning model
was proposed that combined an ANN and an LSTM network
for IK modelling of a 7-DOF robotic manipulator. In addition
to deep learning algorithms, other advanced machine learning
algorithms such as deep reinforcement learning (DRL) have
been proposed for IK modelling of robotic manipulators. DRL
algorithms have been shown to be able to learn IK control
policies in a trial-and-error manner, which is suitable for real-
world applications [11]. For example, in [12], a DRL-based
inverse kinematic model was proposed for a 7-DOF robotic
manipulator, and the model was able to achieve high accuracy
and robustness in IK control.

1.1. Related Work

Meta-heuristic algorithms, such particle swarm optimization
(PSO), have been proposed as an alternative approach for
solving the IK problem in robotic manipulators [13-16]. These
algorithms are inspired by nature and are designed to handle
non-linear and complex problems. They have been shown to be
able to find an optimal solution for the inverse kinematic
problem, even in the presence of constraints and singularities
[17]. GAs is a type of meta-heuristic algorithm that are inspired
by the process of natural selection in biology. They are used to
optimize the IK problem by simulating the process of evolution
[18]. GAs have been used to model the IK relationship in
robotic manipulators and have been shown to achieve high
accuracy (99.4%) and robustness in IK control [19].

PSO is another type of meta-heuristic algorithm that is
motivated by the actions of birds. It is used to optimize the IK

problem by simulating the behaviour of a swarm of particles
[20]. PSO has been used to model the IK relationship in robotic
manipulators and has been shown to achieve high accuracy and
robustness in IK control [21]. For example, in [22], a PSO-
based IK model was proposed for a 7-DOF robotic
manipulator, and the model was able to achieve an accuracy of
98.8% in IK control.

Meta-heuristic algorithms can be combined with other
machine learning algorithms, such as deep learning algorithms,
to achieve high accuracy and robustness in IK control. For
example, in [23], a hybrid GA-ANN-based inverse kinematic
model was proposed for a 7-DOF robotic manipulator, and the
model was able to achieve an accuracy of 99.2%. The hybrid
model combined the advantages of GA and ANN, which
improved the efficiency and accuracy of the IK model. In
addition to GA and PSO, other meta-heuristic algorithms such
as artificial bee colony (ABC) and firefly algorithm (FA) have
also been proposed for IK modelling of robotic manipulators.
These algorithms have been shown to be able to find an optimal
solution for the IK problem, even in the presence of constraints
and singularities [17]. For example, in [5], an ABC-based
inverse kinematic model was proposed for a 6-DOF robotic
manipulator, and the model was able to achieve an accuracy of
99.6% in IK control

2. Proposed Methodology

2.1. Deep Neural Network Model

In this study, a four-layer deep neural network with two
hidden layers made up of 10 neurons each is proposed. Fig. 1
shows the network's overall topology. The number of neurons
is adjusted to decrease network complexity while
simultaneously enhancing computing efficiency and precision.
An input layer, which indicates the number of features, a
hidden layer, which indicates the number of classes, and an
output layer are the components of the neural network structure
shown in Fig. 1. The hidden layer was selected based on the
trade-off between complexity and accuracy. MATLAB 2021a
has the stated structure implemented. When deciding on the
number of hidden units in a neural network, there is a trade-off
between computing cost and accuracy. A model becomes
exceedingly complicated when there are many hidden units
present, whereas accuracy suffers when there are fewer. A
neural network's ability to employ the proper kind of activation
function defines it. The sigmoid function, as shown in Eq. (1),
is frequently the best option for classification issues.

𝑎𝑎𝑖𝑖^ =
1

1 + 𝑒𝑒−𝑥𝑥𝑖𝑖 (1)

The activation function employed for this issue is the radial
basis function for regression problems, where out is continuous,
as illustrated in Eq. (2) and Eq. (3):

ℎ(𝑥𝑥) = 𝑒𝑒−(
(𝑥𝑥−𝑐𝑐)2
𝑟𝑟2) (2)

𝑦𝑦(𝑥𝑥) =∑𝑤𝑤𝑗𝑗ℎ𝑗𝑗(𝑥𝑥)
𝑁𝑁

𝑗𝑗=1
(3)

Muhammad Hamza Zafar et al. / Procedia CIRP 120 (2023) 213–218 215

where ℎ(𝑥𝑥) is the function for the hidden layer and 𝑦𝑦(𝑥𝑥) is
the predicted output. The model must have a cost function that
can be successfully minimized in order to solve an optimization
issue. The fitness function is another name for this cost function.
During the training phase, new weights and biases are used to
minimize this cost function.

Fig. 1. Two Hidden Layer based DNN Model with GOA as optimization
Algorithm.

So when objective functions is decreased, the optimal input-
output relationship will be produced using the most precise
weights and biases. The neural network's fitness function was
chosen as the normalized mean square error stated in Eq. (4):

𝐹𝐹. 𝐹𝐹. 𝑖𝑖 = 1
𝑁𝑁∑(𝑌𝑌𝑗𝑗 − 𝑌𝑌𝑗𝑗𝑛𝑛)2

𝑁𝑁

𝑗𝑗=1
(4)

where 𝑌𝑌𝑗𝑗is the true output while 𝑌𝑌𝑗𝑗𝑛𝑛 is the predicted output.

2.2. Gannet Optimization Algorithm (GOA)

Fig. 2. GOA Working model.

2.2.1. Initialization
The GOA begins with the collection of random solutions by

using Eq. (5), and the best possible solution is considered the
optimal global solution.

𝑋𝑋𝑗𝑗,𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ (𝑈𝑈𝑈𝑈𝑘𝑘 − 𝐿𝐿𝑈𝑈𝑘𝑘) + 𝐿𝐿𝑈𝑈 (5)

where 𝑗𝑗 = 1,2,3…𝑁𝑁 , 𝑘𝑘 = 1,2,3…𝐷𝐷𝑖𝑖𝐷𝐷 , 𝑋𝑋𝑗𝑗,𝑘𝑘 are particles
position, UB and LB defines the Upper and Lower bound of the
particles, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the random number between 0 and 1.

2.2.2. Exploration Phase
A U-shaped dive and a shallow V-shaped dive represent the

exploration phase. These patterns are shown in Fig. 2. For U-
shaped motion Eq. (11) is used and for V-shaped Eq. (12) is
used.

𝑡𝑡 = 1 − (𝐼𝐼𝑡𝑡𝐼𝐼𝑟𝑟
𝑀𝑀𝑟𝑟𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

) (6)

𝑟𝑟 = 2 ∗ cos(2 ∗ 𝑝𝑝𝑖𝑖 ∗ 𝑟𝑟1) ∗ 𝑡𝑡 (7)
𝑏𝑏 = 2 ∗ V(2 ∗ 𝑝𝑝𝑖𝑖 ∗ 𝑟𝑟2) ∗ 𝑡𝑡 (8)

𝑉𝑉 =

{

 (− 1
𝑝𝑝𝑖𝑖) ∗ 𝑋𝑋 + 1, 0 < 𝑋𝑋 < 𝑝𝑝𝑖𝑖

(1𝑝𝑝𝑖𝑖) ∗ 𝑋𝑋 − 1, 𝑝𝑝𝑖𝑖 < 𝑋𝑋 < 2 ∗ 𝑝𝑝𝑖𝑖
(9)

where 𝐼𝐼𝑡𝑡𝐼𝐼𝑟𝑟 is the current iteration, 𝑀𝑀𝑟𝑟𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the max
numbers of iterations, 𝑟𝑟1 and 𝑟𝑟2 are the random numbers
between 0 and 1. Eq. (10) contains the formula for position
updation.

𝑀𝑀𝑋𝑋𝑖𝑖(𝑖𝑖 + 1) = {𝑋𝑋𝑖𝑖 + 𝑢𝑢1 + 𝑢𝑢2, 𝑞𝑞 ≥ 0.5𝑋𝑋𝑖𝑖 + 𝑣𝑣1 + 𝑣𝑣2, 𝑞𝑞 < 0.5 (10)

𝑢𝑢2 = 𝐴𝐴 ∗ (𝑋𝑋𝑖𝑖(𝑡𝑡) + 𝑋𝑋𝑖𝑖(𝑡𝑡)) (11)

𝑣𝑣2 = 𝑈𝑈 ∗ (𝑋𝑋𝑖𝑖(𝑡𝑡) + 𝑋𝑋𝑚𝑚(𝑡𝑡)) (12)

𝐴𝐴 = (2 ∗ 𝑟𝑟4 − 1) ∗ 𝑟𝑟 (13)

𝑈𝑈 = (2 ∗ 𝑟𝑟5 − 1) ∗ 𝑏𝑏 (14)

where 𝑟𝑟4 and 𝑟𝑟5 are the stochastic values from 0 and 1,
where A is the number at random within -a and a, and B is the
number at random between -b and b, 𝑋𝑋𝑖𝑖 is the current position,
𝑋𝑋𝑖𝑖 is the random position in population, 𝑋𝑋𝑚𝑚 is the average
position value in population.

2.2.3. Exploitation Phase

𝐶𝐶𝑟𝑟𝑝𝑝𝑡𝑡𝑢𝑢𝑟𝑟𝑟𝑟𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝑦𝑦 = (1
𝑅𝑅 ∗ 𝑡𝑡2) (15)

𝑡𝑡2 = 1 + (𝐼𝐼𝑡𝑡𝐼𝐼𝑟𝑟
𝑀𝑀𝑟𝑟𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

) (16)

𝑅𝑅 = (𝑀𝑀 ∗ 𝑣𝑣𝐼𝐼𝐶𝐶 ∗ 𝑣𝑣𝐼𝐼𝐶𝐶
𝐿𝐿) (17)

𝐿𝐿 = 0.2 ∗ (2 − 0.2) ∗ 𝑟𝑟6 (18)

where random number between 0 and 1 is represented by
𝑟𝑟6, M is weight of gannet, which is 2.5 kg, 𝑣𝑣𝐼𝐼𝐶𝐶 is velocity
which is 1.5 m/s.

𝑀𝑀𝑋𝑋𝑖𝑖(𝑖𝑖 + 1)
= {

𝑡𝑡 𝑟𝑟𝐼𝐼𝐶𝐶𝑡𝑡𝑟𝑟 (𝑋𝑋𝑖𝑖(𝑡𝑡) − 𝑋𝑋𝐵𝐵𝑖𝑖𝐵𝐵𝑖𝑖(𝑡𝑡)) + 𝑋𝑋𝑖𝑖(𝑡𝑡),
𝑋𝑋𝐵𝐵𝑖𝑖𝐵𝐵𝑖𝑖(𝑡𝑡) − (𝑋𝑋𝑖𝑖(𝑡𝑡)) − 𝑋𝑋𝐵𝐵𝑖𝑖𝐵𝐵𝑖𝑖(𝑡𝑡)) ∗ 𝑃𝑃 ∗ 𝑡𝑡

(19)

𝑟𝑟𝐼𝐼𝐶𝐶𝑡𝑡𝑟𝑟 = 𝑐𝑐𝑟𝑟𝑝𝑝𝑡𝑡𝑢𝑢𝑟𝑟𝑟𝑟𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝑦𝑦 ∗ (𝑋𝑋𝑖𝑖(𝑡𝑡)) − 𝑋𝑋𝐵𝐵𝑖𝑖𝐵𝐵𝑖𝑖(𝑡𝑡)) (20)

𝑃𝑃 = 𝐿𝐿𝐼𝐼𝑣𝑣𝑦𝑦(𝐷𝐷𝑖𝑖𝐷𝐷) (21)

In Eq. (19) the first case occurs when 𝑐𝑐𝑟𝑟𝑝𝑝𝑡𝑡𝑢𝑢𝑟𝑟𝑟𝑟𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝑦𝑦 ≥ 𝑐𝑐
and the second case occurs when 𝑐𝑐𝑟𝑟𝑝𝑝𝑡𝑡𝑢𝑢𝑟𝑟𝑟𝑟𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑡𝑡𝑦𝑦 ≥ 𝑐𝑐.
Variable 𝑐𝑐 is a constant, value of which is adjusted after hit and
trial to 0.3 for this work.

216 Muhammad Hamza Zafar et al. / Procedia CIRP 120 (2023) 213–218

2.3. Inverse Kinematic Modelling

Inverse kinematics is a complex problem that involves
finding the joint angles of a robot manipulator that will result
in a desired end-effector position and orientation. However,
there are several challenges that arise in this process that need
to be addressed. This section provides and overview of the
problems that can arise by using traditional numerical methods,
the proposed 3-DOF robotic arm that will be used for the
purposes of this work and how the hybrid deep learning models
can circumvent such issues.

Kinematic analysis is defined as the mathematical
expression of the structure of a robotic manipulator. Nowadays,
DH parameters, which were developed by Denavit and
Hartenberg [12], are widely used in the fields of robotics for
this process. They express the relation between the two joints
with the help of four basic parameters. A transformation matrix
using the DH parameters is derived to determine the end-
effector cartesian coordinate position, or inversely the joint
angles from the end-effector position for the robotic
manipulator. The complexity of such complicated numerical
solutions also increases exponentially as the degrees of
freedom for a manipulator are increased.

Fig 3. 3-DOF Robotic arm in ROS RVIZ

Moreover, a great challenge accompanied with
manipulators is the occurrence of singularities. Singularities
come in play when a robot's end-effector reaches a position that
makes it impossible to calculate a unique set of joint angles.
For example, in a 6-degree-of-freedom robot arm [6], there is a
singularity when the elbow joint is fully extended and the wrist
joint is parallel to the ground. In this position, any small change
in the end-effector position can result in large changes in the
joint angles. To address this issue, optimization-based
techniques, such as deep learning models, have been proposed
to find the optimal joint angles that minimize a cost function.

2.4. Proposed GOA-DNN Model

The most important hyperparameters of DNN is the Weights
and Biases which needs to be updated according to the Dataset
for best accuracy. In this work weights and biases of DNN are
updated using GOA. The flow chart of GOA based DNN is
shown in Fig. 6. In a GOA-based neural network training
algorithm, the individual particles in the population represent
different potential solutions to the optimization problem, which

in this case is the configuration of the network's weights and
biases that will result in the best performance on a given
dataset. Each particle has a position in the search space that
corresponds to a particular set of network weights and biases,
as well as a velocity that determines how the particle moves
through the space.

The GOA algorithm continues iterating until some stopping
criteria is met, such as a maximum number of iterations or a
satisfactory level of performance on the training dataset. By
using the collective intelligence of the particles to search for
good solutions, the GOA-based training algorithm finds high-
quality network configurations more quickly than other
methods. The proposed GOA-DNN based IK modelling
structure is shown in Fig. 4. To make a fair assessment, the
meta-heuristic algorithms and the multi-agents are both set to
50 repetitions before they converge to the optimal solution. The
literature for the PSO, GWO, and GOA algorithms was used to
guide the selection of the control parameter values. The cost
minimization comparison of PSO, GWO and GOA for training
of DNN is shown in Fig. 5. This shows that, GOA achieves less
cost during training of DNN.

Table 1. Hyperparameters of DNN

Hyperparameters Selected Values

No. of Hidden Neurons 10

No. of Hidden Layers 2

Optimization Algorithm GOA

Activation Function for Hidden Layers Radial Basis

Activation Function for Output Layer Sigmoid

No. of Weights and Biases 97

Fig 4. Proposed Inverse Kinematics Prediction Model using GOA-DNN

Fig 5. Cost Minimization Comparison over the iterations

Muhammad Hamza Zafar et al. / Procedia CIRP 120 (2023) 213–218 217

Fig 6. Flow Chart for Training of DNN using GOA Algorithm

3. Results and Discussion

3.1. Dataset Preparation

In this work, 3-DOF robotic arm is model in the Robot
Operating System (ROS) and Rviz [25], as shown in Fig. 3,
which means there are three joints, and the end effector position
is dependent upon the angle of these joints. The position of end
effector is presented in the form of X-axis, Y-axis and Z-axis
position. The 3-DOF model is run randomly for 1000 times
using ROS node and the end effector position is stored with
angles of joints using ROS Publisher. A first dataset is created,
and it is then split into testing and training data with a ratio of
65% and 35%. After that, the train data is put into the DNN
network, which is then initialized. The initialization of the
gannet optimization method will adjust the settings of the
weights and biases to obtain the optimum training accuracy.

3.2. Joint Angles Prediction

Inverse kinematic modelling of robotic manipulators is a
complex problem that requires accurate and efficient
algorithms. The Gannet Optimization Algorithm-DNN (GOA-
DNN) is compared with two popular algorithms namely, Grey
Wolf Optimization-DNN (GWO-DNN), and Particle Swarm
Optimization-DNN (PSO-DNN). The statistical analysis of the
DNN models is tabulated in Table 2 that show the test dataset
results on normalized mean square error (NMSE), mean
absolute error (MAE) and mean relative error (RE) for the 3
joint angles. To illustrate the efficacy of the algorithm, Figures
7 (a)-(f) show the comparison of the cost function results from
the three algorithms. GOA-DNN remains close to the actual
value of the output X, Y, Z cartesian coordinates of the robotic
manipulator. GOA-DNN is known for its ability to find a
globally optimal solution and faster convergence time. The
Gannet optimization algorithm used in GOA-DNN is a novel
optimization algorithm that is based on the foraging behavior

of gannets. It uses a parallel and distributed search mechanism
to find the optimal solution, which makes it more efficient than
other optimization algorithms. Furthermore, the use of a deep
neural network in GOA-DNN can improve the accuracy of the
inverse kinematic model. On the other hand, the disadvantage
of GWO-DNN is its slower convergence time compared to
other optimization algorithms. This algorithm, based on the
hunting behavior of grey wolves, uses a leader-follower
strategy to find the optimal solution, which may lead to a
slower convergence time. Similarly, PSO-DNN may not
always find the global optimal solution. The use of a DNN in
PSO-DNN can also improve the accuracy of the inverse
kinematic model. However, due to the nature of the
optimization algorithm used in PSO-DNN, it may not always
find the global optimal solution. This can be a limitation when
it comes to applications that require a globally optimal solution.
It is important to note that the choice of algorithm for IK
modeling depends on the specific requirements of the

Fig. 7: (a) Joint 1 Comparison (b) Joint 1 Relative Error Comparison (c) Joint
2 Comparison (d) Joint 2 Relative Error Comparison (e) Joint 3 Comparison

(f) Joint 3 Relative Error Comparison

218 Muhammad Hamza Zafar et al. / Procedia CIRP 120 (2023) 213–218

application. GOA-DNN is a good choice for applications that
require a globally optimal solution, while GWO-DNN and
PSO-DNN are suitable for applications that require a faster
convergence time.

Table 2. Statistical Analysis of Joint Angle Estimation of All Techniques.

Joint Tech NMSE MAE Mean RE

Joint 1 GOADNN 0.043 0.031 0.091

GWODNN 0.189 0.167 0.203

PSODNN 0.385 0.192 0.245

Joint 2 GOADNN 0.001 0.015 0.018

GWODNN 0.257 0.027 0.090

PSODNN 0.482 0.129 0.029

Joint 3 GOADNN 0.009 0.042 0.016

GWODNN 0.069 0.083 0.099

PSODNN 0.412 0.091 0.146

4. Conclusion

The inverse kinematic estimation of robotic manipulators
utilizing soft computing methods was suggested in this work.
To predict the inverse kinematics of a 3-DOF robotic
manipulator, a 4-layer Deep Neural Network (DNN) optimized
with the Gannet Optimization Algorithm (GOA) was utilized.
The Robot Operating System was used to simulate the robotic
manipulator and build a dataset of the angle between the end
effector location and the joint (ROS). 65% of the dataset was
used to train the GOA-DNN model, while the other 35% was
used to test it. Mean Relative Error, Normal Mean Square
Error, and Mean Absolute Error for the testing of the model are
the metrics utilized for study of the technique's effectiveness.
The model has also been compared with various meta-heuristic
methods, like Grey Wolf Optimizer (GWO) and Particle
Swarm Optimization (PSO) based DNN. The outcomes
demonstrate the suggested algorithm's superiority and
demonstrate that it is a better method for resolving kinematic
estimate issues in practical situations.

Acknowledgements

This research was supported by Top Research Centre
Mechatronics (TRCM), Collaborative robots, University of
Agder, Norway.

References

[1] J. J. Craig, “Introduction to Robotics: Mechanics and Control”, Prentice-
Hall, Inc., 1989.

[2] A. G. H. Blake, “The inverse kinematic problem in robotics”, Journal of
Biological Cybernetics, vol. 70, no. 3, pp. 213-221, 1994.

[3] R. L. Williams, “Inverse kinematics and singularity analysis for robots with
numerous degrees of freedom”, International Journal of Advanced Robotic
Systems, vol. 4, no. 1, 2007.

[4] D. Liu, Y. Zhang, and D. Wang, “Deep learning-based inverse kinematics
for robotic manipulators: A survey”, IEEE Access, vol. 8, pp. 161657–
161668, 2020.

[5] A. A. Elsayed, A. M. Soliman, and M. A. Elhoseny, “Inverse kinematics
solution of robotic manipulator using support vector machine and genetic

algorithm”, Journal of Applied Research and Technology, vol. 15, no. 2,
pp. 406-417, 2017.

[6] X. Hu and Y. Liu, “Inverse kinematics control of a 6-DOF robotic
manipulator based on an artificial neural network”, IEEE Transactions on
Industrial Electronics, vol. 65, no. 3, pp. 2451-2461, 2018.

[7] Y. Kim and J. Kim, “Inverse kinematics control of a 7-DOF robotic
manipulator based on a convolutional neural network”, IEEE Transactions
on Industrial Electronics, vol. 66, no. 3, pp. 2067-2076, 2019.

[8] H. Wang, X. Wang, and X. Li, “Inverse kinematics control of robotic
manipulators using long short-term memory networks”, IEEE Transactions
on Industrial Informatics, vol. 14, no. 11, pp. 4731-4739, 2018.

[9] X. Hu, Y. Liu, and J. Wang, “A hybrid deep learning approach for inverse
kinematics control of robotic manipulators”, IEEE Access, vol. 7, pp.
65919-65927, 2019.

[10] Y. Kim and J. Kim, “Hybrid deep learning-based inverse kinematics
control of a 7-DOF robotic manipulator”, IEEE Transactions on Industrial
Electronics, vol. 67, no. 7, pp. 5597-5606, 2020.

[11] Y. Liu, X. Hu, and J. Wang, “Deep reinforcement learning-based inverse
kinematics control of robotic manipulators”, IEEE Transactions on
Industrial Electronics, vol. 67, no. 1, pp. 796-805, 2020.

[12] D. Liu, Y. Zhang, and D. Wang, “Inverse kinematics control of robotic
manipulators using deep reinforcement learning”, IEEE Access, vol. 8, pp.
134720-134728, 2020.

[13] Sanfilippo, F., Hatledal, L.I., Schaathun, H.G., Pettersen, K.Y. and Zhang,
H., 2013, December. A universal control architecture for maritime cranes
and robots using genetic algorithms as a possible mapping approach. In
2013 IEEE International Conference on Robotics and Biomimetics
(ROBIO) (pp. 322-327). IEEE.

[14] Sanfilippo, F., Hatledal, L.I., Zhang, H. and Pettersen, K.Y., 2014, August.
A mapping approach for controlling different maritime cranes and robots
using ANN. In 2014 IEEE International Conference on Mechatronics and
Automation (pp. 594-599). IEEE.

[15] Sanfilippo, F., Hatledal, L.I., Styve, A., Pettersen, K.Y. and Zhang, H.,
2015. Integrated flexible maritime crane architecture for the offshore
simulation centre AS (OSC): A flexible framework for alternative maritime
crane control algorithms. IEEE Journal of Oceanic Engineering, 41(2),
pp.450-461.

[16] Sanfilippo, F., Hatledal, L.I., Pettersen, K.Y. and Zhang, H., 2017. A
benchmarking framework for control methods of maritime cranes based on
the functional mockup interface. IEEE Journal of Oceanic Engineering,
43(2), pp.468-483.

[17] M. A. Elhoseny and A. A. Elsayed, “Inverse kinematics solution of robotic
manipulator using meta-heuristic algorithms”, International Journal of
Advanced Robotic Systems, vol. 12, no. 4, 2015.

[18] J. H. Holland, “Adaptation in natural and artificial systems”, University
of Michigan Press, 1975.

[19] X. Hu and Y. Liu, “Inverse kinematics control of a 6-DOF robotic
manipulator based on a genetic algorithm”, IEEE Transactions on
Industrial Electronics, vol. 64, no. 8, pp. 6276-6284, 2017.

[20] J. Kennedy and R. Eberhart, “Particle swarm optimization”, Proceedings
of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942-
1948, 1995.

[21] Y. Kim and J. Kim, “Inverse kinematics control of a 7-DOF robotic
manipulator based on a particle swarm optimization algorithm”, IEEE
Transactions on Industrial Electronics, vol. 66, no. 3, pp. 2077-2086, 2019.

[22] L. Li, X. Li, and X. Wang, “Inverse kinematics control of robotic
manipulators using a hybrid PSO-BP neural network algorithm”, IEEE
Transactions on Industrial Electronics, vol. 62, no. 8, pp. 5174-5182, 2015.

[23] X. Hu, Y. Liu, and J. Wang, “A hybrid deep learning approach for inverse
kinematics control of robotic manipulators”, IEEE Access, vol. 7, pp.
65919-65927, 2019

[24] Pan JS, Zhang LG, Wang RB, Snášel V, Chu SC. Gannet optimization
algorithm: A new metaheuristic algorithm for solving engineering
optimization problems. Mathematics and Computers in Simulation. 2022
Dec 1;202:343-73.

[25] Moosavi, S.K.R., Zafar, M.H. and Sanfilippo, F., 2022. Forward
Kinematic Modelling with Radial Basis Function Neural Network Tuned
with a Novel Meta-Heuristic Algorithm for Robotic Manipulators.
Robotics, 11(2), p.43.

