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ABSTRACT Over the past decade, there has been extensive research conducted on complex networks,
primarily driven by their crucial role in understanding the various real-world networks such as social
networks, communication networks, transportation networks, and biological networks. Ranking influential
nodes is one of the fundamental research problems in the areas of rumor spreading, disease research, viral
marketing, and drug development. Influential nodes in any network are used to disseminate the information
as fast as possible. Centrality measures are designed to quantify the node’s significance and rank the
influential nodes in complex networks. However, these measures typically focus on either the local or global
topological structure within and outside network communities. In particular, many measures limit their
ability to capture the node’s overall impact on small-scale networks. To address these challenges, we develop
a novel centrality measure called Isolating Clustering Distance Centrality (ICDC) by integrating the isolating
and clustering coefficient centrality measures. The proposed metric gives a more thorough assessment of the
node’s importance by integrating the local isolation and global topological influence in large-scale complex
networks. We employ the SIR and ICM epidemic models to study the efficiency of ICDC against traditional
centrality measures across real-world complex networks. Our experimental findings consistently highlight
the superior efficacy of ICDC in terms of fast spreading and computational efficiency when compared to
existing centrality measures.

INDEX TERMS Influential nodes, isolating centrality, clustering coefficient, isolating clustering distance
centrality.

I. INTRODUCTION
Mental disorders can be modeled as networks composed of
interconnected nodes in the field of psychopathology [1].
Many researchers have adopted this methodology to explore
the network structure that helps to identify prominent nodes.
Network science has attracted substantial research attention
to identify these influential nodes [2]. Eventually, this
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leads to the development of various centrality metrics that
analyze the importance of nodes based on various network
attributes [3]. Among the various centrality measures [4],
two key indicators of node influence have emerged: isolat-
ing centrality [5] and clustering coefficient centrality [6].
Isolating coefficient centrality evaluates a node’s ability to
bridge between different network components. This will
further develop efficient information dissemination and the
propagation of new ideas or innovations. On the other
hand, clustering coefficient centrality quantifies the node’s
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ability to form tightly connected groups or clusters, which
significantly affects the dynamics of spread and the network’s
resilience [7]. Many centrality measures proposed in the
literature emphasize either local or global node information,
and some are not applicable to large-scale networks with mul-
tiple clusters. Additionally, it’s necessary to address the fast
information spread while maintaining low time complexity.
Motivated by these ideas, this work designs a novel centrality
metric that integrates isolating and clustering coefficient
centrality measures to rank the influential nodes in complex
networks. This integrated measure referred to as ICDC
(Isolating and Clustering Coefficient Centrality), is aimed at
considering the node’s local and global topological informa-
tion and facilitating fast information spread with less time
complexity.

II. RELATED WORK
Numerous research efforts within the field of network science
have been dedicated to the exploration of techniques for
identifying influential nodes within networks [8]. Various
centrality measures, such as degree centrality, betweenness
centrality, eigenvector centrality, and closeness centrality,
have been introduced to capture distinct features of node
influence [9]. However, these traditional centrality measures
focus on local network properties and may oversee the
combined effects of global information that contribute to
node significance. Recent studies have started to explore
the integration of various centrality measures to offer a
more detailed understanding of crucial nodes. For example,
in [10], researchers proposed a method that integrates
the betweenness centrality with Katz centrality to provide
important insights into a node’s structural and dynamic
importance in complex networks. A novel centrality model
is proposed in [11] for ranking the significant nodes
in complex social networks based on a combination of
various centrality measures. This approach utilized entropy
weighting to assign the weights to each criterion and
employed the technique for order preference by similarity
to an Ideal Solution (TOPSIS) method for ranking node
relevance in the network. Additionally, diverse methods
have emerged to study the node’s significance from various
angles. For example, a mixed-degree decomposition (MDD)
approach [12] considers both residual and exhausted degrees
to determine the node’s significance. By leveraging the
degree and clustering coefficient, authors proposed a new
centrality measure [13]. Here, the entropy measure is used
to calculate degree and clustering coefficient values. In [14],
authors introduced the Global and Local Structure (GLS)
technique to identify the crucial nodes in complex networks
that combine local and global structural properties. With a
similar motivation, K-shell Gravity Centrality (KSGC) [15] is
one of the interesting centrality metrics proposed to improve
the accuracy in identifying influential nodes.

Isolating Centrality (ISC), designed to identify nodes with
a substantial impact on network connectivity, striking a

balance between low-relevant degree centrality and other
time-consumingmetrics. A survey in [16] provides a compre-
hensive review of recent advances in the Critical Node
Detection Problem (CNDP), which focuses on ranking
the important nodes based on predefined connectivity
criteria. Moreover, some specific techniques have been
proposed for natural language processing applications. The
multi-Centrality Index approach was introduced in [17]
to identify the optimal combination of word rankings
using conventional measures. Authors in [18] proposed a
Multi-Evidence Centrality method that takes a multi-attribute
approach by combining Degree Centrality (DC), Between-
ness Centrality (BC), Eigenvector Centrality (EC), and
Clustering Coefficient (CoC) using Dempster’s combination
rule, that offers a multi-featured perspective on node signifi-
cance. Although many research studies in the literature have
focused on creating more efficient centrality measures, they
encounter severe limitations related to time complexity and
scalability. To address these challenges, this work focused
on developing a multi-faceted integrated centrality measure
that considers the local and global topological information.
To evaluate the efficiency, we compare the ICDC with
the conventional centrality metrics. First, it will provide a
crucial insight into node influence by capturing their dual
roles as clusters and connectors [19]. Second, it rectifies
the shortcomings of some of the existing centrality metrics
that only consider connectivity or clustering, which leads
to imbalanced rankings. Finally, we show that ICDC can
identify nodes that might be overlooked by individual
centrality measures which creates a substantial impact on
network performance. We validate the effectiveness of ICDC
measures on both small and large real-world network data
sets. Our results reveal the advancements in identifying
influential nodes by comparing the rankings generated by
the ICDC with the conventional centrality measures in the
literature.

We have presented the summary of recent literature on
centrality measures in the Table 1.

A. PAPER ORGANISATION
This paper is organized as follows. In section III, We pro-
vide an overview of the fundamental centrality measures.
Section IV introduces our proposed centrality measure and
it’s associated algorithm. The Real-world network datasets,
spreading models, and evaluation techniques to demonstrate
the effectiveness of our measure are discussed in section V.
The complete experimental setup such as experimental
hardware and software tools are explained in section VI.
Section VII presents the experimental results and impor-
tant observations. Section VIII discusses the conclusions.
Finally, section IX presents some interesting future research
directions.

We have presented the symbols and notations used in the
paper in Table 3 and Table 1 respectively.
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TABLE 1. Summary of literature focusing on centrality measures.

TABLE 2. List of abbreviations.

III. REVIEW OF CENTRALITY MEASURES
In this section, we define several benchmark centrality
metrics. Any graph or network is represented by G, which
is defined as G = (V ,E), in which V represents nodes and
E represents edges. Various centralities are represented in

the existing work for determining the influential nodes in
networks, which includes degree centrality (DC), between-
ness centrality (BC), closeness centrality (CC), and clustering
coefficient centrality (CLC), etc.

A. DEGREE CENTRALITY
Degree Centrality (DC) [7], is one of the widely used
centrality metrics that counts the total number of direct
connections to each node in a network. It offers a simple and
insightful method for evaluating a node’s influence based on
its connectedness. The following is a representation of the
mathematical formula for a node’s degree of centrality in a
network:

Degree Centrality(v) =
deg(v)
n− 1

(1)

where n stands for the total number of nodes in the network,
while deg(v) stands for a given node’s degree, or the number
of edges that link it to other nodes. Due to their wide network
connections, nodes with a high degree of centrality are often
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TABLE 3. List of notations.

considered influential since they may efficiently distribute
information and have a large influence. As analyzed in the
literature, degree centrality is not sufficient enough to accu-
rately indicate the node’s influence. To achieve a thorough
perspective, degree centrality is frequently combined with
additional metrics, which allows a more thorough evaluation
of node significance and impact in the network.

B. BETWEENNESS CENTRALITY
Betweenness Centrality (BC) [23] is a measure of centrality
that measures the extent to which a node in a network resides
on the shortest pathways between pairs of other nodes. Node’s
betweenness centrality is expressed as

Betweenness Centrality(v) =

∑
s̸=v̸=t

g(v)
g(s, t)

(2)

where g(v) represents the number of shortest paths passing
through node v. g(s, t) is the total number of shortest
paths between nodes s and t . Nodes with higher levels
of betweenness centrality have a bigger effect on the
transmission of information within the network. They operate
as key connections, regulating interaction and communi-
cation between network components. It should be noted
that calculating betweenness centrality entails assessing all
possible pairings of nodes (s, t) and determining the shortest
pathways between them. Hence, this measure requires more
computational resources.

C. CLOSENESS CENTRALITY
Closeness Centrality (CC) [7] measures the average distance
between a node and the rest of the nodes in a network.

In other words, it assesses how rapidly informationmaymove
from one node to another in a network. The inverse of the sum
of all of the shortest available distances among the current
node and all of the others in the network is used to compute
a node’s closeness centrality. The closeness centrality of the
node v is computed as

Closeness Centrality(v) =
1∑
d(v, u)

(3)

where d(v, u) is the shortest path distance between nodes v
and u, and the summation is applied to all the remaining
nodes u in the network. While closeness centrality is
one of the conventional centrality metrics for ranking
influential nodes as well as information flow in networks,
it has some disadvantages such as susceptibility to outliers,
dependency on network connectedness, lack of consideration
for directional edges, and community structure.

D. CLUSTERING COEFFICIENT CENTRALITY
A node’s Clustering Coefficient Centrality (CLC) [24]
assesses the possibility that its neighboring nodes are linked
to one another. The clustering coefficient of node v is
determined as the proportion of the total number of actual
connections between its neighbors to the maximum number
of connections that can exist between them. Clustering
coefficient centrality is expressed as

CLC(v) =
2 ∗ e(v)

k(v) ∗ (k(v) − 1)
(4)

where e(v) is the number of edges between neighbors of
node v and k(v) is the number of neighbors of node v.
The factor 2 is included to avoid double-counting of
edges. Two crucial metrics for identifying spreader nodes
are the clustering coefficient and degree of the node.
Nodes occasionally may have different degrees but different
clustering coefficients. Complex networks typically have
large clustering coefficients in the macro perspective [5]. It is
widely recognized that when a node has a higher degree
but a lower clustering coefficient compared to its neighbors,
it tends to be more effective as a spreader within its local
context. Hence, a node’s potential to act as a spreader is
negatively influenced by its clustering coefficient.

E. ISOLATING CENTRALITY
Isolating Centrality (ISC) is a centrality measure that has a
major influence on network connectivity [5]. We define a
node’s isolating coefficient as the number of neighbor nodes
with a degree of δ, which evaluates the node’s contribution
in disconnecting the network. A node’s isolating centrality is
the product of its degree and isolated coefficient.

Isolating Centrality(v) = |N (v) ∩ Dδ| × d(v) (5)

where N (v) is the number of neighbor nodes of node v, Dδ is
the minimum degree of the graph and d(v) is the degree of
node v. Though isolating centrality is a useful statistic for
locating nodes that link various network nodes, the efficiency
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of this metric depends on the network properties. It may be
an effective tool for comprehending network connectedness
and promoting communication across clusters, however, it is
very sensitive to minor fluctuations in network structure.

F. LOCAL GLOBAL CENTRALITY
Local Global Centrality (LGC) [13] integrates both local and
global centrality measures to provide a more complete view
of a node’s impact in the network. It identifies nodes that
are highly prominent inside their local communities although
also acting as major connections or bridges across various
communities or areas of the network. Mathematically it can
be expressed as:

Local Global Centrality(v) =
d(v)
n

×

∑
v̸=u

√
d(u)

d(v, u)
(6)

where d(v) represents the degree of node v and d(u) represents
the degree of node u, d(v, u) denotes the shortest distance
among nodes v and u, and n is the total number of nodes.

IV. PROPOSED CENTRALITY MEASURE
To capture the node’s local and global topological influence,
we present the Isolating Clustering Distance Centrality
(ICDC) that incorporates isolating and clustering coefficient
centrality measures. Isolating centrality reflects the concept
of node’s isolation by evaluating the extent to which a node is
detached from the other nodes. On the other hand, clustering
coefficient centrality is concerned with a node’s participation
in the formation of clusters or densely linked subgroups
inside the network. By combining these metrics ISC(v)

n and∑
v̸=u

√
CLC(u)
d(v,u) , we design the ICDC of a node as

ICDC(v) =
ISC(v)
n

×

∑
v̸=u

√
CLC(u)
d(v, u)

(7)

where ISC(v) is the isolating centrality of node v and n is the
total number of nodes, CLC(u) is the clustering coefficient of
node u, and d(v, u) represents the shortest distance among
nodes v and u. Here, ISC(v)

n and
∑
v̸=u

√
CLC(u)
d(v,u) quantifies the

local and global influence of the node v respectively.

A. TIME COMPLEXITY
This section discusses the time complexity of Algorithm 1.
Isolating clustering distance centrality (ICDC) is computed
by taking the isolating centrality and multiplying it by the
combined value of a fraction of the clustering coefficient and
the shortest path measure across all nodes. We consider the
variablesm, n, and k , which denote the total number of edges,
the number of nodes, and the highest degree of the network,
respectively. Finding the clustering coefficient of a node takes
O(k2) and computing the shortest distance between two nodes
takes O(n+m) time. It is possible to compute the summation
time complexity as O(k2 + n+m) and isolate centrality time
complexity as O(n2). Therefore, we note that Algorithm 1

Algorithm 1 An Algorithm to Compute the ICDC
Centrality Metric for a Given Network G
Input: Network G = (V ,E)
Output: For each vertex in-network G centrality

measure ICDC
begin

V = verticeslist,E = edgelist, n =

numberofnodes
for all vertices v in V do

sum=0
Find the Isolating Centrality ISC(v) of vertex
v by using eq(5)
for all vertices u in V with u ̸= v do

Find the distance d(u, v) between (u, v)
Find the clustering coefficient CLC(u) of
vertex u using eq(4)
sum = sum+

√
CLC(u)
d(u,v)

ICDC(v) =
ISC(v)
n × sum

return ICDC /* centrality measure for all
vertices*/
end

has a time complexity of O(n(k2 + n + m)) and that the
time complexity for computing isolating clustering distance
centrality (ICDC) over all vertices isO(n(k2+n+m)). Table 4
compares and discusses the time complexity of the various
centralities.

TABLE 4. Comparison of time complexity of all centralities where n is the
number of vertices, m is the number of edges and k is the maximum
degree of the graph.

Example: Here, we present a toy example to demonstrate
the proposed centrality. Fig. 1 shows a toy network with
12 nodes and 13 edges. Table 5 displays the centrality values
DC, BC, CC, CLC, ISC LGC, and ICDC for every node
in the network Fig. 1. The highest three centrality values
for each are indicated in red in Table 5. For vertex 2, The
steps to compute the ICDC measure for toy network are
as follows: (i) Using eq(5), we have calculated the first
part of the measure ISC(2)

n as 1, (ii) To calculate the second

part of the measure
∑
2̸=u

√
CLC(u)
d(2,u) , we need the values of

shortest path lengths and clustering coefficients of nodes.
Using eq (4), we have computed clustering coefficient values
as CLC(1) = 0, CLC(3) = 0, CLC(4) = 0, CLC(5) = 0,
CLC(6) = 0, CLC(7) = 0, CLC(8) = 0.333, CLC(9) =

0.667, CLC(10) = 0.333, CLC(11) = 1, CLC(12) = 0.

VOLUME 11, 2023 126199



M. Chiranjeevi et al.: ICDC: Ranking Influential Nodes in Complex Networks

TABLE 5. DC (Degree Centrality), BC (Betweenness Centrality), CC (Closeness Centrality), CLC (Clustering Coefficient Centrality), ISC(Isolating Centrality),
LGC (Local and Global Centrality), ICDC (Isolating Clustering Distance Centrality) vertex centrality values of Fig. 1 are displayed. The best influential nodes
are shown in red.

FIGURE 1. A toy network with 12 nodes and 13 edges.

Similarly shortest path lengths can be computed as d(2, 1) =

1, d(2, 3) = 1, d(2, 4) = 1, d(2, 5) = 1, d(2, 6) = 2,
d(2, 7) = 3, d(2, 8) = 3, d(2, 9) = 4, d(2, 10) = 4,
d(2, 11) = 5, d(2, 12) = 5. Finally, we have computed the
second part of the measure’s value as 0.741. So, the mixed
centrality value for vertex 2 is computed as 0.741. The mixed
centrality values of the remaining vertices are computed and
shown in Table 5. As shown in the Table 5, DC, ISC, and
ICDC performance is the same because of the small network
size. As the network size increases, ICDC exhibits better
performance than conventional measures.

V. IMPLEMENTATION
In this section, we discuss the datasets used in our simula-
tions, which were carefully chosen to represent real-world
scenarios.We then explain three key concepts: the SIRmodel,
used to simulate infectious disease spread; the Independent
Cascade Model, employed to study influence propagation
in networks; and the Kendall rank correlation coefficient,
used to analyze the similarity with other measures. We have
used the parameters β and γ in the SIR simulation to
indicate the probability that an infected node would infect
a susceptible neighbor and the recovery rate respectively.
We have observed that significant improvement in the
measure’s performance over the range of β = γ values from
0.01 to 0.2. We have used the 40 time steps and 100 iterations
in our simulations. Further, we have also identified the
same range of values β = γ for the ICM model. Next,
we provide a brief overview of both the network datasets and
the methodology used in our study.

A. DESCRIPTION OF NETWORK DATASETS
We have performed experiments on four distinct real-world
network datasets to evaluate the effectiveness of the

proposed centrality metrics to identify the influential nodes.
The real-world network datasets, which include Fb_Pages,
facebook-combined, soc-wiki-vote, ca-netscience are taken
from multiple domains and downloaded from [25]. A sum-
mary of the fundamental characteristics of the network
datasets is presented in Table 6.

B. SPREADING MODELS
The SIR model [26], [27] is used for studying information
dissemination in social networks. The SIR model splits
the network’s nodes into three categories: susceptible (S)
nodes, infected (I) nodes, and recovered (R) nodes. Nodes
that are susceptible to infection have not been infected
yet, but they can be infected when they are in contact
with infected neighbors. Infected nodes are the ones that
actively spread information. The nodes that are no longer
spreading information are represented as recovered nodes.
The transmission rate β is the average rate at which
susceptible individuals fall into connection with infected
nodes and become infected. The rate at which infected nodes
transition from the infected condition to the recovered one is
represented by the recovery rate γ .

The ICM (Independent Cascade Model) [28], [29] is
a model used to study the information spread in social
networks. It models the network as a graph with individuals
as nodes and network connections as edges. Each node
is initially assigned a state, indicating whether they have
adopted a behavior or not. The diffusion process begins with
a selected group of nodes that have already adopted the
behavior and spreads to neighboring nodes based on some
probability. When a node adopts the behavior, it has the
potential to influence its neighbors, and each neighbor has a
predetermined probability of adopting the behavior based on
the node’s influence. This iterative cascade process continues
until no further adoptions occur.

C. KENDALL’S CORRELATION COEFFICIENT
A statistical measure known as Kendall’s coefficient of
correlation [30], [31] or Kendall’s tau is used to evaluate
the strength and direction of the correlation between two
ranking variables. The following formula is used to calculate
the Kendall rank correlation:

τ =
nc − nd

1
2 × n× (n− 1)

(8)
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TABLE 6. Basic characteristics of the real-world network datasets.

TABLE 7. Correlation between the ICDC (Isolating Clustering Distance Centrality) with other centrality measures (DC (Degree Centrality), BC (Betweenness
Centrality), CC (Closeness Centrality), CLC (Clustering Coefficient Centrality), ISC(Isolating Centrality), LGC (Local and Global Centrality).

where nc is the number of concordant, nd is the number
of discordant pairs and n is each sample size. Kendall’s
coefficient of correlation, which ranges from −1 to 1,
offers insightful information about the correlation of two
ranked variables. When the coefficient is 1, it indicates
a perfect positive correlation, meaning that the ranks of
both variables consistently change in the same direction.
Conversely, a coefficient of −1 signifies a perfect negative
correlation, implying that the ranks of the variables con-
sistently change in opposite directions. If the coefficient
is 0, it suggests no correlation or independence between the
ranked variables, indicating that the ranks lack any consistent
relationship.

VI. EXPERIMENTAL SETUP
A central processing unit with an Intel(R) Core(TM) i7-6700
CPU running at 3.40GHz and 32GB of RAM is used to
run the extensive simulations in Python. The availability of
built-in libraries inside Python version 3.10.9 has immensely
helped in developing graphical models and computing node
centralities. We have utilized the NetworkX Python package
to work with the graphs and networks. It offers a variety of
tools and features for designing, interpreting, and visualizing
graphs. Further, to create and display the data in graphical
form, we have used the OriginPro software.

VII. RESULTS AND DISCUSSION
This section presents the simulation results and provides a
comparison of the ICDC centrality with the conventional cen-
trality measures. We first show the relationship between the
basic centralities and the proposed centrality measure. Then,
we evaluate cumulative infected nodes for various types of
centrality metrics, including DC, BC, CC, CLC, ISC, LGC,
and ICDC, using the SIR model and independent cascade
models. We have compared the suggested centrality measure
with the basic centrality measures known in the literature
for various infection rates. Advantages and disadvantages
of both the conventional and proposed measures are listed
in Table 8.

A. CORRELATION BETWEEN ICDC WITH FUNDAMENTAL
CENTRALITIES
We present the findings of the relationships between ICDC
and fundamental centrality measures in the literature in
this subsection. The basic centralities are compared with
our proposed centrality ICDC using Kendall’s coefficient.
The correlation graphs corresponding to ICDC and other
fundamental centrality measures are shown in Fig. 2. In the
Fb_Pages network initially, ICDC is correlated with ISC.
As the number of nodes increases correlation between
them reduces and CLC also has some negative correlation
with ICDC. For facebook-combined network, Initially, ICDC
almost correlated with ISC, but the correlation decreased
with the increase in the number of nodes. In the soc-
wiki-vote network initially, ICDC is not correlated with
any other centralities later there is a considerable positive
correlation with ISC. For the remaining centralities, there
is no considerable correlation. Finally, in the ca-netscience
network initially, our measure ICDC correlated with ISC,
LGC, DC, and BC, as the number of nodes increased
the correlation decreased. The values of the correlation
coefficients among the ICDC and basic centrality measures
are shown in Table 7.

B. EVALUATING THE EFFECT OF PROPOSED CENTRALITY
MEASURE ON SPREADING ABILITY
In this subsection, we investigate the relationship between
infection rate and node centrality value in the SIR model,
utilizing a count of over 100 iterations. Initially, we estimated
centrality values using both suggested and existing method-
ologies. We employ a skipping node simulation technique
to reduce simulation time for large network datasets like
Fb_Pages and facebook-Combined. Consequently, fewer data
points are displayed for those network datasets as shown
in Fig. 3. The node with the greatest centrality value is
called the infected node. The overall number of affected
nodes is determined through simulations using the SIR
model. The infection rate β is estimated in the range
of 0.01 to 0.2. If the infection rate β surpasses 0.2,
a majority of nodes in the network will be affected. Graphical
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FIGURE 2. Correlation between ICDC with fundamental centralities, including DC, BC,
CC, CLC, ISC, and LGC up to the top 100 nodes.

TABLE 8. A comparative study of centrality metrics.

representation for centrality techniques such as ICDC, LGC,
ISC, CLC, CC, BC, and DC illustrates the comparison
between a node’s centrality value and the infection rate. Upon
observing Fig. 3, it becomes evident that as the centrality
value increases, so does the infection rate. Observing Fig. 3,
it becomes evident that the centrality value increases with the
infection rate. Experimental results in Fig. 3, demonstrate that
the suggested technique, ICDC, spreads more information
compared to other fundamental centrality approaches.

C. SIR CUMULATIVE INFECTED NODES
This subsection demonstrates the cumulative number of
infected nodes when initially influenced by the top-ten
seed nodes or influential nodes. We calculated the top-ten
influential or seed nodes by applying the proposed centrality
method (ICDC). We calculated the top 10 seed nodes
using the suggested ICDC approach, fundamental centrality
measures such as DC, BC, CC, and CLC, and the most
recent centrality metrics LGC and ISC. The initial infection
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FIGURE 3. Centrality value versus infection rate for four networks, where DC (Degree Centrality), BC (Betweenness Centrality),
CC (Closeness Centrality), CLC (Clustering Coefficient Centrality), ISC (Isolating Centrality), LGC (Local and Global Centrality), and ICDC
(Isolating Clustering Distance Centrality).

was spread among the top ten seed nodes using the SIR
model. Neighboring vertices associated with these seed nodes

are infected with infection probability β in the subsequent
time step. Each infected node has a chance to recover
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FIGURE 4. SIR model cumulative infected nodes for Fb_Pages, facebook-combined, soc-wiki-vote, and ca-netscience
(100 simulations in 40 time stamps). The top ten nodes are the best-infected nodes tested by basic centralities and ICDC
centrality.

with a recovery rate γ . To determine the cumulative total
of infected nodes, we conducted 100 simulations with
a time step limit set at 40. Fig. 4 displays the results
obtained from analyzing four real-world networks. In both
the Fb_Pages and facebook-combined networks, for the
infection rate β = 0.01 the centrality method ICDC
results in higher cumulative infected nodes compared to
the DC, BC, CC, CLC, ISC, and LGC methods. For the
infection rate β = 0.02, the LGC measure showed good
performance initially in the soc-wiki-vote network, but our
centrality measure eventually surpassed it for large-scale
networks.

D. ICM CUMULATIVE INFECTED NODES
We have observed a similar phenomenon in the IC Model
as in the SIR model. We plot Fig. 5, to show the average
number of nodes retrieved with various time scales using the
independent cascade model (IC model). Various centrality
measures are employed to identify the seed nodes that
serve as input for the IC model. For simulations within
the IC model, 100 iterations were used. In the Fb_Pages
and facebook-combined networks, ICDC has higher average

information dissemination than other centralities for the
infection rate β = 0.01. For the infection rate β = 0.06,
our suggested centrality ICDC and LGC spread more
information than DC, BC, CC, CLC, and ISC in the soc-wiki-
vote network, although LGC initially had a little advantage
in terms of information dissemination. In the ca-netscience
network for the infection rate β = 0.2, initially DC,
LGC good information spread up to some interval, where
proposed centrality with them having more information
spread.

E. MAXIMUM INFLUENCE FOR ICDC WITH BASIC
CENTRALITIES (SIR MODEL)
This subsection presents the top−10 most significant nodes
with varying infection rates evaluated for their capacity to
disseminate infection. The DC, BC, CC, CLC, LGC, ISC,
and ICDC centrality algorithms are used to find these nodes.
According to the information in the networks, it is evident that
nodes with the highest influence possess the ability to spread
or transmit effectively. The model of SIR over 100 iterations
was used to assess the maximum number of infected nodes
and the infection probability within the range of 0.01 to 0.2.
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FIGURE 5. IC model cumulative infected nodes for Fb_Pages, facebook-combined, soc-wiki-vote, and ca-netscience
(100 simulations in 40 time stamps). The top ten nodes are the best-infected nodes tested by basic centralities and mixed
centrality.

FIGURE 6. Variation of maximal information spread with β for basic centrality measures
(SIR Model).

Our proposed centrality (ICDC) was found to exhibit a
large infection population at various degrees of infection
probability when compared to traditional centralities.

Fig. 6 illustrates the maximum number of infected nodes
corresponding to some of the simplified infection probabili-
ties. In the Fb_Pages network for infection rate β from 0.01
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FIGURE 7. Variation of maximal information spread with β for basic centrality measures (IC Model).

to 0.07, almost for every value our measure has a high
infection rate. Especially for β = 0.01, 0.02, 0.03 values,
our measure ICDC outperforms all other basic centralities.
The remaining β values show a moderate infection
rate. In the same way, ICDC shows maximum infection
spread for facebook-combined network, soc-wiki-vote, and
ca-netscience network at β=0.01, 0.02, and 0.07 respec-
tively. We have noticed that ICDC performs reason-
ably well for the remaining β values too. So it is
concluded from the above discussion that ICDC per-
forms maximum infection compared with all other basic
centralities.

F. MAXIMUM INFLUENCE FOR ICDC WITH BASIC
CENTRALITIES (IC MODEL)
In this subsection, we discuss the maximal information
spread with different infection rates that vary from 0.01 to
0.2 using the IC model. Results from 100 iterations for IC
model simulations are displayed in Fig. 7. Fig. 7 shows
the maximum infection with varied infection probability.
In Fb_Pages network infection rate from β = 0.01 to 0.07,
ICDC shows the highest infection rate in almost every value
of infection probability. As we have seen in the SIR model,
in the same way for β=0.01,0.02,0.03, ICDC outperforms all
other basic centralities. Similarly, in the facebook-combined
network, the β = 0.01 shows higher infection and for
remaining values, there will be a moderate infection. In the
soc-wiki-vote network for the infection rate β = 0.06,

our measure is having more infection than all other basic
centralities as shown in Fig. 7. Finally, in the ca-netscience
network for the infection rate β = 0.05, 0.2, ICDC has a
higher infection rate than the remaining basic centralities.
For the remaining values of infection, it shows a moderate
infection rate.

VIII. CONCLUSION
In this study, we have proposed a new centrality mea-
sure called ICDC by using the isolating and clustering
coefficient centrality measures to capture the local and
global topological information. To test the efficiency of
the proposed measure in large-scale networks, we have
performed extensive simulations over real-world network
datasets such as Fb_Pages, facebook-combined, soc-wiki-
vote, and ca-netscience. Kendall’s tau has been employed to
investigate the similarity relationship between the proposed
measure and conventional centralities, revealing significant
dissimilarities. Using SIR and ICmodels, we have shown that
proposed measures consume high information spread over
conventional measures in the literature. Furthermore, we have
observed that the proposed measure consumes less time
complexity than the betweenness measure for large-scale
complex networks.

IX. FUTURE WORK
Designing the ICDC for social, biological, and transportation
networks is one of the interesting future research directions.
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The proposed measure can be extended and studied in
resource constrained networks such as large-scale WSN
and IoT networks to detect the cluster heads as it can be
applicable to large-scale networks. However, to model the
effect of asymmetric communication, we cannot exactly
apply the ICDC to WSN/IoT networks. Modeling the
network as a directed graph and redesigning the ICDC
is one of the new directions to work. As proved in the
paper, ICDC provides less time complexity than betweenness
centrality. Hence, the proposed measure is more suitable
to the networks that have high betweenness such as social
networks, power Grid networks, and transportation networks.
Studying the effect of specific characteristics on ICDC may
give interesting insights. Further, the edge weights represent
the strength of the edges which can model the relation-
ships and channels in social and communication networks
respectively. Hence, analyzing ICDC for dynamic weighted
networks has the potential to yield intriguing network
applications.
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