

Title:

Techno - economical literature study of an offshore floating wind turbine CSC-semi.

THE AUTHOR:

LASSE JOHANNESSEN BACKHOFF TOLLEFSEN

SUPERVISOR Zhiyu Jiang

University of Agder, [2023] Faculty of [Technology and science] Department of [Engineering]

Techno – economic analysis of the life cycle cost (LCC) of a floating offshore wind turbine, CSC-semi with a shared mooring system in the region of South North Sea II

A review of the technical economical study of the life cycle cost (LLC) for a OFWTs and prototype simulation with a chosen mooring system.

Master thesis spring 19. May 2023

UiA Handelshøyskolen آآھ

University of Agder, [2023] Faculty of [Technology and science]] Department of [Engineering]]

Abstract

The objective with this thesis was to investigate two subjects' the life cycle cost (LCC) and a dynamic response simulation of two prototype model I and II. Firstly, the economical part includes the main cost drivers, Capex (1), Opex (2), and Decom (3) for a Floating wind turbine (FWT). Furthermore, the dynamic response analysis of a prototype I based on catenary mooring configuration and prototype II with a shared arrangement and a mooring buoy as tension reliver. The prototype II concept are based of two horizontal platform oriented 180 degrees towards each other in the oriental plane and defined in a software program (Orcaflex). The response analysis includes several materials and dimension of mooring lines to be investigated. This for the maximum tension for several cycles of significant wave heights. The investigation has therefore been to evaluate the top tension (maximum) in each mooring lines based on two individual prototypes for comparing a single OFWT Vs. a shared mooring of two OFWTs. The simulation test has been tested for over 3800 seconds for each prototype I and II, of a total duration of 26600 seconds. The main purpose was to compare numerical mooring result based on the maximum tension in each mooing lines based for various sea state. In a sense, the shared mooring arrangement could possibly reduce the top tension in each line by including a mooring buoy in the mooring arrangement, in contrast to a single OFWT. The first prototype I was configurated with three mooring lines in a catenary plane with three chain lines. Prototype II was based on a mixture of taut mooring arrangement with material of polyester ropes and catenary chains defined in each end of the platform's (OFWTs) fairleads. In the process of modeling (designing) prototype II in the software (Orcaflex) the placement of design of parameters was also carried out. The cost cycle is the most important phase of a OFWTs project. This for evaluating the concept of a possible windfarm location for making a clear statement of the total cost estimates. The study will, therefore, investigate six cost drivers including: development and consenting (1), manufacturing (2), installation (3), transportation (4), exploration (5), and decommissioning (6). Based on this, a chosen type of platform structure which includs UMain volunternus 15MW and a turbine RWT-15 MW as reference for both subjects, meaning economical and simulation subjects' part. The proposed methods and assumption will therefore identify the cost cycle in relation to the six cost drivers as mentioned. The region at South North Sea II (SNII) is the reference location for both part subjects and meant for shallow waters of 70m and 168Km distance to the shoreline. The economical (part 1) and dynamical response

ii

simulation (Part 2) will provide the cost expense, limit state of mooring tension, with these chosen methods will be considered for the thesis.

Key words: Cost life cycle (LCC); Capex; Opex; Decom; Dynamic response; prototype model; time domain; catenary mooring; shared taut mooring; buoy; RWT-15MW; Umain volunternus.

Preface

This thesis represents my final master's degree over a two-year period of 120 credit points (CPT) in industrial economies and technology management (INDØK) at the University of Agder (UIA). The master thesis started in the mid of January 2023 and ended in the spring of May 2023. The thesis represents 30 credit point (CPT) and is written at the department of engineering and technology of science.

The objective with this thesis was to analyze the economic cost drivers in the life cycle (LCC) of an offshore floating wind turbine. For the thesis, a reference platform and a turbine were used as reference to the South North Sea II. The cost model in this thesis was based on an international standard IEC 60300-3-3:2004 cost life cycle (LLC) and by (L. Castro-Santos et al, 2013) form the University of Spain.

The challenge with this thesis from my perspective was to combine the cost model with the aspect with the simulation software. This for the purpose of combining the subject and to create a meaningful thesis, all in all. However, the total amount of work that was done in this assignment for one person was difficult in some periods. This in relations to all the responsibility based on every decision and direction of the project's outcome. However, the motivation provided by associate professor Zhiyu Jiang for the project was with great help when subjects was discussed. I would therefore first like to thank my internal supervisor who followed up on a weekly basis, associate professor Zhiyu Jiang, Guodong Liang and finally Finn- Christian Wickmann Hansen at Semar AS.

Agder, Grimstad Norway

19. May 2023

alle Ban

Lasse Johannessen Backhoff Tollefsen

Nomenclature

1.	AEP	Annual energy production
2.	ATB	Annual technology baseline
3.	Capex	Capital expenditures
2	OPEX	Operation and maintenance
3	DECOM	Decommissioning
4	LLC	Life cycle cost
5.	CBS	Cost brake down structure
6.	FCR	Fixed charge rate
7.	GW	Gigawatt
8.	KW	Kilowatt
9.	MW	Megawatt
10.	KWh	Kilowatt timer
11.	М	Meter
12.	MW	Megawatt
13.	MWH	Megawatt-hour
14.	О&М	Operational and maintenance
13.	OpEx	Operational expenditures
14.	USD	U.S. dollars
15	17	Уолч
15.	Ir	1eur
15. 16.	Ir ORCA	Offshore wind regional cost analyzer
15. 16. 17.	IF ORCA BOS	Offshore wind regional cost analyzer Balance of system
15. 16. 17. 18.	IF ORCA BOS WACC	Item Offshore wind regional cost analyzer Balance of system Weighted average cost of capital
13. 16. 17. 18. 19.	IF ORCA BOS WACC NREL	Item Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory
13. 16. 17. 18. 19. 20.	Pr ORCA BOS WACC NREL DNV	Item Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory Det Norske Veritas
15. 16. 17. 18. 19. 20. 21.	Pr ORCA BOS WACC NREL DNV COG	Item Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory Det Norske Veritas Centre of gravity
15. 16. 17. 18. 19. 20. 21. 22.	IF ORCA BOS WACC NREL DNV COG COV	Item Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory Det Norske Veritas Centre of gravity Coefficient of variation
15. 16. 17. 18. 19. 20. 21. 22. 23.	IF ORCA BOS WACC NREL DNV COG COV COB	Item Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory Det Norske Veritas Centre of gravity Coefficient of variation Center of buoyancy
15. 16. 17. 18. 19. 20. 21. 22. 23. 24.	IF ORCA BOS WACC NREL DNV COG COV COB FOWT	Item Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory Det Norske Veritas Centre of gravity Coefficient of variation Center of buoyancy Floating offshore Wind Turbine
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25.	IF ORCA BOS WACC NREL DNV COG COV COB FOWT TD	Item Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory Det Norske Veritas Centre of gravity Coefficient of variation Center of buoyancy Floating offshore Wind Turbine Time domain
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.	IF ORCA BOS WACC NREL DNV COG COV COB FOWT TD WF	Itear Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory Det Norske Veritas Centre of gravity Coefficient of variation Center of buoyancy Floating offshore Wind Turbine Time domain Wave Frequency
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.	IF ORCA BOS WACC NREL DNV COG COV COB FOWT TD WF WTG	Item Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory Det Norske Veritas Centre of gravity Coefficient of variation Center of buoyancy Floating offshore Wind Turbine Time domain Wave Frequency Wind turbine Generator
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.	IF ORCA BOS WACC NREL DNV COG COV COB FOWT TD WF WTG LF	Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory Det Norske Veritas Centre of gravity Coefficient of variation Center of buoyancy Floating offshore Wind Turbine Time domain Wave Frequency Wind turbine Generator Low frequency
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.	IF ORCA BOS WACC NREL DNV COG COV COB FOWT TD WF WTG LF PDF	Item Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory Det Norske Veritas Centre of gravity Coefficient of variation Center of buoyancy Floating offshore Wind Turbine Time domain Wave Frequency Wind turbine Generator Low frequency Probability Density Function
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.	IF ORCA BOS WACC NREL DNV COG COV COB FOWT TD WF WF WTG LF PDF FLS	Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory Det Norske Veritas Centre of gravity Coefficient of variation Center of buoyancy Floating offshore Wind Turbine Time domain Wave Frequency Wind turbine Generator Low frequency Probability Density Function Fatigue Limit state
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31	IF ORCA BOS WACC NREL DNV COG COV COB FOWT TD WF WTG LF WTG LF PDF FLS ALS	Item Offshore wind regional cost analyzer Balance of system Weighted average cost of capital National renewable energy laboratory Det Norske Veritas Centre of gravity Coefficient of variation Center of buoyancy Floating offshore Wind Turbine Time domain Wave Frequency Wind turbine Generator Low frequency Probability Density Function Fatigue Limit state

33.	MBL	Minimum Breaking Load
34.	MBS	Minimum Breaking Strength
35.	MPM	Most probable Maximum
36.	NOK	Norsk krone
37	Euro	Euro
38.	Lp	Numbers of mooring lines
39.	Lb	Turbine blade length
40.	PE	Price per unit energy
41.	SSP	Semi-submersible platform
42.	TLP	Tension Leg Platform
43.	SP	Spare buoy
41.	TLB	Vertical leg platform
44.	m	Meters
45.	SNII	South North Sea II
46	LJBT	Lasse Johannessen Backhoff Tollefsen
47	OFWT	Offshore floating wind turbines
48	FWT	Floating wind turbines
	CSC	

Table of Contents

Abstractii
Prefaceiv
Nomenclatureii
Figure list:vii
Table list:ix
Graphsx
Equationsxi
1. Introduction1
2.1 Methods and tools used for the thesis2
2.2 Part 1, the economical method for the cost model2
2.3 Part 2, the simulation software Ocarina Ltd. Orcaflex4
2.4 Purpose and scope6
2.5 Motivation
2.6 Problem definition of the research question
2.7 Limitations
2.8 The main goal of the thesis
2.8 The thesis overviews
Theoretical backgrounds12
3 Theory
3.1 Wind energy12
4 Mooring design theory14
4.1 The calculation of the circle radius of the buoy15
4.2 Morrison equation for the drag forces in the mooring lines
4.3 The drift motion caused by wave loads on a floating structure
4.4 The motion of a floating body (platform) in a frequency domain19
4.5 Time domain in relation to wave response
(16)
4.7 Design of mooring lines
5 Net annual energy produced - AEP23
6 Economic methodology and definitions24
6.1 Cost model of the (brake down structure)24

6.2 The total life cycle cost (LLC) of the OFWT.	25
6.3 The conception and definition (1)	26
6.4 Manufacturing cost (2)	27
6.5 Installation-, transportation- cost (3)	28
6.6 Dismantling cost (4)	29
6.7 Exploitation cost (5)	30
7 Technical terminologies	31
7.1 State- of -the- art technology	31
8 Semi-submersible platform (SSP)	34
8.1 Reference offshore floating wind platform; CSC-Semi	36
8.2 Reference turbine IEA RWT- 15 MW	37
8.3 Hub generator and nacelle	28
	50
8.4 Comparison of material cost between various turbines	40
9 The main mooring configuration system.	42
9.1 Introduction of the terminology mooring system and mooring hardware.	42
9.2 Catenary mooring system – Slack	42
9.3 Taut line mooring system- TLP	43
9.4 Vertical Tension leg mooring system – TLP	44
9.5 Hexagonal farm layout arrangement	45
9.6 Shared taut mooring buoy arrangement with two turbines	47
10 Mooring hardware components and dynamic power cables	48
10.1 Mooring hardware cost	48
10.2 Chain	49
10.3 Steel wires	50
10.4 Synthetic- fiber ropes	52
10.5 Drag embedded anchors	54
10.6 Suctions anchors - Vertical suction pile	55
10.7 Vertical load anchor-VLA	56
10.8 Dead weight anchors	57
10.9 Pile anchor and gravity torpedo pile	58
10.10 Diverse connection shackles	59
10.11 Marine buoy	60
10.12 Array electrical power cables	61
11 Vessel types and their configuration for installation and maintenance process	63

12 Introduction to the simulation case of prototype 1 and 2	
A summary of the simulations and prototype design.	67
12.1 Prototype model I, catenary mooring arrangement	68
12.2 Prototype model II shared mooring arrangement	70
12.3 Prototype II calm base buoy	72
13 Case study	73
13.1 Geographic location South North Sea II (SNII)	74
13.2 Properties of the mooring line materials to be simulated.	76
13.3 Sea state conditions (Jonswap).	77
14 A collection of numerical cost data for the cost result	
Part 1, Economical result	
15 The result for economical part	
Economical Result	81
15.1 Net annual energy produced (AEP).	81
16 The result of the cost model (life cycle cost) - LCC	
16.1 Development and consenting cost.	82
16.2 Manufacturing cost	83
16.3 Installation and transportation cost	87
16.4 Operation and maintenance	89
16.5 Dismantling cost	91
16.6 Total life cycle cost	92
Part 2, dynamic response result	
17 The time response analysis of the maximum tension load for various significant wa	ve height based for
both prototype I and II.	
17.1 Result of the mooring tension for prototype 1	
1/.2 Result of the mooring tension for prototype II	
18 Discussion of the comparison of the reasons result	106
20 Conclusion	
21 Future work	108
22 Reference list:	109
23 Appendix	117

Figure list:

Figure 1 (A. Martinez et al, 2021)	1
Figure 2 ilustrates the work brakedown structure (WBS) of the financial cost model over the overall	!
CAPEX, OPEX and DECOM of the LCC The model is designed In Power point and the consept of	f
idea is added from (L. Castro-Santos et al, 2013) (Martinez, 2021, s. 7) The illustrated map figure of	f
the work breakdown structure (WBS) is based on the international standard IEC 60300-3-3:2004 of	•
the cost life cycle (LLC)	4
Figure 3 illustrates the way in the cost model based on each stage form 1-6 of the Life cycle cost	
(LCC) and is added form (L. Castro-Santos et al, 2013)	4
Figure 4 Illustrates the tree various visons to see the screen shade and mash	5
Figure 5 Illustrates a screen overview of the Ocarina Ltd. Oraflex in the simulation test for a single	
OFWT prototypes	5
Figure 6 illustrates the different mooring configurations profile such as Slack. (H Munir, MC Ong,	
2021)	.14
Figure 7 seen from left to right Catenary plane and Shared line (H Munir, MC Ong, 2021)	.15
<i>Figure 8</i> (AMARAL, 2020, s. 48)	15
Figure 9 (AMARAL 2020, s 49)	16
Figure 10 Illustrates the radius (m) to the anchor point and based on (6-8) the water depth this in	
relation to 70m The resulting radius length is 610 m (Yang 2021 s 2)	17
Figure 11 Illustrates the drift motion caused by the wave drifts on the floating body (Platform) The	
fig 12 is redesigned model based on (Godfrey Boyle et al. 2018 s. 455). The motion drift (1) steady	
state position (2) pitch (3) have lift and (4) surge. The 7-axial position shows the direction in the	
geometrical plane. The illustrative figure is designed by the author	.18
Figure 12 illustrates the way in the cost model based on each stage form 1-6 of the levelized cost	
cycle (LCC) by (L. Castro-Santos et al. 2013)	.24
Figure 13 Barge (Maximiano 2021)	31
Figure 14 Semi-submersiblel SSP (Maximiano 2021)	32
Figure 15 Spar-buoy (Maximiano, 2021)	32
Figure 16 Tension leg platform (Maximiano, 2021)	32
Figure 17 Illustrates the wind float (10MW) Spar buoy (5MW) and the CSC-semi(15MW) The	55
illustrative design to the left is purely designed by the author LIBT from Orcaflex and was in the	
beginning of the thesis meant to be used as a possible reference platform	35
Figure 18 illustrates the platform structure CSC-semi: UMain Volturnus 15MW and the is	55
constructed up by four columns. The mooring attachment are at the lowest bottom on each column	
angled at 120 degrees. The illustrated sketch is redesigned from Orcaflex and is designed by the	
author LIBT. The measure of dimensions is done with traditional power-point	.36
Figure 19 Illustrates the turbine seen form front- view side- view and top- view. The illustrative	
design is developed by the author from Orcaflex. The turbine has a roto diameter of 240m and hub	
height of 150m. The blade is measured to 117m.	.37
Figure 20 shows the hollow hub steel structure (1), generator (rotor, stator) (2), nacelle (shaft) (3)	-
with a upward $6 \circ$ angle The design is added form Orcaflex by the author LJBT.	.38
Figure 21 illustrates the power rate curve and capacity power and both fig.22 is collected from	
(nrel.github, 2020)	.39
Figure 22 (Walter Musial et al, 2020. s. 17)	.40
Figure 23 illustrates the catenary mooring configuration system. As could be seen from the figures t	the
mooring lines has large curvature of chain lines. The mooring lines could also be combined with fib	per
rope as a mix method. The first fig. is redesigned by the author LJBT form Orcaflex. The other	
illustration is added form (abc-mooring.weebly, 2023).	.43

<i>Figure 24</i> Illustrates the taut mooring configuration system as could be seen from both fig. the	
mooring has no slack but strait lines in each direction. The first fig. is designed by the author the oth	ler
one is added form (abc-mooring.weebly, 2023)	44
Figure 25 Illustrates the vertical tensile leg mooring lines between the structure and seabed floor. The second seabed floor and seabed floor.	he
first fig.26 is designed by the author LJBT from Orcaflex. The other illustration is added from (Iñigo	(
Mendikoa Alonso, 2021, s. slide 5).	44
Figure 26 seen form left single line, hexagonal 3 lines and finally 6 lines (Fontana, 2019)	45
Figure 27 Illustrates the shared mooring arrangement with a combination with mooring buoy and	
shared anchor in the center between the three OFWT. The mooring buoy acts as a connecting point	
and tension reliver. Each illustration is design from Orcaflex by the author LJBT. The figure below	
represents an overview of the hexagonal farm layout	46
<i>Figure 28</i> Illustrates the shared taut mooring line of farm layout (row) based of steel wire or fiber	
rope also known as taut mooring lines with marine float (buoy). This mooring configuration system	
will be used in the response analysis in the case study for SNII. The figures are designed by the	
author	47
Figure 29 Illustrates the different shape of studdles link and studded link	49
Figure 30 provides the design of side view of Six strands (left) and Spiral strands (right) (Ronson,	
1980)	50
Figure 31 Illustrates the relationship between the max. braking load of six strands and spiral in water	r
and in air. The relation between the nominal diameter and weight (Ronson, 1980)	51
<i>Figure 32</i> provides the various configuration of fiber mooing lines baes on their revolved strands	
(Pham, 2019, s. 32)	52
Figure 33 illustrates the various mooring material and diameters of their maximum breaking loads	
(Vryhof manual, 2015, s. 146)	53
Figure 34 Illustrated the drag anchor form top- and side -view (solarpontoon.wixsite, 2023)	54
Figure 35 Illustrates the pile and the hollow suctions (pile) anchor and is installed vertical in the sol	il
(Acteon, 2022, s. 11)	55
Figure 36Vertical load anchor (VLA) (jinbomarine, 2023)	56
Figure 37 seen from left to right, deadweight steel weights (Vryhof manual, 2015, s. 17) and new typ	se
of dead weight design (Offshore wind design AS, 2023)	57
<i>Figure 38</i> seen from left to reight torpedo pile and pile (Vryhof anchor, 2005, s. 11)	58
Figure 39 seen form left, Shackles (1), link kenter (2), link pear shaped (3), c-type (4). (Vryhof anch	or
, 2005, s. 11)	59
Figure 40 Illustrates two mooring buoys of AMR 7000 and AMR 7000 with different connection	
points of shape T (hydrosphere.co.uk, 2014)	60
Figure 41 illustrates the dynamic power cable and an overview of the inner part of the power cable	
(Twind offshore wind energy, 2021, s. 4)	61
<i>Figure 42</i> Illustrates the towing process of a complete assembly by using towing vessels. The tug	
vessels illustrated in the figure are not the ordinary vessel but only meant as an illustration view ove	r
the 15MW US main towing. Designed by the author	63
Figure 43 crane barge/barge (J.M.J. Journee et al, 2001, s. 38)	64
Figure 44 Tug vessel (J.M.J. Journee et al, 2001, s. 38)	64
Figure 45 crew transport CTV (J.M.J. Journee et al, 2001, s. 38)	65
Figure 46 AHTS, SUV supply vessel (J.M.J. Journee et al, 2001, s. 38)	65
Figure 47 (Bureau of ocean energy management, Boem, 2011, s. 1)	66
<i>Figure 48 Example of the single OWP in simulation model 1. File example designed by Ocarina Ldt.</i>	
oraflex.	68
Figure 49 Illustrates plane sketch design of the two horizontal OFWT oriented 180 degrees. Plane-	
sketch designed by the author LJBT	70

<i>Figure 50 Example simulation mooring buoy model 3 in configuration design case 2. (reference)</i>
Plane-sketch designed by the author LJBT72
Figure 51 illustrates the location of the area and is defined in orange and identifies the SNII and the
distance between the four main harbors (Are Optad Sæbø,Kristin Gulbrandsen, 2020, s. 21) the
coordinates over the locations Norwigan Gov. (Tina Bru, 12, ss. 6-7)74
<i>Figure 52</i> illustrates the wind farm location at South North Sea (I and II). The Black arrow marks the site SNII collected through NVE (NVE, 2023) and meat ocean map based on at SNII (Lin Li et al,
2023, s. 12)75
<i>Figure 53</i> The wave spectrum for irregular waves shows the separate density curves y-axial and the period (Hz) x-axial direction of random chosen wave heights of 2m, 4m, and 6m. Added from oraflex.
Figure 54 gives a representation of the extension in the mooring line from position 1-3 in relation to
the fairlead caused by drift motions based on have-lift, pitch and surge as a result96
Figure 55 Prototype I steel chain 185mm
Figure 56 Prototype II 100mm steel wire97
Figure 57 Prototype II polyester rope 268mm

Table list:

Table 1 Illustrates the coefficient of the ULS, ALS (DNVGL AS, 2018, s. 75).	22
Table 2 Provides the nomenclature of the total life cycle LCC components (L. Castro-Santos et al,	
2013) (Ala' K. Abu-Rumman et al, 2017, s. 186)	25
Table 3 Provides the nomenclature of the conception and definitions. (L. Castro-Santos et al, 2013)	.26
Table 4 Provides the nomenclature of the manufacturing components (L. Castro-Santos et al, 2013)) 27
Table 5 Provides the nomenclature of the material cost (Alberto Ghigo et al, 2020, s. 14)	27
Table 6 Provides the nomenclature of the installation and transportation components (L. Castro-	
Santos et al, 2013)	28
Table 7 Provides the nomenclature of dismantling components (L. Castro-Santos et al, 2013)	29
Table 8 Provides the nomenclature of the Operation and Maintenance (Costro-Santos, 2016, s. 32).	30
Table 9 provides a cost comparison between the total for platform structures the collected data is	
added by and converted today's inflation rate and in dollar (Sintef, 2019)	33
Table 10 provides the parameters for the 15 MW RWT turbine. (Evan Gaertner et al, 2020, s. 31)	39
Table 11 provides a comparison between turbines fNational renewable energy laboratory, 2020, s. v	vi)
(Tyler stehly et al, 2019, s. Vi)	.40
Table 12 shows the grade of chain links and the multiplication factor C. The MBL for the gradings	
and assumed price range between	50
<i>Table 13</i> illustrates some parameters of their nominal diameters of wires (Vryhof manual, 2015, s.	
17)	51
Table 14 provides some properties of synthetic fiber ropes along with their breaking loads.	52
Table 15 Various types of anchors and the following cost.	54
Table 16 provides some cost estimates for some suction pile given by their weight. Reference is	
provided in the table	56
Table 17 provides the cost price for vertical load anchor.	56
Table 18 provides the mass of anchors and some cost price	57
Table 19 provides the anchors mass and their cost.	58
Table 20 provides some types of mooring buoys and some cost price.	60

Table 21 provides the coefficients needed for estimating the cable cost (Maria Ikhennicheu e	et al, 2020,
s. 89)	61
Table 22 Coordinate of placement of the single- OFP in Orcaflex	69
Table 23 Placement of mooring configuration and two- horizontal OWPs.	71
Table 24 Placement of the marine buoy	72
Table 25Provides the parameters of the Soyh North Sea II	75
Table 26 Provides various dimension of mooring properties.	76
Table 27 assumption of design load case of random variable of wave height in SNII	77
Table 28 provides a collection of numerous cost which includes vessel,	79
Table 29 Benchmark assumption of the net average energy produced of a wind farm	81
Table 30 provides the development consenting cost.	82
Table 31 Provides the cost of turbine for case 1 and 2.	84
Table 32 provides the cost of the platform UMain Volunturn 15MW	85
Table 33 manufacturing cost of the mooring lines, anchors, dynamic power cables	86
Table 34 Provides the cost for the installation in the region of south North Sea II.	88
Table 35 provides a cost assumption of the platform US main Volturnus	90
Table 36 Illustrates the estimates of the dismantling cost.	91
Table 37 provides the cost drivers with fixed rate of 8%	93
Table 38 Provides the total life cycle cost for case 1 and 2.	94
Table 39 Illustrates the LCC in \$ /KWh for a wind farm 15MW and 100MW.	95
Table 40 provides the test result of the measures of the tension in the mooring lines	104

Graphs

Graphs 1 shows a cost comparison between 5MW, 10MW and 15MW only based on their cost of
materials of construction steel. The total weight is in (\$/Kg)41
Graphs 2 Comparison of different vessels cost per day rate
Graphs 3 Significant wave heights $Hs = 2m$, significant periods $TP = 4$, wind speed $Uw = 10.5m/s$
185mm Studdles link chain
Graphs 4 Significant wave heights $Hs = 4m$, significant periods $TP = 6$, wind speed $Uw = 10.5m/s$
185 mm studdles link chain
Graphs 5 Significant wave heights $Hs = 6m$, significant periods $TP = 8$, wind speed $Uw = 10.5m/s$
185 mm studdles link chain
Graphs 6 Significant wave heights $Hs = 2m$, significant periods $TP = 4$, wind speed $Uw = 10.5m/s$
100mm (6X19 strands steel wire)100
Graphs 7 Significant wave heights $Hs = 4m$, significant periods $TP = 6$, wind speed $Uw = 10.5m/s$
100mm (6X19 strands steel wire)101
Graphs 8 Significant wave heights $Hs = 6m$, significant periods $TP = 8$, wind speed $Uw = 10.5m/s$
100mm (6X19 strands steel wire)101
Graphs 9 Significant wave heights $Hs = 2 m$, significant periods $TP = 8 s$, wind speed $Uw =$
10.5 <i>m/s</i> , 268mm polyester rope102
Graphs 10 Significant wave heights $Hs = 4 m$, significant periods $TP = 6$ s, wind speed $Uw =$
10.5 <i>m/s</i> , 268mm polyester rope102
Graphs 11 Significant wave heights $Hs = 6 m$, significant periods $TP = 8$ s, wind speed $Uw =$
10.5 <i>m</i> / <i>s</i> , 268mm polyester rope103

Graphs 12 Significant wave heights $Hs = 10,5 m$, significant periods $TP = 14.5 s$, wind	
speed $Uw = 9.2 m/s$, 150mm steel wire with fiber core	103

Equations

(1)	
(2)	
(3)	
(4)	14
(5)	14
(6)	
(7)	
(8)	
(9)	
(10)	
(11)	
(12)	
(13)	
(14)	
(15)	
(16)	
(17)	
(18)	
(19)	
(20)	
(21)	
(22)	
(23)	
(24)	
(25)	23
(26	25
(27)	
(28)	27
(29)	27
(30)	
(31)	
(32)	
(33)	46
(34)	62
(35)	62
(36)	62

1. Introduction

Global warming is changing rapidly, and the world needs alternative renewable energy to accommodate the negative CO2 emissions that's effecting the climate change. Therefore, new renewable solutions are therefore required to create a more sustainable and sustainable environment. The Norwegian ministry of Energy decided therefore in 2023 to open up new waters for windfarm development in the South North Sea II. The measured capacity of energy for these two areas combined corresponds to 4500MW. Based on the high energy potential, the marked growth of the offshore technology is therefore evolving rapidly with large scale turbines, innovative mooring configurations, and diverse platform designs for complex environment. Since large scale turbines produces more electricity than smaller ones, a further up-scaling for such turbines also requires large scale platforms and more materials to be used for such installations (Liu Jinsong et al, 2018, s. 1). Therefore, the cost expenses increase thereafter. However, some of the problem for such design configurations and installations is that the technology of offshore floating wind turbines is moving into harsher-, deeper waters with further distance to site locations. The process, therefore, makes the installations and operation very expensive and cost sustainable. In order for offshore floating wind turbines to be cost effective is to take a further look at the cost life cycle (LCC) defined by the cost six cost drivers. The fig. 1 illustrates some of the cost drivers and were they influences the most. As seen wind turbines represent 43% of the LCC and foundation 18%, and installation with 5% therefore to investigate the alternative for cheaper innovative solutions.

Figure 1 (A. Martinez et al, 2021)

The cost drivers are therefore largely affected by the installation- and operational cost. A key aspect of this report is to take use of a standardized cost breakdown structure (CBS) for the purpose of investigating more.

2.1 Methods and tools used for the thesis.

Introduction

This chapter describes the method and tools used to solve the thesis research question. The purpose for this is to provide a clear understanding to how the thesis has been solved. The thesis is divided between two subjects' methods, one economical part and a dynamic response simulation of a prototype model I and II. The chapters are described in chronological order for the purpose of providing a clear overview for both methods which are provided in the models.

The first part is the economical part where the cost model is presented over the total chain of the life cycle cost (LCC) with a description of each phase in the model and defined from 1-6 (see chap. 2.3). The purpose with this is to identify each cost components in the cost life cycle (LLC) of the offshore floating wind turbines (OFWT). The other part considers a clear and proper description of the setup simulation of the software program Orcaflex. The setup model is presented in (chap. 12). However, the simulation prototypes that is to be tested is based on two individual models I and II. A single OFWT with a chain catenary mooring line, and the other part is with two shared mooring line with two OFWT in the same setup model based with a calm base buoy.

2.2 Part 1, the economical method for the cost model.

Introduction to the economical method used in the thesis, this part describes the economical way-map based on the six main cost drivers. The cost drivers represent the total life cycle cost (LCC) defined over the work brake down structure (WBS) (see fig.3).

The methodology of the cost model is based on the international standard IEC 60300-3-3:2004 cost life cycle (LLC) ((Ingo Jermin et al, 2009, s. 1). The cost model could therefore be divided into to six main costs drivers and includes concept and definitions (1), design/ development (2), manufacturing (3), installation (4), operation & maintenance (5), and dismantling (6) (Ingo Jermin et al, 2009, s. 1). These cost drivers represent the capital expenditures (CAPEX), operation and maintenance (OPEX), and decommissioning (DECOM). Based on this, the developed way-map over the work brake down structure (WBS) provided in fig. 3 is the main cost elements and is divided in four levels from 1-4.

Firstly, level 1 provides an explanation of the reference location, life cycle cost (LCC). Secondly, level 2 represents the economical terminology with the main cost components with a clear description of the net average energy produced (AEP) followed by the main cost drivers Capex, Opex, and Decom. Furthermore, level 3 is the under-cost post that represent the main three cost drivers of the six under cost. Finally, level 4 provides the total value of Capex, Opex and Decom.

Economical map of the cost model (CBS)

Figure 2 ilustrates the work brakedown structure (WBS) of the financial cost model over the overall CAPEX, OPEX and DECOM of the LCC.. The model is designed In Power point and the consept of idea is added from (L. Castro-Santos et al, 2013) (Martinez, 2021, s. 7) The illustrated map figure of the work breakdown structure (WBS) is based on the international standard IEC 60300-3-3:2004 of the cost life cycle (LLC).

The illustrated WBS model in figure 3 identifies the main cost drivers in the Work breakdown structure (WBS). The six cost drivers and is followed in fig.4 and is the way map for solving the LCC and to solve the research question in relation to this thesis and is linked to (L. Castro-Santos et al, 2013) and (Martinez, 2021, s. 7).

Figure 3 illustrates the way in the cost model based on each stage form 1-6 of the Life cycle cost (LCC) and is added form (L. Castro-Santos et al, 2013)

2.3 Part 2, the simulation software Ocarina Ltd. Orcaflex

The simulation program used in this thesis is Orcaflex and the software is developed by the UK company (Ocarina Ltd., 2023, ss. 1-14). The software is an expensive license server borrowed for this thesis. The software provides a fully dynamic simulation analysis in 2D and 3D dimensional view of the OFWT in x-, y-, and z- axial positions. According to the Ocarina Ltd. the software uses the Morison approach for calculating the wave loads on the structure and is also mentioned by (Ibbrahim Engine Taze, 2022, s. 21). Moreover, the second order wave for Jonswap sea state conditions is also provided in the simulation software. The semi-submersible platform the UMain Volturnus 15 MW is as example file borrowed from Ocarina. Ltd and the link to the file is given here (Ocarina Ltd., 2023, ss. 1-14). For the software simulation to work, another software is needed, such as Pyhton.org 3.11.3 (Python.org, 2023). This is a separately downloaded file form another source. The function of Python is numerical coding software for scripting data from numerical output values from the simulation in Orcaflex. The presented figures below provide an overview of the 3D dimensional structure placed in waters in six degrees of freedom, also described in chapter 3 theory.

4

Figure 4 Illustrates the tree various visons to see the screen shade and mash.

The software therefore makes it possible to simulate several scenarios based on several aerodynamic and hydrodynamic conditions. The software could also be used for re-designing various components, such as platforms and turbine's structure.

Figure 5 Illustrates a screen overview of the Ocarina Ltd. Oraflex in the simulation test for a single OFWT prototypes.

As could be seen in the fig. 6 to the left are all the main components of each file. Secondly, the time domain series after the simulation has been run provides the numerical graphs. The

software has also been used for creating several figures of sketches in this thesis for the purpose of providing own illustrations along with the description.

2.4 Purpose and scope

The scope of the thesis is based on the state-of-the-art- technology and is a fairly challenge in relation to the high-cost expenses in this industry. This technology, however, is expanding rapidly for the purpose of reducing the global climate challenge and decreasing the fossil fuel into a more renewable energy and creating a new marked. Since the offshore wind industries today is very expensive new innovative solutions needs to be developed in order to gain global interest. This based on shareholders, governments, and private investors to see new profits in the OFWTs and state-of-the-art- technology. Therefore, new innovative solutions based on smarter, cheaper, and innovative solutions would possibly decrease the cost expense and make it more dynamic and cost effective.

The economical part of this project includes the total life cycle cost (LLC) for every six cost drivers in relation to installation, manufacturing, transportation, decommissioning, operation & maintenance service. The other experimental part is the simulation test of a scale prototype models I and II for different mooring configurations arrangements. The purpose with this is to measure the maximum peak tension for each individual mooring lines for the two prototypes tested by comparing the mooring configurations response effect. The test will also be performed with several mooring materials in relation to chain, steel wires and synthetic fiber ropes, also for comparing. Addition to the reasons analysis the test would also be measured along with the cost expense for one individual and multiple OFWTs for look at the cost.

2.5 Motivation

The technology of offshore wind installation has had a great success so far, to name a few Hywind Tampen, Dodger banks, Gamesa and several other wind projects globally. The concept with this OFWTs started back in 1991 in Denmark as a concept idea and has since then been a huge part of the renewable marked. The government in Norway opened therefore up new area for development for bottom fixed and FWT in the region of South North Sea II. This in 2023 by the Norwegian government. The South North Sea has significant potential for

6

wind recourse of reusable energy to be utilized. The farm area according to NVE has a good wind and wave potential.

The motivation with the thesis subjects is to develop further knowledge with the cost chain of this type of renewable technology. Moreover, since it has become the green gold of renewable technology. The main cost components that makes up the total cost for an OFWT is an interesting subject. Moreover, the dynamic response in the mooring system is an important part which are related to the to the stabilizer of the platforms and is very linked to the cost expense.

In relation to capital expenses this type of technology it is still very expensive as mentioned. Since the effect are based on the manufacturing, installation, and maintenance service in these industries. Therefore, an optimizing of these cost drivers is needed to find cheaper and more sustainable alternatives in this manner. Nevertheless, an investigation of the several components would also provide some further knowledge and possible to identify a cost reduction with this technology.

The dynamic response of a simulation test would provide comparison with single Vs a shared mooring design to identify the response effect caused by the wave conditions. However, the concept of shared mooring lines with a buoy will therefore be investing to investigate. For this reason, possible findings could therefore provide more knowledge in relation to the cost of the life cycle and the response effect.

7

2.6 Problem definition of the research question

In relation to the LCC the capital and operational expenditures is largely affected by the mooring system, distance, and depth of wind location. For this reason, (L. Castro-Santos et al, 2013) investigated the cost lifetime cycle (LLC) of several types of offshore platform for comparing the cost for various mooring configurations in combination to a farm location. As a result, Semar AS has therefore investigated a technical solution that would offshore reduce the installation- and maintenance costs for a floating wind turbine. The technical solution consists of shared anchoring with a buoy and fiber mooring lines. The problem with such offshore installation in deep and shallow waters is due to high installation cost and environmental impact loads caused by wind and waves. The focus is therefore the technical solutions in combination with a 15MW model of a semi-submersible offshore wind construction. The main research for this project is to understand the physical behavior and carry out cost estimate for a prototype wind farm model. Simulations in Oraflex under various wind and waves circumstances namely hydrodynamics forces will be carried out. The main purpose is to develop a «Cost brake down structure» for the installation costs CAPEX, operating costs OPEX and decommissioning cost Decom. Today, huge amount of money is invested in the offshore industry and the demand continues to increase. Therefore, installation cost for such technical solutions will be an important part of further development.

Questions to be investigated and to be solved:

I. How will different innovative mooring alternatives affect the system dynamic response and the life cycle cost costs (LLC) related to CAPEX, OPEX and DECOM of a 15MWsemi-submersible floating wind farm?

2.7 Limitations

Since the master thesis is divided between two parts methods, one for each subject, meaning one economical part and one simulation part. The simulation part includes two individual scale prototypes I and II to be simulated, the fist model is based on a basic catenary mooring design configuration. The prototypes I and II are only meant for investigating the mooring line tension. The limitation of the thesis, based on the given timeframe and resources are very large subjects for one person to create deep knowledge for all the components and their configurations in relation to the research question. Therefore, the subject will be divided into simpler investigation subjects. The main goal for this thesis is to create a model of a prototype of a shared mooring arrangement between two 15MW platform with a buoy in the center in the software. This for comparing the mooring tension with several variables of sea state conditions for comparing the numerical data. The other part is to investigate the cost life cycle in relation to the mooring hardware, Installation, manufacturing, dismantling and operation and maintenance service fully described in chapter. 15 results. The outcome of the result in relation to the two investigated subjects will hopefully create a meaningful comparison with one and multiple OFWTs.

2.8 The main goal of the thesis.

The main goal with this research project is to estimate the total cost of a prototype model and a test simulation for comparing one single catenary mooring configuration Vs. shared mooring configuration to overlook the comparison over the response effect in the mooring lines. This for evaluating the cost and the dynamic responds effects. Therefore, in this thesis the main goals will therefore be:

- To develop a cost breakdown structure of the total LLC of a wind farm in relation to Capital expenditure (Capex) along with operational & maintenance service (Opex) and decommissioning (Decom). This with cases 1 and 2 for assumed windfarm at South North Sea II with one 15MW and a 100MW wind farm also related to the prototype I and II models which are to be developed.
- The other part is to create two shared OFWTs of a chosen prototype with a calm base marine buoy in the software program Ocarins Ltd. This with proper mooring configurations and properties.
- Investigate the primary numerical collected data form the simulation test form Orcaflex and the economic cost which are collected through numerous articles and master thesis of other investigated work.

9

 Finally, to compare the cost in each stage of the cost model and the mooring response system of mooring tension loads related to the15MW turbines with one, two shared etc.

2.8 The thesis overviews.

• Chapter. 1

The introduction to the thesis.

• Chapter. 2

The economical and simulation methods used for solving the thesis research question. A clear description of the methods and tools used for making a complete project in relation to both subjects economical and simulation software test.

• Chapter .3

Describes the theoretical theory of the mooring lines of single catenary and shared mooring lines configuration arrangement. Moreover, the drift motion caused on a platform structure in free water surface, the second order wave load along with wave and wind terminology, and finally monte Carlo simulation for describing the Weibull's probability paper for random variable number of numbers.

• Chapter. 4

The state- of- the- art technology based on various OFWTs configuration dependent on the platform structure. Followed by the various traditional mooring configuration based on catenary mooring, tut leg mooring, vertical tension leg, and shared mooring lines.

• Chapter. 5

The hardware components used in the mooring design. Firstly, the mooring lines based on chain, steel wire, synthetic fiber ropes. Followed by several anchors such as, drag embedded anchors, suction pile, pile anchor, gravitational anchor.

• Chapter. 6

This chapter provides the cost brake down structure (CBS) with clear description of six main cost drivers. The development and consenting, manufacturing, installation, transportation, operation and maintenance, and dismantling cost.

• Chapter. 7

The technical specification of the state- of -the -art technology.

• Chapter. 8

A clear description of the reference turbine RWT-15MW and the reference platform UMain Volturnus 15 CSC-Semi.

• Chapter. 9

The main mooring configuration arrangement is described and consist of catenary, taut line mooring, vertical tension leg, hexagonal shared mooring and two share mooring line.

• Chapter 10

The main mooring hardware components are described and includes chain, steel wire, synthetic fiber rope, anchors, shackles, and dynamic power cables.

• Chapter 11

The various vessel is presented with cost estimates.

• Chapter 12

The prototype models I and II are clearly defined with deep description aligned with the software of coordination's. The prototype I is a single OFWT and prototype II is a two shared OFWTs in the same setup. Moreover, the calm base buoy is properly described.

• Chapter 13

The case study is presented with the chosen reference location South North Sea II (SNII).

• Chapter 14

A collection of numerical cost data is presented with the authors.

• Chapter 15

The assumed possible windfarm in the south North Sea II for estimating the net average energy produced (AEP) for the two case 1 and 2.

• Chapter 16

The result is provided for the part 1 of the economical subject.

• Chapter 17

The result of the simulation test for both prototype I and II part 2 of the subject.

• Chapter 18

The discussion of the result both economical and simulations to founding's.

• Chapter 19

The discussion of the result mooring tension.

• Chapter 20

The

Theoretical backgrounds

This chapter considers the theoretical terminology of the several equations for the purpose of providing the general theory of wave, wind, and mooring lines in combination to the drift forces. The first part of the chapter provides the environmental wind and wave conditions. Secondly, a description of the mooring lines based on catenary and shared mooring design is developed. Moreover, the platform responding effect caused on the body in free motion based on the second order wave load principles. Moreover, a deeply description of a single and shared mooring line. Last the chapter of state-of-the-art technology.

3 Theory

3.1 Wind energy

Wind energy is developed when moving air pushes the rotor blade of the turbine to rotate. The rotating turbine blades utilizing the kinetic energy form the wind and developing a rotation and converts the kinetic energy into mechanical energy. The power in the wind is dependent on the wind speed which are a proportional factor to the rotor area. The equation of wind energy is therefore given as half the mass of air (m), multiplied by the square of the velocity (V^2) . For a representation of the total power energy produced is given by these two eq. 1 and 2.

The equation for kinetic energy is given by:

Kinetic energy
$$=\frac{1}{2}mV^2$$
 (1)
(Gofrey Boyle et al, 2012, s. 356)

Moreover, by substituting equation (2) into equation (1) for (m).

$$m = \rho AV$$
(2)
(Gofrey Boyle et al, 2012, s. 356)

$$P_{power} = \frac{1}{2}\rho A V^3 \tag{3}$$

(Gofrey Boyle et al, 2012, s. 356)

The final by combination of equation by 1 and 2 gives the energy power of the wind turbine and is also a description of the net average energy produced (AEP)

P = is the density of the air.

A= Area of the turbine blade

 $V^2 =$ The wind speed

4 Mooring design theory.

Mooring and platform- configurations shared mooring lines.

Figure 6 illustrates the different mooring configurations profile such as Slack. (H Munir, MC Ong, 2021)

Calculation of the mooring rope(wire) between two individual given point A and B

In order to designing the mooring lines between two equal symmetrical points, defined as (A and B) at the same level of height. The catenary equation is therefore useful for designing the mooring line in the right shape between two equal given points. The equation must therefore define one of the given points as the origin (A or B) between the shared mooring line (A-fairlead) and defined in a catenary plane (H Munir, MC Ong, 2021)For this, the mooring design are based on two equation and needs to be measured according to (H Munir, MC Ong, 2021)

$$X = \frac{H}{W} \log\left(\frac{\sqrt{H^2 + V^2 + V}}{H}\right) + \frac{H}{EA}S$$
(4)

(H Munir, MC Ong, 2021)

$$h = \frac{1}{2} \frac{WS^2}{EA} + \frac{H}{W} \left[\frac{1}{\cos \phi} - 1 \right] =$$
(5)
(H Munir, MC Ong, 2021)

Description of the equation is x and h are defined as the vertical and horizontal distance of the measured point at the origin (A). The following H and V represents the vertical and horizontal mooring line tension defined as T based at the origan A, the total length of the shared mooring line (s), the weight per unit length is (w) defined in water. Finally, EA is the extensional

stiffness(E) and elastic modulus(A) of the cross-sectional area. In relation to this the total length can be solved with iteration (H Munir, MC Ong, 2021). *(Addition to this, when designing the mooring length of the vertical and horizontal mooring line in the software. The measured shape of mooring line is provided when calculating the total distance between two points from A to B, the shape of the line will therefore be provided.)*

Figure 7 seen from left to right Catenary plane and Shared line (H Munir, MC Ong, 2021)

Figure 8 (AMARAL, 2020, s. 48)

4.1 The calculation of the circle radius of the buoy

Addition to estimating the circle radius length of the vertical mooring line from the ground to the marine buoy. The calculation from the anchor point could be estimated by using the stretch factor bungee (L_b) in combination to Pythagorean theorem (CDIP mobile, 2023, ss. 1-2).

Mooring length =
$$2xD = (S - 1) * L_b + 2D$$
 =bungee stretch factor (6)
(CDIP mobile, 2023, ss. 1-2).

By using the mooring length and substituting in the equation of Protagoras, the equation becomes.

$$R_c = \left| \sqrt{(S-1) * L_b + 2D^2} \right| = \text{The circle distances to the buoy}$$
(7)
(CDIP mobile, 2023, ss. 1-2).

4.2 Morrison equation for the drag forces in the mooring lines.

Drag force in the mooring line on the marine buoy.

The drag force caused by wave loads on the mooring line could be calculated by using the Morison equation, since the lines are defined as slender lines (Zhi-Ming Yuan et al, 2019, s. 5)and therefore could be estimated for chain, wire, and synthetic fiber ropes. The respective drag forces per unit length of mooring lines is given by the equation (1)

$$F^{D} = \frac{1}{2} \rho \pi D C_{dt} v_{t} |v_{t}| + \frac{1}{2} \rho D C_{dn} v_{n}^{2}$$
(8)
(2hi-Ming Yuan et al, 2019, s. 5)

The equation of Morrison could also be used for calculating the drag force caused from the wave loads on a marine buoy. The equation of drag force in X-, Y-, and Z-directions is therefore given by:

$$F_x^D = \frac{1}{2} \rho \pi D C_{dx} v_x |v_x| = \text{X-direction}$$
(9)
(7bi Ming Yuan et al. 2019, c. 5)

(Zhi-Ming Yuan et al, 2019, s. 5)

$$F_Y^D = \frac{1}{2}\rho\pi DC_{dY}v_Y|v_Y| = \text{Y-direction}$$
(10)

(Zhi-Ming Yuan et al, 2019, s. 5)

$$F_z^D = \frac{1}{2} \rho \pi D C_{dz} v_z |v_z| = \text{Z-direction}$$
(11)

(Zhi-Ming Yuan et al, 2019, s. 5)

Figure 9 (AMARAL, 2020, s. 49)

The definition of the equation, the diameter of the line is given by (D), (ρ) is the water density (1000), nondimensional quadric tangential drag forces(C_{dt}), and the lateral(V_t) and the flow velocity (V_n^2) (Zhi-Ming Yuan et al, 2019, s. 5)

The tension load in single catenary mooring line

Figure 10 Illustrates the radius (*m*) to the anchor point and based on (6-8) the water depth, this in relation to 70m. The resulting radius length is 610 m. (Yang, 2021, s. 2)

To estimating the static catenary shape of a single mooring line in relation to the given water depth (h). The unit (h) represent (h) in the equation, (ω) is the weight of the unit length of mooring line in wet water (ton/m). (T_{max}) is the horizontal load between the responding point (ω h) is the total weight of mooring line (Yang, 2021, s. 2). The equation therefore becomes.

$$l_i = h \sqrt{2 \frac{T_{max}}{\omega h} - 1}$$
 (12)
(Yang, 2021, s. 2).

The horizontal distance between two points is defined as the distance (x) between the fairlead and to the anchor point, the equation is expressed by:

$$x = \frac{T_{max-\omega h}}{\omega} \cosh^{-1} \left[1 + h \left(\frac{\omega}{T_{max} - \omega h} \right) \right]$$
(13)
(Yang, 2021, s. 2)

By combining these two equations the restraining line forces becomes

$$=h\sqrt{2\frac{T_{max}}{\omega h}-1}+x=\frac{T_{max-\omega h}}{\omega}cosh^{-1}\left[1+h\left(\frac{\omega}{T_{max}-\omega h}\right)\right]$$
(Yang, 2021, s. 2)
(14)

4.3 The drift motion caused by wave loads on a floating structure.

The six degrees of freedom.

Figure 11 Illustrates the drift motion caused by the wave drifts on the floating body (Platform). The fig.12 is redesigned model based on (Godfrey Boyle et al, 2018, s. 455). The motion drift (1) steady state position, (2) pitch, (3) have lift, and (4) surge. The Z-axial position shows the direction in the geometrical plane. The illustrative figure is designed by the author.

For a single floating body in free waters there are six drift motions the body (platform) could encounter in relation to wave, wind, and current loads. Firstly, the translational is described as sway (1), pitch (2), have lift (3), surge (4), roll (5) and yaw (6), also defined as the six degrees of freedom. The drift motion is divided between two categories translations in longitudinal (X)-, lateral (Y)- and vertical (Z)-axis. The other motion is rotation in the longitude (X)-, lateral (Y)- and vertical (Z)-axis (Marcin Gradowski et al, 2017). Further explanations are given below.

Definitions of free motions

- (1) Sway is a transverse motion where the body shifts from one side to the other and back again, this in the same linear direction in lateral axis (DNV, 2021, s. 15)
- (2) Pitch is defined when rotation encounter about the lateral axis and causing rotation on the body (Godfrey Boyle et al, 2012, ss. 455-456).

- (3) Have lift is when the body going up and down in a vertical linear direction and along the vertical axis (Godfrey Boyle et al, 2012, ss. 455-456).
- (4) Surge is when the body going back and forth in a horizontal x-axial direction, meaning along the longitudinal axis (Godfrey Boyle et al, 2012, ss. 455-456). (DNV, 2021, s. 15)
- (5) Roll is a rotational motion defined around its longitudinal axial direction. (DNV, 2021, s. 15)
- (6) Yaw is a rotation caused on the body defined in the vertical axis Rotation about vertical axis (DNV, 2021, s. 15)

4.4 The motion of a floating body (platform) in a frequency domain.

In relation to six degrees of freedom of a flotation body in free motion based on have lift, sway, pitch, and roll. The definition of free motion could be determined by using the dynamic equation of equilibrium in a frequency domain (Yang, 2021, s. 5). The equilibrium is based on Newton second law of motion, meaning the total mass of the system (M) with a given acceleration (m/s) in defined direction. The principle could therefore be expressed with d'Alembert's principle. The principle could be defined for a platform structure and mooring lines in water in a time domain (Yang, 2021, s. 5).

$$[M + \mu_{\infty}] + \ddot{X} + \int_{0}^{\infty} R(t - \tau) \dot{x} d\tau + Cx = F^{fk} + F^{d} + F^{sd} + F^{w} + F^{c} + F^{m}$$
(15)
(Yang, 2021, s. 2).

The unit in the equation seen from left to right could be described as, (1) M is the mass of the platform structure, (2) infinite added mass(μ_{∞}), (3) the retardation function $(R(t - \tau))$, and the (4) hydrostatic restoring coefficient (C). additional for solving the integral the Froude-Krylov force and diffraction forces could be solved. The Froude -Krylov (F^{fk}), the diffraction force(F^d), the second order wave load(F^{sd}), the wind load (F^w), current load (F^c) and finally (F^m) the mooring transmitted forces (Yang, 2021, s. 2). The initial retardation function is solved by the integral over $R(t - \tau)\dot{x}d\tau + Cx$ and is an inverse function in relation to Fourier transformation) (Yang, 2021, s. 2).
4.5 Time domain in relation to wave response.

The sea state condition Jonswap wave loads could be defined with Pierson-Moskowitz spectrum equation. The equation estimates the drift forces acting towards the OFWT in relation to have lift (3), surge (4), and pitch (2) (see figure). The equation below referred to (ω) is the wave frequency (Hz/s), (H_S) is the significant wave height and(T_P) is the significant wave periods (zero-crossing period in in seconds. The sea state could be defined as the highest significant wave heights (H_S) and the responding wave period (T_P). Significant wave height is defined as 1/3 of the largest wave and provides of the highest average of all the measured wave (J.M.J. Journee et al, 2001, s. 183) Based on this, the second order wave loads could be used frequency higher but also lower than the frequency in the wave. This means that the force square is a proportional factor of the wave amplitude (J.M.J. Journee et al, 2001, s. 369) Since the wave forces has significant impact on the platform structure (body) the responding expansion of the moored OFWT could be calculated using the second order term of the mean Jonswap. **The simulation software Orcaflex is estimating this in the response to second order wave load**.

$$S(\omega H_{s,T_P}) = \frac{320H_{1/3}^2}{T_P^4} exp\left[\frac{-1950}{T_P^4} * \omega^4\right] * \gamma^A$$
(16)
(J.M.J. Journee et al, 2001, s. 194)

 H_s = Significant wave heights (m)

 T_p = Significant time periods (rad/s) or (Hz/s)

(Hyungjun Kim et al, 2014)

4.7 Design of mooring lines.

For designing mooring lines based on requirement of standards of mooring lines there are a specified consequence class in relation to the loading factor for mooring lines limited state. The table below provides the limited state of ULS and ALS in relations to the consequence class defined in. (DNVGL AS, 2018, s. 75) When the possibility if the mean tension exceeds 2/3 of the characteristics of the dynamic tension, the value 1,3 must be should be applied instead of the safety factor. The class are related to safety factor class and could be found in DNVGL-OS-E301

ULS-Ultimate limit state is to calculation for the individual mooring line to have adequate strength to withstand the load effect caused in extreme conditions dynamic tension is combined with a safety factor (S_c) (DNVGL AS, 2018, ss. 50-57)

The equation is therefore given by:

Ultimate limit state (ULS)

$$T_d = \gamma_{mean} * T_{c,mean} + \gamma_{dyn} * T_{c,dyn}$$
(17)
(Yang, 2021, s. 2).

$$T_{mean} = Mean \ tension$$

$$T_{dn} = Dynamic \ tension$$

$$\gamma_{mean} = \gamma_{dyn} = Loading \ factors$$

$$S_{mean} = 0.95 * S_{mean} \qquad (18)$$

$$S_c = 0.95 * S_{mbs}$$
 (18)
(Yang, 2021, s. 2).

$$S_c > T_d$$
 (19)

(Yang, 2021, s. 2).

Selection of mooring system

Performance index =
$$\frac{T_d}{S_c} * (D_c * S_f)$$
 (20)

(Yang, 2021, s. 2).

ALS- Accidental Limit state meaning to ensure that the mooring line adequate capacity to withstand the failure of one mooring line, trust failure for unknown reason (DNVGL AS, 2018, ss. 50-57).

FLS- the fatigue limit state is to ensure the individual mooring line to withstand the cycling load (DNVGL AS, 2018, ss. 50-57).

Limit state	Load factor	Consequ	Consequence class	
		1	2	
		Safet	y class	
ULS	γ_{mean}	1.35	1.55	
ULS (Normal wind load) DNVGL-ST-0437	Ydyn	1.1	1.25	
ALS	γ_{mean}	1.0	1.15	
ALS	γ_{dyn}	1.0	1.15	

Table 1 Illustrates the coefficient of the ULS, ALS (DNVGL AS, 2018, s. 75).

For calculating the required proof load, maximum breaking load, and minimum breaking load for studdles steel chains these equations are used Eq.22, Eq.23, Eq.25. Moreover, the evaluation of chain design is referred to the gradings of steel R4 chain links and is further described in chapter (17.2 chains). The relation is to find the right test strength of chains in relation to the maximum restraining tension the chains are dimensioned for.

Proof load

Studdles
$$R4=00192d^2(44-0.08d)=N$$
 in mm (21)

(American Bureau of Shipping (ABS), 2017, s. 29)

Maximum breaking load

Studdles
$$R4=0.0274d^2(44-0.08d)=N$$
 in mmm (22)

(American Bureau of Shipping (ABS), 2017, s. 29)

Minimum breaking load

Studdles
$$R4=00192d^2(44-0.08d)=N$$
 in mm (23)

(American Bureau of Shipping (ABS), 2017, s. 29)

5 Net annual energy produced - AEP

The (Cp) capacity factor needs to be estimated. The factor is measurement by taking the annual energy produced (APE) and divided it by the turbines rated power for a one-year period. Since the total days in a year is 365 days and 24 hours in a day the total is 8760s. The calculation is therefore presented in the equation below.

$$C_p = \left(\frac{Annual Energy Production}{(Rated pwer)x \, 8760s}\right) X \, 100 = \text{Capacity factor}$$
(24)
Authors notes for earlier lecture

$$P_m = \frac{1}{2} \cdot \rho \cdot A \cdot C_p(u_i^3) = KW$$
⁽²⁵⁾

Authors notes form earlier lecture

6 Economic methodology and definitions

6.1 Cost model of the (brake down structure)

Introduction

Addition to the cost breakdown structure, this thesis has reused the cost model by (L. Castro-Santos et al, 2013) and 2016. as an assumption in the cost model. For every phase in the cost model the source for the authors will be clearly identified. The purpose with the cost model is to make a proper decision for dividing the cost components down to it specific drivers, defined from 1-6. See figure. The cost model will define each cost components to be evaluation in the Life cycle cost (LCC). This will be calculated in result (chap. 16)

Phase 0. life cycle cost (LLC)

Phase 1. Conception and definition
Phase 2. Design and development
Phase 3. Manufacturing
Phase 4. Installation
Phase 5. Exploitation
Phase 6. Dismantling

Figure 12 illustrates the way in the cost model based on each stage form 1-6 of the levelized cost cycle (LCC) by (L. Castro-Santos et al, 2013)

6.2 The total life cycle cost (LLC) of the OFWT.

The tool accounts for every cost component in the development of a finalized and complete project from each individual cost components. The convenient output estimated could therefore be used for comparing each technology with other power plant and comparing their competitiveness in the technology marked. Nevertheless, it could be used for evaluating the overall project if its compatible () Addition to (L. Castro-Santos et al, 2013) and (Ala' K. Abu-Rumman et al, 2017, s. 186) the total life cycle cost (LCC) is found by taking each cost component in the right order and multiple all cost components Eq 22.

$$LCC = (C^{1}_{Concenting/Development}) + (26)$$

$$(C^{2}_{Design and deveopment}) + (C^{3}_{Manufactoring cost}) + (C^{4}_{installation cost}) + (C^{5}_{Decomisoning}) + (C^{6}_{Operation \& maintence})$$

$$(L. Castro-Santos et al, 2013)$$

$$(Ala' K. Abu-Rumman et al, 2017, s. 186)$$

Table 2 Provides the nomenclature of the total life cycle LCC components (L. Castro-Santos et al, 2013) (Ala' K. Abu-Rumman et al, 2017, s. 186)

Nomenclature	Description
$C_{Development}^{1})$	The development cost.
$C^2_{Turbine\ \&\ platform}$	The manufacturing cost Wind turbine
$C_{Transportation}^3$	Transportation cost.
$C_{Installation}^{4}$)	Installation cost.
$C_{Operation \& maintenace}^{5}$)	Operation and maintenance cost.
$C_{Decommissonig)}^{6}$)	Decommissioning cost.

6.3 The conception and definition (1)

Phase 2, The conception, and definition are related to the viability of the total project. The cost is divided into three stages such as marked survey (1), legislative factors (2), and design of windfarm (3). The market survey is feasibility research of the overall project for a possible investment. The survey is a research study and evaluation if the overall project could be investible and deliver revenue of investment. Legislation is the cost which are related to tax, governance, and a scope of possible impact the project may cause on the environment (L. Castro-Santos et al, 2013). The conceptual design is the survey for estimating the total cost of every turbine (C_{NT}), resources needed, development cost, and the power output from each individual turbine(C_{ED}). The equation for estimation the total development ($C_{Development}$) cost is given by:

$$(C_{Development}^{1}) = C_{Resourse \& development} + C_{Numbers of turbines} +$$
(27)
$$C_{The power of each turbines}$$

(L. Castro-Santos et al, 2013)

Nomenclature	Description
$C_{Resourse \& development}$	Development
$C_{Numbers of turbines}$	Numbers of turbines
$\mathcal{C}_{The\ power\ of\ each\ turbines}$	The power of the turbines
$C_{Development}^{1})$	Total cost

Table 3 Provides the nomenclature of the conception and definitions. (L. Castro-Santos et al, 2013)

6.4 Manufacturing cost (2)

The fabrication is the cost related to each component of a complete assembly of the floating wind turbines. The cost is divided into multiple fabrication post and includes turbines (1), platform (2), mooring lines (3), anchors (4), and electrical power cables (5). For the turbine cost $C_{Turbine}$ is based on the tower, nacelle, and rotor, and is defined for each individual turbine (L. Castro-Santos et al, 2013). Furthermore, the fabrication of platform, mooring lines, anchors are defined as a sub-cost with many variable activity-based-cost performed at the harbor dock, according to (L. Castro-Santos et al, 2013). Generally, the cost also includes labor cost, material cost and the variable activity-cost as mentioned. Addition to the total amount of materials that are used in each cost components is a factor and is provided in Eq. 29. The is the total mass (m_{steel}) of each material, and C_{steel} is the density of materials. Finally, for each material is multiplied by their cost price in the marked. Addition to this the equation is therefore given. The electrical power station is based on the total amount of electrical cables needed for every substation per turbine. *The equations is therefore given by:*

$$C_{T\&P}^{2} = C_{Turbine} + C_{Platform} + C_{Moooring} + C_{Anchoring} + C_{Electricity}$$
(28)
(L. Castro-Santos et al, 2013)

Nomenclature	Description
$C_{Turbine}$	Transportation
$C_{Platform}$	Mooring
$C_{Moooring}$	Anchors
C _{Anchors}	Cables
$C_{Electricity}$	Total installation

Table 4 Provides the nomenclature of the manufacturing components (L. Castro-Santos et al, 2013)

 $C_{matrial \ cost} = m_{steel} * C_{steel \ price} + m_{concrete} + C_{price \ of \ concrete} + m_{ballast} * m_{concrete}$

 $C_{Price\ ballast} =$

(Alberto Ghigo et al, 2020, s. 14)

Table 5 Provides the nomenclature of the material cost (Alberto Ghigo et al, 2020, s. 14)

Nomenclature	Description
m _{steel}	Total mass
$C_{steel \ price}$	Steel price

(29)

6.5 Installation-, transportation- cost (3)

The installation cost is the where the OFWT is to be installed in the farm location. This cost represents the installation of wind turbines (1), platform structure (2), mooring (3), anchors (4), and electrical power cables (5) and start- cost (6). () Nevertheless, the transportation cost from the harbor dock to the farm site, by towing a complete set assembly of the OFWTs. The transportation cost is very effected by the total distance between the harbor dock to farm sites. Since long duration hours are very expensive in relation to vessel of day rates, direct labor cost and renting of equipment. The installation of mooring line and anchors are pre- installed before the complete set assembly of the WT is to be installed at farm site. Therefore, the total installation cost ($C_{Installation}$) is based on several sub-cost drivers for a complete assembled OFWT. The fists one is the traveling cost back and forth to the location (C_{Locors}), installation of electrical (C_{Cables}), and finally the (C_{Cables}). The equation below is the total calculation of installation of installation).

The equation is therefore given by:

$$C_{Installation}^{4} = C_{Transport} + C_{mooring} + C_{Anchors} + C_{Cables} + \frac{C_{start up}}{C_{start up}}$$
(30)
(L. Castro-Santos et al, 2013)

Nomenclature	Description
C _{transport}	Transportation
$C_{mooring}$	Mooring
C _{Anchors}	Anchors
C_{Cables}	Cables
$C_{Installation}^4$	Total installation

Table 6 Provides the nomenclature of the installation and transportation components (L. Castro-Santos et al, 2013)

6.6 Dismantling cost (4)

The dismantling of the OFWT is when the turbine is in its final stage of operation after 25 years of lifetime (). The process of dismantling each component in the OFWT is based on turbine, generator, platform, mooring lines, anchors, shackles, and marine buoy. Theas individual components are to be recycled and transported from the farm location and to sold for scrap price in the marked. The power generator $C_{Power \ generator}$ consist of valuable materials such as, cobber, aluminum, and steel. The construction steel in the platform structure ($C_{Platform}$) is the scrap value of recycling. The mooring cables, wire, and chains ($C_{Mooring}$) + and anchors ($C_{Anchors}$), and the cost of recycling of materials is the array cables ($C_{electisity}$). The final stage is transportation of the scarp material from the farm location (L. Castro-Santos et al, 2013). However, since no OFWT has been dismantled regarding the 25 years the technology is new. According to (Martinez, 2021, s. 7) the dismenteling cost is the reverse process of the installtion cost, therfore,

The equation is therefore given by:

 $(C_{Decommissonig of arrengment}^{6})$

$$= C_{Power generator} + C_{Platform} + C_{Mooring} + C_{Anchors} + C_{transport}$$
(L. Castro-Santos et al, 2013)

Nomenclature	Description	
C _{Power generator}	Generator	
C _{Platform}	Platform	
C _{Mooring}	Mooring	
C _{Anchors}	Anchors	
C _{transport}	Transportation	
C ⁶ Decommissonig of arrengment)	Total value	

Table 7 Provides the nomenclature of dismantling components (L. Castro-Santos et al, 2013)

(31)

6.7 Exploitation cost (5)

The exploration is a cost divided between administration cost, assurance cost, business cost over the OFWTs lifetime. The process of operation & maintenance (O&M) is divided into preventive- and corrective-maintenance. This service includes inspection of turbines, platforms, mooring lines, anchors, sensors, and removals of parts. For both O&M the cost expenses that impacts the most are the material cost, labor cost and transportation cost of vessels. The prevention could therefore be divided into a schedule or condition-service (Costro-Santos, 2016, s. 32).

The preventive (PM) is the service that is already established in the strategy of plane in the project schedule. The other part is conditional based, which includes inspection and history monitoring of the various components in the farm site (Puglia, 2013, s. 17). The service is meant for comparing present with future possible cost (Puglia, 2013, s. 17).

The corrective is the potential of failure for the components and these are either repaired or totally removed form site (Puglia, 2013, s. 17). The corrective (CM), is the maintenance service which includes miner repair, or the component is left with some issue (Puglia, 2013, s. 17).

In this thises, the cost of O&M will only account for transportation cost $(C_{0\&M}^1)$, materials cost $(C_{0\&M}^2)$ and finally labour cost $(C_{0\&M}^3)$. Based on this, the Eq.(29) for estimatimating operation & maintenance becomes.

$$C_{Operation \& maintenace}^{5} = C_{O\&M}^{1} + C_{O\&M}^{2} + C_{O\&M}^{3}$$
(32)
(Costro-Santos, 2016, s. 32)

Nomenclature	Description of units
$C^1_{O\&M}$	Transportation
$C_{O\&M}^2$	Cost of materials
$C_{O\&M}^3$	Crew labor
$C_{Operation \& maintenace}^5$	Total value

Table 8 Provides the nomenclature of the Operation and Maintenance (Costro-Santos, 2016, s. 32)

In response to the installation, operation & maintenance, and decommissioning they are all dependent on transportation. This means fuel price and labor cost for renting vessels needs to be accounted for based on daily rent per day.

7 Technical terminologies

7.1 State- of -the- art technology

In this chapter, the terminology of the Semi-submersible platform will be described in detail for the purpose of developing a reference case in addition to the mooring configuration systems. Since the CSC-semi structure, UMain Volturnus 15 is chosen as the reference platform for this thesis. The other platform design and configurations will only be described briefly in response to Barge, Spar buoy (SP) and Tensile leg platform (TLP).

There are many types of OFWTs described by their design of configuration. The main design is **Barge** (a), semi-submersible (SSP) (b), spar- buoy (SP) (c) and tension leg platform (TLP) (d). These types of configurations are defined as a state-of-the-art technology. The main purpose for these floating structures is when bottom fixed platform (Jackets) no longer is possible and economical viable (Karsten M et al, 2020, s. 1), (Xinkuan Yan et al, 2023, s. 1). Hence, the water depth exceeds above > 40 meters (Taze, 2022) Normally, the platforms' structure is categorized into their specific water levels depending on their optimal spacing. The spar-buoy design is normally used for deep water>1000m, semi and barge >50 m water depth. However, since the semi-submersible structures has a low buoyancy in waters, the SSP could also be used for shallow waters.

A) Barge buoyancy stabilized is a design where the platform creates stability by distributed buoyancy, meaning the design uses the large surface area of the platform on water. The shape of platform is formed as a rectangular shape. The inner center of the structure is a moon pool that absorbers the wave energy (Mohammad Barooni et al, 2022, s. 5).

Figure 13 Barge (Maximiano, 2021)

B) Semi-submersible platform (SSP) is a design structure where the stability is created through the restoring mooring lines, normally three lines for anchoring. The structure is generally designed up with columns in various formations depending on the configuration design. The main purpose with the columns is for developing good stability in the ocean water, but also to create a connection between the submerged pontoons. The pontoons are meant for keeping the structure floating (). The turbines placement could be at the center of the platform or at one of the outer columns. Since the SSP has a very large mass compared to the other structures motion caused by have lift is very low. This means that the design is very stable in the ocean (Godfrey Boyle for et al, 2012, s. 338).

Figure 14 Semi-submersiblel SSP (Maximiano, 2021)

C) Spear buoys (SP) is a design as a cylindrical tube where the platform crates stability by using ballast seawater with a heavy weight hung below a buoyancy tank. The platforms stability is created with three mooring lines attached for restraining the structure. The design is constructed up by three parts; fist a cylindrical tube-shape that are divided into two sections. Firstly, the top section of the cylindrical tube is meant for keeping the structure floating. The lower part is the heavy ballast for the purpose of creating low buoyancy beneath the center of buoyancy. The turbine is vertical raised in the ocean.

Figure 15 Spar-buoy (Maximiano, 2021)

D) Tension leg platform (TLP) is a design that is designed with a center column and raiser arms for developing stability. The meaning with the raiser arms is to create large tension between the arms and the mooring lines for strainment. Since the structure is highly buoyant the large tension in the mooring lines and raiser arms are pulling the floater downwards which causes a high tension between the structure and the seabed.

Figure 16 Tension leg platform (Maximiano, 2021)

The table below provides a cost comparison between various mooring configuration in relation to the mooring configurations with the various platform design. The collected date is added from. The cost estimations in this situation are converted to dollar and with today's inflation rate.

8 Semi-submersible platform (SSP)

Introduction

This chapter provides a deep description of the main reference platform and the wind turbine. The purpose is to gain knowledge of their configuration and properties for both designs. Moreover, the founding's will be added in the cost model and simulation test of a prototype.

Semi-submersal platform is a very known structure and is related to the earlier design from the oil industries. This type of SSP provides many advantages for deep and shallow water installations and are based on its robust quality and stability in harsh environments. The semi structure has many designs based on shapes and formations, but generally a triangular shape based on three or four columns. The vertical columns are meant for maintaining buoyancy but also holding the horizontal submerged pontoons connected (Kabir Sadeghi et al, 2019, s. 31). Nevertheless, the structures center point is configurated above the buoyancy and provides low gravity and good balance on the structure in water. The pontoons and columns are connected in a pattern of cross-section, which means that the structure is strengthened in each direction on the structural foundation. In relation, to the various designs it could include gangway/deck, heavy plates, and stiffeners in the arrangement of the platform.

The main advantage with a Semi-submersible platform (SSP) is the high mobility and balance for various environmental conditions. Nevertheless, the large surface area of structures creates high personal security for crew in the maintenance service (O&M). However, some disadvantage is related to the high manufacturing cost, material cost and fabrication based on its enormous size. Generally, the expected lifetime is 25 to 30 years.

34

Figure 17 Illustrates the wind float (10MW), Spar buoy (5MW) and the CSC-semi(15MW). The illustrative design to the left is purely designed by the author LJBT from Orcaflex and was in the beginning of the thesis meant to be used as a possible reference platform.

Three individual OFWP

- 1) Wind float (SSP) is a structure developed with three columns formed in a triangular formation where the turbine tower is developed on one of the outer columns.
- 2) Hywind O3 Spear-buoy (SP) is a structure design formed in a cylindrical tube. The configuration is constructed up with two parts (see chapter 14.1) with a heavy ballast in the lower end for creating balance to the structural shape defined in a vertical position in the ocean water (Mert kaptan et al, 2021)
- 3) CSC-semi (SSP) is a bracelets structure (Mert kaptan et al, 2021) and the formation is designed with 4 columns total, meaning one in the center meant for the turbine tower and three outers. The CSC- semi is the chosen platform structure used as a reference for both cases in this thesis; economical and prototype simulation (see chapter 12). In relation to the CSC-semi the first design was developed according to (Mert kaptan et al, 2021) by Norwegian research center.

The illustrated fig. 18 present various marine structures such as, Wind float 10MW 5 MW OC3-Hywind, and 15MW CSC-semi. Additionally, the estimated cost for such structures is dependent on the total weight of materials. In relation to this, its assumed only the weight of materials in relation to steel and concrete. The table below indicates the total cost of materials defined in ton.

35

8.1 Reference offshore floating wind platform; CSC-Semi

The UMain-Volturnus 15MW.

Figure 18 illustrates the platform structure CSC-semi; UMain Volturnus 15MW and the is constructed up by four columns. The mooring attachment are at the lowest bottom on each column angled at 120 degrees. The illustrated sketch is redesigned from Orcaflex and is designed by the author LJBT. The measure of dimensions is done with traditional power-point.

The chosen reference structure in this thesis is the CSC-semi; Umain Volturnus 15- MW. The platform design is developed in a collaboration between University of Main and NREL. The model is a design meant for academical reason. The formation of structure is based on four columns, three outer and one in the center (seen in fig. 19). The other columns are oriented 120 degrees around the center column where the tower interface is constructed. The total weight of the platform is respectively 20206 ton according to NREL (Christopher Allen et al, 2020, s. 6). The ballast seawater corresponds to 56%, construction steel 19,37%, concrete 12,44%, tower interface 0,5% and 11,7% of other materials. In relation to other materials, its unfortunately not defined by the author (Christopher Allen et al, 2020, s. 6) Moreover. the exact specific steel is not defined either, but its assumed construction steel possible S430 or S 355. The table. 1 provides the properties of total weight of the CSC-semi platform.

Table 1 is the dimension of the semi-submersible platform based on NREL report (Christopher Allen et al, 2020, s. 6).

Input properties of the US main:	Values	Units
Hull displacement (total weight)	20206	Ton
Hull construction steel mass	3914	Ton
Tower interface mass (concrete or steel)	100	Ton
Ballast mass (Fixed/Fluid)	2541/11300	ton

8.2 Reference turbine IEA RWT-15 MW.

IEA- RTW-15MW Turbine.

Figure 19 Illustrates the turbine seen form front- view, side- view and top- view. The illustrative design is developed by the author from Orcaflex. The turbine has a roto diameter of 240m and hub height of 150m. The blade is measured to 117m.

The reference turbine used in this thesis is the IEA RWT-15MW with a rotor diameter of 240 meters. The turbine, however, is not a real scale model but is purely meant as a research model for investigation of the next generations. The shape and design is developed as an collaboration between University of Denmark, National renewable energy of laboratory, the

international energy agency (IEA) and finally the U.S. Department of Energy (Evan Gaertner et al, 2020, s. 19) The upscale of this turbine is meant for the next generation turbines due to its enormous size. The power coefficient (cp) for this model is evaluated at 0.489 and defined by the report (Evan Gaertner et al, 2020, s. 19). Generally, for real turbines the average wind capacity is between 30-40% measured over one year period (Luvside, 2020) However, the expected lifetime for traditional turbines is 20-25-years without any damage or any issues regards to operation and maintenance (Tyler stehly et al, 2019, s. 20)

8.3 Hub, generator, and nacelle.

The illustrated fig.21 presents the hub shall (1), generator (2), and the nacelle/ shaft (3) in the following order form left to right. The design is a 3-dimensional CAD- model and is an academic concept according to IEA report (Evan Gaertner et al, 2020, s. 19). The hub is configurated as a hollow steel shell meant for three turbine blades oriented in a 120° angle. The generator is designed as a combination including turbine rotor, stator, generator rotor and the shaft. The generator rotor and shaft are connected into one unit and has tilt upwards of 6° angle. The total defined generator weight is 317.57 ton according to (Evan Gaertner et al, 2020, s. 31).

Figure 20 shows the hollow hub steel structure (1), generator (rotor, stator) (2), nacelle (shaft) (3) with a upward 6° angle.. The design is added form Orcaflex by the author LJBT.

Figure 21 illustrates the power rate curve and capacity power and both fig.22 is collected from (nrel.github, 2020)

Table 10 represents the parameters of the RWT 15 MW turbine and provides the parameters and dimensions of total weight of structure.

Туре	Value	Units	
Turbine class	IEC Class 1B		
Airfoil series	FFA-W3		
Rotor orientated	upwind		
Power coefficient	0.489		
Numbers of blades	3	-	
Power rate	15	MW	
Rotor diameter	240	m	
Hub height	150	m	
Rated speed	10,59	m/s	
Operational wind speed			
Generator type			
Rotor mass	385	t	20.5%
Nacelle mass	632	t	33.6%
Tower mass	860	t	45.8%
Total	1877	t	100%

Table 10 provides the parameters for the 15 MW RWT turbine. (Evan Gaertner et al, 2020, s. 31).

Turbine properties RWT-15 MW

8.4 Comparison of material cost between various turbines.

There are many turbines with various rated power defined by the cut- in and cut- out wind speed. The fig. 23 provides an overview of their power curves compared between 6-, 10-, and 15-MW. The power curves are a measure with the turbine's full capacity power.

Figure 22 (Walter Musial et al, 2020, s. 17)

Table 12 illustrates a comparison between turbines with their various parameters and is compared between 5MW, 10MW and 15MW. The collections of data are form (Tyler stehly et al, 2019, s. Vi)

Table 11 provides a comparison between turbines fNational renewable energy laboratory, 2020, s. vi) (Tyler stehly et al, 2019, s. Vi)

Properties	Comparison between turbines			
Types	NREL 5MW	DTU-10MW	NREL RWT- 15MW	
Power rate	5 <i>MW</i>	10MW	15MW	
Hub height	b height 90m 1		150m	
Rotor mass	115m	230.7t	1017t	
Nacelle mass	110t	446t		
Tower mass	240t	628.4t	860t	
Total mass	347.5t	1305.1t	1877t	
	Ref.	Ref.	Ref. (Even Geertner et	
			al, 2020, s. 5)	

Therefore, it has been made a cost comparison based on the materials cost and evaluated between three individual turbines rated by their power, such as 5MW, 10MW and 15MW. The graphs show the weight of rotor, nacelle, and tower. The evaluation is based on the weight of construction steel. The marked price of steel today is 1084 \$/per metric tons (Focus-economics, 2023). The estimation is given in \$/kg

Graphs 1 shows a cost comparison between 5MW, 10MW and 15MW only based on their cost of materials of construction steel. The total weight is in (\$/Kg)

9 The main mooring configuration system.

9.1 Introduction of the terminology mooring system and mooring hardware.

Introduction

In this chapter, the main mooring system will be described and categorized in relations to each mooring configuration systems. The purpose is to gain further knowledge based on their various configurations and will be deeply described in this chapter.

9.2 Catenary mooring system – Slack.

Catenary mooring is a configuration design where the mooring lines are designed with a slack (curvatures) and spread like arrays onto the seabed floor. The large curvature lines are quite common for this catenary configuration and are commonly designed with drag embedded anchors (see chapt.17.5). In relation to catenary configuration, the design is suitable for horizontal loads but not for vertical loads (J.M.J. Journee et al, 2001, s. 412) The configuration system is very dependent on the weight of the chain lines for developing a high restoring downwards force meant stabilizing structure (Monfort, 2017, s. 4). However, the mooring lines could also be mixture of both chains and fiber ropes in the same line. However, since the chain links uses its total weight as a restoring force, the height of sea depth is very important for this mooring system. For this reason, the disadvantage of using this catenary system for shallow waters is that the capacity of chain lines would decreases according to (Xinkuan Yan et al, 2023, s. 1). This is because low levels of depth decrease the gravitational downward force and losses the anchors capability to withstand horizontal loads (Xinkuan Yan et al, 2023, s. 1). The illustrated figures. 24 illustrates the mooring system and shows the large slack and wide curvatures in the chain mooring lines. Therefore, various water depths and mooring length must be considered for this mooring configuration system.

42

Figure 23 illustrates the catenary mooring configuration system. As could be seen from the figures the mooring lines has large curvature of chain lines. The mooring lines could also be combined with fiber rope as a mix method. The first fig. is redesigned by the author LJBT form Orcaflex. The other illustration is added form (abc-mooring.weebly, 2023).

9.3 Taut line mooring system- TLP

Taut line mooring (TLP) is based on a lightweight of taut/teel ropes and is also defined as pretension lines with no curvatures or spread tension lines. Therefore, the configuration would be defined as the opposite of catenary configuration design. The mooring system is suitable for both horizontal loads as to vertical force and is based on the elasticity in the lines (J.M.J. Journee et al, 2001, s. 412) Morover, the high restoring tension in the mooring lines is poportianall to youngs modulus and needs to have low material factor becouse the ropes would be damage (Monfort, 2017, s. 4). This based on and the tensioned lines the mooring lines are (Abc-moorings, 2023). The angled between the tension lines onto the seabed floor are angled at 30-40 degrees (Abc-moorings, 2023). For this kind of configuration, the tensioned mooring lines could be based of several lines as many as six lines. The lines are stretched to the anchor points as showed in the illustrated fig. 25.

43

Figure 24 Illustrates the taut mooring configuration system as could be seen from both fig. the mooring has no slack but strait lines in each direction. The first fig. is designed by the author the other one is added form (abc-mooring.weebly, 2023)

9.4 Vertical Tension leg mooring system - TLP

The vertical tension leg (TLP) mooring is based on vertical heavy steel wires or cables with large braces on the seabed. The mooring configurations is defined for deep water installations (Weiwei Zhou et al, 2023, s. 1). The importance with this mooring configuration is that the wires needs be starched (Tensioned) for the purpose of creating large tension between the platform and the anchors. The vertical mooring lines is also designed with some angle for the purpose of obtaining both vertical as to horizontal offset forces caused by the wave loads acts on the stabilizing platform (Abc-moorings, 2023). The TLP is illustrated in the fig. 26.

Figure 25 Illustrates the vertical tensile leg mooring lines between the structure and seabed floor. The first fig.26 is designed by the author LJBT from Orcaflex. The other illustration is added from (Iñigo Mendikoa Alonso, 2021, s. slide 5).

9.5 Hexagonal farm layout arrangement

The concept with shared anchoring and mooring lines is based on an arrangement where the mooring lines is formed in various formations or arrays between OFWTs. The idea of the concept is that one anchor is shared equal between a multiple set of FWT in contrast to many separate single ones (Rahul Chitteth Ramachandran et al, 2021). For this reason, there are many formations and variety of farm layouts, however, some layouts is investigated by (Matthew Hall & Patrick connolly, 2018) and (Fontana, 2019) as possible arrangments. These shapes are defined as triangles, squares, and hexagonal formation. The many advantages with the concept are mainly to reduce the material cost by reducing the total amount of anchors in the mooring arrangements. Since the anchor is very expensive in relation to fabrication and in the installations process. Therefore, the concepts potential to make cheaper and more sustainable mooring arrangement and more sustainable solution. Secondly, the re-connection in the (O&M) for repair, failure, and removal with the heavy chains between the anchors and lines could also be reduced according to (Rahul Chitteth Ramachandran et al, 2021, s. 19)

Figure 26 seen form left single line, hexagonal 3 lines and finally 6 lines (Fontana, 2019)

Nevertheless, the shared anchoring arrangement in contrast to many separate OFWT is that the total amount of lines, mooring length, anchors, and spacing in the mooring arrangement between turbines is minimized according to (Matthew Hall et al, 2018). However, a further reduction of weight and cost would also be done by changing the mooring material to alternative fiber ropes instead of chains or steel wires according to (Samuel Wilson et al, 2021, s. 11) Since a single OFWT normally has three anchors per turbines. Therefore, also mentioned by (Matthew Hall & Patrick connolly, 2018, s. 8) the total reduction percentage of anchors with this concept would be decreased to 36% (Matthew Hall & Patrick connolly, 2018, s. 8) in contrast to many single OFWT. Based on the advantages, the concept, the mooring tension could optimize the dynamic performance for sharing the tension between a

multiple set of OFWTs. Since the many lines in contrast to one will reduces the tension and creates less tension in the mooring lines.

Figure 27 Illustrates the shared mooring arrangement with a combination with mooring buoy and shared anchor in the center between the three OFWT. The mooring buoy acts as a connecting point and tension reliver. Each illustration is design from Orcaflex by the author LJBT. The figure below represents an overview of the hexagonal farm layout.

The illustrated fig. 28 above shows the total hexagonal farm layout and the mooring arrangement Semar AS and (Matthew Hall & Patrick connolly, 2018) have investigated as a possible innovative solution for further cost reduction of innovative solutions. For this reason, by estimating the shared anchor efficiency in the farm layout, according to (Evgeniy Dimkin at DNVGL noble Denton, 2019, s. slide 17) is found by the equation:

$$(1 - \frac{Number of anchors in shared anchore}{Numbers of anchore in standard windfarm}) = \eta$$
(33)
(Evgeniy Dimkin at DNVGL noble Denton, 2019, s. slide 17)

9.6 Shared taut mooring buoy arrangement with two turbines.

The taut mooring surface buoy with vertical lines is an arrangement where the buoy is the connection point and holds the platform in position. The arrangement is developed with horizontal vertical load anchor (Smith, 2009). As mooring materials rope or steel wires are use as lines. The concept with this arrangement of sharing mooring line has in some degree been tested as a pilot project. This for evaluating the performance in the dynamic response of the mooring lines and as a total system. The concept is tested by (H Munir et al, 2021, s. 5) at University of Stavanger and (Samuel Wilson et al, 2021, s. 11). However, these tests were only performed with shared wire lines between two FWTs and no mooring buoy. In this connection the concept will therefore further be investigated in this thesis, but with a submerged mooring buoy lowered beneath sea level. The buoy is lowed beneath water level for eliminating the large shift forces and for decreasing the tension in the mooring lines (Torbjørn Herberg Roksvaag et al, 2021, s. 25) and are further described in see chapter 12.

Figure 28 Illustrates the shared taut mooring line of farm layout (row) based of steel wire or fiber rope also known as taut mooring lines with marine float (buoy). This mooring configuration system will be used in the response analysis in the case study for SNII. The figures are designed by the author.

The illustrated fig.29 provides the two platform with a mooring buoy in the center with a vertical tensioned line connected to a vertical anchor (VLP) in six degrees of freedom.

10 Mooring hardware components and dynamic power cables.

Introduction

In this chapter, several mooring hardware will be deeply described for the purpose of developing further knowledge based on the several components in the mooring installations. This in order to find the cost for each component. This chapter will include the cost price for every mooring hardware with a deep description of their configurations. Since some of the cost components are provided in pound or euro it will be converted to a common currency, namely dollar (\$) and with today's inflation rate.

10.1 Mooring hardware cost.

In relation to the cost of mooring hardware and configuration, it has been developed a cost comparison added from another investigated work based on their founding's herby (Ågortnes, 2013, s. 67) The cost comparison shows TLP, TLB, Hywind and Wind float. The added numerical data is based on their estimations of various mooring configurations. The estimates are converted to today's currency in dollar (\$) and with today's inflation rate.

Graph 1 illustrates the cost comparison between several mooring configuration weighted by the mooring cost (Ågortnes, 2013, s. 67)

10.2 Chain

Chain moorings lines is widely used for deep and shallow water-installations. The relation is due to its good quality for obtaining large tension loads, shared toughness, and resilience for abrasion on the seabed floor (Wei-Hua Huang et al, 2021, s. 4). The tension strength in the chain links is factor which are based on the gradings of steel. For this reason, each grad can be divided into six class grades based on R3, R4, R4s, R5 and R6 and could be referred to DNVGL-ST-0437() and DNV-OS-E302 (Det Norske Veritas, 2013, s. 22) Moreover, chains links is divided into studded link and studdles link (seen in fig. 30) with different configurations in the coils. Nevertheless, other parameters that has an impact in the choice is the tensile strength, diameters, and coil (opening size) (Reardon, 2023). The cost of chains is dependent on the weight of steel, length, and formation/shapes (coils) of the chain links. The advantages with using chain in shallow waters is based on the chains high stiffness, low elasticity, and maximum breaking load (MLB) (Det Norske Veritas, 2013, s. 22) However, studded link is not much used as mooring lines, but typical used as mooring lines for permanent uses (). Nevertheless, since is heavier than studdles chains the weight of mooring lines would increasing (Jump, 2021, s. 21)The cost price for chain is dependent on the steel wight per ton, but the price for 100mm is between 700\$/ton-800 \$/ton (Made-in-China, 2022). Moreover, the cost for studdles link is relatively cheaper than studded link because of less material. According to the steel price of R5 180mm is 649kg/m in table 12 it has been used the marked value of steel 1084 \$/ton (Steelbenchmarker, 2023, s. 2)

Studless Link Studded Link

Figure 29 Illustrates the different shape of studdles link and studded link.

The mooring chain has two different shapes and configurations such as studdles and studded links illustrated in the fig.30. The table below defines the grads R, maximum breaking load (MBL), and cost prices based on marked value of steel 1084\$/ton.

Chain	Chains Grade	C-factor	Minimum braking	\$/ ton	Sources in relation to the steel
~ 11	Olade		Ioad (KIV)		
Studdles	<i>R3</i>	0.0223	14.8	1084	(Steelbenchmarker, 2023, s. 2)
Studdles	R3S	0.0249	18.0	1084	(Steelbenchmarker, 2023, s. 2)
Studdles	<i>R4</i>	0.0274	12.6	1084	(Steelbenchmarker, 2023, s. 2)
Studdles	R4S	0.0304	21.6	1084	(Steelbenchmarker, 2023, s. 2)
Studdles	<i>R5</i>	0.032	31.9	1084	(Steelbenchmarker, 2023, s. 2)

Table 12 shows the grade of chain links and the multiplication factor C. The MBL for the gradings and assumed price range between.

10.3 Steel wires

Steel wires is categorized into two different groups based on their revolved strands in the wire lines. There are many shapes of wires in relation to the many strands in the wire. The construction shape is (6x19)- or (6x36)-strands but could also be a mixture with fiber core as well (see fig. 34). The advantages with wire ropes are due to its light-wight and high tensile stiffness. The stiffness in the wires could be higher than chains and have the same breaking load (Nordvik, 2019, s. 6) In relation to the strands in the steel wire the tensile strength could restore up to 90% of the tensile strength according to DNV(). Moreover, its good resistance to corrosions (Ronson, 1980) However, the strength in the line is dependent on the number of strands in the wire. Since, wires are a good alternative in contrast to chains based on its low weight, equal strength, and cheaper price \$/m. The illustrative fig. 31 and table 13 represents some chosen dimensions of steel wires with various dimensions and maximum test load. The steel wires follow a recruitment standard DNVGL-OS-E301and is related to the strength, braking loads, and DNVGL-OS-E304 related to corrosion. The price is based on the market value of steel 1084\$/ton (Steelbenchmarker, 2023, s. 2)

Figure 30 provides the design of side view of Six strands (left) and Spiral strands (right) (Ronson, 1980)

Types of steel wire Group	Nominal diameters	Breaking load KN	\$ per/ m	Ref. sources
Steel wire fiber core 6x 19	0.064	3360	1.084	(Vryhof manual, 2015, s. 17)
Stee wire 6x19	0.102	7799	1.084	(Vryhof manual, 2015, s. 17)
Steel wire 6x36	0.127	11134	1.084	(Vryhof manual, 2015, s. 17)
Steel wire 6x36	0.140	12925	1.084	(Vryhof manual, 2015, s. 17)

Table 13 illustrates some parameters of their nominal diameters of wires (Vryhof manual, 2015, s. 17).

Figure 31 Illustrates the relationship between the max. braking load of six strands and spiral in water and in air. The relation between the nominal diameter and weight (Ronson, 1980)

10.4 Synthetic- fiber ropes

Synthetic fiber ropes are based of many layers of yarn and materials like aramid, HMPE, LCP, polyester in the rope (Espen Oland et al, 2017, s. 1) Nevertheless, the rope is configurated with core, strands, yam, and cores revolved to one unit of a rope. Thus, some of the common materials that is used as mooring materials are nylon, polyester, and polypropylene (Xu, 2015, s. 33) Generally, fiber ropes are seen as a comparable material because of its low weight, low price, and a maximum breaking strength (MBS) up to 70% of the rope (Espen Oland et al, 2017, s. 2) Fiber rope, such as polyester is seen as a preferable material, because it could operate with a constant tension of 15%, 30% and MBS up to 60% (john F. Flory et al, 2004, s. 4). Synthetic fiber ropes use standards DNV-GL-RP-E305/ (304) for the maximum tension load The Braking strength for fiber rope is between 1000-4000 N/mm^2 according to (Xu, 2015, s. 33) Additionally, the cost price defined by (Ågortnes, 2013, s. 73) is estimated to a price range of $602 - 617 \pm^{2013}$ /m (Ågortnes, 2013, s. 73) and in today's currency 962.74 - 991.84 \$²⁰²³ per/m. The fig. 33 and the table 14 represent some parameters of fiber ropes given by their dimensions.

Figure 32 provides the various configuration of fiber mooing lines bases on their revolved strands (Pham, 2019, s. 32)

Synthetic fiber	Nominal	Breaking load	\$ per/m	Ref. sources
Polyester	diameters (m)	KN		
Polyester	0.113	3723	962.74 - 991.84 \$ ²⁰²³	(Vryhof manual, 2015, s. 146)
Polyester	0.183	10830	962.74 - 991.84 \$ ²⁰²³	(Vryhof manual, 2015, s. 146)
Polyester	0.227	17261	962.74 - 991.84 \$ ²⁰²³	(Vryhof manual, 2015, s. 146)
Polyester	0.245	10307	962.74 - 991.84 \$ ²⁰²³	(Vryhof manual, 2015, s. 146)

Table 14 provides some properties of synthetic fiber ropes along with their breaking loads.

The fig. 34 illustrates the comparison of their maximum breaking load (MBL) based on various materials polyester, chains, and spiral strands of steel wires.

Figure 33 illustrates the various mooring material and diameters of their maximum breaking loads (Vryhof manual, 2015, s. 146)

10.5 Drag embedded anchors.

Drag embedment anchors is normally a very heavy design and are developed with a hook, as could be seen in fig. 35 and table.15. The installation process is that the anchor is dragged along the seabed for purpose of develop enough resistance until the anchor's stopes (Vryof anchors, 2005, s. 10). Moreover, it could penetrate the soil fully or partly according to (Vryof anchors, 2005, s. 10). For this reason, the soil conditions are a major factor when it comes to the capacity performance for this type of design. Nevertheless, the anchor is both meant for clay as to sandy soil according to (Aceton , 2023) However, the drag anchor is only suitable for obtaining horizontal loads and not vertical loads, which is clearly mentioned in the manual by (Vryof anchors, 2005, s. 10). They also identified that there are some drag embedded anchors that are configurated for obtaining vertical load as well (Vryof anchors, 2005, s. 10). These anchors ranging inn sizes and for some could weights up to 15kg to 60 ton (Vryhof manual, 2015, s. 115) The cost range for this type; Stevshark MK5 is between 25.000 - 223.886 \$ and are provided in table 15.

Figure 34 Illustrated the drag anchor form top- and side -view (solarpontoon.wixsite, 2023).

Table 15 Various types of anchors and the following cost.

Anchor types	Cost (\$)	Ton	Source ref.
Drag-embedded	177.140.27USD	-	(Ågortnes, 2013, s. 73)
Stevshark MK5	207.488.5 USD	17	(Ågortnes, 2013, s. 73)
Stevshark MK5	223.886.1 USD	-	(Ågortnes, 2013, s. 73)
Stevshark MK5	25.000 USD	10	(Wentzell, 2023)

10.6 Suctions anchors - Vertical suction pile

Suction pile (Anchors) is based on a two-parts pile meaning the upper part are used as a connection between the lower part of the part section. The upper part is designed as a hollow pipe, seen in fig.36 The installation process is manly done in two stage processes. First, the self-weight penetration is done by the anchors own weight by penetrating trough the soil surface. Secondly, creating under pressure with a high-pressure pump on top of the pipe (T.T.Bakker et al, 2006, ss. 1-8) The suction anchors is capable to withstand both vertical and horizontal loads (Vryof anchors, 2005, s. 11). However, the configuration is very dependent on the resistance in the soil. This is becouse some clay and sand have different soil resistance. In this occasion, the soil increases the performance of the suction pile between the soils and the pile (Vryof anchors, 2005, s. 11). Therefore, the penetration depth and the resistance in the soil is therefore important (T.T.Bakker et al, 2006, ss. 1-8) However, the installation time of this design, and investigated by (Junho Lee et al, 2021, s. 2) could take up to 12 hours for a total completion (Junho Lee et al, 2021, s. 2) and is costly affair. In relation to the design and configuration, the anchor follows a required standard and instructions based on the process of installation. The vertical pile is defined in relation to DNVGL-RP-C212/(115), DNVGL-ST-E237, DNV-RP-C212, and for various soil conditions DNV-RP-E303 (Subseadesign, 2023). The cost range is between 676.826USD \$-13.083.124USD\$ defined in table. 16.

Figure 35 Illustrates the pile and the hollow suctions (pile) anchor and is installed vertical in the soil (Acteon, 2022, s. 11)
Suction anchors	Cost (\$)	Ton	Units	Source ref.nr.
Suction pile	676.826.39 USD	50t	1	(Ågortnes, 2013, s. 73)
Suction pile	1.895.113.91 USD	140t	1	(Ågortnes, 2013, s. 73)
Suction pile	6.069.934.99 USD	-	1	(L. Castro-Santos et al, 2013, s. 43)
Suction pile	13.083.124.26 USD	-	1	(L. Castro-Santos et al, 2013, s. 43)

Table 16 provides some cost estimates for some suction pile given by their weight. Reference is provided in the table.

10.7 Vertical load anchor-VLA

The vertical load anchors (VLA) are similar to drag embedded anchors, but the main difference is that the configuration could obtain vertical loads and horizontal loads (Vryhof anchor , 2005, s. 11). Moreover, the penetration is deeper for this type of design in the seabed soil (Vryhof anchor , 2005, s. 11) The installation process is installed in a vertical position and rotated to obtain large resistance for fully restrain in the soil (L. Castro-Santos et al, 2013, s. 43) The configuration of the VLP is more sutible for clay than for sandy soil (Aceton , 2023) (Costra-Santos, 2013, s. 270). The other advantage with this type of anchor is that it's cheaper than drag embedded anchors, which are based on less weight of steel material that are used for this type (L. Castro-Santos et al, 2013, s. 43) (Costra-Santos, 2013, s. 270), The table. 17 provides some cost ranges.

Figure 36Vertical load anchor (VLA) (jinbomarine, 2023)

Table 17 provides the cost price for vertical	load anchor.
---	--------------

Vertical anchors	Units	Mass	Cost	Source ref. nr.
		(ton)	\$(USD)	
Very small	1	-	186,54-2810.62	(Fortress marine anchors, 2023)

10.8 Dead weight anchors

Gravity anchors is a designed that uses the deadweight of steel materials and could obtain vertical and horizontal loads purely based on the friction forces in the soil of its share strength (Vryhof manual, 2015, s. 17). The anchor obtains the resistance against the uplift forces caused by wave, wind, and current forces. However, this configuration design is not used for large installations or deep waters, but more of small installations (Vryhof manual, 2015, s. 17).

Figure 37 seen from left to right, deadweight steel weights (Vryhof manual, 2015, s. 17) and new type of dead weight design (*Offshore wind design AS, 2023*)

Gravity anchors	Unit	Mass	Cost	Source ref. nr.
	(s)	(ton)	\$(USD)	
Steel shot	1	5.6t	77560	(Nick Cresswell et al, 2016, ss. 5-7)
Steel shot + frame	1	495t	59784.78	(Nick Cresswell et al, 2016, ss. 5-7)
High density concrete	1	18.1t	898.370	(Nick Cresswell et al, 2016, ss. 5-7)
High density Concrete	1	392t	1.070.800	(Nick Cresswell et al, 2016, ss. 5-7)
High density concrete	1	590t	67529.23	(Nick Cresswell et al, 2016, ss. 5-7)

Table 1	8 provide	s the mass	of anchors	and some	cost price
---------	-----------	------------	------------	----------	------------

10.9 Pile anchor and gravity torpedo pile

The vertical pile anchor is divided between driven pile and drilled pile designed as a hollow steel pipe which are installed either with a hammer or a vibrator drilled into the seabed soil (Vryhof anchor , 2005, s. 11) the pile penetrates deep beneath the slip surface (Dimitrios Loukidis et al, 2014) The vertical pile is designed for deep waters installations since the configuration could restrain vertical load as too lateral forces. Generally, the design could be used for clay and sandy soil conditions. However, the design is more suitable for deep water installation due to it large size for obtaining at a high performance, therefore not suitable for shallow waters (Vryhof anchor , 2005, s. 11). The gravity anchor is used as a hybrid anchor meaning as a combination of both vertical and horizontal loads. The installation process is totally based on its weight of the gravitational forces. The type is used for deep water installations (Vryhof anchor , 2005, s. 18).

Figure 38 seen from left to reight torpedo pile and pile (Vryhof anchor, 2005, s. 11).

Pile anchors and gravity torpedo	Units	Mass	Cost	Source ref. nr.
pile		(ton)	\$(USD)	
Pile	1	5.6t	1291.212\$	
		5,6t	77560\$	
Torpedo anchor (2000\$) rolled +	1	9.8t	25086.45\$	(C.D. O'Loughlin et al, 2015)
scrap				

Table 19 provides the anchors mass and their cost.

10.10 Diverse connection shackles

The several connection points for anchors, mooring lines, mooring buoy, platform structures are done with shackles (1). These connectors come in many shapes and formations as showed in fig. 40 (Vryhof anchor, 2005, s. 11). These types are link kenter type (2), link pear shaped (3), c-type (4) (Vryhof anchor, 2005, s. 11).

Figure 39 seen form left, Shackles (1), link kenter (2), link pear shaped (3), c-type (4). (Vryhof anchor, 2005, s. 11).

10.11 Marine buoy

There are several mooring buoys designed in various size and shapes. The large ones could range from 2,4-4 meters in height and ability to obtain a buoyancy up to 10kg- 100 tons (CRP subsea, 2023). From the illustrated fig.41are some of the design. The top of the buoy is the connection point where the mooring lines are connected. The table below provides some cost price for traditional steel buoy. The traditional mooring buoy is most sutible for shallow waters and with soil conditions such as mud, sand and gravel sefloor (PADI International Resort Association, 1996-2005). The morring buoy also reduces the tension in the mooring lines (Torbjørn Herberg Roksvaag et al, 2021, s. 25) and are used as tension relivers in the mooring lines.

Figure 40 Illustrates two mooring buoys of AMR 7000 and AMR 7000 with different connection points of shape T (hydrosphere.co.uk, 2014)

Table 20 provides some types of mooring buoys and some cost price.

Marine buoys	Units	Mass	Cost \$	Source ref. nr.
		(ton)	(USD)	
PE/EVA cylindrical Foam filled	2	Customized	100-3000	(Made-in-china, 2023)
buoys				
Steel mooring buoys	1	1.2m	200-1000	(Alibaba.com, 2023)
Cylindrical steel buoy crucifix	1		100-5000	(Alibaba.com, 2023)
Subsea energy solutions	1	10ton		(Jump, 2021, s. 27)

10.12 Array electrical power cables

The power cables system also defined as dynamic cable system and defined as inter-array cables (Maria Ikhennicheu et al, 2020, s. 89). These cables are configurated between the turbines are defined in kilovolt (KV) and their volt-capacity ranges from 6.6-132 KV (Maria Ikhennicheu et al, 2020, s. 89) As illustrated in the figure a description to how the cables are configurated. The power cable used in the offshore wind turbines are between 33KV-66KV (Shayan, 2017)

Figure 41 illustrates the dynamic power cable and an overview of the inner part of the power cable (Twind offshore wind energy, 2021, s. 4)

In relation to the cost estimates of dynamic power cable the equation. 36 needs to be calculated. The table below provides the units, which are needed in the estimation of cable costs. The table is added from Corewind (Maria Ikhennicheu et al, 2020, s. 89).

Dynamic	Units	Cos	t coefficio	ent	Range	Keuro	Ref. source
cable					MVA	/Km	
Power rate	Max	C1	C2	C3		Keuro/	(Maria Ikhennicheu
	KV					Km	et al, 2020, s. 89)
11MV	12	69.12	22.85	0.22	12.5	Keuro/	(Maria Ikhennicheu
						Km	et al, 2020, s. 89)
22MV	24	-1.27	70.92	0.07	27.5	Keuro/	(Maria Ikhennicheu
						Km	et al, 2020, s. 89)
33MV	33	-49.42	112.20	0.041	44	Keuro/	(Maria Ikhennicheu
						Km	et al, 2020, s. 89)

Table 21 provides the coefficients needed for estimating the cable cost (Maria Ikhennicheu et al, 2020, s. 89)

For calculating the total length of cable for the WT in the farm site Eq.1 is used. Moreover, for the cost coefficient Eq.2 is used and finally, Eq.3 for the total cable-cost estimates.

$$L_{ac} = 2 * Dw * 2.6 + Dwt = \text{Length of cable}$$
(34)

(Maria Ikhennicheu et al, 2020, s. 89)

$$CPC = C_1 + C_2 \exp(C_3 * S)$$
(35)

(Maria Ikhennicheu et al, 2020, s. 88)

$$Total \ cost \ cables = \sum_{t=1}^{n} Cpc * l_{pc} * N_{pc}$$
(Maria Ikhennicheu et al, 2020, s. 88)
(36)

Distribution of units.

- CPC = cost of single cable (\$/m)
- $L_{ac} = \text{length of cable}$
- N_{pc} = Number of cables
- *S*= Cables rated power = MVA

11 Vessel types and their configuration for installation and maintenance process.

Introduction of vessels and configuration.

In this part, the traditional vessel will be explained for the purpose of identifying and categorize each vessel into their various operations. The operations include installation and maintenance service. Based on this, the total cost for operation could therefore be estimated for identifying each cost drivers in the brake down model. The estimation is provided in chapter 15 result.

There are many vessels used in the offshore industries and is based on the project task. Since each vessels have different configurations, they are used differently in the process of installation or in the maintenance service. The various types of vessels could be categorized into tug vessel, floating crane (barge), anchor handling tug supply (AHTS), and supply vessels (SUV). Moreover, CTV and OCV cable vessel layers. In the installation phase of FWT this could be done in two ways. The first is by towing a complete assembly of the FWT from the harbor dock to the farm location. The other solution is assembly at location, this by using a crane vessel (lifter). In relation to (Ågortnes, 2013, s. 88) for such operations, it is based on a strategical solution and is defined in an early stage of the project. Based on the process of mooring installation (L. Castro-Santos et al, 2013) found that anchoring handling vehicle (AHV) are also used for installation of anchors (L. Castro-Santos et al, 2013, s. 43)

Figure 42 Illustrates the towing process of a complete assembly by using towing vessels. The tug vessels illustrated in the figure are not the ordinary vessel but only meant as an illustration view over the 15MW US main towing. Designed by the author.

Additional to the various vessels a further explanation will be described based on the vessels configuration and its purpose in the offshore industries. There are many vessels ranging in size, weight, and cost. In relation to cost expense these rates are normally given in daily rates. Nevertheless, in the process of installation and maintenance service various vessel could be used, but for O&M Crane bare, AHTS, SUV and CTR are normally used. The table below provides some of the traditional vessels.

Figure 43 crane barge/barge (J.M.J. Journee et al, 2001, s. 38)

Barge crane vessel presented in (fig. 44) are used as crane lifters for installation of vertical turbines onto the platform structure in the farm site. This vessel could also be used in the maintenance service for miner repair or totally removal. The cost range per day is between 150.00-250.000\$ according to (Ågortnes, 2013, s. 73)

Figure 44 Tug vessel (J.M.J. Journee et al, 2001, s. 38)

The towing vessel presented in (fig. 45) is the vessel used for transportation of towing structures in the installation process. Generally, these vessels could be defined as the working horses on water in relation to their extreme pull power. In case of using three of these towing vessels has the capacity of pulling as much as 70 - 80 tons. The vessel ranging in size and has a daily cost price between 1000 - 5000 \$ according to (L. Castro-Santos et al, 2013, s. 43).

CTV-speed vessel

Figure 45 crew transport CTV (J.M.J. Journee et al, 2001, s. 38)

Crew vessel CTV presented (figure 46) are meant for transporting crew workers back and forth to farm location. These vessels could have maximum of 12 crew works and are much used for maintenance service with miner repair and inspection. The maximum speed limit is 20 knots, and estimated cost is respectively 2500 pounds.

Anchor handling tug supply (AHTS) and supply vessel SUV

Figure 46 AHTS, SUV supply vessel (J.M.J. Journee et al, 2001, s. 38)

Anchor handling tug supply vessels (AHTS) presented in (figure 47) are used in operations for both installation and maintenance service. Normally, they are used in the installation for mooring-, anchors-installations, towing operations, shipping supply, and lifting operations. This vessel ranges in size and weight and could be 25-397 tons and speed limit 23 Km/h. Since these types of vessels could be used for lifting operations, they are configurated with crane (Ågotnes, 2013, s. 51). The estimated cost ranges for the AHTS per day is between 22175.99\$ - 55439.98\$. The other similar vessel type is the supply vessel (SUV) but are normally used as an assistant vessel meant for cargo supply, personal supply, and equipment

65

supply meant for large operations. The estimated cost range for SUV is between 3.000-36.000\$ (Ågotnes, 2013, s. 51) and could store up to maximum of 60 crew works.

Cable vessel

Figure 47 (Bureau of ocean energy management, Boem, 2011, s. 1)

The OCV-cable vessel is meant for installation of power cables and for such vessel the cost ranges per day is respectively 100.000 \$ (Axelsson, 2008, s. 9) and converted today 140.191,27 \$/per day.

Graphs 2 Comparison of different vessels cost per day rate.

The table provides a cost comparison for several vessels based on their daily rates. The table above is collection of cost estimates for various vessels based on chapter 15. The table below represents some finding related to the rent cost per day.

12 Introduction to the simulation case of prototype 1 and 2.

A summary of the simulations and prototype design.

In the following case, a description of the simulation test will be performed for the two individual prototype models I and II. This summary will therefore provide a deep description of each prototype design and assumptions that has been done in these two models studies. The first prototype is a single CSC-semi of the Umain Volturnus 15- MW and the RWT-15MW turbine both defined in chapter 12.1 The first model is configurated in relation to the report by (Christopher Allen et al, 2020, s. 13) (NREL). The other prototype is a chosen designed with two single CSC-semi and a calm base buoy in the center. The mooring buoy is centered between the structures and has some similarities in the mooring arrangement identified in the report by (H Munir et al, 2021, s. 5) defined in chapter 9.6. The relation with this concept, is that two platforms is orientated 180 degrees with a shared wire line as a connection line as tension reliver in between. The calm- base buoy is used for binding the platform together. In the center between the platforms is a shard vertical anchor for obtaining the vertical tension. The response test which will be evaluate in both simulation is to find the maximum tension in each mooring lines for the purpose of comparing one single prototype Vs. the other prototype, of two shared mooring arrangement. The purpose with these prototype models I and II is to design them in the right dimensions and for comparing the mooring tension.

The test simulations for both prototypes are run three times for each design with various significant wave heights of 2, 4 and 6 meters. Moreover, a further explanation is provided in chapter 13.3 sea state conditions. In response to the test run (simulation), various mooring lines will be tested with different materials and dimensions. The mooring materials are used is studdles link chain grade R4 185 mm, steel wires with fiber core of 100mm, 150mm, and finally synthetic polyester rope of 268mm. The purpose with this is to evaluate the comparative comparison of the maximum tension in each mooring lines based on the wave loads condition at North Sea. Jonswap is the North Sea wave conditions based on variable wavelength and are defined in the software Orcaflex. (See chapter 2.3) The time duration of the simulation is run 3800 seconds x 3 per separate significant wave heights for 2, 4, and 6 meters. Moreover, the input value of significant wave periods is set to 4, 6 and 8 seconds (se fig.54 in chapter 13.3) the average wind speed is 10.5m/s at SNII. (See chapter 13.3 and fig. 54. The main purpose is to measure the maximum, minimum, mean, std dv, root means square

tension measure for each mooring lines in KN. The dynamic response in this study is to estimate and observe the effect caused on the semi-submersal structure and the mooring lines in shallow waters of 70m defined in the region of **SNII**.

12.1 Prototype model I, catenary mooring arrangement.

Figure 48 Example of the single OWP in simulation model 1. File example designed by Ocarina Ldt. oraflex.

In prototype 1, three chain mooring lines based on 185 mm studdles chain grade R4 as illustrated inn fig. 49. The chains are placed in 120 degrees in each direction out of the platforms fairlead and are given radius anchor point of 610 meters. The chosen mooring length is estimated to 420 m + safety length of 100meters in this case for ML1. The platforms stability is based on a chain catenary mooring system with drag embedded anchors for stability in horizontal directions. The definition of the platform is defined as VolunturnUS-S1 and each mooring lines as ML1, ML2 and ML3, see design prototype I fig.49. The chosen concept of the prototype I is to evaluate the response performance for the tensile force in KN

TECHNO-ECONOMICAL MSC THESIS

for studdles chain 185mm mooring lines. The wave direction is given in chapter 13.3. In addition to the given input values, it's important to provide a symmetrical design of the mooring lines and with equal input values of the lengths. The table. 22 provides the parameters with the coordinates of placement of the platform, anchors and mooring lines defined in the oriental plane, x-, y-, and z-directions. The file of the prototype (Ocarina Ltd., 2023) and a description of file (Orcina Ltd., 2023, ss. 1-14).

NR.	Prototype I	Coordination of			Total length	Line types
	coordinate	placem	ent		(m)	
		Х	Y	Z	m	-
		(m)	(m)	(m)		
*	Platform 1	0.0	0.0	0.0	-	-
	VolunturnUS-S1					
1	Fairlead A (ML1)	55	0.0	-14	620	Studdles chain 185mm
2	Fairlead B (ML2)	-28	50	-14	620	Studdles chain 185mm
3	Fairlead C (ML3)	-28	50	-14	620	Studdles chain 185mm
4	Anchor radius (ML1)	740	0.0	0.30	710	Drag embedment 17t
5	Anchor radius (ML2)	-330	-560	0.30	620	Drag embedment 17t
6	Anchor radius (ML3)	-330	560	0.30	620	Drag embedment 17t

Table 22 Coordinate of placement of the single- OFP in Orcaflex

The estimated length for each mooring line is 610 meters in each direction to the anchor point. The mooring line ML1 is chosen an extra length of 100 meters because of the wave direction is set in this direction. The illustrated graph provides the total length in relation to the average water depth of 70 meters.

12.2 Prototype model II shared mooring arrangement.

Figure 49 Illustrates plane sketch design of the two horizontal OFWT oriented 180 degrees. Plane-sketch designed by the author LJBT.

In prototype II, the two platforms defined as platform 1 (**VolunturnUS-S1**) and platform 2 (**VolturnUS-S**) are the two floaters orientated 180° degrees in horizontal positions as presented in fig. 50. The configuration spacing between the turbines is six times the rotor diameter with the total distance of 1440 m (6 x 240) according to (al, Jens N. Sørensen et, 2018, s. 2) this is due to the wake effect. The shared wire line between the platforms is centered equal to the connected calm- base buoy and is centered in the mid-section, respectively 720 m. In relation to the calm -base buoy the vertical anchor (VLP) (defined in chapter 10.7) is centered equally between each platform. The buoy is lowered 30 meters

beneath the water surface (see table 23). The submerged vertical wire between the calm- base buoy and the vertical anchor (VLP) is estimated to 40 meters. The mooring lines in between the platform's fairleads is of material steel wires of 100 mm. The simulation is also tested with mooring line of polyester rope of 268 mm and are further described in in table. 26.

The four restrained chain lines (4 x chain lines) is defined in a catenary plane and is configured with drag embedded anchors for stabilizer. The origan is chosen at the platform's fairleads (defined in theory 4). The mooring materials used is chain 185 mm steel chains grade R4. The configuration model has its purpose of evaluating the tensile load and dynamic response based on the calm base buoy for random significant wave heights, see table 21. The importance with this design is when modeling the accuracy of input values in relations to length and coordinates is equal. This is because the symmetrical measure will eliminate possible errors that would occur in the simulation test. The coordinates of platforms and calm base buoy is defined in table 24. Before the test simulation in the model in the software needs to be set in **free motion**, meaning the mooring lines and anchors are fully tensioned stabilizer in an x-, y-, z-direction, defined in the oriental plane (Ocarina Ltd., 2023, ss. 1-14).

NR	Prototype II	Coordi	inates of		Total length	Mooring line dimension
	Coordinates	placem	ient			
		X(m)	Y(m)	Z(m)	(m)	
*	Platform 1 (A)	0.0	0.0	0.0	-	-
	VolunturnUS-S1					
1	Fairlead upstretched wire ML1	55	0.0	-14	720	100 mm steel wire
2	Anchor radius strained ML2	562	327	0,30	620	185 mm studdles chain (R4)
3	Anchor radius strained ML3	-562	327	0.30	620	185 mm studdles chain (R4)
*	Platform 2 (B)	0.0	-1440	0.0	-	-
	VolturnUS-S					
4	Fairlead upstretched wire ML4	55	0.0	-14	720	100 mm steel wire
5	Anchor radius strained (ML5)	560	-1765	0.30	620	185 mm studdles chain (R4)
6	Anchor radius strained (ML6)	-560	-1765	0.30	620	185 mm studdles chain (R4)

Table 23 Placement of mooring configuration and two-horizontal OWPs.

The presented table. 29 is a representation of the workbench for the configuration model se figure 50. The definition of the mooring lines is as follows: ML1 = ML4 Is the steel wires or fiber ropes to the calm base buoy. ML2=ML3=ML5 = ML6 = Is the chain mooring lines seen from each fairlead to the radius anchors points for strainment to the seabed floor.

12.3 Prototype II calm base buoy

Figure 50 Example simulation mooring buoy model 3 in configuration design case 2. (reference) Plane-sketch designed by the author LJBT.

The calm base buoy is the chosen prototype for the prototype II and is added form an example file developed by Ocarina Ltd (Orcina Ltd, 2023, ss. 1-7). The corresponding vertical anchor is centered vertical onto the buoy with a 70 m meters vertical line in between. The morning buoy is lowered 20 meters below Sea-level (WSL). The purpose as identified is that the mooring buoy needs to be below sea level due to strong drift forces caused by the wave loads (see chapter 9.6). The placement of coordinates of the vertical anchor and mooring lines is provided in table 24. The software file could be seen in (Orcina Ltd, 2023, ss. 1-7).

NR.	Prototype II	Coordina	ates mar	ine	Total	Line type
	Coordinates mooring buoy	buoy atta	achment	S	length	
		Х	Y	Z	(m)	-
		(m)	(m)	(m)		
*	Marine buoy	0.0	5	-1	-	-
1	Calm base buoy tension vertical wire	0.0	0.0	0.0	40	100 mm steel wire
	below MWL (V0)					

Table 24 Placement of the marine buoy

2	Fairlead upstretched (ML1) A	0.0	0.0	-14	720	100 mm steel wire
3	Fairlead upstretched (ML4) B	0.0	0.0	-14	720	100 mm steel wire
	Anchor VLP	-720	-8	0.0		

13 Case study

Introduction

Economical part (50%) and simulation part (50%)

In the economical part 1, the reference turbine RWT-15MW and CSC-semi; Umain Volturnus 15 MW are used for both the cost model (CBS) and the simulation test. In relation to the economical part, the cost model and is referred to the life cycle cost (LCC) and will be defined in chapter 16 in relation to the method. Based on the numerical cost data, which are added form other works, will be properly defined with reference to the authors. For calculation traditional Excel are used chap.16. The chosen farm location is south North Sea II (SNII) and the cost calculation will be assumed in relation to the reference location, turbine, and platform. The calculation will therefore be estimate of the total cost with a fixed rate of 8% in connection to author (Martinez, 2021, s. 7) this in relation to one 15MW wind farm of a complete assembly. Secondly, an assumption of 100MW windfarm would result to 17 units of turbines. The simulation test of dynamic reasons will be based on assumption for random significant wave heights and significant periods. The test is meant to evaluate the maximum tension in response to random sea state of Jonswap and average wind speed at North Sea conditions.

Assumptions of case study

In this case study, the South North Sea II is the choose location and is because of the high recourse of wind energy and the large farm area. However, the long distances and time travelling makes this site challenging and costly due to time traveling in relation to vessels. However, the region is interesting to investigate because it is in the category of shallow water. Moreover, using state-of-the-art technology for installation of OFWT in shallow waters. Since the condition of wind resources are high, could possibly make the floating SSP profitable and investible for the location as SNII. Therefore, the economic result will possibly provide some result based on assumptions. Moreover, the concept and idea by using floating wind turbines (FWTs) instead of bottom- fixed- turbines in region for shallow waters.

13.1 Geographic location South North Sea II (SNII)

South North Sea II (SNII) is the largest area in Norway for offshore windfarm development. The geophysical data of the prospect area is measured to 2598km² with a measured wind resources capacity of 1500 MW (sn2offshorewind, 2023). The farm location has a total distance of 140 Km to the nearest cost of Norway (Are Opestad Sæbø, Kristin Guldbrandsen, 2023, s. 21) seen in fig.52. Additionally, the nearest assumed harbor is in Kristiansand, in the community of Lista Agder. The assumed harbor in Lista has a measured distance of 168 Km and is the nearest of the three assumed harbors to the farm location (Are Opestad Sæbø, Kristin Guldbrandsen, 2023, s. 21). The geological area in the region is defined as sandy and in shallow waters, with an estimated average water depth is 70 meters. Based on the wind resource, the average wind speed is measured to 10.5 m/s. Nevertheless, the shallow waters and the geological ground formation could both store bottom fixed as to floating wind turbines. The geophysical data over South North Sea II consists of an area of 605km² which in term corresponds to an area efficiency of 5MW/km². The fig,52, and table. 25 provides some more information to the wind farms potential .

Figure 51 illustrates the location of the area and is defined in orange and identifies the SNII and the distance between the four main harbors (Are Optad Sæbø, Kristin Gulbrandsen, 2020, s. 21) the coordinates over the locations Norwigan Gov. (Tina Bru, 12, ss. 6-7)

Figure 52 illustrates the wind farm location at South North Sea (I and II). The Black arrow marks the site SNII collected through NVE (NVE, 2023) and meat ocean map based on at SNII (Lin Li et al, 2023, s. 12)

Table 25Provides the parameters of the Soyh North Sea II

Marine data of location	South North Sea II	Units
Soil condition	Transitional, shallow,	-
	Sandy	
Total area	2598	Km^2
Energy capacity	1000-2000	MW
Distance to shore	140	Km
Distance to nearest harbor Lista	168	Km
Average wind speed	10,5	m/s
50-year wind speed	36,5	m/s
Significant 50-year waves height	12,9	m
Neto capacity factor of 1000 MW development	51	%
Neto capacity factor of 2000 MW development	49	%
Mean year energy production of 1000 MW development	4510	GWh
Mean yearly energy production of 2000 MW development	8920	GWh
Water depth	50-70	m
Average depth (m)	70	m
Structure type (SSP), Bottom fixed structures	Floating and bottom fixed	-

13.2 Properties of the mooring line materials to be simulated.

The mooring configuration properties

The tables below represent the chosen parameters of mooring materials used for both simulations of prototype I and II. However, for prototype I will only be tested with chain catenary mooring lines. For prototype II will be performed with calm bas buoy, chain, steel wires and synthetic fiber ropes of polyester. The parameters are given table 26,

The table 26 provides the key properties for various materials, dimensions, nominal diameters of mooring lines for the test. The materials are chain graded R4 185 mm, 100 mm steel wire and 268 mm polyester rope.. The tables also provide the minimum breaking (MBL) load and axial stiffness for each mooring lines. These mooring properties needs to be in line with recruitment of standard according to DNVGL-OS-E301 (DNVGL AS, 2018, s. 75). Based on the given input values, the measured tension in KN must not exceed the minimum and maximums tension in relation to recruitment DNV standard DNVGL-OS-E301 in the simulation test. The purpose her is to simulate three separate nominal diameters of mooring lines to be tested for ultimate strength.

Mooring line parameters	Nominal diameter (m)	Minimum breaking load (MBL)	Axial stiffness MN					
Confi	guration design mo	del 1, Case 1						
Chain Studdles- link graded(R4)	0.185 m	6333.58 KN	404KN					
Confi	Configuration design model 2, Case 2							
Steel wire rope (6x19- strands)	0.100 m	6333,5 KN	404KN					
Steel wire rope (6x19-strands)	0.150 m							
Fiber Polyester rope (8 -strands)	0.268 m	12,24 MN	78,29e^3KN					

			•		
l'able 26	Provides	various	dimension	of mooring	properties.

13.3 Sea state conditions (Jonswap).

The table below corresponds to the properties which will be simulation over one hour of duration (3600 sec +200sec). The 200s corresponds to a better estimation in relation to the time series in relation the output values. The wave load direction is set to 180° towards the prototype I and II arrangements. The significant wave heights (H_s) is chosen with random significant wave heights and significant periods (T_p), and wind speed ($V_{speed} = 10,5$ m/s. The table. 27 provides the parameters of sea state conditions. The wind drag coefficient is in the software is 1.2 and the wavelength corresponds to the (Jonswap) sea state condition in North Sea and is provided by the simulation software Orcaflex (Orcina. Ltd, 2023, s. 1)

Sea state condition	Significant Wave heights (Hs)	Mean zero- crossing of Wave periods. (Tp)	Wave direction	Wavelength JONSWAP	Average Wind Speed (m/s)	Simulation duration (s)
		Sea state c	onditions	1		
Simulation						
*Prototype I	2m	4s	180°	Variable values	10,.5m/s	3800s
*Prototype II				(See Appendix)		
Simulation .2						
*Prototype I	4m	6s	180°	Variable values	10.5m/s	3800s
*Prototype II				(See Appendix)		
Simulation .3						
*Prototype I	6m	8s	180°	Variable values	10.5m/s	3800s
*Prototype II				(See Appendix)		
		Extreme c	ondition			
Simulation 4						
*Prototype I	10,5m	14,2s	180°	Variable values	9,2m/s	3800s
*Prototype II				(See Appendix)		
Estimated	-	-	-	-	-	
duration						15200s

Table 27 assumption of design load case of random variable of wave height in SNII.

In addition to the given input values in relation to table. 27 above provides the input value and the output value is provided below in fig. 54 of the spectral density curves. The four spectral density curves represent the significant wave heights (H_s) of 2m-, 4m-, and 6- meters and significant wave periods (T_p) 4s, 6s and 8s. The four curves illustrate the spectrum view to be

simulated three times total. The spectrum curves represent the density curves in (mm^2/Hz) in y-axial direction over the given frequency in (Hz) in x-axial directions.

(Jonswap) spectral density curves.

Figure 53 The wave spectrum for irregular waves shows the separate density curves y-axial and the period (Hz) x-axial direction of random chosen wave heights of 2m, 4m, and 6m. Added from oraflex.

14 A collection of numerical cost data for the cost result.

This table represents the numerical cost data collected through varios master thesis, articles and reports and defined in table 28. The purpose is to clarify where the data is collected from in relation to other works and to the authors. The collection of cost data will therefore be used in this thesis for calculating the LCC estimates for the six cost drivers defined in chapter 6 for this thesis and for solving the investigated research question defined in chapter 2.6. For estimating the cost estimates traditional Excel is used (see appendix). Some of this cost is collected trough (thecrownstate, 2019, s. 18)

Parameters	Abbrev	Units	Cost price	Today's inflation value	Ref. Sources
					(thecrownstate, 2019, s. 18).
					(thecrownstate, 2019, s. 18).
(thecrownstate, 2019, s. 18)			Euro	Doller	
Consenting and development			1.800.000pound	1.848.248.02	(thecrownstate, 2019, s. 18)
Environmental survey			60.000pound		(thecrownstate, 2019, s. 18)
Onshore survey			8.250pound		(thecrownstate, 2019, s. 18)
Resource and meta ocean			60.000pound		(thecrownstate, 2019, s. 18)
assment					
Meta mast and platform			75:000pound		(thecrownstate, 2019, s. 18)
Structure			45.000Pounds		(thecrownstate, 2019, s. 18)
Maintenance service			4500punds		(thecrownstate, 2019, s. 18)
Geological survey			120000Pounds		(thecrownstate, 2019, s. 18)
Geophysical survey			120000Pounds		(thecrownstate, 2019, s. 18)
Geotechnical survey			90000Pounds		(thecrownstate, 2019, s. 18)
Hydrographic survey			12000Pounds		(thecrownstate, 2019, s. 18)
Engineering and consulting			60000Pounds		(thecrownstate, 2019, s. 18)
					(thecrownstate, 2019, s. 18)
Wind turbine			150.000Pounds		(thecrownstate, 2019, s. 18)
Vessels	C_{Transp}		Euro	Doller	
Tug	C _{cost}	\$/ day.	1000-5000	1318.12 - 6590.93	Santos 2013
Tug	C _{cost}	\$/ day.	1000-4500	1095.04-	(Rahul Chitteth Ramachandran
					et al, 2021, s. 18)
Crane barge	C _{cost}	\$/ day.	20000-50000	150.00 - 250.000\$	(Ågotnes, 2013, s. 51)
Cargo vessel (transport)	C _{cost}	\$/ day.	75.000	98863.997	(Jorge Altuzarra et al, 2022)
AHTS	C _{cost}	\$/ day.	40.000	43802.053	(Jorge Altuzarra et al, 2022)

Table 28 provides a collection of numerous cost which includes vessel,

AHTS	C _{cost}	\$/ day.		22175.99\$ - 55439.98\$	(Ågotnes, 2013, s. 51)
SUV	C _{cost}	\$/ day.		3.000-36.000\$	(Ågotnes, 2013, s. 51)
Cable vessel	C _{cost}	\$/ day.	100.000	140.1900.50	(Axelsson, 2008, s. 9)
Cable vessel	C _{cost}	\$/ day.	70000-115000	84242.287-138398.04	(Rahul Chitteth Ramachandran
					et al, 2021, s. 18)
DP-vessel	C _{cost}	\$/ day.	50000-200000	60173.06-240692.2	(Rahul Chitteth Ramachandran
					et al, 2021, s. 18)
Crew vessel	C _{cost}	\$/ day.	1750	2106.06	(Rahul Chitteth Ramachandran
					et al, 2021, s. 18)
SOV service operation	C _{cost}	\$/ day.	52000	62579.985	(Rahul Chitteth Ramachandran
vessl(large)					et al, 2021, s. 18)
SOV service operation vessl	C _{cost}	\$/ day.	35000	42121.144	(Rahul Chitteth Ramachandran
(Small)					et al, 2021, s. 18)
Semi- submersible crane	C _{cost}	\$/ day.	200000-360000	240692.25-433246.05	(Rahul Chitteth Ramachandran
vessel					et al, 2021, s. 18)
Barge	C_{cost}	\$/ day.	80000-180000	96276.90-216623.02	(Rahul Chitteth Ramachandran
					et al, 2021, s. 18)
FSV vessel	C _{cost}	\$/ day.			
Maintenance and operations					
Helicopter	C _{cost}	\$/ day.	6000	7412.93	(Castellà, 2020, s. 35)
Operation					
Fuel costs (AHTS)	C _{cost}	\$/ liter.	8000	8760.41	(Jorge Altuzarra et al, 2022)
Fuel cost (tug)	C _{cost}	\$/ liter	4000	4380.20	(Jorge Altuzarra et al, 2022)
Standby					
Fual cost AHTS	C _{cost}	\$/ liter.	2000	2190.10	(Jorge Altuzarra et al, 2022)
Fuel cost Tug	C_{cost}	\$/ liter	10000	10950.513	(Jorge Altuzarra et al, 2022)
Repair cost (minor)	C _{cost}	\$	1000	1095.04	(Castellà, 2020, s. 23)
Repair cost (Major)	C _{cost}	\$.	1000-10000	1095.04-10950.513	(Castellà, 2020, s. 23)
Repair cost (removal)	C _{cost}	\$	100000	10950.5	(Castellà, 2020, s. 23)
Dismantling					
Cleaning	C _{cost}	\$	200.000	263637.32	(Costra-Santos, 2013, s. 270)
Disposal scrap metal	C_{cost}	\$	213.239	281088.8	(Costra-Santos, 2013, s. 270)
Disposal scrap metal	C _{cost}	\$	213.239	281088.8	(Costra-Santos, 2013, s. 270)

Part 1, Economical result

15 The result for economical part

Economical Result

15.1 Net annual energy produced (AEP).

In relation to estimate Capex, Opex and Decom (defined in chapter 12) the average energy produced must be estimated. Therefore, in this assumption it will be based on two cases, the first case is to find the total amount of turbines and the average energy produced (AEP). The capacity factor (Cp) for a wind turbines are defined as 40% (see chapter 8.2). Therefore, in this situation it will be assume that the renewable wind park should produce 15MW. Secondly, it will be assumed that a wind farm should produce 100MW. The estimation of Net average energy produced (AEP) is provided in table.31 below.

To provide a 15MW renewable windfarm at SNII, it needs to find the total number of turbines needed. In this situation 3 are needed for the site (see appendix). The net average energy produced (AEP) is therefore 131GWh. Regarding the other assumption to provide a 100MW wind farm it would require 17 units of wind turbines. The net average energy produced (AEP) would become 876 GWh, see table. 31. The estimated calculation is provided in appendix.

Technical data	MW	Number	AEP
Concept of 15MWwind farm			(MWh)
Case 1	L		
Turbine rate	15		
Capacity factor		0.4	
Total nameplate turbines	37.5		
Number of turbines		3	
Net average energy produced (AEP)			131.400 MWh
Case 2			
Concept for 100 MW wind farm	100		
Total nameplate turbines	250		
Number of turbines		17	
Net average energy produced (AEP)			876.000 MWh

Table 29 Benchmark assumption of the net average energy produced of a wind farm.

16 The result of the cost model (life cycle cost) - LCC.

This section provides the total estimation of LCC in relation to the Capex, Opex and Decom. The calculation is developed in relation to the cost model defined by (L. Castro-Santos et al, 2013). The cost estimation is divided into two cases 1 for a 15MW wind farm followed by case 2 of 100 MW wind farm this in relation to (chapter 13). For the cost estimates a fixed rate is assumed to be 8% also used according to (Martinez, 2021, s. 7)

16.1 Development and consenting cost.

In relation to the development and consenting the cost is estimated for one turbine of 15MW. The assumption used is in relation to (thecrownstate, 2019, s. 18) they had estimated the cost of respectively 50 £ Million for 1 GWh. Therefore, this estimation has been divided for one 15MW turbine and converted into today's value and inflation currency dollar (thecrownstate, 2019, s. 18).

Table 30 provides the development consenting cost.

Development and consenting	Cos	st in USD (\$)	
Case 1			
Total cost	USD	1.848.248.02	(thecrownstate, 2019, s. 18).
Case 2			
Total cost	USD	31.420.828.36	

16.2 Manufacturing cost.

Turbine manufacturing cost

The manufacturing cost for the reference platform structure U Main is based entirely on the material cost evaluated by the weight in ton. The three-cost post based on the turbine includes the rotor house (1), nacelle (2) and tower (3). Moreover, the other value in a turbine is also provided and is assumed form the cost according to (thecrownstate, 2019, s. 18). However, it is also based on other material such as cobber, fiberglass, electrical system, generator, and turbine blades. The unit price of construction steel is in metric ton 1084 \$/ton in relation to the market value (Steelbenchmarker, 2023, s. 2). Sine many of the turbine components is not defined in the NREL report. A different report was found mentioned by (thecrownstate, 2019, s. 18) in relation to this will be used for making a complete cost estimate over the RWT-15MW turbine.

1 Turbine RWT-15MW (15MW)	Mass (ton)	Cost in USD (\$)		(%) of material
Case 1				
Rotor structural (steel 1070\$/ton)	385	USD	1.103.676,43	14.0%
Stator (Cobber 8797\$/ton)	9,01	USD	792.618,71	27%
Stator (Iron180,95\$/ton)	180,95	USD	32.742,90	1,1%
Generator (magnets 1186,38\$/ton)	24,2	USD	28.710,40	1.0%
Turbine blade (Polyester yarn) (1125,24\$/ton)	65,1	USD	73.253,12	2,5%
Nacelle (Steel 1070 \$/ton)	632	USD	676.240	23,0%
Tower (steel 1070\$/ton)	860	USD	920.200	31,3%
Bade plate		USD	4798.80	0.16%
Main baring		USD	4798.80	0.16%
Main shaft		USD	4798.80	0.16%
Gearbox		USD	16800.75	0.56%
Power take cost		USD	4794.72	0.16%
Control system		USD	4794.72	0.16%
Yaw system		USD	1679.95	0.06%
Yaw baring		USD	1679.95	0.06%
Nacelle system		USD	1679.95	0.06%
Nacelle cover		USD	2399.38	0.08%
Structural fastener		USD	1679.85	0.06%
Hub casting		USD	3599.07	0.12%
Blade Barings		USD	4798.80	0.16%
Pitch system		USD	2399.38	0.08%
Total cost for one 15MW turbine	1877	USD	2.996.418,15	100%
Case 2				
17 Turbines RWT-15MW (100MW)				
Total cost for 17 turbines for a 100MW wind	31909	USD 5	50.939.108,56	100%
farm				

 Table 31 Provides the cost of turbine for case 1 and 2.

Platform manufacturing cost

The platform structure has a total weight 20206 ton, and the ballast seawater corresponds to 56%, construction steel 19,37%, concrete 12,44%, tower interface 0,5% and finally 11,7% other materials. The properties and dimensions of weight are specified in table 32. However, the market value of steel 1084 \$/ton and concrete 444,4 \$/ cubic of the total cost of platform structure. In relation to labor cost, it is not evaluated or included in the estimation. The total cost of UMain volunturn 15MW is estimated to 7.013.850 \$/ton for one platform additionally for 17 turbines is given in table 32.

1 Platform UMain Volunturn 15MW	Mass	C	ost in USD	(%) of
	(ton)	(\$)		materials
Case 1				
Construction steel (steel 1070 \$/ metric ton)	3914	USD	4.187.980	60%
Concrete per cubic meters 444,4 cubic m	2541	USD	2.718.870	39%
Tower interface (steel 1070\$/ per metric ton)	100	USD	107.000	2%
Total material cost	6555	USD	7.013.850	100%
Case 2				
Total material cost	6555	USD	119.235.459	100%

Table 32 provides the cost of the platform UMain Volunturn 15MW.

Mooring cost and cable manufacturing cost

The manufacturing cost of mooring hardware is based on mooring lines, anchors, power cables and mooring buoy. The cost is also based on the labor cost of fabrication. Since the labor cost is hard to assume it will be left out of the estimation. However, this labor cost is quite severe cost. Since it's hard to find it will be left out of the estimates.

Table 33 manufacturing cost of the mooring lines, anchors, dynamic power cables.

Mooring material cost for	Length	Mass	Cost per	(Cost USD	(%)
1 turbine	(m)	(ton)	(\$/ton)	(\$)		
Case 1						
Numbers of chain 185mm	3					
Mooring line per turbine (3)	3960m	0.68108	USD1070	USD	2.697.076,8	
Drag embedded anchor per		3x17t	USD207.488,5	USD	622.465,5	
line 17ton						
Dynamic Power cables	610m	296,28\$/	USD766.075,70	USD	766.075,7	
		m				
Total cost				USD	4.274.413,3	100%
Case 2						
Total cost				USD	14.490.941,7	100%

16.3 Installation and transportation cost.

Addition to the installation cost for a complete assembly in the farm location is based on various vessels to be used, the installation of platforms, mooring lines, and anchors. The cost is dependent on the duration time for distance traveling, cost of vessel rate per day, the numbers of vessels and labor cost. Therefore, the estimated duration time for towing a complete platform with a speed limit of 3 knots (5,556 Km/hours) would take 11,34 hours for the total distance of 168Km. Furthermore, it is assumed the nearest harbor is Lista in Kristiansand (defined in chapter 13.1). According to (Jorge Altuzarra et al, 2022) the pre-installation of mooring lines and anchors is done before the platform SSP arrives to the fam site. Nevertheless, the vessel that is required per mooring lines and anchors are two. This means that two vessels are required per installation according to (Jorge Altuzarra et al, 2022).

Assumed three steps in the Installation phase.

- Using two AHTS vessel in the installation. The estimates time to South North Sea II is calculated to a round 7 hours with a speed limit of 23Km/hrs. Moreover, 10 hours for pr- installation of mooring lines according to (Jorge Altuzarra et al, 2022). Therefore, the total duration of mooring installation is respectively 17 hours for one AHTS. The cost of one 43802\$x2 (times x2)=87.604\$
- 2) The pre -installation of drag embedded anchors is three per turbine. The duration hours for pre-installation are 10 hours. Further the transportation to the location is 7 hours. Therefore, the total estimated time is 17 hours of anchors installation for one of the AHTS. The cost of one 43802\$x2 = 87.604 \$
- 3) Finally, the towing of a complete platform assembly to the destination is assumed of three towing vessels. The duration hours to the destination are estimated to 43 hours with a speed limit of 3 knots. The cost of one tug vessels is 5000\$ x three=15.000\$ Therefore, the complete installation for south North Sea is provided in table below:

Installation and	Installation	Traveling	Vessel	Cost day	Total cost (\$)	
transportation cost	duration	duration	Numbers	rate		per day
1 turbine	time	to SNII	Needed	(\$)		
Case 1						
Traveling distance	11.34hrs					
Vessel per mooring line	10hrs	7.0hrs	1		USD	110.879,96
AHTS						
Vessel per anchors	10Hrs	7.0hrs	1		USD	110.879,96
AHTS						
Cable installation	10hrs	7hrs	1		USD	140.191,27
OCV cable installation					USD	766075.70
Helicopter					USD	555.5
Semi-submersal tugboat		43hrs	3	5000	USD	15000
Fuel cost			l/hr	8000	USD	56.000
Crew cost			127,5\$/hrs		USD	165.608
Total installation cost					USD	1.207.202,59
Case 2			· 			
Total cost					USD	16.900.836,26

Table 34 Provides the cost for the installation in the region of south North Sea II.

16.4 Operation and maintenance.

The operation and maintenance O&M service is a variable cost which includes repairs, inspection, removal, vessels, and labor cost. According to (Offshore Renewable Energy Catapult, 2019) the cost for O&M is a round 300.000 (Pound) for one year and with 2-4 inspection days on a regular basis over its lifetime of 25- year. Therefore, in these cases its assumed that the cost is estimated for one year, meaning 12 months (L. Castro-Santos et al, 2013). Since the cost assumption will be based for one turbine model. The first attempt is to estimation the cost based for one turbine, then a second attempt for 17 turbines of a 100MWwind farm. The table provides the cost measure.

89

 $\label{eq:table 35} Table \, 35 \mbox{ provides a cost assumption of the platform US main Volturnus.}$

Operation and	Speed of	Day	hours	Cost day	Tota	l cost (\$) per
maintenance (O&M)	boats	Traveling		rate	day	
		SNII		(\$)		
Case 1						
Helicopter	296,32			555,35	USD	555
CTV small	46,3		1	2353	USD	110.879,96
CTV-large	46,3		1	38.23,61	USD	110.879,96
SOV small-service	23,7Km/hrs		1	45.000	USD	180.730,80
operational vessel						
SOV large-service	23		1	67.000	USD	626.262,4
operational vessel						
Crane barge			3	199.583,92	USD	2532,99
Towing vessel			l/hr	5000	USD	3823,61
Helicopter			1	555	USD	555
Other						
Fuel cost				8000	USD	8000
Cost activity				90.365	USD	90.365
Materials				1000	USD	1000
Labor						
Technician				89.061	USD	5.343.690,6
Managers				156.849,13	USD	313.698,26
Administrative				79753,73	USD	239.261.34
Offshore technicians				66.461,50	USD	398.769
Total cost					USD	7.144.233,15
1 Month					USD	103.410
12 Month					USD	1.103.676
Case 2						
1 month					USD	10.458.794
12 Month					USD	10.458.794,74

16.5 Dismantling cost

The distempering cost is dependent on the scrap value and the weight of recycled materials, cleaning of area and disposal. However, according to (Martinez, 2021, s. 7) the dismantling cost is the reverse process of the installation phase. Therefore, the percentage is used for estimating this cost. In this sense, the estimated dismantling cost is given in the table below. **Table 36** Illustrates the estimates of the dismantling cost.

Dismantling cost	Installation cost	(%) of	USD (\$)	
	(\$)	installation		
Case 1			I	
Wind turbine (steel scrap	2.996.418.	70	USD 2.097.492	
value)				
Platform (steel scarp value)	7.013.850	70	USD 4.909.695	
Mooring (steel sharp value)	4.274.413	90	USD 3.846.972	
Anchors (steel scrap value)				
Power cables (cobber scrap	766.075	10	USD 76.607	
----------------------------	----------	----	-----------------	
value)				
Cleaning	-262.199		USD -262.199	
Disposal of materials	-279.248		USD -279.248	
Total cost			USD 10.939.767	
Case 2				
Total cost			USD 185.976.039	

16.6 Total life cycle cost

Table 37 provides the cost drivers with fixed rate of 8%

Cost drivers (post)	Installation	(%) of	USD (\$)		
	cost (\$)	installation			
	Case	- 1			
Consenting			USD1.848.284		
	Manufac	turing			
Wind turbine			USD2.996.418.		
Platform			USD7.013.850		
Mooring			USD4.274.413		
	Installa	ation			
Installation/ transportation			USD1.207.202		
	Maintenano	ce service			
Operation and maintenance	12 months	89.712 per year	USD1.076.546		
	Disman	tling			
Dismantling			USD10.930.767		
	Case	2			
Consenting			USD31.420.828		
	Manufac	turing			
Wind turbine			USD50.939.106		
Platform			USD119.235.450		
Mooring			USD72.665.021		
Installation					
Installation/ transportation			USD20.522.434		
	Maintenano	ce service			
Operation and maintenance			USD10.458.791		
	Disman	tling			
Dismantling			USD185.823.039		

 Table 38 Provides the total life cycle cost for case 1 and 2.

Total life cycle cost	\$/KWh/	Internal rate	0.08*\$/Kwh/	(%) of
LCC	AEP*1000	8%	AEP*1000	installation
		Case1		
CAPEX	131.96	USD1387	10.55	59%
OPEX	8.19	USD86	0.6552	4%
DECOM	83.19	USD874	6.6552	37%
Total LCC 3 turbines.	223.34	USD2347	17.8672	100%
		Case 2		
CAPEX	172.66	USD23582	13.81	59%
OPEX	20.89	USD1464	1.6712	4%
DECOM	212.13	USD14865	16.9704	37%
Total LCC for 17 turbines.	223.34	USD2347	32.4544	100%

Finally, the total value of each cost components in the life cycle cost for a 15MW and 100MW wind farm is given in \$/KWh in table below.

Result of the	\$/	\$/
LCC	kwh	kwh
L	CC	
Wind farm produce Cp (40%)	15MW	100MW
Wind turbine	\$/kwh 0.02280	\$/kwh0.38766
Platform	\$/Kwh 0,0533	\$/kwh0.90742
Mooring manufacturing	\$/kwh 0,0325	\$/kwh0.90742
Installation	\$/kwh 0,00918	\$/kwh0.55301
Operation and maintenance	\$/kwh 0,00819	\$/kwh0.15618
Dismantling	\$/kwh 0,053	\$/kwh0.1392

 Table 39 Illustrates the LCC in \$ /KWh for a wind farm 15MW and 100MW.

Part 2, dynamic response result

17 Response analysis of maximum tension load for significant wave height prototype I and II.

Figure 54 gives a representation of the extension in the mooring line from position 1-3 in relation to the fairlead caused by drift motions based on have-lift, pitch and surge as a result.

The illustration of observation shows a time representation of the performing structure in response to the wave forces. The wave forces cause a larger off-balance in structure form its original steady- state positions. The mooring line ML1 in axial – position develops the highest tensile force compared two mooring line ML2 and ML3 and is becouse of the wave direction acting in this direction.

Response result of the time series

(Jonswap) sea state condition:

Figure 55 Prototype I steel chain 185mm.

Figure 56 Prototype II 100mm steel wire

Figure 57 Prototype II polyester rope 268mm

Description of the result in the time domain series

The time domain of the spectral density curve (PSD) is a measured over a time of 3800 seconds. As illustrated in the time series the peak values respond to a wave direction of 180° for the vertical steel wire of 185 mm, 100 mm, and polyester rope 268 mm.

The time series that are presented has relatively equal behavior seen from 0s -3800s. From a statistical point of view the mean value shows a rather equal tension between each 1000 of a second. However, the values are very high between the outer and mean values. Nevertheless, it could also be seen that the values have very small iterations (compressed amplitudes) and fast cycles of high frequency. This could be based on when the wave loads create a drift force towards the platform and marine buoy the mooring wires creates a tension and slack (elongation and compression) However, there are 6 measurements which are above 3500 KN and are based in the region between 0-1000s and are quite large compared to the series between 1000-2000 and 2000-3800s. The simulation test could also provide errors and is based on the longitude coefficient in the software is set to low 1.2 based on the input values of the test, and therefore could provide some given errors.

17.1 Result of the mooring tension for prototype I.

The statistic response result of each dynamic tension load evaluated at 3800s for each simulation.

Graphs 3 Significant wave heights $H_s = 2m$, significant periods $T_P = 4$, wind speed $U_w = 10.5m/s$ 185mm Studdles link chain.

Graphs 4 Significant wave heights $H_s = 4m$, significant periods $T_P = 6$, wind speed $U_w = 10.5m/s$ 185 mm studdles link chain.

Graphs 5 Significant wave heights $H_s = 6m$, significant periods $T_P = 8$, wind speed $U_w = 10.5m/s$ 185 mm studdles link chain.

17.2 Result of the mooring tension for prototype II

The statistic response result of each dynamic tension load evaluated at 3800s for each simulation.

Graphs 6 Significant wave heights $H_s = 2m$, significant periods $T_P = 4$, wind speed $U_w = 10.5m/s$ 100mm (6X19 strands steel wire)

Graphs 7 Significant wave heights $H_s = 4m$, significant periods $T_P = 6$, wind speed $U_w = 10.5m/s$ 100mm (6X19 strands steel wire)

Graphs 8 Significant wave heights $H_s = 6m$, significant periods $T_P = 8$, wind speed $U_w = 10.5m/s$ 100mm (6X19 strands steel wire)

Graphs 9 Significant wave heights $H_s = 2 m$, significant periods $T_P = 8 s$, wind speed $U_w = 10.5 m/s$, 268mm polyester rope

Graphs 10 Significant wave heights $H_s = 4 \text{ m}$, significant periods $T_P = 6 \text{ s}$, wind speed $U_w = 10.5 \text{ m/s}$, 268mm polyester rope

Graphs 11 Significant wave heights $H_s = 6 \text{ m}$, significant periods $T_P = 8 \text{ s}$, wind speed $U_w = 10.5 \text{ m/s}$, 268mm polyester rope

Extreme condition (Jonswap) sea state conditions.

Graphs 12 Significant wave heights $H_s = 10,5 \text{ m}$, significant periods $T_P = 14.5 \text{ s}$, wind speed $U_w = 9.2 \text{ m/s}$, 150mm steel wire with fiber core

The table below provides the measurements of the simulation test defined for both prototypes I and II. Maximum tension results.

Result of the	Nominal diameters	2m	4 m	6m
load cases	mm	(KN)	(KN)	(KN)
	Protot	ype I		
Mean ML1	185mm	2046.31	430.73	403.63
Mean ML2	185mm	2226.78	426.90	401.69
Mean ML3	185mm	2293.45	425.84	401.85
Maximum ML1	185mm	2827.83	3667.35	<mark>4376.26</mark>
Maximum ML2	185mm	484.079	472.50	478.37
Maximum ML3	185mm	484.17	472.76	469.25
Stv.Dt ML1	185mm	266.76	399.12	445.169
Stv.Dt ML2	185mm	9.57	9.56	11.012
Stv.dt ML3	185mm	9.53	9.075	10.259
	Prototy	pe II		I
Mean ML2	185mm	1997.2	1225.6	1800.1
Mean ML3	185mm	1050.1	1144.4	1198.1
Mean ML5	185mm	1546.4	14444.9	1385.3
Mean ML6	185mm	2021.9	1847.5	1771.9
Maximum ML2	185mm	2178	1348.3	2291
Maximum ML3	185mm	1115.3	1232.3	1363
Maximum ML5	185mm	1674.1	1680.7	1706.5
Maximum ML6	185mm	2205.8	2229.5	2253.1
Std. Dev ML2	185mm	49.94 7	61.549	137.74
Std. Dev ML3	185mm	45.586	57.651	73.381
Std. Dev ML5	185mm	38.016	82.016	104.58

 Table 40 provides the test result of the measures of the tension in the mooring lines.

STd.Dev ML6	185mm	57.23	126.14	159.09
	Pro	totype II	I	
Mean V0	100mm	3634.8	3633.6	3631.6
Mean ML1	100mm	1127.5	1105.4	1087.6
Mean ML4	100mm	1103.3	1087.8	1073.9
Maximum V0	100mm	<mark>3654.2</mark>	3818.5	4220.8
Maximum ML1	100mm	<mark>1167.9</mark>	<mark>1186.1</mark>	<mark>1182.7</mark>
Maximum ML4	100mm	<mark>1155.1</mark>	1184.3	1184.8
Std.Dv V0	100mm	4.89	56.446	153.67
Std.Dv ML1	100mm	15.59	31.024	32.395
Std.Dv ML4	100mm	15.517	32.514	32.469
Mean V0	268mm	3734.5	3734.2	3733.4
Mean ML1	268mm	404.46	398.15	398.95
Mean ML4	268mm	390.85	384.27	382.01
Maximum V0	<mark>268mm</mark>	3796.5	4053.1	<mark>4678</mark>
Maximum ML1	<mark>268mm</mark>	<u>412.75</u>	<mark>427.7</mark>	<mark>445.69</mark>
Maximum ML4	268mm	<mark>396.39</mark>	407.93	435.69
Std.Dv V0	268mm	16.143	100.68	225.94
Std.Dv ML1	268mm	2.8166	9.1662	15.718
Std.Dv ML4	268mm	2.0647	6.5366	11.783

Evaluation of the maximum tension compared between a single offshore turbine Vs two shared solution. From this it is showed from numerical data that polyester rope creates larger tension compared to steel wires 100mm. For comparing highest mooring tension for a single OFWT with the shared mooring arrangement it could be seen that 4376>4220KN.

105

18 Discussion of the comparison of the reasons result.

For random significant wave heights for 2, 4 and 6 meters:

Steel wire with fiber core 100mm, explanation of maximum tension for ML1, ML4 and V0 on the marine buoy.

The result of the maximum mooring line tension was estimated with various wave loads onto the configuration system for prototype 2, with 100mm steel wires. From this test results there was some interesting founding's in relation to the maximum tension load for ML1 and ML4, connected to the buoy; in case where the steel wires were performed, the indication showed that for larger significant wave heights, and shorter significant periods, created the highest mooring tension seen for the result graphs. This is also mentioned by (Chai-Cheng Huang et al, 2018, s. 110), that the longest waves and shorter wave periods creates the higher tension in the mooring lines. This could also be explained since the velocity speed is higher for shallow waters and would causes larger tension in the mooring lines (Chai-Cheng Huang et al, 2018, s. 110) Moreover, shallow waters increases the tension and becomes proportional to the mean tension.

These compared for steel wire ML1 for 6-2meters and 4-2meters of significant wave height and corresponded to the founding's by (Chai-Cheng Huang et al, 2018, s. 110) However, when comparing mooring line ML1, with the significant wave heights of 4 m and 6 m, the tension load was slightly higher for 4 meters (1186.1 KN) in contrast to 6 meters (1182 KN), In response to the vertical mooring line V0 between the buoy and suction anchor, the tension indicates the highest peak tension for wave height of 6m (4220.8KN), thus, shorter steep periods, and followed by 4m (3818.48KN) and 2m (3654.2KN). Since the line tension for all value on the vertical wire are very high in connection to the calm base buoy would be because the buoy is set 30 meters below the water level and is affected only by current forces. The relation is mentioned by (Chai-Cheng Huang et al, 2018, s. 110) that the drag force acting on the buoy in water would be a proportional factor to the velocity of the fluid. This is because the buoy is in water which transmit the large tension forces from the current forces to the mooring lines (Chai-Cheng Huang et al, 2018, s. 110)

106

Explanation of maximum tension for Polyester rope 268mm for ML1, ML4 and V0 on the marine buoy.

In case for polyester rope 268 mm the maximum mooring tension indicated smaller values compared to steel wires for mooring line ML1 and ML4. However, the vertical polyester rope (V0) indicated a higher values 4678KN for all given values than the vertical steel wire. The test for comparing the same mooring line ML1 between various significant wave height of 2m, 4m and 6 m, the highest tension load was caused for 6 meters of significant wave heights and followed by 4meters and 2 meters. In this case, it corresponds very similar to the founding's mentioned by (Chai-Cheng Huang et al, 2018, s. 110) regarding a fish net. The indication on the vertical polyester rope is more in the same manner as the wire rope. This could be explained because of higher velocity speed for shallow waters causes larger tension in the mooring lines (Chai-Cheng Huang et al, 2018, s. 110) and the drag force acting on the buoy becomes a proportional factor to the velocity of the fluid, thus, the buoy is 30 meters below water level. Therefore, the buoy transmits large current forces acting towards the buoy and creates very high-tension values in the mooring lines (Chai-Cheng Huang et al, 2018, s. 110)

20 Conclusion

The Objective of this study was to estimate the cost driver in relation to the cost life cycle LCC of the OFWTs based on methods defined in chapter 2.2. The methods of the chosen model were referred to IEC international standard. The result showed that capital expenditure (CAPEX) indicated a 10.55 \$/Kwh for a 15MW wind farm with a fixed rate of 8%. The following cost drivers, such as operation and maintenance (OPEX) were respectively 0.655 \$/KWh and decommissioning (DECOM) 6.665 \$/KWh. However, the operation and maintenance were based on a one-year periods, meaning 12 months., The estimated cost for development and consenting was USD 1.848.284, platform USD 7.013.85, Turbine USD 2.996.418, Mooring USD 4.274.413, Installation USD 1.207.202, Operation & maintenance USD 1.076.546. Based on this the cost of mooring installation in this thesis was higher compared to (Ågortnes, 2013, s. 67) estimates for the Platform and mooring configuration Wind Float (defined in chapter 10.1, graph. 1 on page. 48.)

The simulation test was to investigate the maximum mooring tension based on each mooring line of significant wave heights of 2, 4 and 6 meters and the responding cycle periods. The result of the maximum mooring tension was estimated with various wave loads onto the configuration system for prototype II. The largest tension was developed in the vertical tensioned line V0(polyester 268 mm) 4678KN for mooring material polyester compared toV0100mm steel wire. However, this was not the case when evaluating the sidelines with polyester rope ML1 and ML4. The steel wires for ML1 and ML4 had higher tension than for polyester. The indication showed that for larger significant wave heights, and shorter significant wave periods, creates the highest mooring tension in the mooring lines based on the graphs. Moreover, mentioned by (Chai-Cheng Huang et al, 2018, s. 110) that the buoy in water would be a proportional factor to the velocity of the fluid and the forces on the calm base buoy would transmit all the current forces to the mooring lines. Therefore, the mooring buoy is very effected by the period of wave-, current forces, and the wave direction onto the platform structure and the submerged marine buoy in water.

21 Future work

Future work that could be a possible investigation is to use 9.5 Hexagonal farm layout arrangement to evaluate the cost of life cycle. Moreover, to make a response analyze based on

three 15 MW CSC-semi turbines with a buoy to evaluate the mooring tension on the buoy. This in relation to several sea states.

22 Reference list:

- abc-mooring.weebly. (2023, May 13). *abc-mooring.weebly.com*. Retrieved from http://abc-moorings.weebly.com/mooring-systems.html
- Abc-moorings. (2023, April 27). *abc-moorings*. Retrieved from abc-moorings: http://abc-moorings.weebly.com/mooring-systems.html
- Aceton . (2023, May 5). www.globalunderwaterhub,com. Retrieved from globalunderwaterhub: https://www.globalunderwaterhub.com/documents/presentations/lloyd%20inglis%20-%20subsea%20technologies%20for%20offshore%20renewables.pdf
- Ala' K. Abu-Rumman et al. (2017, October (Accepted) 29). Cycle Costing of Wind Generation System. Jourenal of Applied research on indutial Engineering. Vol. 4, No. 3 (2017)185–191, pp. 185-191.
- al, Jens N. Sørensen et. (2018, August 6). Towards the North Sea wind power revolution. *Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2018-53*, pp. 1-27.
- Alberto Ghigo et al. (2020, October (Published) 23). Platform Optimization and Cost Analysis in a Floating Offshore Wind Farm. *Journal of Marine Science and Engineering*, pp. 1-26.
- Alibaba.com. (2023, April 3). Alibaba.com. Retrieved from Alibaba: https://www.alibaba.com/product-detail/Factory-price-cylindrical-mooring-steelbuoy 1600468434706.html
- Alibaba.com. (2023, May 1). *www.alibaba.com*. Retrieved from alibaba: https://www.alibaba.com/product-detail/High-Buoyancy-IALA-Cross-Type-Steel 60779829232.html?spm=a2700.shop plfe.41413.16.569e7365c6QnUJ
- American Bureau of Shipping (ABS). (2017). *GUIDE FOR THE CERTIFICATION OF OFFSHORE MOORING CHAIN*. American Bureau of Shipping Incorporated by Act of Legislature of the State of New York 1862: American Bureau of Shipping (ABS).
- Are Opestad Sæbø, Kristin Guldbrandsen. (2023, April 23). *https://api.greenstat.no*. Retrieved from https://api.greenstat.no: https://api.greenstat.no/uploads/optimal_utnyttelse_av_energi_fra_havvind_i_sorlige_nordsjo ii hr 1a34742514.pdf?updated at=2022-10-06T14:26:18.575Z
- Are Opstad sæbø et al. (2021). *Greenstate making green happen.* Bergen (Not spesified): Greenstate, Høgskulen på Vestland, University of Bergen m.m.
- Are Optad Sæbø,Kristin Gulbrandsen. (2020, April 23). *https://api.greenstat.no*. Retrieved from https://api.greenstat.no: https://api.greenstat.no/uploads/optimal_utnyttelse_av_energi_fra_havvind_i_sorlige_nordsjo _____ihr_1a34742514.pdf?updated_at=2022-10-06T14:26:18.575Z
- Axelsson, T. (2008, Not spesified Not spesified). *cdn.b12.io*. Retrieved from cdn.b12.io: https://cdn.b12.io/client_media/n8KzZTRM/b0590e9e-d2e8-11eb-be12-0242ac110002-Energy_Ocean_08_3U_Technologies_080619.pdf

- Ågortnes, C. B. (2013). *Levelized costs of energy for offshore floating wind turbine concepts*. Ås: Norwigian University of life sciences: department of mathematical sciences and technology.
- Ågotnes, C. B. (2013). *Levelized costs of energy for offshore floating wind turbine concepts*. Ås: Norwigan University of life sciences.
- Bureau of ocean energy management, Boem. (2011, October (slide publised) 11). *boem.gov*. Retrieved from www.boem.gov: https://www.boem.gov/sites/default/files/documents/renewable-energy/state-activities/RWF Project construction and cable laying 508.pdf
- Castellà, X. T. (2020). *OPERATIONS AND MAINTENANCE COSTS FOR OFFSHORE WIND FARM.* Not spesified: UNIVERSITAT POLITÈCNICA DE CATALUNYA.
- C.D. O'Loughlin et al. (2015, May 4-7). Novel Anchoring Solutions for FLNG Opportunities Driven by Scale. *Offshore Technology Conference held in Houston, Texas, USA, 4–7 May 2015.*, pp. 1-29.
- CDIP mobile. (2023, April (added) 20). *ucsd.edu*. Retrieved from Cdip: http://cdip.ucsd.edu/m/documents/_downloads/5abe5c75d20e4047af274588ee993d11/buoy_w atch_circle.pdf
- Chai-Cheng Huang et al. (2018, January (accepted) 7). Effects of waves and currents on gravety-type cages in the open sea. *Sicencedirect acualtural engineering 38 (2008) 105-116*, pp. 105-116.
- Christopher Allen et al. (2020). *Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15- Megawatt Offshore Reference Wind Turbine*. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401: NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC.
- Christopher Allen et al. (2020). *IEA Wind TCP Task 37 Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15- Megawatt Offshore Reference Wind Turbine Technical Report.* National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401: University of Main, National renewabe energy laboratory.
- Costra-Santos, L. (2013, March 20). Methodology to calculate mooring and anchoring costs of floating offshore wind devices. *Researhgate*, pp. 268-272.
- Costro-Santos, L. (2016). *Life-cycle cost of a floating offshore wind farm*. A Coruna Ferrol 15403, Spain: Universidade da Coruna.
- CRP subsea. (2023, Mai 1). *Crp subsea an Ais company*. Retrieved from CRP subsea: https://www.crpsubsea.com/products/product-families/buoyancy-floats/installationbuoyancy/modular-buoy/
- Det Norske Veritas. (2013, October Not spesified). *https://dokumen.tips/download/link/dnv-os-e302-offshore-mooring-chain.html*. Retrieved from https://dokumen.tips: https://dokumen.tips/download/link/dnv-os-e302-offshore-mooring-chain.html
- Dimitrios Loukidis et al. (2014, June, April (Uploaded) 22). Limit lateral resistance of vertical piles in plane strain. *Researchgate DOI: 10.1201/b17017-122*, pp. 681-685.
- DNV. (2021, June Not specified). *https://brandcentral.dnv.com*. Retrieved from brandcentral.dnv.com: https://brandcentral.dnv.com/fr/gallery/10651/others/09cdc0a1a0d54a58a698f9f51ff625d2_hi. pdf? ga=2.193175213.1611469586.1684082821-2034977491.1684082821

- DNVGL AS. (2018, July Not specified). *Position mooring*. Retrieved from https://dokumen.tips/download/link/dnvgl-os-e301-position-general-updates-based-onexperience-and-feedback-ch2-sec4.html: https://dokumen.tips/documents/dnvgl-os-e301position-general-updates-based-on-experience-and-feedback-ch2-sec4.html
- Espen Oland et al. (2017, Not spesified Not spesified). Condition Monitoring Technologies for Synthetic Fiber Ropes - a Review . *International Journal of Prognostics and Health Management, ISSN2153-2648, 2017 014*, pp. 1-14. Retrieved from phmsociety.org: https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&ved=0CAIQw7AJahc KEwjg2uyX3_7-AhUAAAAHQAAAAAQAg&url=https%3A%2F%2Fpapers.phmsociety.org%2Findex.php %2Fijphm%2Farticle%2Fdownload%2F2619%2F1577&psig=AOvVaw24xiaUCz7YGJx80K TBkrpc&ust=168449483498
- Evan Gaertner et al. (2020). *Definition of the IEA 15-Megawatt Offshore Reference Wind*. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000: National laboratory of the U.S Department of energy office.
- Even Geertner et al. (2020, March). Definition of the IEA wind 15-megawatt offshore referance wind turbine technical report. *National renewable energy laboratory*, pp. 1-44.
- Evgeniy Dimkin at DNVGL noble Denton. (2019, April 4). *mcedd.com*. Retrieved from www.mcedd: https://mcedd.com/wp-content/uploads/2019/04/MCEDD-2019-Evgeniy-Dimkin.pdf
- Focus-economics. (2023, April 6). *focus-economics*. Retrieved from www.focus-economics.com: https://www.focus-economics.com/commodities/base-metals/steel-usa/
- Fontana, C. (2019). A Multiline Anchor Concept for Floating Offshore Wind Turbines. UNIVERSITY OF MASSACHUSETTS AMHERST: University of Massachusetts Amherst University of Massachusetts Amherst.
- Fortress marine anchors. (2023, March 5). *fortressanchors*. Retrieved from www.fortressanchors.com: https://fortressanchors.com/product/fortress-anchor/
- Fredrik von Schlanbusch & Asgeir Sorteberg. (2022). Driving Factors for Levelized Cost of Energy in Floating Wind Farms. Nygårdshøyden: University of Bergen.
- Godfrey Boyle et al. (2012). Renewable energy power for sustainable future fourth edition. In G. B. al, *power for sustainable future fourth edition* (pp. 1-656). 198 Madison Avenue, New York, NY 10016, Unite Tates of America: United state of America by Oxsford University press.
- Gofrey Boyle et al. (2012). *Renewable energy power for a sustainable future; fourth edition*. 198 Madison Avenue, New York, NY 10016, United States of America: Oxford university press.
- handsmetals.co.uk. (2023, May 5). *handsmetals.co.uk*. Retrieved from www.handsmetals.co.uk: https://www.handsmetals.co.uk/scrap-metal-prices/
- H Munir et al. (2021, May (conferance meeting) 28). Global analysis of floating offshore wind turbines with shared mooring system. *IOP Conf. Series: Materials Science and Engineering* 1201 (2021) 012024 doi:10.1088/1757-899X/1201/1/012024, pp. 1-13.
- H Munir, MC Ong. (2021, October 9-13). Global analysis of flating wind turbines with shared mooring system. *IOP Conference series: materials science and engineering 201 (2021)* 012024, pp. 1-14.

- hydrosphere.co.uk. (2014, September Not spesified). *hydrosphere.co.uk*. Retrieved from https://hydrosphere.co.uk: https://hydrosphere.co.uk/datasheets/hydrosphere_mobilis-amr_17000-5000_v_2_01_sep_14_web.pdf
- Hyungjun Kim et al. (2014, June 8-13). Design of Mooring Lines of Floating Offshore Wind Turbine in Jeju Offshore Area. Journal of the Society of Naval Architects of Korea · August 2014, DOI: 10.1115/OMAE2014-23772, pp. 1-12.
- Ibbrahim Engine Taze. (2022, Agust 31). *Master thesis : Deepwater Mooring Analysis for a 15 MW* Seme-submersible FOWT located at the Morro Bay Wind Energy Area, California. Faculté des Sciences appliquées.
- Ingo Jermin et al. (2009, June 8). LIFE CYCLE COST ANALYSIS OF TRANSMISSION AND DISTRIBUTION SYSTEMS. C I R E D 20th International Conference on Electricity Distribution Prague, 8-11 June 2009 Paper 0098, p. 4.
- Iñigo Mendikoa Alonso. (2021, July 6). *twindproject.eu*. Retrieved from https://twindproject.eu: https://twindproject.eu/wp-content/uploads/2021/07/G-KN2_Inigo.pdf
- J.M.J. Journee et al. (2001). Offshore hydrodynamics first edition. In J. Journee. Delft Univesity of technology.
- jinbomarine. (2023, May 7). *jinbomarine*. Retrieved from www.jinbomarine.com: https://www.jinbomarine.com/ws-vertical-loaded-ancor-vla-anchor-modu.html
- john F. Flory et al. (2004, May 6). Defining, Measuring, and Calculating the Properties of Fiber Rope Deepwater Mooring Lines. *Offshore Technology Conference, https://www.researchgate.net/publication/254518629*, pp. 1-15.
- Jorge Altuzarra et al. (2022, September (published) 22). Mooring System Transport and Installation Logistics for a Floating Offshore Wind Farm in Lannion, France. *Journal of marine science and engineering. 2022, 10(10), 1354;*.
- Jump, E. (2021, July 10). Catapult offshore renewable energy. Retrieved from ORE.CATAPULT.ORG.UK: https://ore.catapult.org.uk/wpcontent/uploads/2021/12/PN000413-RPT-003-Rev-2-Mooring-and-Anchoring-Market-Projections_Formatted.pdf
- Jump, E. (2021). MOORING AND ANCHORING SYSTEMS MARKET PROJECTIONS FLOATING OFFSHORE WIND CENTRE OF EXCELLENCE. Inovo 121 George Street Glasgow G1 1RD: Catapult offshore renewable energy.
- Junho Lee et al. (2021, July (uploaded) 6). Installability of a Multiline Ring Anchor System in a Seabed under Severe Environmental Conditions. *Researchgate DOI:* 10.23919/OCEANS44145.2021.9705679, pp. 1-9.
- Kabir Sadeghi et al. (2019, March Not specified). SEMISUBMERSIBLE PLATFORMS: DESIGN AND FABRICATION: AN OVERVIEW. Academic Research International Vol. 10(1) March 2019, pp. 28-38.
- Karsten M et al. (2020, July 24). Aerodynamic characterization of barge and spar type floating offshore wind turbines at different sea states. *Wind EnergyVolume 23, Issue 11 p. 2087-2112*, pp. 2087-2112.
- Kaasen, K. E. (2017). *Balance wave energy converter decribtion with comments*. TorgardenNO-7465 Trondheim, Norway: Sintef.

- L. Castro-Santos et al. (2013, March 20). Methodology to calculate mooring and anchoring costs of floating offshore wind devices. *Researchgate*, pp. 286-272.
- Lin Li et al. (2023, March 9). *https://www.gceocean.no*. Retrieved from https://www.gceocean.no: https://www.gceocean.no/media/4558/221025-offshore-wind-conference_science-meetsindustry_etienne-cheynet-uib.pdf
- Liu Jinsong et al. (2018). Alternative mooring systems for a very large offshore wind turbine supported by a semisubmersible floating platform. *Journal of solar energy engineering*, p. 1.
- Luvside. (2020, April 1). *Luvside*. Retrieved from www.luvside.de: https://www.luvside.de/en/capacity-factor-wind-turbine/
- Made-in-China. (2022, October 22). *made-in-china*. Retrieved from https://www.made-in-china.com: https://shundehai.en.made-in-china.com/product/gNtmedwVyohC/China-100mm-Jiangsu-Aohai-Mooring-Anchor-Chain-with-ABS-Nk-Dnv-Certificate.html
- Made-in-china. (2023, May 1). *made-in-china.com*. Retrieved from marinefender.en.made-inchina.com: https://marinefender.en.made-in-china.com/product/GODTfJKbYRWM/China-Marine-Mooring-Anchor-Pendant-Foam-Filled-Buoys.html
- Maria Ikhennicheu et al. (2020). D3.1 Review of the state of the art of dynamic cable system design. Not pessified: European union's horizontal 2020 research and innovation NO 815083.
- Martinez, A. I. (2021, November 17). Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic. *Renewable and Sustainable Energy Reviews* · *February 2022 DOI: 10.1016/j.rser.2021.111889, researchgate*, pp. 1-29.
- Matthew Hall & Patrick connolly. (2018, June Not specified). Coupled Dynamics Modelling of a Floating Wind Farm With Shared Mooring Lines. *Researchgate DOI:10.1115/OMAE2018-78489*.
- Maximiano, A. (2021, May 31). PivotBuoy An Advanced System for Cost-effective and Reliable Mooring, Connection, Installation & Operation of Floating Wind. *Researchgate DOI:* 10.13140/RG.2.2.31161.65120, pp. 1-79.
- Mert kaptan et al. (2021, November (Accepted) 20).
 (http://creativecommons.org/licenses/by/4.0/).Analysis of spar and semi-submersible floating wind concepts with respect to human exposure to motion during maintenance operations.
 MArine structures 83 (2022) 103145, p. 8.
- Mohammad Barooni et al. (2022, December 14). Floating Offshore Wind Turbines: Current Status and Future Prospects. *Journal energies 2023, 16(1), 2; https://doi.org/10.3390/en16010002*, pp. 1-28.
- Monfort, D. T. (2017). *Design optimization of the mooring system for a floating offshore wind turbine foundation*. Lisboa, Portugal: Universidade de Lisboa Instituto Superior Técnico Portugal.
- Nick Cresswell et al. (2016, October Not specified). Anchor Installation for the Taut Moored Tidal Platform PLAT-O. *Researchgate*, pp. 1-8.
- Nordvik, S. B. (2019). *Installation of Anchors for Mooring System of Floating Wind Turbines*. Trondheim, glasshugen: Norwigan University of science and technology.
- nrel.github. (2020, January 23). *nrel.github.io*. Retrieved from nrel.github.io: https://nrel.github.io/turbine-models/IEA_15MW_240_RWT.html

NVE. (2023, fabruary 3). *temakart.nve.no*. Retrieved from temakart.nve: https://temakart.nve.no/tema/havvind

- NVE. (2023). *www.NVE.no*. Retrieved from NVE: https://publikasjoner.nve.no/rapport/2023/rapport2023_04.pdf
- Ocarina Ltd. (2023, March 1). *https://www.orcina.com*. Retrieved from https://www.orcina.com: https://www.orcina.com/resources/examples/?key=k
- Offshore Renewable Energy Catapult. (2019, January Not specified). *thecrownestate.co.uk*. Retrieved from www.thecrownestate.co.uk: https://www.thecrownestate.co.uk/media/2861/guide-to-offshore-wind-farm-2019.pdf
- Orcina Ltd. (2023, March 1). *https://www.orcina.com*. Retrieved from https://www.orcina.com: https://www.orcina.com/wp-content/uploads/examples/c/c06/C06%20CALM%20buoy.pdf
- Orcina Ltd. (2023, March 1). *https://www.orcina.com*. Retrieved from https://www.orcina.com: https://www.orcina.com/wp-content/uploads/examples/k/k03/K03%2015MW%20semisub%20FOWT.pdf
- Orcina. Ltd. (2023, March 20). *https://www.orcina.com*. Retrieved from https://www.orcina.com: https://www.orcina.com/webhelp/OrcaFlex/Content/html/Environment,DataforJONSWAPandI SSCspectra.htm
- Ore.catapult.org.Uk. (2021, October 7). Mooring and anchoring system-market projections Floating offshore wind centre of excellence. *Delivered by catapult offshore renewable energy*, pp. 1-40.
- PADI International Resort Association. (1996-2005). *Mooring Buoy Planning Guide*. Published by International PADI, Inc. 30151 Tomas Street Rancho Santa Margarita, CA 92688-2125: PADI International Resort Association.
- Petter andreas Berthelsen et al. (2012, July 1). CONCEPTUAL DESIGN OF A FLOATING SUPPORT STRUCTURE AND MOORING SYSTEM FOR A VERTICAL AXIS WIND TURBINE. Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering OMAE2012 July 1–6, 2012, Rio de Janeiro, Brazil, pp. 1-8.
- Pham, H.-D. (2019). *Modeling and Service Life Monitoring of Mooring Lines of Floating Wind Turbines*. Ecole Centrale de Nantes (France): Universite Bretagne Loire.
- Puglia, G. (2013). *Life cycle cost analysis on wind turbines; master of science thesis in energetic engineering*. Gotenburg, Sweden: Calmers University of technology.
- Python.org. (2023, march 2). *www.python.org*. Retrieved from python.org: https://www.python.org/downloads/
- Rahul Chitteth Ramachandran et al. (2021). Floating offshore wind turbines: Installation, operation, maintenance and decommissioning challanges and opportunities. MaREI Centre, Environmental Research Institute, University College Cork, Ireland: Wind Energy Science discussion.
- Rahul Chitteth Ramachandran et al. (2021, October 25). Floating offshore wind turbines: Installation, operation, maintenance and decommissioning challenges and opportunities. *wind energy science discussions*, p. 19.
- Rahul Chitteth Ramachandran et al. (2021, October 25). Floating offshore wind turbines: Installation, operation, maintenance and decommissioning challenges and opportunities. *eawe Wind energy science discussions*, pp. 1-32.

- Rahul Chitteth Ramachandran et al. (2021, October (start od discussion) 25). Floating offshore wind turbines: Installation, operation, maintenance and decommissioning challenges and opportunities. *eawe wind energy science discussions*, pp. 1-32.
- Reardon, M. (2023, May 2). *www.Jamestowndistribution.com*. Retrieved from jamestowndistribution: https://support.jamestowndistributors.com/hc/en-us/articles/360052013434-Mooring-Basics-How-to-install-a-permanent-mooring
- Regjeringe.no. (2023, April 25). *www.regjeringen.no*. Retrieved from Regjeringen: https://www.regjeringen.no/no/tema/energi/vindkraft-til-havs/id2873850/
- Ronson, K. T. (1980, May 5). *OTC ropes for deep water mooring*. Retrieved from Seilbahnen.org: https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&ved=0CAIQw7AJahc KEwjAy5ms3P7-AhUAAAAAHQAAAAAQAg&url=https%3A%2F%2Fwww.seilbahnen.org%2Fde%2Findex .php%3Fsection%3Ddownloads%26cmd%3D266%26download%3D12798&psig=AOvVaw0 SWzs7mlFpQVpWHzBYjCQ3&ust=
- Samuel Wilson et al. (2021, Not spesified Not specified). Linearized Modeling and Optimization of Shared Mooring Systems. *www.sciencedirect.com/science/article/pii/S0029801821013457*, pp. 1-19.
- Shayan, H. (2017). *ECONOMIC MODELLING OF FLOATING OFFSHORE WIND POWER*. Västerås, May 2017: Mälardalen University in Västerås, Sweden.
- Sintef. (2019, January 17). *www.sintef.no*. Retrieved from https://www.sintef.no: https://www.sintef.no/globalassets/project/eera-deepwind-2019/presentations/e2_yukakikuchi20190117r.pdf
- Smith, L. J. (2009). Equitable Testing and Evaluation of Marine Energy Extraction Devices in terms of Performance, Cost and Environmental Impact Grant agreement number: 213380. University of Exeter.
- sn2offshorewind. (2023, Mai 5). sn2offshorewind.com. Retrieved from https://sn2offshorewind.com: https://sn2offshorewind.com/infographic/
- solarpontoon.wixsite. (2023, Januar 23). *https://solarpontoon.wixsite.com*. Retrieved from https://solarpontoon.wixsite.com: https://solarpontoon.wixsite.com/home/mooring-lines--anchor-systems
- Steelbenchmarker. (2023, May 8). *Steelbenchmarker*. Retrieved from www.steelbenchmarker.com: http://steelbenchmarker.com/history.pdf
- Subseadesign. (2023, March 12). *https://subseadesign.com*. Retrieved from https://subseadesign.com/ https://subseadesign.com/products-services/suction-anchors/
- Taze, I. E. (2022). Deepwater Mooring Analysis for a 15 MW Seme-submersible FOWT located at the Morro Bay Wind Energy Area, California. 90034 Los Angeles, USA: University of California.
- T.T.Bakker et al. (2006, Not spesified Not specified). *www.Yumpu.com*. Retrieved from Yumpu: https://www.yumpu.com/en/document/read/5218610/theory-of-a-vertically-loaded-suctionpile-in-clay-offshore-moorings
- thecrownstate. (2019, January Not specified). *thecrownstate*. Retrieved from www.thecrownstate.co.uk: https://www.thecrownestate.co.uk/media/2861/guide-to-offshore-wind-farm-2019.pdf

- Tina Bru. (12, June 2020). *regjeringen.no*. Retrieved from www.regjeringen.no: https://www.regjeringen.no/contentassets/aaac5c76aec242f09112ffdceabd6c64/royal-decreeopening-of-areas-june-2020.pdf
- Torbjørn Herberg Roksvaag et al. (2021). *Mooring of Floating Offshore Wind Turbines*. Trondheim, Glasshaugen: Norwegian University of Science and Technology Faculty of Engineering Department of Ocean Operations and Civil Engineering.
- Twind offshore wind energy. (2021, July 9). *twindproject.eu*. Retrieved from https://twindproject.eu: https://twindproject.eu/wp-content/uploads/2021/07/D-SP3_Manuel.pdf
- Tyler stehly et al. (2019). 2019 cost of wind energy review. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000: National renewable energy laboratory(NREL).
- Ubc eooas. (2019, March Not specified). *eoas.ubc.ca*. Retrieved from www.eoas.ubc.ca: https://www.eoas.ubc.ca/courses/atsc113/sailing/met_concepts/08-met-waves/8b-wave-characteristics/index.html
- Vryhof anchor . (2005). *Vryhof anchor manual 2005*. Vryhof anchors p.o. box 105, 2920 AC krimpen ad yssel, the netherlands: Vryhof.
- Vryhof manual. (2015, January Not spesified). *plaisance-prtique*. Retrieved from www.plaisance-prtique.com: https://www.plaisance-pratique.com/IMG/pdf/Vryhof_Anchor_Manual2015.pdf
- Vryof anchors. (2005, Not specified Not specified). *Ocw.tudelft.nl*. Retrieved from Ocw.tudelft.nl: https://ocw.tudelft.nl/wp-content/uploads/AM2000.pdf
- Walter Musial et al. (2020). Cost of Floating Offshore Wind Energy Using New England Aqua Ventus Concrete Semisubmersible Technology. University of maine, National laboratory of the U.S.
- Wei-Hua Huang et al. (2021, April 12). Water Depth Variation Influence on the Mooring Line Design for FOWT within Shallow Water Region. *Journal of Marine Science and Engineering. 2021*, 9, 409., pp. 1-20.
- Weiwei Zhou et al. (2023, January 11). Experimental Study on Vortex-Induced Vibration of Tension Leg and Riser for Full Depth Mooring Tension Leg Platform. J. Mar. Sci. Eng. 2023, 11(1), 180; https://doi.org/10.3390/jmse11010180, pp. 1-12.
- Wentzell, K. (2023, April 28). *www.rbritchielist.com*. Retrieved from rbritchielist: https://www.ritchielist.com/consumer-items/marine-equipment-anchor/other-vryhof-anchorstevpris-stevshark/012465f8-6940-4715-87a7-3f2f4dee4776.html
- Xinkuan Yan et al. (2023, March 13). Numerical investigations on nonlinear effects of catenary mooring systems for a 10-MW FOWT in shallow water. *Ocean engineering volume 276, 15 May 2023, 114207*, p. 276.
- Xu, K. (2015). Design and analysis of mooring system for semi-submersial floating wind turbines in shallow water. Trondheim: NTNU-Norwigan University of science and technology.
- Yang, W.-H. H.-Y. (2021, April (Published) 12). Water Depth Variation Influence on the Mooring Line Design for FOWT within Shallow Water Region. J. Mar. Sci. Eng. 2021, 9(4), 409; https://doi.org/10.3390/jmse9040409, p. 409.
- Zhi-Ming Yuan et al. (2019, April Not specified). Numerical study on a hybrid mooring system with clump weights and buoys. *researchgate*, pp. 1-11.

23 Appendix

Cost comparison of 5MW, 10MW, 15Mw

	Rotor		Necelle	
5MW	USD	110 000,00	USD	
	USD	117 700 000	USD	
Cost	000,00		000,00	
10MW	USD	123 000,00	USD	
	USD	131 610 000	USD	
Cost	000,00		000,00	
15MW	USD	195 000,00	USD	
	USD	208 650 000	USD	
Cost	000,00		000,00	
	USD	457 960 000	USD	
Total cost of each turbine	000,00		000,00	

Rotor mass(Kg)		110000	
Rotor cost(\$)	USD	110 000,00	USD
Necelle mass(Kg)		123000	
Necelle cost(\$)	USD	240 000,00	USD

Tower mass(Kg)		195000	
Tower cost(\$)	USD	250 000,00	USD
Total estimates		428000	USD

Labor cost

Labour crew cost	Units	Cost (\$)
Amninistration cost		
Hourly labour rate Capex	USD \$/h	30
Technican daily cost maintenace	USD \$/day	221

Turbine properties

Turbine properties RWT-15 MW

	Value	Units
Turbine class	IEC Class 1B	
Power rating	15	MW
Specific rating	332	
Rotor orientating	Upwind	
Number of blades	3	
Cut-in wind speed	3	m/s
Related wind speed	10,59	m/s
Cu-out wind speed	25	m/s
Design tip-speed ratio	9	
Min rotor speed	5	rpm
Max rotor speed	7,56	rpm
Max tip speed	95	m/s
Power coefficient (Cp)	0,489	-
Dimen	sion properties	
Airfoil series	FFA-W3	
Rotor diameter	240	m
Hub height	150	m

Hub diameter	7,94	m
Hub overhang	11,35	m
Rotor precone angle	-4,0	deg
Blade prband	4	m
Blade mass	65	m
Drivetrain	Direction drive	
Shaft tilt angle	6	deg
Rotor nacelle assembly mass	1,027	ton
Transition piece height	15	m
Tower base diameter	10	m
Tower mass	860	ton

Single mooring platform

Net annual energy produced - AEP

Net average energy produced AEP

Case 1

15MW= total nameplate capacity *capacity factor (0.40) Total nameplate capacity= $\frac{15MW}{0.40}$ = 37.5 *MW* Number of turbines= $\frac{37.5}{15MW}$ = 2.5 = 3 *turbines needed* Expected energy production (net annual energy production) AEP= 37.5 MW* 8760 hours*0.40 (capacity factor) = 131400MWh

Case 2

15MW= total nameplate capacity *capacity factor (0.40) Total nameplate capacity = $(\frac{100MW}{0.40})$ = 250 MW Number of turbines= $\frac{250MW}{15MW}$ = 16,67 = 17 turbines needed for SNII Expected energy production (Net annual energy production) AEP = 250 MW *8760 hours *0.40 (capacity factor) = 876000MWh 100MW = the total energy capacity* capacity factor 0.489

Total turbiens capacity factor $=\frac{100MW}{0.40}=250MW$

The numbers of turbines needed $=\frac{250MW}{15MW}=17$ units

The net energy produced (AEP) in the wind farm.

250MW*(24hr*365 $\frac{hr}{hr}$)*0.4 (capacity factor) = 876000 Mwh

Result economical.

Development and consenting		Cost in USD (<u>\$)</u>	%
	\$	288	
Development and project mangement	074,74		15,59 %
	\$	1 199	
Consenting	992,88		64,92 %
	\$	4	
Enviromental survay	799,91		0,26 %
	\$	95	
Engineerign and consulting	996,60		5,19 %
	\$	19	
Hydrographic survay	214,50		1,04 %
	\$	144	
Geotechnical survay	118,14		7,80 %
	\$	96	
Resource and metaocean survay	087,25		5,20 %
	\$	1 848	
Total cost	284,02		100 %

Turbine RWT- 15MW	Mass (ton)	Cost price (\$) /ton
		\$
Rotor Structural (steel 1070\$/ton)	385	411 950,00
		\$
Startor (Cobber 8797\$/ton)	9,01	792 618,71
		\$
Startor (Iron 180,95\$/ton)	180,95	32 742,90
		\$
Generator (Magnets 1186,38\$/ton)	24,2	28 710,40

		\$
Turbine blade (Polyester yarn) (1125,24\$/ton)	65,1	73 253,12
		\$
Necelle (Steel 1070 \$/ton)	632	676 240,00
		\$
Tower (Steel 1070\$/ton	860	920 200,00
		\$
Bedplat		4 798,80
		\$
Mainbaring		4 798,80
		\$
Main shaft		4 798,80
		\$
Gerbox		16 800,75
		\$
Power take of cost		4 794,72
		\$
Control system		4 794,72
		\$
Yaw system		1 679,95
		\$
Yaw baring		1 679,95
		\$
Necelle systems		1 679,95
		\$
Necelle cover		2 399,38
		\$
Structural fastner		1 679,95
		\$
Hub casting		3 599,07
		\$
Blade barings		4 798,80
		\$
Pitc system		2 399,38
		USD
Total cost 1 turbine	1975,31	996 418,15

Platform structure USmain	Mass (Ton)	Cost USD (\$) / ton
		USD
Construction steel (steel 1070 \$/ metric ton)	3914	187 980,00
		USD
Concrete per kubic meters 444,4 kubic m	2541	718 870,00
		USD
Tower interface (steel 1070\$/ per metric ton)	100	107 000,00
		USD
Total cost	6555	013 850,00

one turbine		
Mooring manufactoring cost	Number	Length(m)
	3	
Chain price studdless (185mm)		
Chain mass ton/m		
Mooring lines per turbine	3	
Anchors per line 17ton (drag embeded		
anchors)	3	
Eletrical Cable	1	
Total cost		

100MW 14 turbines

Mooring manufactoring cost	Number	Length(m)
Number of lines	14	
fiber rope (268mm polyester rope)	1	
Mooring bouy	1	
Chain price studdless (185mm)		
Chain mass ton/m		
Mooring lines per turbine	3	
Anchors per line 17ton (drag embeded		
anchors)	3	
Eletrical Cable	1	
Total cost		

Transportation and Installation cost	Installation time (Hr)	Day used
Travel distance	11,34	
Mooring 1 installation per AHTS	10 hours inst. (vessel per mooring line)	37hours (traveling time and inst
AHTS x 1 vessels per anchor	10	37 hours (traveling time and ins
OCV cable vessel		1
Cable instaallations		
Helicopter		1
Semi submersial vessel tugging	43	43 hours
Fuel cost		
Crew cost		
Total cost		117

Transportation and Installation cost	Installation time (Hr)	Day used
Travel distance	11,34	
	10 hours inst. (vessel per	
Mooring 1 installation per AHTS	mooring line)	37hours (traveling time and inst
AHTS x 1 vessels per anchor	10	37 hours (traveling time and ins
OCV cable vessel		1
Cable instaallations		
Helicopter		1
Semi submersial vessel tugging	43	43 hours
Fuel cost		
Crew cost		
Total cost		117

Opeartion and maintenace	Speed max	South North Sea
Helicopter (Corrective)	296.32Km/hr	168Km
CTV small	46.3Km/hr	168Km
CTV large	46.3Km/hr	168Km
SOV small- service operation vessel	23.70Km/hr	168Km
SOV large- service operation vessel	23.70Km/hr	168Km
Crane barge vessels	23.15Km/hr	168Km
Towing vessel		
Fuel cost		
cost activity		
Materials		
Tehcnichan		
Manegers		
Administrative		
Offshore technichans		
Offshore logestics		•
Turbine		
Total cost		

	Bjerkseter		
Dismanteling	Install	ation Cost (\$)	% of installation cost
	USD	2 996	
Wind turbine	418,15		70 %
	USD	7 013	
Platform (steel) Wind turbine	850,00		70 %
	USD	4 274	
Mooring (steel) Anchors (steel)	413,38		90 %
	USD	766	
Eletrical cables (cobber) only for turbine	075,70		10 %
	USD	262	
Cleanning cost	199,10		

	USD	279	
Disposal	248,65		
	USD	14 509	
Total cost	309,48		
	•		

LCC	Total Cost\$		% of installation
	USD	1 848	
Development and consenting	284,02		0,17
	USD	14 284	
Maunfactoring cost	681,53		1,31
	USD	1 207	
Installation cost	202,59		0,11
	USD	1 076	
Operation & maintenace	546,66		0,10
	USD	10 930	
Dismenteling	767,31		1,00

One turbine

	USD	17 340	
Capex	168,14		59 %
	USD	1 076	
Opex	546,66		4 %
	USD	10 930	
Decom	767,31		37 %
	USD	29 347	
Total LCC for one OFWT	482,11		100 %

17 Turbine			
	USD	151 249	
Capex	693,48		
	USD	18 301	
Opex	293,22		
	USD	185 823	
DecmX	044,33		
	USD	355 374	
Total LCC one OFWT	031,04		\$/Kwh

	USD	
LOCE	0,22	MUSD/MWh
		MUSD/MWh

	USD			
LOCE	193,55			MUSD/MWh
	USD	294	USD	
	782,86		23 582,63	
	USD	18	USD	
	301,29		1 464,10	
	USD	185	USD	
	823,04		14 865,84	
	USD	498	USD	
	907,20		39 912,58	

USD 17 340,17 USD 1 076,55 USD 10 930,77

LCC	One			1 Turbine
	USD	1 848	USD	
Development	284,02		0,01	
	USD	2 996	USD	
Wind turbine	418,15		0,02280	
	USD	7 013	USD	
Platform	850,00		0,05338	
	USD	4 274	USD	
Mooring manufactoring	413,38		0,03253	
	USD	1 207	USD	
Installation	202,59		0,00919	
	USD	1 076	USD	
Operation and maintenance	546,66		0,00819	
	USD	766	USD	
Cable installtion	075,70		0,01	
	USD	10 930	USD	
Dismantling	767,31		0,08319	

Mooring material cost for	Cost	
14 turbines.	(\$)	
Numbers of chain 185mm	14	
Numbers of fiber ropes	7	
Mooring buoy		7
-------------------------------------	-----	--------------
Mooring line per turbine (3)	USD	6.223.572,8
fiber rope	USD	9997747,2
Drag embedded anchor per line 17ton	USD	2.904.839
Dynamic Power cables	USD	5.362.529,90
Total cost	USD	14.490.941,7

Mooring materials

CHAIN PROPERTIES

[per unit length]

Weight: 6,67909kN/m

Buoyancy: 0,87543kN/m

Submerged weight: 5,80366kN/m

Mass: 0,68108te/m

Displaced mass: 0,08927te/m

Submerged mass: 0,59181te/m

Diameter to submerged weight ratio: 0,05738m/(kN/m)

Diameter to submerged mass ratio: 0,56268m/(te/m)

USED IN

ML3

ML2

ML6

ML5

Min breaking loads

Grade2: 13,69e3kN

Grade3: 19,59e3kN

ORQ: 21,09e3kN

R4: 27,38e3kN

Minimum breaking loads are for guidance only.

Values are based on formulae given in

manufacturer's catalogues (see help for details).

Studless

Wire

ROPE/WIRE PROPERTIES		
[per unit length]		
Weight: 0,39126kN/m		
Buoyancy: 0,05053kN/m		
Submerged weight: 0,34073kN/m		
Mass: 0,0399te/m		
Displaced mass: 0,00515te/m		
Submerged mass: 0,03474te/m		
Diameter to submerged weight ratio: 0,23479m/(kN/m)		
Diameter to submerged mass ratio: 2,3025m/(te/m)		
USED IN		
ML1	100mm	
ML4		
V0		
Min breaking load: 6333,58kN		
Minimum breaking loads are for guidance only.		
Values are based on a best fit to catalogue data		

ROPE/WIRE PROPERTIES		
[per unit length]		
Weight: 0,56193kN/m		
Buoyancy: 0,41937kN/m		
Submerged weight:		
0,14256kN/m		
Mass: 0,0573te/m		
Displaced mass: 0,04276te/m		
Submerged mass: 0,01454te/m		
Diameter to submerged weight		
ratio: 1,61673m/(kN/m)		
Diameter to submerged mass		
ratio: 15,8547m/(te/m)		
USED IN		
ML1		
ML4		
VO		
Min breaking load: 12,24e3kN		
Minimum breaking loads are for		
guidance only.		
Values are based on a best fit to		
catalogue data		
and may underestimate the		
strength of smaller		

ropes. See help for further		
details.		

Simulation occaflex

Steel wire 100mm

Linked statistics: ML1

OrcaFlex 11.3d: 2.sim (modified 20:15 on 13.04.2023 by OrcaFlex 11.3d) Period: Whole simulation

	Time	Effective tension (kN) at end
	(s)	В
Mean		1087,64571
Std. Dev.		32,3949211
RMS		1088,12804
Mean up-crossing period Tz (s)		14,3352713
Mean crest period Tc (s)		7,19814126
m0		1049,43092
m2		5,10671969
m4		0,09856013
Bandwidth (ε)		0,86479331
max	351,3	1182,73057
min	3599,2	992,849047

Linked statistics: ML4

OrcaFlex 11.3d: 2.sim (modified 20:15 on 13.04.2023 by OrcaFlex 11.3d) Period: Whole simulation

	Time	Effective tension (kN) at end
	(s)	А
Mean		1073,89324
Std. Dev.		32,4692139
RMS		1074,38399
Mean up-crossing period Tz (s)		12,8986301
Mean crest period Tc (s)		5,91083969
m0		1054,24985
m2		6,3366011
m4		0,18136689
Bandwidth (ε)		0,88882165
max	232,7	1184,753
min	2775,4	972,492947

Linked statistics: V0

OrcaFlex 11.3d: 2.sim (modified 20:15 on 13.04.2023 by OrcaFlex 11.3d) Period: Whole simulation

	Time	Effective tension (kN) at end
	(s)	В
Mean		3631,5673
Std. Dev.		153,673362
RMS		3634,81727
Mean up-crossing period Tz (s)		8,04551148
Mean crest period Tc (s)		7,60569745
m0		2,36E+04
m2		364,829432
m4		6,30683946
Bandwidth (ε)		0,32610303
max	892,9	4220,81529
min	889,3	3098,23184

Linked statistics: ML3

OrcaFlex 11.3d: 2.sim (modified 20:15 on 13.04.2023 by OrcaFlex 11.3d) Period: Whole simulation

	Time	Effective tension (kN) at end
	(s)	В
Mean		1198,14862
Std. Dev.		73,3807542
RMS		1200,39363
Mean up-crossing period Tz (s)		9,86646707
Mean crest period Tc (s)		0,58680703
m0		5384,73509
m2		55,314756
m4		160,638777
Bandwidth (ε)		0,9982298
max	2799,8	1363,01762
min	-74,2	786,654849

Linked statistics: ML2

OrcaFlex 11.3d: 2.sim (modified 20:15 on 13.04.2023 by OrcaFlex 11.3d) Period: Whole simulation

	Time	Effective tension (kN) at end
	(s)	А
Mean		1800,13248
Std. Dev.		137,739058
RMS		1805,39442
Mean up-crossing period Tz (s)		10,047027
Mean crest period Tc (s)		0,9818712
m0		1,90E+04
m2		187,948591
m4		194,95305
Bandwidth (ε)		0,99521321
max	2781,5	2291,01519
min	2836,4	1419,08526

OrcaFlex 11.3d: 2.sim (modified 20:15 on 13.04.2023 by OrcaFlex 11.3d) Period: Whole simulation

	Time	Effective tension (kN) at end
	(s)	А
Mean		1771,92836
Std. Dev.		159,086197
RMS		1779,05551
Mean up-crossing period Tz (s)		11,1399381
Mean crest period Tc (s)		0,90785647
m0		2,53E+04
m2		203,938605
m4		247,437236
Bandwidth (ε)		0,9966737
max	481,5	2253,13554
min	2782,1	1304,7209

268mm

2m	8m	time 3800 0c						
OrcaFlex 11.	7 . COURS IOF WILL At 8d: K03 15MW semi-sub conditi	ons 1440m(six times the rotor) 3 polyester 268m	rm.dat (modified 12:59 on 12.04	.2023 by OrcaFlex 11	34)			
Total force (k End tension) End shear for	397,1514744 397,1508969 0,677322598							
Total momen End bend mo End torque (l	0							
End curvatur End Ez-angle End force azi	0 49,52531777 270,6032332							
End force de End force Ez- End force Exy	97,9817548 49,42853447 167,0090062							
d A compone Summai	nts y results for ML1 at	time 3800,0s		_	Global axes			
Load Force (kN) Moment (kN	magnitude 397,1514744 0	Ex -293,9531663 0	Ey 67,81576877 0 0	Ez 258,305732 0	6X 4,140787665	GY -393,28221 0	62 -55,14756175 0	
Total force (k	End B 395,3957472 205 2051200							
End shear for Total momer End bend mo	0,693010632 0 0							
End torque (I End curvatur End Ez-angle	0 0 89,89121803							
End force azi End force de End force E2-	270,8368439 84,59020605 89,89379872 264,5058045							
Cite Dice LA	104,003043	F	nd ares	End 8 compos	ents Ginhal avos			
Load Force (kN) Moment (kN	magnitude 395,3957472 0	Ex -37,85637858	Ey 3 -393,5786508	Ez 0,732890106 0	GX 5,749096803	GY -393,59262 0	GZ 37,27731402 0	
Node	Arc length (m)	X (m)	Node positio Y (m)	ns and orientations; * Z (m)	indicates seabed contact Azimuth (deg)	eclination (de	Gamma (deg)	
A 2 3	0 10 20	-8,768880207 -8,664298978 -8,559742003	7 -53,26663337 8 -63,2217988 8 -73,18160041	-13,9286871 -15,30733172 -16,65189667	270,6018828 270,6016725 270,6021597	97,8840487 97,7860156 97,5894376	5,843837431 5,84380882 5,843873171	
4 5 6	30 40 50	-8,45489511 -8,3495128 -8,243393639	L -83,14594222 8 -93,11473642 9 -103,0878998	-17,96218841 -19,23794081 -20,47883283	270,6042601 270,6076478 270,6121255	97,3916269 97,1922165 96,991037	5,844146391 5,844575885 5,845128299	
/ 8 9	60 70 80	-8,136360117 -8,02825897 -7,918964351	-113,0653466 7 -123,0469819 1 -133,0326968	-21,68453946 -22,85478786 -23,98940428	270,617555 270,6237863 270,630653	96,379638 96,470	5,845779194 5,846504454 5,847280507 5,949090004	
11 12 13	90 100 110	-7,808377978 -7,696417542 -7,583008389 -7,68008389	143,0223682 153,0158618 163,0130369 - 172,0127400	-25,08833381 -26,15162222 -27,17938303 -28,1747774	270,638060 270,645900 270,6541250 270,6541250	95,9711185 95,7679877 95,565079*	5,848919395 5,849759366 5,850570447	
14 15 16	120 130 140	-7,4660/98837 -7,351709829 -7,233951232 -7,114671000	-173,013/498 -183,0178553 -193,0252113 -203,025213	-29,12901089 -30,05129173 -30,9387497	270,657352 270,677568 270,677568	95,3652225 95,1655358 94,966434*	5,85133583 5,851996887 5,852564019	
17 18 19	150 160 170 180	-/,149/1983 -6,994897422 -6,873848098 -6,752022795	-233,035842 213,0491508 223,0654975 233,0846153	-31,79146016 -32,60931207 -33,39218987	270,683907 270,6897076 270,6945183 270,6945183	94,7672704 94,5675986 94,3672484	5,853049613 5,853441622 5,85370326	
20 21 22	190 200 210	-6,629736064 -6,507368673 -6,385256848	-243,1063952 3 -253,1307273 8 -263,1574994	-34,13996551 -34,8525235 -35,52975082	270,6992355 270,698561 270,698561	94,1662549 93,964659 93,762483	5,853805965 5,853759034 5,853611932	
23 24 25	220 230 240	-6,263598207 -6,142394945 -6,021471944	-273,1865964 -283,2179002 -293,2512884	-36,17154046 -36,77777789 -37,34836663	270,693619 270,6913707 270,690403	93,5597205 93,3563995 93,1526053	5,853436207 5,853300122 5,853244515	
26 27 28	250 260 270	-5,900558761 -5,779356696 -5,657561225	1 -303,2866356 5 -313,3238157 5 -323,3627011	-37,88322281 -38,38226079 -38,84540173	270,6910694 270,6934652 270,69375934	92,9483666 92,7436955 92,5385708	5,853279197 5,85339738 5,853586844	
29 30 31 32	280 290 300	-5,534872479 -5,411023565 -5,285769256 -5,285769256	-333,4031641 -343,4450769 -353,4883126 -362,522777	-39,27255339 -39,663607 -40,01840597 -40,33675015	270,70334 270,710566 270,7193	92,3329047 92,1265113 91,9191534 91,7109635	5,85383064 5,854110939 5,854415062 5,854737567	
33 34 35	310 320 330 340	-5,158851/42 -5,030113315 -4,899452294 -4,766903014	-333,5327437 -373,5782397 -383,6246683 -393,671896	40,61852195 40,86363002 41,07209935	270,729022 270,7397121 270,750484 270,7612135	91,5019988 91,2930165 91,0842216	5,855025402 5,855288182 5,855510717	
36 37 38	350 360 370	-4,632459201 -4,495952483 -4,357047389	L -403,7197885 8 -413,7682108 9 -423,817026	-41,24397372 -41,37924468 -41,47781725	270,7724493 270,7851301 270,7997537	90,8755417 90,6665784 90,4570221	5,85570242 5,855872208 5,856014717	
39 40 41	380 390 400	4,215401256 4,070914216 -3,923836553	5 -433,866096 5 -443,9152846 8 -453,9644605	-41,53957531 -41,56450306 -41,55275082	270,8156486 270,8311251 270,8445004	90,2470959 90,0375564 89,8292297	5,856112121 5,856151184 5,856136856	
42 43 44 45	410 420 430 440	-3,//4658918 -3,623936302 -3,472198123 -3,319915775 -3,319915775	464,0134983 474,0622773 484,1106791	-41,50459356 -41,4203226 -41,30019926 -41 14445313	270,854900 270,8622313 270,8667146 270,8568018	89,622515 89,417371 89,213619 89,0111676	5,856028403 5,85597602 5,8559445	
46 47 48	450 460 470	3,167459609 3,015068783 -2,86283166	-504,2058855 8 -514,2524592 5 -524,2981913	-40,95331422 -40,72701927 -40,46572959	270,8691753 270,868615 270,868615 270,8679011	88,8100348 88,6100226 88,4105704	5,855938117 5,855950867 5,855969455	
49 50 51	480 490 500	-2,710719953 -2,558669324 -2,406623675	8 -534,3429611 8 -544,3866442 5 -554,4291132	-40,16948609 -39,83821713 -39,47178927	270,8674575 270,8673688 270,8674976	88,2110115 88,0108464 87,8098864	5,855982357 5,855985147 5,855980406	
52 53 54	510 520 530	-2,254566598 -2,102527001 -1,950550705	564,4702397 574,5098963 584,5479566	-39,07006569 -38,63294939 -38,16038231	270,8676018 270,8675038 270,867524	87,6082329 87,4061077 87,2037759	5,855976308 5,85598068 5,85599389	
55 56 57 59	540 550 560	-1,798559423 -1,646855348 -1,495139956 -1,2525621	s -594,5842958 s -604,6187919 s -614,6513248 c 24 6917224	-37,65236123 -37,10893934 -36,53019551 -25.91612311	270,8665483 270,8665483 270,8661504 270,8661504	87,0015524 86,7996691 86,5980928 96,3966393	5,856010953 5,856029211 5,85602205 5,85602205	
59 60 61	580 590 600	-1,192113069 -1,040988518 -0,890299739	-634,7100154 -644,735931 -654,7594032	-35,26688042 -34,58235592 -33,86266314	270,864330 270,8624365 270,8524365 270,8598482	86,1952533 85,9941179 85,7932664	5,856167975 5,856297293 5,856482907	
62 63 64	610 620 630	-0,740156236 -0,590632859 -0,441775797	5 -664,7803141 9 -674,7985439 7 -684,8139733	-33,10785398 -32,31795802 -31,49301179	270,8567417 270,8532973 270,8496206	85,592597 85,3920632 85,1916809	5,85671639 5,856987174 5,857289086	
65 66 8	640 650 660	-0,293623256 -0,146221186 3,63E-04	-694,8264828 -704,8359508 -714,8422525	-30,63305122 -29,73807972 -28,80806746	270,8457106 270,8414850 270,8392793	84,9913531 84,7908892 84,6905992	5,857623738 5,858000118 5,858202382	
Segment	Arc length (m)	X (m)	Segment positi Y (m)	ons and orientations Z (m)	*indicates seabed contact Azimuth (deg)	eclination (de	Gamma (deg)	
1 2 3	5 15 25	-8,716589592 -8,612020491 -8,507318557	-58,24421609 1 -68,2016996 7 -78,16377131	-14,61800941 -15,9796142 -17,30704254	270,6018828 270,6014631 270,602453	97,8840487 97,6879825 97,4908927 97,29224	5,843837431 5,843780578 5,843964535 5,843964535	
5 6 7	35 45 55 45	-8,402203955 -8,29645322 -8,189876878 -8,189876878 -8,189876878	88,13033932 -98,10131811 -108,0766232 -118,0561643	-18,60006461 -19,85838682 -21,08168615 -22,26966344	270,605633 270,606331 270,616195 270,6146195 270,6146195	97,2923611 97,0920719 96,8900022 96,6864517	5,844325754 5,844822468 5,845429633 5,846123437	
8 9 10	75	-7,97361166 -7,863671165 -7,75239776	5 -128,0398394 5 -138,0275325 5 -148,019115	-23,42209607 -24,53886905 -25,61997802	270,6270828 270,6342424 270,6418768	96,4819868 96,2772891 96,072933	5,846879476 5,847675024 5,848496239	
11 12 13	105 115 125	-7,639712965 -7,525553613 -7,409904333	-158,0144493 -168,0133933 -178,0158026	-26,66550262 -27,67558022 -28,65039415	270,649423 270,6583073 270,6685562	95,8693039 95,6666714 95,4652858	5,849335267 5,850175956 5,850976027	
14 15 16	135 145 155	-7,29283053 -7,174461607 -7,054934702	-188,0215333 7 -198,0304477 2 -208,0424175	-29,59015131 -30,49502712 -31,36511134	270,67418 270,680955 270,6870184	95,2651593 95,0659122 94,8669368 94,667704	5,851688888 5,852298923 5,85282379	
18 19 20	165 175 185 400	-6,912935437276 -6,812935447 -6,69087943 -6,69087943	218,05/3242 228,0750564 8238,0955053 9 -248,1185413	-33,00075097 -33,76607769 -34,49674454	270,692395 270,6966411 270,696091 270,69097	94,4675931 94,2669038 94.065605	5,853608794 5,853795559 5,853816119	
21 22 23	205 215 225	-6,44631276 -6,324427527 -6,202996576	- 258,1441133 7 -268,1720479 5 -278,2022483	-35,19113716 -35,85064564 -36,47465917	270,6937466 270,6937466 270,6949962 270,6922428	93,8637121 93,661254 93,4581871	5,853703395 5,853522914 5,853351953	
24 25 26	235 245 255	-6,081933444 -5,961015352 -5,839957728	4 -288,2345943 2 -298,268962 3 -308,3052257	-37,06307226 -37,61579472 -38,1327418	270,6904988 270,6903075 270,6918307	93,254612 93,0505986 92,8461346	5,853249848 5,853239353 5,853317678	
27 28 29 30	265 275 285	-5,71845896 -5,596216852 -5,472948022 -5,472948022	-318,3432584 -328,3829326 2 -338,4241205 -340 45555	-38,61383126 -39,05897756 -39,46808019 -39,84100510	270,6950993 270,7008 270,7066045 270,7066045	92,6412564 92,4358851 92,2299242 92,0730004	5,853474149 5,853695056 5,853960353 5,854254254	
31 32 33	295 305 315 325	-5,548396411 -5,222315499 -5,094487528 -4,964787804		-32,04100648 -40,17758255 -40,47764054 -40,74107599	270,714527 270,7238716 270,734293 270,744293 270,744305	91,8152083 91,6065174 91,3974803	5,854567275 5,854878416 5,855162493	
34 35 36	335 335 355	4,833177654 4,699681107 4,564205842	-388,6482821 7 -398,6958422 2 -408,7439997	-40,96786468 -41,15803653 -41,3116092	270,758377 270,75658 270,76588 270,778305	91,1885527 90,9798905 90,7711929	5,855404102 5,855607538 5,855786626	
37 38 39	365 375 385	4,426499936 4,286224323 4,143157736	-418,7926184 -428,841561 -438,8906903	-41,42853097 -41,50869628 -41,55203918	270,791951 270,8075561 270,8237405	90,561964 90,3520803 90,1421114	5,855945333 5,856069808 5,856139606	
40 22 42 43	395 405 415			-41,55862694 -41,52867219 -41,46245808 -41,3602600	270,838509 270,8504915 270,8593206	89,5195721 89,315460	5,856113574 5,856113574 5,856055405 5,855055405	
44 45 46	425 435 445 455	-3,396056949 -3,243687692 -3,091264196	-489,1346331 -499,1822363 5 -509,2291723	-41,0223262 -41,04888368 -40,84016675	270,863283 270,86330 270,869300 270,8690206	89,1120682 88,9102671 88,7098026	5,855953046 5,855935035 5,85594147	
47 48 49	465 475 485	-2,938950221 -2,786775807 -2,634694639	-519,2753252 -529,3205762 -539,3648026	-40,59637443 -40,31760784 -40,00385161	270,8682172 270,8675851 270,8673300	88,5102426 88,3108981 88,1111249	5,855960964 5,855978496 5,85598644	
50 51 52 53	495 505 515	-2,482646499 -2,330595137 -2,1785468	-549,4078787 -559,4496764 -569,490068	-39,6550032 -39,27092748 -38,85150754	270,8674071 270,8675882 270,8676155 	87,9105679 87,709205 87,5072608 87,2040	5,855983787 5,855976865 5,855975727	
53 54 55 56	525 535 545 ccc	-2,026538853 -1,874605064 -1,722757385 -1,570907653	5/9,5289264 -589,5661262 -599,6015438 -609,6350504	-38,39666585 -37,90637177 -37,38065029 -36,81956749	270,8673923 270,867057 270,8667171 270,8667171	a7,3049547 87,1025972 86,9005076 86,6988305	5,855985831 5,856002247 5,856019959 5,85603876	
57 58 59	555 565 575 coc	-1,419338293 -1,26782485 -1,1660100	-619,6665491 -629,6958944 -639,7779777	-36,22318381 -35,59152627 -34,92461817	270,865980 270,865980 270,865084 270,855084	86,4973551 86,2959014 86,0946053	5,856066056 5,856118619 5,856218464	
60 61 62	585 595 605	-1,110550793 -0,965644128 -0,815227987 -0.665394548	-6.59,7229/32 649,7476671 7 -659,7698587 8 -669.789479	-34,22250953 -33,48525856 -32,712906	270,863196 270,8612964 270,8583995 270,856393	85,8936305 85,6929024 85,4922915	5,856377935 5,856590436 5,856845273	
63 64 65	625 635 645	-0,516204328 -0,516204328 -0,367699527 -0,219922221	679,8062586 689,8202281 699,8312168	-31,90548491 -31,06303151 -30,18556547	270,8515115 270,8515115 270,847729 270,8436918	85,2918348 85,091527 84,8911793	5,85713223 5,857449282 5,857801764	
66	655	-0,072928855	-709,8391017	-29,27307359 Mid-segment loads;	270,8392793	84,6905992	5,858202382	
Segment		Effective tension (kN)	Shear force (kN)	Bend radius (m)	(rad/m) 1,71E-04	Bend moment (kN.m) 0	Wall Max von M tension (kN) stress (kP 390,9255197 A 1 29	a A E T
3 4 5	25 35	396,6851983 396,605014		2896,335023 2872,85143 2842,25143	155 3,43E04 3,45E04 3,48E04	0	390,1668 047,7652,8 389,4270845 9508,005 388,706541 9503,736	87 63 57
6 7 8	45	396,1649917 396,0015582 395,8432521	7 0 2 0	2824,09403 2807,219312 2799,079616	3,5124 3,54604 3,56604 3,57604	0	387,3238926 9495,541 386,662253 9491,623 386,0206473 9487.825	22 94 55
9 10 11	85 95 105	395,690116 395,5421586 395,3993628	5 0 5 0	2799,57264 2806,664349 2818,354647	3,57E04 3,57E04 3,56E04 3,55E04	0	385,3991663 9484,155 384,7978205 9480,612 384,2165595 9477,190	09 75 12
12 13 14	115 125 135	395,2616956 395,1291117 395,0015583	5 0 7 0 8 0	2833,92569 2851,792632 2867,435067	3,53E04 3,51E04 3,49E04	0	383,6552926 9473,890 383,1138976 9470,712 382,592235 9467,655	43 57 29

OrcaFlex 11.3d: K03 15MW semi-sub conditions 1440m(six times the rotor) 3 polyester 268mm.dat (modified 12:59 on 12.04.2023 by OrcaFlex 11.3d) Period: Whole simulation

	Time (s)	Effective tension (kN) at end B
Mean		398,1486037
Std. Dev.		9,166247098
RMS		398,2541032
Mean up-crossing period Tz (s)		10,79545455
Mean crest period Tc (s)		5,788041854
m0		84,02008586
m2		0,72094354
m4		0,021519785
Bandwidth (ε)		0,844119261
max	504,7	427,6980644
min	2440,5	371,3228634

Linked statistics: ML4

OrcaFlex 11.3d: K03 15MW semi-sub conditions 1440m(six times the rotor) 3 polyester 268mm.dat (modified 12:59 o Period: Whole simulation

Mean Std. Dev. RMS Mean up-crossing period Tz (s) Mean crest period Tc (s) m0 m2 m4 Bandwidth (ε) max min	
Std. Dev. RMS Mean up-crossing period Tz (s) Mean crest period Tc (s) m0 m2 m4 Bandwidth (ɛ) max min	Moon
Std. Dev. RMS Mean up-crossing period Tz (s) Mean crest period Tc (s) m0 m2 m4 Bandwidth (ε) max min	Niean
RMS Mean up-crossing period Tz (s) Mean crest period Tc (s) m0 m2 m4 Bandwidth (ε) max min	Std. Dev.
Mean up-crossing period Tz (s) Mean crest period Tc (s) m0 m2 m4 Bandwidth (ε) max min	RMS
Mean crest period Tc (s) m0 m2 m4 Bandwidth (ε) max min	Mean up-crossing period Tz (s)
m0 m2 m4 Bandwidth (ε) max min	Mean crest period Tc (s)
m2 m4 Bandwidth (ε) max min	m0
m4 Bandwidth (ε) max min	m2
Bandwidth (ε) max min	m4
max min	Bandwidth (ε)
min	max
	min

Linked statistics: V0

OrcaFlex 11.3d: K03 15MW semi-sub conditions 1440m(six times the rotor) 3 polyester 268mm.dat (modified 12:59 on 12.04.2023 by OrcaFlex 11.3d) Period: Whole simulation

	Time (s)	Effective tension (kN) at end B
Mean		3734,20926
Std. Dev.		100,680319
RMS		3735,56627
Mean up-crossing period Tz (s)		6,20016051
Mean crest period Tc (s)		5,86424242
m0		1,01E+04
m2		263,683709
m4		7,66760034
Bandwidth (ε)		0,32468833
max	3615,5	4053,07541
min	3618,5	3386,36485

OrcaFlex 11.3d: K03 15MW semi-sub conditions 1440m(six times the rotor) 3 polyester 268mm.dat (modified 12:59 on 12.04.2023 by OrcaFlex 11.3d)

Period: Whole simulation

	Time (s)	Effective tension (kN) at end A
Mean		1906,85977
Std. Dev.		100,321993
RMS		1909,49697
Mean up-crossing period Tz (s)		9,90391645
Mean crest period Tc (s)		1,11919075
m0		1,01E+04
m2		102,607326
m4		81,9162656
Bandwidth (ε)		0,99359443
max	276,1	2197,17009
min	2358,9	1652,89417

Linked statistics: ML2

OrcaFlex 11.3d: K03 15MW semi-sub conditions 1440m(six times the rotor) 3 polyester 268mm.dat (modified 12:59 on 12.04.2023 by OrcaFlex 11.3d) Period: Whole simulation

	Time (s)	Effective tension (kN) at end A
Mean		1906,07066
Std. Dev.		101,976328
RMS		1908,79662
Mean up-crossing period Tz (s)		8,42700893

Mean crest period Tc (s)		1,18533823
m0		1,04E+04
m2		146,437339
m4		104,223882
Bandwidth (ε)		0,99005804
max	1535,6	2231,89305
min	2377,4	1651,61963

OrcaFlex 11.3d: K03 15MW semi-sub conditions 1440m(six times the rotor) 3 polyester 268mm.dat (modified 12:59 on 12.04.2023 by OrcaFlex 11.3d)

Period: Whole simulation

	Time (s)	Effective tension (kN) at end A
Mean		1828,66148
Std. Dev.		135,130333
RMS		1833,64747
Mean up-crossing period Tz (s)		9,42635659
Mean crest period Tc (s)		1,14114353
m0		1,83E+04
m2		205,502905
m4		157,811054
Bandwidth (ε)		0,99264534
max	594,8	2227,39333
min	2640,7	1497,05161

Linked statistics: ML5

OrcaFlex 11.3d: K03 15MW semi-sub conditions 1440m(six times the rotor) 3 polyester 268mm.dat (modified 12:59 on 12.04.2023 by OrcaFlex 11.3d) Period: Whole simulation

	Time (s)	Effective tension (kN) at end A
Mean		1446,83531
Std. Dev.		80,5061827
RMS		1449,07338
Mean up-crossing period Tz (s)		7,63726708
Mean crest period Tc (s)		0,93782082
m0		6481,24545
m2		111,117513
m4		126,340552
Bandwidth (ε)		0,99243201

max	577,6	1692,31565
min	735,9	1253,08001