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Abstract—Modern monostatic radar-based human activity
recognition (HAR) systems perform very well as long as the
direction of human activities is either toward or away from
the radar. The monostatic single-input–single-output (SISO)
and monostatic multiple-input–multiple-output (MIMO) radar
systems cannot detect motion of an object that moves
perpendicularly to the radar’s boresight axis. Due to this
physical layer limitation, today’s radar-based HAR systems
fail to classify multidirectional human activities. In this arti-
cle, we resolve this typical but critical physical layer problem
of contemporary HAR systems. We propose a HAR system
underlying a distributed MIMO radar configuration, where multiple antennas of a millimeter wave (mm-wave) MIMO radar
system (Ancortek SDR-KIT 2400T2R4) are distributed in an indoor environment. In our proposed HAR system, we have
two independent and identical monostatic radar subsystems that irradiate and capture the multidirectional human
movement from two perspectives, which allows to compute two distinct time-variant (TV) radial velocity distributions.
A feature extraction network extracts numerous features from the measured TV radial velocity distributions, which are
then fused by a multiclass classifier to detect five types of human activities. The proposed multiperspective MIMO-radar-
based HAR system achieves a classification accuracy of 98.52%, which surpasses the accuracy of SISO radar-based
HAR system by more than 9%. Our approach resolves the physical layer limitations of modern HAR systems that are
based on either monostatic SISO or monostatic MIMO radar systems.

Index Terms— Deep learning, direction-independent human activity recognition (HAR), fall detection, feature fusion,
multistatic radar, multiview radar sensing, orientation-independent HAR.

I. INTRODUCTION

A. General Background

STUDIES have shown a considerable amount of progress
in the area of human activity recognition (HAR) over the

past few years [1], [2], [3], [4]. The steady interest in HAR
is due to its extensive range of applications. Over the years,
HAR systems have proven their usefulness in application areas
such as social robotics [5], autonomous driving [6], sports [7],
[8], home automation [9], healthcare [10], automated video
analysis [11], and human–computer interaction [12].

To date, numerous diverse sensing modalities have been
adopted to effectuate the HAR task. However, each modality
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may exhibit its distinct advantages and disadvantages [13].
For instance, due to the ongoing advancements in computer
vision techniques, HAR systems based on vision sensors
have produced remarkable results [14], [15]. However, vision
sensors are often criticized because they are very suscepti-
ble to lighting conditions, occlusion, and can violate user
privacy. Wearable sensors [16], [17], [18], [19] on the other
hand, despite being very effective HAR sensors, are generally
criticized for being fragile, obtrusive, and vulnerable to user
negligence. Also, the need to be worn indefinitely renders the
wearable sensors impractical and inconvenient, especially for
elderlies or infirmed persons. By taking into consideration the
aforementioned shortcomings, recently HAR systems based on
radio frequency (RF) sensing techniques have been preferred
more and more despite new challenges and hurdles.

Lately, many researchers have studied and eventually leaned
toward Wi-Fi and radar systems for the HAR purpose [20],
[21], [22], [23]. Unlike radar systems, commercial grade Wi-Fi
routers have the channel frequency response with notably
noisy phases [24], [25], [26], [27]. In contrast, commercial
coherent radar systems conserve the phase information within
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their coherent processing interval (CPI) [28]. Thus, small
phase variations corresponding to nonstationary scatterers in
an environment can be easily processed by coherent signal pro-
cessing techniques [29], [30]. This is one of the reasons why
coherent radar systems have been preferred over Wi-Fi devices
to capture the propagation phenomena caused by complex
human activities. In the context of RF sensing, the recognition
of human activity often relies on exploiting the micro-Doppler
phenomenon [31], [32], [33], [34] to discern the specific type
of activity being performed. Thanks to recent advancements in
the areas of radar techniques and machine/deep learning, the
classification and tracking of a wide range of human activities
in complex environments will be within reach in a few years.

B. Problem Description
A major problem of radar-based HAR systems is their

inability to generate an adequate micro-Doppler signature in
a situation where a person moves perpendicularly to the radar
boresight axis. Our article is a step in this direction, in which
we propose a pragmatic solution to the problem of direction-
independent HAR. Thus, we will look into the classification of
five different types of human activities performed in different
directions. Single monostatic radar-based HAR systems do not
consider the direction of human motion and thus tend to fail in
classifying human activities performed in different directions.

Erol and Amin [35] reported the average classification
performance at different aspect angles for a human falling
activity. For a human fall parallel to the radar boresight axis
or at 0◦ aspect angle, the classification accuracy was 96%; at
60◦ aspect angle, the classification accuracy dropped to 85%;
and at 90◦ aspect angle (falling perpendicularly to the radar
boresight axis), the classification accuracy plummeted to 45%
rendering the HAR system futile. Similarly, for six human
activities, Ding et al. [36] reported a decrease in classification
performance from 95.8% to 86.7% by changing the radar’s
viewing angle from 15◦ to 30◦.

C. Related Work
Some of the approaches to mitigate the problem of the direc-

tion of human motion are discussed here along with their short-
comings. In [37] and [38] it was shown that by positioning a
radar on the ceiling, a human falling in different directions
can be detected, but the solution cannot be generalized to
classify more complex human activities. To realize a direction-
independent HAR, it is tempting to employ a monostatic beam-
forming multiple-input–multiple-output (MIMO) radar system
with the capability of measuring the target’s angle [39], [40].
But in practice, commercial beamforming radar systems have
poor angular and cross-range resolutions due to their limited
hardware resources. Thus, for applications such as short-range
hand gesture sensing, where the cross-range resolution is
not a concern, Molchanov et al. [41] rightly utilized the
angular information of a single-input–multiple-output (SIMO)
frequency-modulated continuous wave (FMCW) monopulse
radar. Unfortunately, the approach cannot be extended to
direction-independent HAR systems because of the radar’s
poor cross-range resolution. Recently, HAR systems are
realized by using three-dimensional (3-D) point cloud data

generated by millimeter wave (mm-wave) monostatic MIMO
radar systems [42], [43]. But 3-D point cloud data also
suffer from the problem of poor cross-range resolution. For
better angle estimation or, equivalently, cross-range resolu-
tion, more advanced signal processing techniques such as the
“estimation of signal parameters via rotational invariance
techniques (ESPRIT)” [44] and “multiple signal classifica-
tion (MUSIC)” algorithms [45], [46] are usually employed,
but these estimation techniques demand a high signal-to-noise
ratio [47]. Alternatively, a single-input–single-output (SISO)
bistatic radar system [48] is a good choice for HAR. However,
an even better choice for the direction-independent HAR is
multiperspective multistatic MIMO radar systems. They can
provide the best multiview signatures of human activities,
as we will see in this article.

D. Proposed Approach for HAR
To overcome the aforementioned issues and drawbacks of

monostatic SISO, SIMO, and beamforming MIMO radar-
based HAR systems, we develop a multiperspective 2 × 2 dis-
tributed MIMO radar system to realize a direction-independent
HAR system. In our approach, two radar subsystems, each
consisting of one transmit and one receive antenna and their
own independent signal preprocessing units, are spatially
distributed to irradiate the environment from different perspec-
tives (see Section III). This multistatic MIMO radar framework
enables us to detect and classify different types of human
activities independent of their respective directions.

Human body segments can be modeled by N moving scat-
terers, which reflect back the radar signals to the radar receiver.
The scatterers’ distinct time-variant (TV) radial velocity com-
ponents can be described by the so-called TV radial velocity
distribution (see Section II). The TV radial velocity distribu-
tions at the output of the radar’s signal preprocessor are in
fact the input feature maps to our classifier, which is based on
a deep convolutional neural network (DCNN). We use deep
learning methods to automatically extract the features from the
TV radial velocity distributions of the MIMO radar system to
finally classify the type of human activity regardless of its
direction of motion.

Conventionally, it was not uncommon to manually extract
features in single-variable and joint-variable domains to clas-
sify human activities using machine learning techniques, such
as support vector machine (SVM), with a well-documented
classification accuracy of 90% [49]. Widely adopted con-
ventional machine learning algorithms in conjunction with
domain-based feature engineering usually have theoretical
foundations and are computationally less expensive when com-
pared to deep learning algorithms. However, manual feature
engineering is quite cumbersome and requires specific exper-
tise. Determining the relevance and significance of features
for identifying specific motion artifacts is also a complicated
task. Large differences in manually measured features were
found in different individuals monitored for health status,
body height, and habits [50]. Therefore, to account for the
intricate attributes of human motion, and to overcome the
aforementioned challenges associated with manual feature
engineering, deep learning algorithms are preferred [51].
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To train and test our SISO and MIMO radar-based direction-
independent HAR classifiers (see Section V), we recorded
a novel HAR dataset, where the human activities were per-
formed in several directions in the two-dimensional (2-D)
horizontal xy plane. In this regard, we denote the recorded
HAR dataset with the superscript “(2-D)” as HAR(2-D) (see
Section IV). For a conventional monostatic SISO radar-based
HAR classifier that contains the human movement merely
along the one-dimensional (1-D) x-axis or the monostatic
radar’s boresight, we denote the recorded HAR dataset accord-
ingly by HAR(1-D).

E. Contributions
The MIMO radar-based HAR system presented in this

article is a stride forward toward actualizing more advanced
RF-based HAR systems. The main contributions of the
research are as follows.

1) For our direction-independent HAR system, we have
addressed a critical physical layer problem of monostatic
radar systems related to the target’s aspect angle.

2) For a monostatic SISO and the multistatic MIMO radar
configurations, we have analyzed the variations in mea-
sured channel characteristics for five types of human
activities (falling, walking, standing, sitting, picking).
We also studied the effects of different directions of
human activities by analyzing the TV radial velocity
distributions of the MIMO radar system (see Section III).

3) We composed a completely novel HAR dataset, denoted
as HAR(2-D), by using the multiperspective 2 × 2 MIMO
radar configuration (see Section IV). We recorded real
human activities by using a commercial mm-wave
radar system known as Ancortek SDR-KIT 2400T2R4.
The HAR(2-D) dataset consists of five types of human
activities performed by six different persons in several
directions.

4) By using the HAR(2-D) dataset and its derivative or subset
dataset denoted as HAR(1-D), we have developed and
analyzed three different HAR systems (see Section V):
1) a SISO radar-based conventional HAR system; 2) a
SISO radar-based direction-independent HAR system;
and 3) a MIMO radar-based direction-independent HAR
system. The proposed 2 × 2 MIMO radar-based HAR
system is capable of recognizing human gross motor
activities regardless of the aspect angle or direction of
motion, and it is straightforwardly scalable to a higher
number of antennas for a more complex human activity
classification task.

5) For the three HAR systems, we accordingly designed
three different DCNN-based multiclass classifiers. The
DCNN classifier extract features automatically from the
radar’s TV radial velocity distribution before classify-
ing an activity. For the distributed MIMO radar-based
classifier, feature level fusion has been adopted, which
virtually combines the target’s information from differ-
ent aspect angles, and thereby eradicates the limitations
that emerge due to the direction of motion.

6) The classification performances of the three HAR sys-
tems have been assessed and compared quantitatively.

It is shown that the proposed HAR system, based on
the multiperspective 2 × 2 MIMO radar framework,
improves the classification accuracy of the monostatic
SISO radar-based HAR system from 88.98% to 98.52%.

F. Article Organization
The article organization is as follows. Section II describes

the MIMO radar system model and the deep learning methods
that are utilized in this research. A critical problem of modern
SISO and monostatic MIMO radar-based HAR systems and
its solution is discussed in Section III. The data acquisition
campaign is described in Section IV. In Section V, a con-
ventional and a direction-independent SISO radar-based HAR
system, as well as a direction-independent MIMO radar-based
HAR system are presented. Lastly, Section VI draws the
conclusions.

II. SYSTEM OVERVIEW

A. MIMO Radar Signal Preprocessing
An FMCW 2 × 2 MIMO radar system periodically trans-

mits a chirp waveform ci (t ′), which can be expressed as [52]

ci (t ′) = exp
[

j
(
φi + 2π f0t ′

+ γπ t ′2
)]

, 0 ≤ t ′ < Tsw (1)

where i = 1, 2. The symbol φi is the initial phase term, f0 is
the initial frequency, and γ is the slope of the chirp waveform.
The symbols t ′ and Tsw in (1) are the fast time and duration
of the chirp, respectively. We adopted a time division multiple
access (TDMA) scheme, where the transmitter antenna ATx

i
periodically transmits the chirp waveform ci (t ′) in separate
time windows, which are defined as (2n + i − 1)Tsw ≤ t ′ <

(2n + i)Tsw for n = 0, 1, . . . and i = 1, 2. With the help of the
Dirac delta function δ(·), we can express the transmit signal
si (t ′, t) in terms of fast time t ′ and slow time t as [53]

si (t ′, t) =

∞∑
n=0

ci (t ′)δ(t − Tn,i ). (2)

The symbol Tn,i in (2) is the discrete slow time that depends
on the chirp duration Tsw according to Tn,i = (2n + i − 1)Tsw.

For a 2 × 2 MIMO radar, the notation ATx
i –ARx

k describes
the wireless link between the transmitter antenna ATx

i and the
receiver antenna ARx

k . The transmit signal si (t ′, t) interacts
with L stationary and nonstationary scatterers present in the
wireless link ATx

i –ARx
k , where i, k ∈ {1, 2}. Let the symbols

d(l)
ik , c0, and λ denote the propagation distance of the lth

scatterer, speed of light, and radar’s wavelength, respectively.
Then, the beat frequency f (l)

b,ik and the phase φ
(l)
ik of the lth

scatterer are given by f (l)
b,ik = 2d(l)

ik γ/c0 and φ
(l)
ik = 4πd(l)

ik /λ,
respectively, where l = 1, 2, . . . ,L. For the wireless link ATx

i –
ARx

k and the lth scatterer, the received beat signal s(l)
b,ik(t

′, t)
can be expressed as [53]

s(l)
b,ik(t

′, t) =

∞∑
n=0

a(l)
ik exp

[
j
(

2π f (l)
b,ik t ′

+ φ
(l)
ik

)]
δ
(

t−Tn,i −τ
(l)
ik

)
(3)

where a(l)
ik is the gain, which is assumed to be constant within

the radar’s CPI. The propagation delay τ
(l)
ik in (3) is related to
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the beat frequency f (l)
b,ik by τ

(l)
ik = f (l)

b,ik/γ. At the radar receiver,
the composite beat signal sb,ik(t ′, t) is simply the sum of all
L beat signals, i.e.,

sb,ik(t ′, t) =

L∑
l=1

s(l)
b,ik(t

′, t). (4)

We obtain the beat frequency function Sb,ik( fb, t) by com-
puting the Fourier transform of the beat signal sb,ik(t ′, t) over
the fast time t ′, i.e., [54]

Sb,ik( fb, t) =

Tsw∫
0

sb,ik(t ′, t)e− j2π fb t ′

dt ′ (5)

where fb is the beat frequency. The beat frequency func-
tion Sb,ik( fb, t) in (5) further undergoes a short-time Fourier
transform (STFT) over the slow time t . Subsequently, the
square of the STFT results in the TV micro-Doppler signa-
ture Sik( f, t), which is given as

Sik( f, t) =

∣∣∣∣∣∣
fb,max∫
0

∞∫
−∞

Sb,ik( fb, t ′′)Wr (t ′′
− t)e− j2π f t ′′

dt ′′d fb

∣∣∣∣∣∣
2

(6)

where f represents the Doppler frequency, fb,max is the
maximum beat frequency, t ′′ is the running time, and Wr (·) is
a window function, which is in our case a rectangular function
with a width of 64Tsw.

Finally, the TV radial velocity distribution pik(v, t) is
obtained from the TV micro-Doppler signature Sik( f, t)
according to [53]

pik(v, t) =

Sik

(
2 f0
c0

v, t
)

∫
∞

−∞
Sik

(
2 f0
c0

v, t
)

dv
(7)

where v represents the radial velocity. Note that the human
body is composed of body segments and each body segment
contains several scatterers that reflect back the RF signals
to the radar. Each scatterer on a human body segment has
a unique TV radial velocity component due to its spatially
distinct motion. The TV radial velocity distribution pik(v, t)
contains the radial velocity components from all the scatterers
on the human body. We use the expression in (7) to obtain
the TV radial velocity distribution pik(v, t) of the recorded
human activities. The TV radial velocity distribution pik(v, t)
is converted into an image in the time-velocity domain, which
is basically an input feature map to the DCNN, as described
in Section II-B.

B. Deep Learning
In this section, a supervised learning-based multiclass clas-

sification method is delineated. Assume a d-dimensional mth
feature vector xm that belongs to a feature space X . This
feature space X is a proper subset of the real coordinate
space Rd , meaning that xm ∈ X ⊂ Rd . For the entire number
of classes C , the mth label ym is an element of a label
space Y = {1, 2, . . . , C}, i.e., ym ∈ Y . A dataset D is defined

as {(xm, ym)}M−1
m=0 , where M is the total number of labeled

training samples.
We aim to design a DCNN-based classifier function C f that

maps the input feature space X into the label space Y , i.e.,
C f : X 7→ Y . An empirical risk RJ (C f ) corresponding to the
categorical cross-entropy loss function JCCE and the classifier
function C f is given as [55], [56]

RJ (C f ) = ED
{

JCCE
(
C f (x; θ), yx

)}
= −

1
M

M−1∑
m=0

C−1∑
c=0

yc
m log Cc

f (xm; θ) (8)

where ED{·} denotes the expectation operator that is per-
formed over the empirical distribution, which can either be
the dataset D or a mini-batch from the dataset D. In (8),
the symbol θ is a vector of trainable parameters defined as
θ = (θ1, θ2, . . . , θL), where L depends on the complexity of
the classifier. The symbol yc

m in (8) is the cth entity of the mth
one-hot encoded label vector ym , which means yc

m ∈ {0, 1}

such that (1)⊤ ym = 1 ∀ m, where 1 is a C-dimensional
vector of ones, and (·)⊤ is the transpose operator. The symbol
Cc

f represents the cth element of the classifier function C f .
We have used the softmax layer as an output layer of the
deep neural network (DNN), thus

∑C−1
c=0 Cc

f (xm; θ) = 1, and
Cc

f (xm; θ) ≥ 0, ∀ m, c, θ . The trainable parameters of the
vector θ corresponding to the classifier function C f can be
obtained by minimizing the empirical risk RJ (C f ).

The learning process of the DCNN and DNN is the same,
but in case of DCNN, the number of trainable parameters
is drastically reduced. In a DCNN, convolutional layers are
employed to generate the feature maps from their inputs by
means of multiple learnable filters. Assume a total number of
Q filters in a convolutional layer, then the mth input feature
map xm is convolved with the qth filter. The qth filter is
characterized by its trainable weight vector wq and bias bq .
Then, the qth output yq of the convolutional layer is given by

yq =

M∑
m=1

σ(xm ∗ wq + bq1), q = 1, 2, . . . , Q (9)

where the symbol ∗ denotes the convolutional operator. The
function σ(·) in (9) is a rectified linear unit (ReLU) activa-
tion function [57] formulated as σ(x) = max(0, x), which
mitigates the problems of slow convergence and gradient
vanishing [58].

Pooling layers are generally utilized as an abstraction and
downsampling tool to progressively reduce the spatial size
and redundancies of the extracted feature maps to increase
the network’s computational efficiency. Moreover, dropout
layers are added to the network to improve the network
generalizability and to avoid the overfitting problem [59]. After
several convolutional layers, the feature maps are flattened
before feeding them to the fully connected dense layers or
multilayer perceptron (MLP) layers.

In this research, we use a stochastic optimization tech-
nique known as adaptive moment estimation (Adam) [60] to
optimize or train the parameters of the vector θ . The Adam
algorithm applies adaptive learning rates that are based on
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the estimates of the first-order moment mκ and second-order
moment vκ of the gradient gκ according to

mκ = β1mκ−1 + (1 − β1)gκ (10)

and

vκ = β2vκ−1 + (1 − β2)g2
κ (11)

where the symbol κ denotes the iteration number, and the
decay factors are denoted by β1 and β2. The gradient gκ

in (10) and (11) is the gradient of the stochastic objective
function f (θκ) = minθκ

RJ (C f ). Note that in the Adam
algorithm, element-wise operations are adopted for all the
vectors mκ , vκ , gκ , and θκ . Additionally, to counteract the
initialization bias of the moments or to avoid the moments’
biasedness toward zero, Kingma and Ba [60] suggested that
the first- and second-order moments can be rectified as m̂κ =

mκ/(1 − βκ
1 ) and v̂κ = vκ/(1 − βκ

2 ), respectively. Then, for
ακ being the learning rate and ϵ a small constant, the ℓth
parameter of the vector θκ at the κth iteration can be updated
as [60]

θℓ,κ = θℓ,κ−1 −
ακ√

v̂ℓ,κ + ϵ
m̂ℓ,κ (12)

where ℓ = 1, 2, . . . , L .
By using the Adam optimizer delineated in this section,

we perform the parameter optimization of our DCNN-based
classifiers (see Section V), where our objective function is the
minimization of the empirical risk RJ (C f ) as defined in (8).

III. EXPERIMENTAL SETUP AND THE
PROPOSED SOLUTION

In the following, we develop a more pragmatic and complex
HAR system suitable for detecting human activities with
motion in multiple directions. To this end, we utilize the multi-
perspective 2 × 2 distributed MIMO radar configuration [53]
(see Fig. 1) to eventually realize a direction-independent HAR
system. The human activities were monitored by using the
2 × 2 MIMO radar configuration shown in Fig. 1. This con-
figuration is also used for comparison with conventional SISO
radar-based HAR systems, and to find out whether the multi-
perspective MIMO radar configuration can mitigate their lim-
itations. We deployed a software-defined radar system known
as Ancortek SDR-KIT 2400T2R4, which is an FMCW mm-
wave MIMO radar system, and used its transmitter-receiver
antennas in a 2 × 2 configuration. The operating parameters
of the Ancortek radar system are delineated in Table I.

For the proposed 2 × 2 MIMO radar-based HAR system,
we arrange two radar subsystems, denoted by Radar1 and
Radar2, where each radar subsystem has a collocated trans-
mitter and a receiver antenna in a monostatic configuration.
Radar1 and Radar2 are distributed in an indoor setting such
that the 2 × 2 MIMO radar system renders a multiperspective
illumination of a target as shown in Fig. 1, thereby having
the potential to overcome the limitations that are posed by
the monostatic SISO or monostatic MIMO radar systems
in the context of HAR. We operate Radar1 and Radar2 in
different time slots according to the TDMA scheme, where
both radar subsystems have identical but independent radar

Fig. 1. Measurement setup of the proposed 2 × 2 MIMO radar-based
HAR system consisting of Radar1 and Radar2, where Scenarios 1–3
characterize human activities in different directions.

TABLE I
2 × 2 MIMO RADAR SYSTEM PARAMETERS

signal preprocessing chains (see Section II). The radar signal
preprocessing chains process the raw in-phase and quadrature
(IQ) data recorded by the Ancortek MIMO radar system.
For a human activity, the radar signal preprocessing block of
Radari generates the TV radial velocity distribution pi i (v, t)
by using (7) for i ∈ {1, 2}.

We consider five different types of human activities, which
are as follows: falling on a mattress on the floor, walking,
standing up from a chair, sitting down on a chair, and picking
up an object from the floor. For these activities, the measured
TV radial velocity distributions p11(v, t) and p22(v, t) are
shown in Figs. 2 and 3, where the Scenarios 1, 2, and
3 denote the directions of human activities according to Fig. 1.
In Scenario 1 (Scenario 2), the human motion is parallel to
the boresight of Radar1 (Radar2), whereas in Scenario 3, the
human movement is roughly at 45◦ to the boresights of both
radar subsystems, as depicted in Fig. 1.

Radar1 and Radar2 complement each other such that when
the activity direction changes from the x-axis to the y-axis of
Fig. 1, the activity signature slowly vanishes from the radial
velocity distribution p11(v, t) of Radar1 and starts appearing in
the radial velocity distribution p22(v, t) of Radar2. For “Fall”
activities performed in different directions, the measured radial
velocity distributions p11(v, t) and p22(v, t) in the three sce-
narios vary significantly, as shown in Fig. 2. We can see from
Figs. 2 and 3 that Radar1 and Radar2 are unable to acquire
optimal human activity signatures in Scenarios 2 and 1, respec-
tively. The suboptimal human activity signatures contribute
toward the poor classification performance of a SISO radar-
based direction-independent HAR system (see Section V-B).
Therefore, analogous to a monostatic SISO or monostatic
MIMO radar case, a single radial velocity distribution either
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Fig. 2. Images containing the heatmap of the measured radial
velocity distributions pii(v,t) of the “Fall” activity in three different sce-
narios, where each image has the radial velocity v on the y -axis
ranging [−1.5,1.5] m/s and time t on the x-axis spanning over 2–4 s.

Fig. 3. Images containing the heatmap of the measured radial velocity
distributions pii(v,t) of different human activities, where each image has
the radial velocity v on the y -axis ranging [−1.5, 1.5] m/s and time t on
the x-axis spanning over 3–5 s.

from Radar1 or Radar2 cannot completely portray a human
activity and would not be sufficient for the realization of
a direction-independent HAR system. Additionally, Fig. 3
shows how the TV radial velocity distribution pi i (v, t) changes
with the type of human activity. This figure demonstrates that
the human activity signature or TV radial velocity distribu-
tion pi i (v, t) depends on the type as well as the direction of
the human activity. To see the radar signatures corresponding
to different multidirectional human activities, please refer to
Figs. 12–15 in Appendix.

As our 2 × 2 distributed MIMO radar-based HAR system
generates two distinct activity signatures from two different
aspect angles for human activity, we must fuse or merge
the information from the two activity signatures in order
to accurately classify the human activity regardless of the
direction of motion. In this research, we have implemented
a fusion technique at the feature level. For this purpose, for
each radar subsystem, Radar1 and Radar2, the features are
extracted independently and automatically by several convo-
lutional layers from the radial velocity distributions p11(v, t)
and p22(v, t), respectively. The extracted features from the
radar subsystems are then merged by the concatenation layer
(see Section V-C).

In Section V, we show how the classification performance
of the monostatic radar-based HAR system deteriorates if the
human activities take place in the 2-D xy plane, which is

depicted by the 3 × 3 grid in Fig. 1. We also explain the
design of the proposed 2 × 2 distributed MIMO radar-based
HAR system and show how it overcomes the above con-
straints on the direction of human activity motion. Compared
to the SISO radar-based direction-independent HAR system,
we see that the proposed 2 × 2 distributed MIMO radar-based
direction-independent HAR system significantly ameliorates
the classification accuracy.

IV. DATA COLLECTION

A comprehensive measurement campaign was carried out
in an indoor environment consisting of fixed objects, such
as chairs, tables, cabinets, computers, and other electronic
items. The five types of activities were performed by six
different persons, one of them was a female candidate. The
human activities were carried out in several directions, with
different speeds, and in different locations. For instance, the
falling activities were performed in six different directions as
depicted by the scenario markers in Fig. 1. Specifically, the
falling activities were executed in the following directions:
from (x3, y2) to (x1, y2), from (x1, y2) to (x3, y2), from
(x2, y3) to (x2, y1), from (x2, y1) to (x2, y3), from (x3, y3) to
(x1, y1), and from (x1, y1) to (x3, y3). The walking activities
were performed and recorded in a similar fashion. The other
human activities—standing up, sitting down, and picking up
an object—were performed accordingly.

In this article, the term HAR(2-D) is coined to represent the
dataset recorded by the 2 × 2 MIMO radar system, where the
superscript “(2-D)” refers to the human movement in the 2-D
horizontal xy plane in Fig. 1. Therefore, for the direction-
independent HAR task, we define FEN(2-D), SISO(2-D), and
MIMO(2-D) as a feature extraction network, a SISO radar-based
HAR classifier, and a MIMO radar-based HAR classifier,
respectively. On the other hand, to denote the human move-
ment along the 1-D x-axis of the 3 × 3 grid in Fig. 1, we use
the superscript “(1-D).” Thus, for the conventional 1-D HAR
task, where the human movement is restricted to Scenario 1
in Fig. 1, we define HAR(1-D), FEN(1-D), and SISO(1-D) as a
dataset recorded by Radar1, a feature extraction network, and
a conventional SISO radar-based HAR classifier, respectively.

We need the HAR(2-D) dataset to realize the SISO(2-D)

and MIMO(2-D) HAR systems, whereas the HAR(1-D) dataset
is required for the SISO(1-D) HAR system. The details of
the HAR(2-D) dataset related to the measurement campaign
based on the proposed 2 × 2 MIMO radar framework are
shown in Table II. As entered in Table II, we recorded a
total of 1364 activities. For each activity, we generated
the TV radial velocity distributions p11(v, t) and p22(v, t)
corresponding to the radar subsystems Radar1 and Radar2,
respectively. On the other hand, Table III shows the HAR(1-D)

dataset, which is a proper subset of the HAR(2-D) dataset,
i.e., HAR(1-D)

⊂ HAR(2-D). Note that the HAR(1-D) dataset
only contains those activities of the HAR(2-D) dataset that
were performed parallel to the boresight of Radar1. To imple-
ment a conventional monostatic radar-based HAR system (see
Section V-A), we use only the TV radial velocity distribu-
tions p11(v, t) corresponding to the recorded human activities
of the HAR(1-D) dataset.
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TABLE II
HAR(2-D) DATASET RECORDED BY A 2 × 2 MIMO RADAR SYSTEM

Each human activity trial was recorded for 10 s. The persons
were told to maintain the initial and the final poses before
and after performing the activity. Though each activity trial
was recorded for 10 s, the actual duration of the activity
was only 2–5 s, depending on the type of the activity and
the speed at which the activity was carried out. We applied
the active segment detection (ASD) [61] approach to the
high-pass filtered in-phase component of the raw activity data
to automatically extract an active segment, i.e., the section
of the raw activity data corresponding to the actual duration
of the activity. The ASD marks the start and end points of
the activity by monitoring the variance of the filtered in-phase
component of the raw activity data. The identified markers
are used to extract active segments from the raw IQ activity
data of Radar1 and Radar2. Thereafter, we applied radar signal
processing techniques (see Section V-C) to compute the TV
radial velocity distributions p11(v, t) and p22(v, t) as given
in (7).

To demonstrate the utility and effectiveness of our pro-
posed multiperspective distributed MIMO radar approach,
we develop three different types of classifiers or HAR sys-
tems. First, we develop a SISO(1-D) HAR system underlying
a monostatic SISO radar configuration (see Section V-A).
As conventional monostatic radar-based HAR systems only
consider human activities performed along the radar boresight,
SISO(1-D) uses the HAR(1-D) dataset for training and testing
purposes. Second, to highlight how the classification perfor-
mance of a HAR system deteriorates by the introduction of
different movement directions, we developed a SISO radar-
based direction-independent HAR system denoted as SISO(2-D)

(see Section V-B). Unlike SISO(1-D), the SISO(2-D) HAR sys-
tem makes use of the HAR(2-D) dataset for training and testing
purposes because SISO(2-D) is designed to classify human
activities in multiple directions of motion. Lastly, to signifi-
cantly improve the classification performance of the SISO(2-D)

HAR system, we also developed a 2 × 2 distributed MIMO
radar-based direction-independent HAR system denoted as
MIMO(2-D) (see Section V-C). Analogous to the SISO(2-D)

HAR system, the proposed MIMO(2-D) HAR system uses the
HAR(2-D) dataset for training and testing purposes, because
MIMO(2-D) also considers the classification of human activities
in multiple directions.

In this work, the recorded data from Person 1 and 2 were
divided into training and validation datasets and used for
the training phase of the DCNN-based SISO(1-D), SISO(2-D),
and MIMO(2-D) classifiers. Of this data, 80% was used to
train the classifiers, and 20% was used for validation. The

TABLE III
HAR(1-D) DATA SUBSET RECORDED BY RADAR1 , WHERE THE

DIRECTION OF MOTION OF THE HUMAN ACTIVITIES

IS RESTRICTED TO MERELY SCENARIO 1

recorded data from the rest of the participants—Person 3, 4,
5, and 6—were reserved to test the trained classifiers or HAR
systems. In Sections V-A–V-C, we elucidate the design and
development of the SISO(1-D), SISO(2-D), and MIMO(2-D) HAR
systems, respectively, along with their results and discussions.

V. SISO AND DISTRIBUTED MIMO
RADAR-BASED HAR SYSTEMS

A. Conventional SISO Radar-Based HAR System
In this section, we describe the design of the SISO(1-D) HAR

system, which is analogous to a conventional SISO radar-based
HAR system. We show the classification performance of the
SISO(1-D) HAR system while restricting the human motion
parallel to the boresight of Radar1. Thus, we consider the
HAR(1-D) dataset in Table III for the SISO(1-D) HAR system.
Recall that the HAR(1-D) dataset contains only the human activ-
ities that were carried out in front of Radar1 in Scenario 1. For
all recorded human activities listed in Table III, we generated
the TV radial velocity distributions p11(v, t) using the data of
Radar1 and converted the preprocessed data to images of size
224 × 224 × 3. Each image representing a human activity
is a color image (see Figs. 2 and 3) with 224 pixels in the
horizontal and vertical dimensions, and the number 3 refers to
the red, green and blue (RGB) color channels.

The images of the radial velocity distributions p11(v, t)
are used as input feature maps for the feature extraction
network FEN(1-D) as depicted in Fig. 4. We can see from
Fig. 4, that the first, second, and third convolutional layers of
FEN(1-D) contain 32, 48, and 64 filter channels, respectively.
The dimension of each 2-D learnable filter or kernel, also
commonly known as kernel dimension kd , is 6 × 6 pixels. For
each convolutional layer of the SISO(1-D) network, we set the
stride parameter to 1 so that the kernels are moved or strode
by one pixel at a time. To avoid the problem of overfitting,
we used L2 regularization [62] to penalize and eventually
eliminate the spike-like weight vectors. The problems of slow
convergence and vanishing gradients were mitigated by using
the ReLU activation function on the convolutional layers [58].
Furthermore, each convolutional layer in Fig. 4 is followed
by a max-pool layer and a dropout layer. The max-pool layer
is of the order 2 × 2, which downsamples the output of the
convolutional layer by a factor of 2. Each max-pool layer
is followed by a dropout layer with a dropout rate of 15%.
Finally, all the features that are generated by FEN(1-D) are
flattened before feeding them to the fully connected layers.
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Fig. 4. Feature extraction network FEN(1-D) designed for the SISO(1-D)

HAR system.

Fig. 5. Architecture of the DCNN classifier for the monostatic SISO
radar-based HAR systems, where (a) SISO(1-D) uses FEN(1-D) that
outputs a feature vector of dimension 50 176 × 1 and (b) SISO(2-D) uses
FEN(2-D) that outputs a feature vector of dimension 19 600 × 1.

A DCNN-based SISO(1-D) classifier is depicted in Fig. 5,
where FEN(1-D) generates features from the input feature maps
or, equivalently, the TV radial velocity distribution p11(v, t).
Then, the extracted features undergo two fully connected lay-
ers of the order 256 × 1 and 128 × 1. As we are classifying
five different types of human activities, the second-to-last
fully connected layer is followed by an output layer of order
5 × 1 with the softmax activation function that converts the
logits computed by the network into probabilities. To train
the SISO(1-D) classifier, the HAR(1-D) dataset (see Table III)
is divided into training, validation and testing datasets. The
training and validation data account for 65.6% of the total data
and belong to Persons 1 and 2, while the test data account for
34.4% of the HAR(1-D) dataset belonging to Persons 3, 4, 5,
and 6.

In the training phase of the SISO(1-D) HAR system, we used
the Adam optimizer to minimize the empirical risk RJ (C f )

in (8) corresponding to the categorical cross-entropy loss
function JCCE. Thus, the weights and biases of the DCNN-
based SISO(1-D) classifier were optimized by using the Adam
optimizer and the examples from the HAR(1-D) dataset. The
default values of the decay factors or forgetting factors in (10)
and (11) are equal to β1 = 0.9 and β2 = 0.999, respectively.
In order to prevent division by 0 in (12), the value of ϵ was
set to be 10−8. A batch size of 32 was adopted in the training
phase of the SISO(1-D) classifier. Note that the parameter
optimization or training of the three classifiers—SISO(1-D),
SISO(2-D), and MIMO(2-D)—was performed in the same way
with the same values for the network hyperparameters. For
all three classifiers, the training history is summarized by the
training loss, training accuracy, validation loss, and validation

Fig. 6. Confusion matrix of the results obtained by the SISO(1-D) HAR
system. The first five entries of the last row and last column show the
precision and recall, respectively, whereas the last entry highlighted in
dark gray shows the overall accuracy.

accuracy curves in Fig. 10. During the training phase, which
spans 100 epochs, there is no evidence of overfitting of the
SISO(1-D) classifier (see Fig. 10).

We use a confusion matrix shown in Fig. 6 to summa-
rize and quantitatively assess the overall performance of the
trained DCNN-based SISO(1-D) classifier. The human activity
classification performance of SISO(1-D) was evaluated using
test-examples from the HAR(1-D) dataset. On the y-axis of
the confusion matrix, we have the true class of an activity,
and the x-axis shows the predicted class of an activity. Thus,
for the first five rows and columns of the confusion matrix
in Fig. 6, the diagonal entries show the number of correctly
classified human activities, while the nondiagonal entries show
the number of misclassified human activities. For example, the
first column of the third row shows that a “Stand” activity has
been incorrectly predicted or misclassified as a “Fall” activity.
Moreover, the first five entries of the last row and last column
of the confusion matrix show the precision and recall [63],
respectively. Thus, we can see from Fig. 6 that the walking
activity has a 100% recall and a precision of 96.88%. Most
importantly, the overall accuracy of the SISO(1-D) classifier is
97.28%, which is indicated by the white color of the sixth
entry in the last row and last column of the confusion matrix.
It should be noted that using a complex network architec-
ture (FEN(2-D)) for a smaller dataset (HAR(1-D)) can lead to
overfitting and reduced generalizability. When we conducted
experiments by changing the structure of FEN(1-D) to FEN(2-D)

for the SISO(1-D) HAR system, as expected, we observed a
small decline in the accuracy of the SISO(1-D) classifier, which
dropped to 96.60% from 97.28%.

In this section, we looked into a conventional SISO radar-
based HAR system denoted as SISO(1-D) that demonstrated a
good classification performance (see Fig. 6). The classification
performance of the SISO(1-D) classifier is comparable to state-
of-the-art HAR systems. Analogous to the SISO(1-D) classifier
or HAR system, most modern HAR systems that are based
on either radar or Wi-Fi data are able to classify basic
human activities with classification accuracies above 90% [24],
[43], [64]. However, in these conventional monostatic
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radar-based HAR systems, the human subjects’ movements
are limited to Scenario 1. In Section V-B, we extend the
HAR problem by considering human motion in the horizontal
xy plane, and investigate how this affects the classification
performance of a conventional SISO radar-based direction-
independent HAR system.

B. Direction-Independent SISO Radar-Based HAR
System

To provide a comprehensive analysis and ensure a fair
comparison, we include the SISO(2-D) approach in this section,
which is a direction-independent monostatic SISO radar-
based HAR system. This inclusion allows us to highlight
the limitations of the SISO(2-D) HAR system and emphasize
the effectiveness of the proposed MIMO(2-D) HAR system in
addressing diverse directions of human activities. By compar-
ing their performance using the HAR(2-D) dataset, we aim
to demonstrate the significance of the proposed direction-
independent HAR framework. Hence, we use the HAR(2-D)

dataset as shown in Table II to realize the SISO(2-D) HAR
system. For all the recorded human activities listed in Table II,
we generated the TV radial velocity distributions pi i (v, t)
by using Radari data, where i may be chosen as either
1 or 2. For brevity, we report only the results of the SISO(2-D)

HAR system trained and tested with the data of Radar1. The
TV radial velocity distributions p11(v, t) representing human
activity fingerprints were converted into images of the order
224 × 224 × 3 (see Figs. 2 and 3), which were used as input
feature maps to the feature extraction network FEN(2-D) as
depicted in Fig. 7.

The neural network architecture of the SISO(2-D) classifier
is similar to the SISO(1-D) classifier except for a few modi-
fications. For instance, the DCNN-based SISO(2-D) classifier
uses FEN(2-D) instead of FEN(1-D) to extract features from
the input feature maps or the TV radial velocity distribu-
tion pi i (v, t) as shown in Fig. 5. Compared with FEN(1-D)

in Fig. 4, we see that FEN(2-D) in Fig. 7 has an additional
convolutional layer, and each convolutional layer has a larger
number of filters, i.e., 40, 60, 80, and 100. Consequently,
the SISO(2-D) HAR system has a greater network complexity
and capacity compared to the SISO(1-D) HAR system. Note
that we needed a more complex DCNN classifier with higher
network capacity because: 1) SISO(2-D) uses a larger HAR(2-D)

dataset containing 1364 human activity fingerprints instead
of 427 and 2) because SISO(2-D) aims to classify human
activities in different directions, taking into account more
diverse, complex, and sometimes suboptimal human activity
signatures.

Moreover, the kernel dimension kd of each 2-D learnable
filter in FEN(2-D) is 5 × 5 as shown in Fig. 7. The rest of
the specifications of the SISO(2-D) and SISO(1-D) classifiers are
similar in terms of the max-pool layers, dropout layers, stride,
batch size, and activation function. Analogous to SISO(1-D),
SISO(2-D) uses L2 regularization to penalize and eliminate the
peaky weight vectors to avoid the overfitting problem. Like
SISO(1-D), SISO(2-D) uses the Adam optimizer to minimize the
empirical risk RJ (C f ) in (8) corresponding to the categorical
cross-entropy loss function JCCE. In order to train the SISO(2-D)

Fig. 7. Feature extraction network FEN(2-D) designed for SISO(2-D) and
MIMO(2-D) HAR systems.

classifier, the HAR(2-D) dataset is split into training, validation,
and testing datasets. The training and validation data is 65.4%
of the total data and belongs to Person 1 and 2, whereas the
testing data is 34.6% of the HAR(2-D) dataset belonging to
Person 3, 4, 5, and 6. As mentioned in Section V-A, the
training history is summarized by the training loss, train-
ing accuracy, validation loss, and validation accuracy curves
shown in Fig. 10 for all three classifiers. Note that for the
SISO(2-D) classifier, there is no evidence of overfitting during
the training phase that spans over 100 epochs, as shown in
Fig. 10.

The classification performance of the SISO(2-D) direction-
independent HAR system was evaluated using the
test-examples from the HAR(2-D) dataset. Recall that the
SISO(2-D) HAR system is realized by using the data of Radar1.
To summarize and quantitatively assess the classification
performance of the SISO(2-D) HAR system, we present a
confusion matrix in Fig. 8. The predicted and actual class
of a human activity is shown on the x-axis and y-axis of
the confusion matrix, respectively. The confusion matrix
in Fig. 8 shows that the overall classification performance
of the SISO(2-D) HAR system has dropped significantly to
only 88.98%. On a partially unrelated note and without
going into too much detail, we would also like to mention
that Radar2 provides relatively poor data quality due to
the cross-channel interference problem [65]. Solving the
cross-channel interference problem requires the deployment
of longer RF cables (see Table I), which cause a higher
attenuation of the received signal. For this reason, a SISO(2-D)

direction-independent HAR system realized by using only the
data of Radar2 provided an overall classification accuracy of
just 83.05%.

Looking at the nondiagonal entries of the confusion matrix
in Fig. 8, we see numerous misclassified human activities,
e.g., the “Pick” activity was misclassified 15 times as the
“Stand” activity by the SISO(2-D) HAR system. Therefore,
the worst precision of the system is 76.34% corresponding
to the “Stand” activity, and the worst recall is observed as
80.19% for the “Pick” activity. Interestingly, the precision and
recall are 100% for the “Fall” activity, which implies that the
SISO(2-D) HAR system learned to classify the human falling
activity in all directions. Unfortunately, this is not true for
the other four types of human activity, which have diverse
and relatively complex radial velocity distributions that vary
in different directions (see Figs. 2 and 3).
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Fig. 8. Confusion matrix of the results obtained by the SISO(2-D)

HAR system, where SISO(2-D) was trained and tested by using Radar1
data. The first five entries of the last row and last column show the
precision and recall, respectively, whereas the last entry shows the
overall accuracy.

In this section, a direction-independent SISO radar-based
HAR system (SISO(2-D)) was investigated, which showed
significant degradation in its classification performance for
human motion in different directions. For the simpler case
of human motion, or when the human motion was restricted
to Scenario 1 in Fig. 1, the overall classification accuracy
of the SISO(1-D) HAR system was 97.28%. However, when
we complicated the human motion by considering the differ-
ent directions of motion, the classification accuracy dropped
to 88.98% for the SISO(2-D) HAR system. The deterio-
ration of the classification performance manifested by the
SISO(2-D) HAR system comes from the physical limitations
of monostatic SISO radar systems. These physical limita-
tions of monostatic radar systems can be overcome by the
2 × 2 distributed MIMO radar configuration of Fig. 1 to
eventually realize a direction-independent MIMO(2-D) HAR
system. In Section V-C, we will see how the MIMO(2-D) HAR
system ameliorates the shortcomings of the SISO(1-D) and
SISO(2-D) HAR systems altogether.

C. 2 × 2 MIMO Radar-Based Direction-Independent
HAR System

We now elucidate the design of our proposed 2 × 2 dis-
tributed MIMO radar-based direction-independent HAR
system denoted as MIMO(2-D). Considering the different direc-
tions of human activities in the horizontal xy plane in Fig. 1,
we use the HAR(2-D) dataset (see Table II) to eventually realize
the MIMO(2-D) HAR system. In this section, we demon-
strate that unlike the SISO(2-D) HAR system, our proposed
MIMO(2-D) HAR system is able to recognize the human
activities with a very good classification performance for the
HAR(2-D) dataset. For all the recorded human activities listed
in Table II, we computed the TV radial velocity distribu-
tions p11(v, t) and p22(v, t) by using Radar1 and Radar2 data,
respectively. The TV radial velocity distributions p11(v, t)
and p22(v, t) were converted separately into images of the
order 224 × 224 × 3 (see Figs. 2 and 3), which served as
input feature maps to the feature extraction network FEN(2-D)

as depicted in Fig. 7.

Although the neural network architecture of the MIMO(2-D)

and SISO(2-D) HAR systems are quite different in Fig. 9
and Fig. 5, respectively, the building blocks, hyperparameter
values, and training processes of the two networks are very
similar. For instance, the MIMO(2-D) and SISO(2-D) HAR
systems use the same specifications related to kernel dimen-
sion kd , max-pool layers, dropout layers, stride, batch size,
activation function, regularizer, and Adam optimizer (refer to
Section V-B for more details). Moreover, the same feature
extraction network FEN(2-D) in Fig. 7 has been adopted for
the MIMO(2-D) and SISO(2-D) HAR systems. However, unlike
the SISO(2-D) HAR system, the MIMO(2-D) HAR system uses
two identical feature extraction blocks as depicted in Fig. 9
for the TV radial velocity distributions p11(v, t) and p22(v, t).
The two FEN(2-D) blocks of MIMO(2-D) HAR system extract
unique features automatically and independently of the two
radial velocity distributions p11(v, t) and p22(v, t). In Fig. 9,
we can see that these features are then merged using a
concatenation layer, which is followed by MLP and softmax
layers to eventually classify the human activities.

Analogous to the SISO(2-D) HAR system, the MIMO(2-D)

HAR system also uses the HAR(2-D) dataset for the training and
testing purposes. However, for the MIMO(2-D) HAR system,
the main difference is that the activity fingerprints from both
radar subsystems shown in Fig. 1 are simultaneously utilized
to classify the human activities. In other words, for the classi-
fication of human activity, two distinct multiperspective radial
velocity distributions p11(v, t) and p22(v, t) produced by
Radar1 and Radar2, respectively, are processed at once by the
MIMO(2-D) HAR system. Therefore, in the MIMO(2-D) HAR
system, we utilized 2728 images or equivalently 1364 pairs
of images corresponding to 1364 human activities of the
HAR(2-D) dataset. The HAR(2-D) dataset was split into training,
validation, and testing datasets, where the training and valida-
tion data was 65.4% of the total data belonging to Person
1 and 2, and the testing data was 34.6% of the total data
belonging to Person 3, 4, 5, and 6. Recall that the training
history is summarized by the training loss, training accuracy,
validation loss, and validation accuracy curves as depicted in
Fig. 10 for all three classifiers or HAR systems. Note that
this figure does not reveal any signs of overfitting during the
training phase of the MIMO(2-D) HAR system.

In Fig. 11, we present a confusion matrix to quantita-
tively assess the overall classification performance of the
MIMO(2-D) direction-independent HAR system. The human
activity classification performance of the MIMO(2-D) HAR
system was evaluated over the test examples from the HAR(2-D)

dataset. In the test examples, the number of falling activities
is comparatively low because it is difficult to carry out a
real-life “Fall” activity. Nevertheless, the train–test split ratio
is roughly 77 : 23 for the “Fall” activity. In the confusion
matrix in Fig. 11, the overall classification performance of
the MIMO(2-D) direction-independent HAR system comes out
to be 98.52%, which is a significant improvement over the
classification accuracy of 88.98% achieved by the SISO(2-D)

direction-independent HAR system. Looking at the nondiag-
onal entries of the confusion matrix in Fig. 11, we see only
seven misclassified human activities. We can observe that the
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Fig. 9. Architecture of the proposed MIMO(2-D) HAR system with two
independent FEN(2-D) blocks to generate feature vectors that are fused
by the concatenation layer for subsequent classification.

Fig. 10. Training history for the SISO(1-D), SISO(2-D), and MIMO(2-D)

HAR systems. (a) Training losses. (b) Training accuracies over
100 epochs.

worst precision of the MIMO(2-D) HAR system is 95.54%
corresponding to the “Stand” activity, and the worst recall
is observed as 94.34% for the “Pick” activity. Note that the
increase in the classification performance is basically due to
the multiperspective illumination of the environment by the
proposed 2 × 2 distributed MIMO radar-based HAR system.

We addressed a HAR task in a complex situation, where
we considered the human motion in the horizontal xy plane
in Fig. 1. To mitigate the shortcomings of the SISO(2-D) HAR
system in relation to the human activity direction, we illu-
minated the subject from different aspect angles by using
the proposed 2 × 2 MIMO radar-based direction-independent
HAR system denoted as MIMO(2-D), which demonstrated a
remarkably good classification performance as summarized by

Fig. 11. Confusion matrix of the results obtained by the proposed
MIMO(2-D) HAR system with an overall accuracy of 98.52%.

the confusion matrix in Fig. 11. As evident from the classifica-
tion performance of the MIMO(2-D) HAR system, the physical
limitations of the monostatic radar systems were successfully
mitigated by the multiperspective 2 × 2 distributed MIMO
radar configuration. Therefore, by addressing and rectifying
the fundamental radar problem at the physical layer, we were
able to design a radar-based HAR system that was capable of
recognizing human activities independent of their directions
with a classification accuracy close to 100%.

VI. CONCLUSION

In this article, we analyzed and resolved a crucial physical
layer problem of state-of-the-art monostatic SISO, SIMO, and
MIMO radar-based HAR systems, which primarily arises due
to the target’s aspect angle. Thus, a more pragmatic and more
complex HAR problem has been elucidated in this research
in the context of RF sensing, where we improve the activity
recognition task by considering multiple directions of human
activities. A novel HAR dataset (HAR(2-D)) was recorded
by using the proposed multiperspective 2 × 2 MIMO radar
framework. We developed and analyzed three different HAR
systems, denoted as SISO(1-D), SISO(2-D), and MIMO(2-D),
by using our HAR(2-D) dataset and its sub-dataset HAR(1-D).

Analogous to most modern radar-based HAR systems, the
SISO(1-D) HAR system was able to classify human activ-
ities with a classification accuracy of 97.28%. However,
in this conventional monostatic radar-based HAR approach,
the movement of the human subjects was restricted along
the radar’s boresight axis. By developing and analyzing the
monostatic SISO(2-D) HAR system and considering the human
activities taking place in the 2-D xy plane, we substantiated
a significant deterioration in the classification performance
from 97.28% to 88.98%. The deterioration of the classifica-
tion performance manifested by the SISO(2-D) HAR system
came from the inherent physical layer limitations of the
monostatic SISO radar systems. To overcome these physical
layer issues and drawbacks experienced by today’s radar-based
HAR systems, we utilized a multiperspective 2 × 2 distributed
MIMO radar system to realize a direction-independent HAR
system that was capable of recognizing human gross motor
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Fig. 12. Images containing the heatmap of the measured radial
velocity distributions pii(v,t) of the “Walk” activity in three different
scenarios, where each image has the radial velocity v on the y -axis
ranging [−1.5,1.5] m/s and time t on the x-axis spanning over 3–5 s.

Fig. 13. Images containing the heatmap of the measured radial
velocity distributions pii(v,t) of the “Stand” activity in three different
scenarios, where each image has the radial velocity v on the y -axis
ranging [−1.5,1.5] m/s and time t on the x-axis spanning over 2–3 s.

Fig. 14. Images containing the heatmap of the measured radial velocity
distributions pii(v,t) of the “Sit” activity in three different scenarios, where
each image has the radial velocity v on the y -axis ranging [−1.5,1.5]
m/s and time t on the x-axis spanning over 2–3 s.

activities regardless of the aspect angle or direction of motion.
To eradicate the limitations that emerge due to the direction of
motion, feature level fusion was adopted in the DCNN-based
MIMO(2-D) classifier, which virtually combines the target’s
information from different aspect angles.

For the HAR(2-D) dataset, it was shown that the proposed
multiperspective MIMO(2-D) HAR system significantly outper-
forms the monostatic SISO(2-D) HAR system. Compared with
the SISO(2-D) HAR system, the proposed MIMO(2-D) HAR
system significantly improved the classification accuracy from
88.98% to 98.52%. Therefore, the physical layer limitations
of the monostatic SISO radar-based HAR systems were suc-
cessfully mitigated by the proposed MIMO(2-D) HAR system.

Fig. 15. Images containing the heatmap of the measured radial
velocity distributions pii(v,t) of the “Pick” activity in three different
scenarios, where each image has the radial velocity v on the y -axis
ranging [−1.5,1.5] m/s and time t on the x-axis spanning over 2–4 s.

The MIMO(2-D) HAR system presented in this article paves
a way forward toward actualizing a more realistic and more
advanced radar-based HAR system. To further enhance the
classification performance, we plan to use the bistatic com-
ponents of the 2 × 2 MIMO radar system, which are the TV
radial velocity distributions p12(v, t) and p21(v, t). For more
aspect angle coverage and a more complex HAR problem,
we plan to extend the fundamental distributed 2 × 2 MIMO
radar system to a larger MIMO antenna configuration.

APPENDIX
MULTIDIRECTIONAL HUMAN ACTIVITY SIGNATURES

In this appendix, we provide the measured radial velocity
distributions pi i (v, t) of the four types of human activities:
walking, standing up from a chair, sitting down on a chair,
and picking up an object from the floor.
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