
A Learning-Automata Based Solution for Non-Equal
Partitioning: Partitions with Common GCD Sizes

Rebekka Olsson Omslandseter1, Lei Jiao1, and B. John Oommen1,2

1 University of Agder, Grimstad, Norway {rebekka.o.omslandseter,lei.jiao}@uia.no
2 Carleton University, Ottawa, Canada oommen@scs.carleton.ca

Abstract. The Object Migration Automata (OMA) has been used as a powerful
tool to resolve real-life partitioning problems in random Environments. The virgin
OMA has also been enhanced by incorporating the latest strategies in Learning
Automata (LA), namely the Pursuit and Transitivity phenomena. However, the
single major handicap that it possesses is the fact that the number of objects in
each partition must be equal. Obviously, one does not always encounter problems
with equally-sized groups3. This paper is the pioneering attempt to relax this con-
straint. It proposes a novel solution that tackles partitioning problems where the
partition sizes can be both equal and/or unequal, but when the cardinalities of the
true partitions have a Greatest Common Divisor (GCD). However, on attempt-
ing to resolve this less-constrained version, we encounter a few problems that
deal with implementing the inter-partition migration of the objects. To mitigate
these, we invoke a strategy that has been earlier used in the theory of automata,
namely that of mapping the machine’s state space onto a larger space. This pa-
per details how this strategy can be incorporated, and how such problems can be
solved. In essence, it presents the design, implementation, and testing of a novel
OMA-based method that can be implemented with the OMA itself, and also in all
of its existing variants, including those incorporating the Pursuit and Transitivity
phenomena. Numerical results demonstrate that the new approach can efficiently
solve partitioning problems with partitions that have a common GCD.

Keywords: Learning Automata · Object Migration Automata · Object Partition-
ing with GCD

1 Introduction

Object Partitioning Problems (OPPs): OPPs, where the true data elements are repre-
sented as “abstract” objects, concern dividing a set of elements into subsets based on a
certain underlying criterion. OPPs are NP-hard and have been studied since the 1970s.
Within OPPs, the sub-field of Equi-Partitioning Problems (EPPs) [3], where all the par-
titions are of equal sizes, have been solved efficiently using Learning Automata (LA).
To solve EPPs, LA-based Object Migration Automata (OMA) algorithms, based on the
semi-supervised Reinforcement Learning (RL) paradigm, have demonstrated a superior
efficiency, when compared with former algorithms [8–11].

3 When the true underlying problem has non-equally-sized groups, the OMA reports the best
equally-sized solution as the recommended partition.

2 R. Omslandseter et al.

Observe that the nature of the “true” underlying partitioning problem is always un-
known. However, the system presents a sequence of queries that are a realization of
objects belonging together. The OMA uses this information to infer and converge to the
near-optimal groupings. Essentially, OMA-based solutions are clustering algorithms,
except that they do not require an imposed distance-based relation between the objects.

Existing OMA Algorithms: There are different types of OMA algorithms, namely
the original OMA, the Enhanced OMA (EOMA), the Pursuit EOMA (PEOMA), and
the Transitivity PEOMA (TPEOMA)4. Of these algorithms, the OMA is the original
pioneering solution [3, 4]. Later, an enhancement to the OMA, termed the EOMA, was
proposed in [2], and this prevent the so-called Deadlock Situation. The authors of [11]
and [8] proposed the improved PEOMA, which incorporated the Pursuit concept (al-
ready established in the LA literature) into the EOMA, reducing the levels of noise
presented to the learning mechanism. Thereafter, the TPEOMA was introduced in [10],
where the transitivity phenomenon was further augmented into the PEOMA algorithm,
ensuring even better results in certain Environments and reducing the required number
of queries before convergence [7]. Numerous applications of OMA-based algorithm
have been in reported in different fields, including that of increasing the trustworthiness
of reputation systems [12], and user grouping in mobile radio communications [6]. A
detailed survey of OMA-based solutions for various applications is included in [7].

Limitations of Existing OMA Solutions: The developments in the field of OMA
have considerably improved their respective performances. However, one salient issue
remains unresolved, namely the restriction that the algorithms can only handle partition-
ing problems where the partitions are equally-sized. There are currently no solutions
reported in the literature to address this prominent issue.

Relaxing the Limitations of OMA Solutions: We now state the main goal of this
research. In this paper, we relax the equi-partitioning constraint needed for the existing
OMA algorithms, by introducing the Greatest Common Divisor OMA (GCD-OMA)
algorithm. The fascinating aspect of this novel concept is that it can be implemented in
all of the current OMA variants. Our proposed solution can solve both Non-Equal Par-
titioning Problems (NEEPs) and EPPs, whenever the partition sizes possess a non-unity
GCD between them. For example, the unknown state of nature may be a partitioning
problem that has three objects in one group, six in the second and twelve in the third.
However, it will not be able to handle partitions that have three objects in one group and
thirteen in the second, since the partition sizes do not have a non-unity GCD.

The Paper’s Contributions: The contributions of this paper are as follows:
1. We present the novel GCD-OMA algorithm, whose fundamental paradigm can be

incorporated in all the reported versions of OMA algorithms.
2. We formalize a new evaluation criterion for assessing the performance of OMA

algorithms. This criterion can also be used for evaluating the accuracies of other
algorithms that can solve similar partitioning problems.

3. By resorting to a rigorous experimental regime, we demonstrate the efficiency of
the algorithms.

4 It is clearly, impossible to survey all these families in this short paper. Apart from those men-
tioned below, the Pursuit OMA (POMA) is another version of the OMA. The concepts moti-
vating the POMA are similar to its PEOMA variant, and its details can be found in [9].

GCD-OMA Solution to Non-Equal Partitioning Problems 3

The structure of the paper is organized as follows. In Section 2, we formulate the
nature of the set of partitioning problems studied in this paper, and analyze their com-
plexities. Then, in Section 3, we present the GCD-OMA algorithm in detail, including
its Reward and Penalty modules. The performance of the proposed algorithm is pre-
sented in Section 4, after which we conclude the paper in Section 5.

2 Problem Formulation

The partitioning problem is formalized as follows: We are dealing with an Environment
containing O objects, where the set of objects is denoted by O = {o1,o2, ...,oO}. Our
goal is to partition these objects into K disjoint partitions, and the given set of partitions
is indicated by K , where K = {ρ1,ρ2...,ρK}. For example, partition ρ1 might consist of
o1, o2 and o3, denoted as ρ1 = {o1,o2,o3}. The problem, however, is that the identities
of the objects that should be grouped together are unknown, but are based on a specific
but hidden criterion, known only to an “Oracle”, referred to as the “State of Nature”.
The Oracle noisily presents the objects that should be together in pairs, where the degree
of noise specifies the difficulty of the problem.

We assume that there is an true partitioning of the objects, ∆∗, and the solution
algorithm determines a partitioning, say ∆+. The solution is optimal if ∆+ = ∆∗. The
initialization of the objects before partitioning starts is indicated by ∆0.

2.1 Complexity

The complexity of the problems that can be solved using the existing OMA algorithms
and the GCD-OMA algorithms is related to their respective combinatorics. We empha-
size that, in reality, we cannot perform an exhaustive search to determine the optimal
partitioning. This is because, in traditional OMA problems, we are only presented with
queries encountered as time proceeds. Unfortunately, we do not have a performance
parameter that directly indicates the fitness of a particular partitioning.

When we consider the objects and their group affiliations, the minimum number of
possible partitions of the set of objects is given by an unordered Bell number5. Note that
we consider the Bell number to be unordered because we do not care about the order
of the objects. Rather, we are only concerned about whether the objects are grouped
or not. In our problems, we want to partition O objects into K non-empty sets, where
we note that each object can only be assigned to a single group. Thus, we have BO
partitioning options, where BO is the O-th Bell number, and the O-th Bell number is
given by BO = ∑

O
k=1
{O

k

}
. Here

{O
k

}
is the Stirling numbers of the second kind [1], and

k ∈ {1, ...,O}. For the O-th Bell number, it follows that
(O

e lnO

)O
< BO <

(
O

e1−λ lnO

)O
,

which has exponential behavior for O and λ > 0. However, in our case, the partitioning
is pre-defined, independent of whether we have an EPP or an NEPP. Consequently, what
we need to consider is the different combinations of objects in the various partitions.

5 This is a count of the different partitions that can be established from a set with O elements.

4 R. Omslandseter et al.

In general, the number of possible combinations for partitioning problems, where
the cardinalities are defined, is given by:

W =
O!

(u!)xx!(v!)yy!...(w!)zz!
, (1)

where we have x groups of size u, y groups of size v, and so on for all groups and sizes.
Note that, in this case, ux+vy+ ...+wz = O. When all the groups are of equal size, we
have the combination number W as:

W =
O!(O

K !
)K

K!
, (2)

where O
K is an integer, and consequently, such partitioning problems are also character-

ized by a combinatorial issue. However, this number is significantly smaller than the
one given by the Bell numbers.

In addition to the combinatorial complexity of the problem, the interactions between
the Environment and the algorithm is also contaminated by noise. In other words, the
queries may include misleading messages. Due to the system’s stochastic nature, the
problem is more complicated than just finding an instantaneous optimal partitioning,
because the optimal partitioning is defined stochastically.

2.2 Evaluation Criteria

We measure the efficiency of OMA algorithms by counting the required queries pre-
sented to the LA before convergence. The larger the number of queries needed, the less
efficient is the algorithm. The number of queries presented to the LA is, in principle,
equal to the number of responses from the Environment before convergence, which is a
standard performance criterion in LA. But sometimes, these two indices differ.

For the OMA, the EOMA, and their proposed GCD variants, a generated query al-
ways results in a response from the Environment. Therefore, for the OMA and EOMA
types, measuring the number of queries is equivalent to measuring the feedbacks from
the Environment, as in the case of standard LA. We will denote the number of queries
received before the LA has reached convergence by the parameter, Ψ. In the PEOMA, a
query is only considered by the LA if the estimated joint probability of the accessed ob-
jects is greater than a threshold, τ. Thus, we filter out some queries before we send them
to the LA, and so, a query will not always result in a response from the Environment.
Thus, the number of queries, Ψ, indicates the number of queries that are let through
the filtering process before the LA reaches convergence. For the number of queries re-
quired from the Query Generator before the automaton has converged, we will utilize
the parameter, ΨQ. Note that for the OMA and the EOMA variants, Ψ = ΨQ.

The TPEOMA, similar to the PEOMA, also filters out queries before they are given
to the LA. However, in the TPEOMA, artificially-generated queries are also presented
to the automaton due to the transitivity phenomenon. Therefore, in the TPEOMA, Ψ,
includes both the queries that “survive” the pursuit filtering, and the artificially gener-
ated queries. Again, ΨQ indicates the number of queries made by the Query Generator.
Besides, we introduce the parameter ΨT for counting the artificially-generated queries.

GCD-OMA Solution to Non-Equal Partitioning Problems 5

When the OMA algorithms and their pre-specified versions have reached conver-
gence, we can analyze the partitioning that they have discovered. To be able to explain
the discovered partitioning in a similar manner for different configurations, we need a
parameter for indicating the similarity of the converged partitions, when compared with
∆∗. To achieve this, we introduce the parameter γ, which is referred to as the accuracy
of the converged partitioning, defined as:

γ =
∑∀i,∀ j,i6= j Γoi,o j

∑
K
k=1

ηk!
2!(ηk−2)!

, (3)

where i, j ∈ {1,2, ...,O}, i 6= j and k ∈ {1,2, ...,K}. Note that ∑∀i,∀ j,i 6= j Γoi,o j indi-
cates the number of queries that are correctly grouped, and that ∑

K
k=1

ηk!
2!(ηk−2)! indi-

cates the total number of potentially correct queries. Note that the ηk parameter, where
k ∈ {1, ...,K}, is the number of objects in each partition. To determine γ, we need to
check all possible query pairs, observe if the objects in a query are grouped both in ∆+

and ∆∗, and divide this by the total of possible correct queries. More specifically, we
define:

Γoi,o j = Γo j ,oi =

{
1, if oi and o j is grouped in ∆∗ and ∆+,

0, otherwise.
(4)

Clearly, when ∆+ = ∆∗, we have 100% accuracy, which implies an optimal solution.

3 The Proposed GCD-OMA Scheme
3.1 The Novel Paradigm: State Expansion

The technique that we use to solve GCD-related OPPs is by invoking a fine, but estab-
lished methodology that has been used in the theory of Finite State Machines (FSMs).
In order to cite its importance, we mention two domains where it has been applied.

Firstly, when designing FSM Acceptors for Regular Languages, one first creates a
Non-Deterministic FSM (NDFSM) by using elementary machines, and by including the
operations of Concatenation, Union and Kleene-Star. In this way, one is able to obtain
the NDFSM for the entire language. Subsequently to obtain the find the Deterministic
FSM, one transforms the NDFSM into a deterministic one by increasing the number of
states to be the power set of the original machine. In this way one can obtain a Deter-
ministic machine with 2N states, but that is totally equivalent to the N-state NDFSM.

An analogous technique is also used to create LA with deterministic Output Matri-
ces, where the Output Matrix of the original LA is stochastic. Again, one transforms
this into an equivalent LA, except that the states of the new machine increases. Every
state in the new machine is specified by a pair which contains information about the
state of the old machine and the output generated by the old machine. In this way, the
output matrix of the new machine is rendered deterministic. The reader should observe
that by expanding the number of states, the complexity of the machine does not change,
although the capability of the machine changes.

This is exactly what we shall do in our particular case. We shall design new ma-
chines associated with a given GCD, and coalesce them to design the overall machine.

6 R. Omslandseter et al.

3.2 Designing the GCD-OMA

In traditional OMA, we handle pairs of objects and try to bring them together. Thus,
when the query objects are in the same partition, they are rewarded. They are penalized
when they are in different partitions. By intelligently replacing the object that changes
its partition, we ensure that the number of objects in each partition always remains the
same. In the proposed GCD scheme, all the partition sizes have a common GCD. In this
way, we can link some of the “sub-partitions” together, and consider them as being asso-
ciated with the same partition in terms of their behaviors when it concerns rewards and
penalties. We refer to the proposed algorithm as the GCD-OMA. However, because it
can be utilized together with any member of the OMA family, the nomenclature would
be GCD-OMA, GCD-EOMA, GCD-POMA, GCD-PEOMA, and GCD-TPEOMA de-
pending on the OMA type, where the latter suffix is the type of OMA involved.

To extend the OMA functionality to handle NEPPs with non-unity GCDs, we need
to change two fundamental concepts in the OMA algorithms. Firstly, we need to change
the initialization of objects to align with the GCD. Secondly, we need to link the re-
quired sub-partitions in the OMA together to fulfill the size requirement of the overall
partitions. Observe that these links need to be a part of the Reward and Penalty function-
alities. Additionally, the links also need to be implemented in checking which objects
that are together in the final solution reported by the LA. Due to these changes, the new
functionality affects many parts of the original OMA structure.

To make the partition links, we need to consider the GCD of the partitions. We will
denote the GCD of the partitioning problem by Λ > 1, which can be trivially obtained.
After we have determined Λ, we need to link the partitions together in the LA, and con-
sider them as representing a single entity. When a certain partition size is not equal to Λ,
we need to conceptually consider two or more partitions together as being a single over-
all partition. The number of partitions that need to be considered together for a given
partition k is indicated by xk given by xk =

ηk
Λ

, where xk = 1 for a partition size equal
to Λ, indicating that this partition is single and is not part of any link. For indicating the
links between partitions inside the LA, we can utilize the state space, and consider the
set of states given in ranges for the overall partition k as follows:

ιk = {max(ιk−1)+1, ...,max(ιk−1)+ xkS}, ∀k, (5)

where the state range {a, ..,b} indicates that the objects with states within a and b are
inside partition k. Note that partition 1 (ρ1 = 1), in reality, has no previous partition.
Thus, for ρ1, ι0 = 0 and max(ι0) = 0, which leads to ιk = {1, ...,x1S}. The max function
indicates that we use the highest value in the range of states from the previous partition
to make the range of states of the next partition.

To clarify this, we consider an example where we have ι1 = {1, ...,4}. Consequently,
it follows that max(ι1) = 4. One should also note that we have one state range for
each of the K partitions in our problem. The Reward and Penalty responses from the
Environment is thus based on whether the objects in the query are currently in the same
state range or not. Note that in the LA, we have R = ∑

K
k=1 xk partitions, and that S is the

number of states per partition R.

GCD-OMA Solution to Non-Equal Partitioning Problems 7

Consider an example with the partitioning sizes of η1 = 3, η2 = 9 and η3 = 12.
Additionally, we have four states (S = 4) in the sub-partitions of the LA. The states
of this example are visualized in Figure 1. As indicated by the colors in the figure,
to comply with the partition sizes, we need to consider ρ1 as a partition in itself. In
contrast, partition two to four is another overall partition, and partition five to eight
constitute the last overall partition. Thus, if one object in a query is in state 17, and the
other object is in state 30, we will reward them, and not penalize them, as we would
have done in the original OMA for EPPs. Following Eq. (5), we have ι1 = {1, ...,4},
ι2 = {5, ...,16} and ι3 = {17, ...,32}, as the ranges for the states of our partitions ρ1, ρ2
and ρ3 respectively.

Fig. 1. Example of partition links in GCD with 3 partitions and 4 states as described in the text.

To change the OMA functionality, we need to change both the original OMA and
the EOMA. We emphasize that these changes also apply to the PEOMA and TPEOMA
versions, but because these algorithms utilize the EOMA as a basis, we can directly
invoke the same principles in their operations. The EOMA version of GCD is described
in Algorithm 1. Observe that the GCD-OMA is easily extended to the existing OMA
scheme, and is omitted to avoid repetition.

In the GCD schemes, the objects are still initialized in the same manner as before,
but instead of placing O

K objects in each partition, we put Λ objects in each partition
initially. For the OMA, the objects are randomly distributed into the ∑

K
k=1 xkS states,

while they are distributed among the ∑
K
k=1 xk boundary states in the EOMA version.

We also utilize the existing Reward and Penalty functionalities. Because we fulfill the
requirement of having equally-sized partitions, we do not need to make any changes to
the existing transitions on being rewarded and penalized. Understandingly, when two
objects are rewarded, they behave as if they were in the same partition even though they
are in different sub-partitions within the LA. This is done by invoking “EOMA Process
Reward” where the objects go deeper into their present action one step at a time, or stay
in the same state if they are in the most internal state. Similarly, the objects in a query
need to be in different state ranges to be penalized. Again, this is done by invoking
“EOMA Process Penalty” where the objects go towards the central boundary states one
step at a time, or switch actions when they reach the border.

8 R. Omslandseter et al.

Algorithm 1 GCD-EOMA
Input:

– The objects O = {o1, ...,oO}.
– S states per sub-partition.
– A sequence of query pairs ϒ, where each entry Q = {oi,o j}.
– Initialized θi for all objects. Initially all θi, where i ∈ {1,2, ...,O}, is given a random bound-

ary state, where we have Λ objects in each of the R = ∑
K
k=1 xk partitions. Thus, in each of the

R partitions in the LA, we have Λ objects in each boundary state rS ∀r, where r∈{1,2, ...,R}.
Output:

– Convergence happens when all objects are in any of the two most internal states, and the
converged partitioning is then reported. If convergence is not achieved within |ϒ| queries,
the LA should return its current partitioning.

– The LA, thus, outputs its partitioning (K = ∆+) of the O objects into K partitions.
– θi is the state of oi and is an integer in the range {1,2, ...,RS}.
– If θi ∈ ιk, where ιk = {max(ιk−1)+1, ...,max(ιk−1)+xkS}, then oi is assigned to ρk, which

is done for all i ∈ {1,2, ...,O} and k ∈ {1,2, ...,K}.
1: while not converged or |ϒ| queries not read do
2: Read query Q = {oi,o j} from ϒ

3: if θi and θ j ∈ ιk, where k ∈ {1,2, ...,K} then // If the objects are in the same state range
4: EOMA Process Reward
5: else // If the objects are in different state ranges
6: EOMA Process Penalty
7: end if
8: end while
9: Output the final partitioning based on θi, ∀ i. // According to the state ranges

Algorithm 2 EOMA Process Reward
Input:

– The query Q = {oi,o j}.
– The states of the objects in Q ({θi,θ j}).

Output:
– The next states of oi and o j.

1: if θi mod S 6= 1 then
2: θi = θi−1 // Move oi towards the innermost state
3: end if
4: if θ j mod S 6= 1 then
5: θ j = θ j−1 // Move o j towards the innermost state
6: end if

4 Experimental Results
In this section6, we demonstrate the performance of GCD-OMA types for various de-
grees of noise. Section 4.1 demonstrates results for EPPs compared with other existing

6 The results presented here are a brief summary of all the results obtained for numerous settings.
The detailed set of results are found in the Masters Thesis of the First Author [5].

GCD-OMA Solution to Non-Equal Partitioning Problems 9

Algorithm 3 EOMA Process Penalty
Input:

– The query Q = {oi,o j}.
– The states of the objects in Q ({θi,θ j}).

Output:
– The next states of oi and o j.

1: if θi mod S 6= 0 and θ j mod S 6= 0 then // Neither are in boundary
2: θi = θi +1
3: θ j = θ j +1
4: else if θi mod S 6= 0 and θ j mod S = 0 then // o j is in boundary
5: θi = θi +1
6: temp = θ j // Store the state of o j

7: ol = unaccessed object in group of staying object (oi) closest to boundary
8: θ j = θi
9: θl = temp

10: else if θi mod S = 0 and θ j mod S 6= 0 then // oi is in boundary
11: θ j = θ j +1
12: temp = θi // Store the state of oi

13: ol = unaccessed object in group of staying object (o j) closest to boundary
14: θi = θ j
15: θl = temp
16: else // Both are in boundary states
17: temp = θi or θ j // Store the state of moving object, oi or o j
18: θi = θ j or θ j = θi // Put moving object and staying object together
19: ol = unaccessed object in group of staying object closest to boundary
20: θl = temp // Move ol to the old state of moving object
21: end if

OMA algorithms. Section 4.2 demonstrates the GCD’s performance for NEPPs, which
cannot be compared with any of the existing OMA algorithms, as they are unable to
handle problems of these kinds. Furthermore, in this context, noise is referred to as
queries of objects that are not together in ∆∗ but are presented to the LA. A system with
noisy queries might also yield a slower convergence rate than a system with fewer (or
zero) noisy queries. Consequently, we use:

Noise = 1−Πoi,o j = 1−Πo j ,oi , for oi,o j ∈ ∆
∗,∀i, j,

as the probability reference for LA being presented with a noisy query in the simula-
tions. To clarify, Πoi,o j is the probability of oi and o j being accessed together and being
together in ∆∗. For all the simulations, we utilized 100,000 queries as the maximum
number of queries. If the OMA algorithm had not converged within the consideration
of |ϒ|= 105, we deemed that the algorithm had not converged.

4.1 Existing OMA and GCD-OMA for an EPP

Let us first consider the simulations for an EPP where we simulated a partitioning prob-
lem with 30 objects to be partitioned into three partitions, implying that O

K = 10. Ta-

10 R. Omslandseter et al.

ble 1 show simulation results for different existing OMA types, and Table 2 presents
results obtained for the GCD-OMA types. GCD-EOMA required approximately 307
and 422 queries before convergence for 0% and 10% noise, respectively. These conver-
gence rate levels are almost equal to those of the existing EOMA algorithm given in
Table 1. As the noise level increased, the number of iterations increased. As more noisy
queries are presented to the LA, more objects are “misguided” to be together, even if
the contrary represents reality. Clearly, the GCD-OMA types and the existing OMA al-
gorithms had similar performance. This behavior is expected. When GCD-OMA types
were presented with partitions of equal sizes, it would consider all partitions in the LA
separately, which, in essence, yielded a similar operation to that of the existing OMAs.

Note that Ψ indicates the number of queries considered by the LA, ΨQ the total
number of queries generated, and ΨT the queries made from the concept of transitiv-
ity in the TPEOMA. For PEOMA, we have to include the parameter κ, indicating the
number of queries before we decide to start filtering the queries based on their likeli-
ness before letting the LA process it (pursuit). Additionally, we have the parameter τ,
indicating the threshold for whether a query should be considered or not [8, 10].

Type Noise γ ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT κ τ

EOMA 0% 100% 100% 0% 305.36 305.36 - - -
EOMA 10% 100% 100% 0% 425.08 425.08 - - -

PEOMA 0% 100% 100% 0% 307.42 309.71 - 270 0.1
O

PEOMA 10% 100% 100% 0% 398.11 417.58 - 270 0.1
O

TPEOMA 0% 100% 100% 0% 369.55 275.46 96.28 270 0.2
O

TPEOMA 10% 100% 100% 0% 555.63 316.91 253.81 270 0.2
O

Table 1. Statistics of existing OMA types for a case involving 30 objects, 3 partitions and 10
states averaged over 1,000 experiments.

Type Noise γ ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT κ τ

GCD-EOMA 0% 100% 100% 0% 307.04 307.04 - - -
GCD-EOMA 10% 100% 100% 0% 421.89 421.89 - - -

GCD-PEOMA 0% 100% 100% 0% 303.84 305.90 - 270 0.1
O

GCD-PEOMA 10% 100% 100% 0% 398.39 417.96 - 270 0.1
O

GCD-TPEOMA 0% 100% 100% 0% 371.59 275.37 98.54 270 0.2
O

GCD-TPEOMA 10% 100% 100% 0% 553.50 316.94 251.72 270 0.2
O

Table 2. Statistics of GCD-OMA types for a case involving 30 objects, 3 partitions and 10 states
averaged over 1,000 experiments.

4.2 GCD-OMA variants for NEPPs

This section presents the results for the GCD-OMA types’ NEPPs with a non-unity
GCD between the respective partition sizes. As demonstrated in Section 4.1, the PEOMA
and the TPEOMA variants can enhance the convergence rate of the methods in different
ways. The PEOMA is best for systems with higher noise levels, and the TPEOMA is
preferred when we have less information (queries) from the system. However, as they
are essential parts of the OMA paradigm, repeating the same methods’ performance
with the EOMA, PEOMA, and TPEOMA might not be necessary to analyze and discuss
their performance for NEPPs. We thus present the results only for the GCD-EOMA.

GCD-OMA Solution to Non-Equal Partitioning Problems 11

The first problem that we considered had three partitions and 18 objects. The first
partition had room for three objects (η1 = 3), the second partition had room for six
objects (η2 = 6), and the last partition had room for nine objects (η3 = 9). The second
problem that we considered, had 20 objects, where η1 = 2, η2 = 4, η3 = 6 and η5 = 8.
For this problem, the maximum number of queries was increased to |ϒ|= 106.

Let us first consider the 18-objects case, where the results are listed in Table 3. For
0% noise and three states, we can observe that the method had issues with obtaining the
optimal solution. However, the accuracy was not at the same low level but was around
70% on average, which means that most of the objects that should have been grouped
were grouped in the LA. The reason for simulating a noise-free problem that utilized
only three states was because the method achieved convergence only for a minimum of
the experiments, with six states.

Observing the results for 10% and 20% noise for GCD-EOMA in Table 3, we see
that we were able to obtain a higher percentage of the experiments converging to the
optimal solution with respectively 98.90% and 99.90% for the different noise levels.
Additionally, the accuracy and the percentage of experiments converging to the optimal
partitioning increased as the noise level became higher. However, when the system was
noise-free or the noise level was lower, the algorithm, astonishingly, performed less
accurately, and required more queries if one considered the state depth.

Noise S Accuracy ∆+ = ∆∗ Not Conv. Ψ = ΨQ
0% 3 69.56% 14.49% 0% 3,168.04
10% 6 99.63% 98.90% 0% 7,880.37
20% 6 99.98% 99.90% 0% 24,864.40

Table 3. Statistics of GCD-EOMA for the problem with 18 objects (η1 = 3, η2 = 6, η3 = 9) with
different noise levels, averaged over 1,000 experiments.

In Table 4, we present the results for the second problem with GCD-EOMA for
higher noise levels than for the first problem. The algorithm required more queries for
the case of 5% noise compared with the case of 10% noise. Based on this observation,
surprisingly, we confirm that a higher noise level is easier to manage than a lower one.
In real-life, the noise levels are usually unknown, but they are seldom noise-free.

Noise Accuracy ∆+ = ∆∗ Not Conv. Ψ = ΨQ
5% 99.73% 98.6% 0% 85,397.82

10% 99.93% 99.6% 0% 68,945.01
15% 99.98% 99.9% 0% 111,335.16
20% 100% 100% 2.8% 248,926.46

Table 4. Statistics of GCD-EOMA for the problem with 20 objects (η1 = 2, η2 = 4, η3 = 6,
η4 = 8), with different noise levels and 6 states, averaged over 1,000 experiments.

From the results, the performance of GCD-EOMA seemed to increase for higher
noise levels. This behavior might seem counter-intuitive. However, one observes that
a high level of noise causes more movement of the objects, which is a desirable phe-
nomenon for the convergence rate, and mitigates problems of having objects “stuck”
or locked into a configuration. If we consider the case of a noise-free Environment, the
objects will only be accessed together and go deeper, with no ability to move out of a
partition that they should not be in. Thus, the noise helps objects being moved out of
“stuck” (or locked in) situations similar, to the Deadlock Situation [2].

12 R. Omslandseter et al.

5 Conclusions
The existing algorithms within the OMA paradigm can only solve partitioning prob-
lems with partitions of equal sizes. The constraint of having equally-sized partitions is
a limitation to the algorithms’ application to real-life issues. In this paper, we have re-
laxed the constraint of having equally-sized partitions in OMA schemes. We propose a
novel solution that tackles partitioning problems, where the partition sizes can be both
equal and/or unequal, but when the cardinalities of the true partitions have a GCD. We
achieve this by invoking a strategy that has been earlier used in the theory of automata,
namely that of mapping the machine’s state space onto a larger space. In essence, we
have presented the design, implementation, and testing of a novel OMA-based method
that can be implemented with the OMA itself, and also in all of its existing variants.
The scheme has also been rigorously tested. This paper is a novel contribution and
constitutes the first reported OMA-based solution for NEPPs.

References

1. Berend, D., Tassa, T.: Improved Bounds on Bell Numbers and on Moments of Sums of
Random Variables. Probability and Mathematical Statistics 30(2), 185–205 (2010)

2. Gale, W., Das, S., Yu, C.T.: Improvements to an Algorithm for Equipartitioning. IEEE Trans-
actions on Computers 39(5), 706–710 (May 1990). https://doi.org/10.110912.53585

3. Oommen, B. J., Ma, D.C.Y.: Deterministic Learning Automata Solutions to the Equiparti-
tioning Problem. IEEE Transactions on Computers 37(1), 2–13 (1988)

4. Oommen, B. J., Ma, D.C.Y.: Stochastic Automata Solutions to the Object Partitioning Prob-
lem. The Computer Journal 35, A105–A120 (1992)

5. Omslandseter, R. O.: Learning Automata-Based Object Partitioning with Pre-Specified Car-
dinalities. M.S. thesis, University of Agder, Norway (2020)

6. Omslandseter, R.O., Jiao, L., Liu, Y., Oommen, B. J.: User Grouping and Power Allocation
in NOMA Systems: A Reinforcement Learning-Based Solution. In: Fujita, H., Fournier-
Viger, P., Ali, M., Sasaki, J. (eds.) Trends in Artificial Intelligence Theory and Applications.
Artificial Intelligence Practices. pp. 299–311. Lecture Notes in Computer Science, Springer
International Publishing, Cham (2020). https://doi.org/10.1007978-3-030-55789-8 27

7. Shirvani, A.: Novel Solutions and Applications of the Object Partitioning Problem. Ph.D.
thesis, Carleton University, Ottawa (2018)

8. Shirvani, A., Oommen, B. J.: On Utilizing the Pursuit Paradigm to Enhance the
Deadlock-Preventing Object Migration Automaton. In: 2017 International Confer-
ence on New Trends in Computing Sciences (ICTCS). pp. 295–302 (Oct 2017).
https://doi.org/10.1109ICTCS.2017.40

9. Shirvani, A., Oommen, B. J.: On Enhancing the Object Migration Au-
tomaton Using the Pursuit Paradigm. Journal of Computational Sci-
ence 24, 329–342 (Jan 2018). https://doi.org/10.1016/j.jocs.2017.08.008,
http://www.sciencedirect.com/science/article/pii/S1877750317302259

10. Shirvani, A., Oommen, B. J.: On Invoking Transitivity to Enhance the Pursuit-
Oriented Object Migration Automata. IEEE Access 6, 21668–21681 (2018).
https://doi.org/10.1109/ACCESS.2018.2827305

11. Shirvani, A., Oommen, B. J.: On Enhancing the Deadlock-Preventing Object Migration
Automaton Using the Pursuit Paradigm. Pattern Analysis and Applications (Apr 2019).
https://doi.org/10.1007/s10044-019-00817-z

12. Yazidi, A., Granmo, O.C., Oommen, B. J.: Service Selection in Stochastic Environments: A
Learning-Automaton Based Solution. Applied Intelligence 36(3), 617–637 (2012)

