
Object Migration Automata for Non-Equal Partitioning

Problems with Known Partition Sizes

Rebekka Olsson Omslandseter1, Lei Jiao1, and B. John Oommen1,2

1 University of Agder, Grimstad, Norway
2 Carleton University, Ottawa, Canada

{rebekka.o.omslandseter,lei.jiao}@uia.no, oommen@scs.carleton.ca

Abstract. Solving partitioning problems in random environments is a classic and

challenging task, and has numerous applications. The existing Object Migration

Automaton (OMA) and its proposed enhancements, which include the Pursuit

and Transitivity phenomena, can solve problems with equi-sized partitions. Cur-

rently, these solutions also include one where the partition sizes possess a Great-

est Common Divisor (GCD). In this paper, we propose an OMA-based solution

that can solve problems with both equally and non-equally-sized groups, without

restrictions on their sizes. More specifically, our proposed approach, referred to

as the Partition Size Required OMA (PSR-OMA), can solve general partition-

ing problems, with the only additional requirement being that the unconstrained

partitions’ sizes are known a priori. The scheme is a fundamental contribution in

the field of partitioning algorithms, and the numerical results presented demon-

strate that PSR-OMA can solve both equi-partitioning and non-equi-partitioning

problems efficiently, and is the only known solution that resolves this problem.

Keywords: Learning Automata · Object Migration Automata · Object Partition-

ing with Non-Equal Sizes

1 Introduction

What is Object Partitioning: In the Object Partitioning Problem (OPP), we aim to

divide a set of “objects” into groups in an optimal manner based on some hidden or

unknown criterion. The “object” itself can be the “abstract” representation of a true,

real-life data entity. The grouping criterion is always unknown, and only known to an

Oracle, which provides information to the system that processes interactions with the

real world. A sub-problem and constrained version of the OPP is the Equi-Partitioning

Problem (EPP) [5], where all the partitioned groups have an equal size. The family of

Object Migration Automata (OMA) algorithms, which are Learning Automata (LA)-

based solutions, were first presented in [5, 6]. They could solve EPPs two orders of

magnitudes faster than the previously-reported solutions. Over the decades, enhance-

ments have emerged, and include the Enhanced OMA (EOMA) [3], the Pursuit EOMA

(PEOMA) [13], and the Transitivity PEOMA (TPEOMA) [12]. In [11], we introduced

a solution to the Non-Equal-Partitioning Problem (NEPP) where the sizes of the parti-

tions have a non-unity Greatest Common Divisor (GCD), namely the GCD-OMA.

Although partitioning problems are akin to the related field of clustering, which in-

volves Machine Learning (ML) algorithms like, e.g., K-Means, spectral clustering, and

2 R. Omslandseter et al.

Gaussian mixtures, it is crucial to understand the distinct aspects of OPPs, and the way

by which OMA solve them. While clustering problems, often, have a relation between

the objects that can be represented through distance metrics, which in, turn, are required

“up-front”, OMA algorithms are based on their ability to process queries (consisting,

for example, of object pairs) presented along time. Consequently, OMA algorithms do

not require complete information of the “up-front” inter-relationships between the ob-

jects themselves. Thus, OMA algorithms can follow even the stochastic nature of the

relations, over time. We emphasize that the true nature of such a partitioning problem

is always unknown. However, the presented queries consist of objects that stochasti-

cally belong together, or should be considered to be together, for some underlying and

unknown reasons. The OMA uses this information to infer the groupings.

Applications of Partitioning: One of the numerous applications (extensively given

in [9]) for the OMA is cryptanalysis. In [7] and [8], the OMA was employed to solve

a cipher using only plaintext and its corresponding ciphertext. This solution achieved a

90% cost reduction compared to its competitors. The authors of [4] proposed an OMA-

based scheme to create an image database using conceptually similar images. Recently,

the authors of [10] proposed an OMA-based algorithm for mobile radio communica-

tions, by partitioning users in a Non-Orthogonal Multiple Access (NOMA) system.

Advancement from the State-of-the-Art: The GCD-OMA represents the state-of-the-

art. It rendered the OMA capable of solving NEPPs with specially-constrained group

cardinalities. However, this solution cannot handle general partitioning, due to the GCD

requirement on the partition sizes. This paper presents a novel solution, namely the so-

called Partition Size Required OMA (PSR-OMA), to EPPs and NEPPs, which does

not require a non-unity GCD between the partition sizes. The PSR-OMA can solve

partitioning problems with partitions of arbitrary equal or non-equal sizes. The change

between the existing OMA solutions and the PSR-OMA is that the latter can adaptively

swap the partition sizes. The algorithm still requires us to provide information about the

partition sizes, and hence its name, the PSR-OMA. We emphasize that one can use the

PSR-OMA with any of the already-existing OMA’s “incarnations” and that the PSR-

OMA stands apart from the GCD-OMA. The reader should also note that proposing a

solution to both EPPs and NEPPs is the same as offering a solution to OPPs, but that

we use the EPP and NEPP terminologies to differentiate between the two.

Contributions of this Paper: The contributions of this paper are as follows:

1. We present the novel PSR-OMA scheme applicable for both EPPs and NEPPs,

which can be employed with all the existing versions of the OMA algorithms.
2. We demonstrate the convergence and efficiency properties of the PSR-OMAs, show-

ing that it can be used for further applications.

The remainder of the paper is organized as follows. In Section 2, we formulate the na-

ture of the partitioning problems considered in this paper and analyze their complexity.

In Section 3, we present the PSR-OMA algorithm in detail. The performance of the

proposed algorithm is presented in Section 4, and conclude the paper in Section 5.

2 Problem Formulation

We now formalize the partitioning problem as follows: Our problem consists of O ob-

jects, where the set of objects is denoted by O = {o1, o2, ..., oO}. We want to divide

PSR-OMA Solution to Non-Equal Partitioning Problems 3

the O objects into K disjoint partitions. The set of partitions is indicated by K, where

K = {̺1, ̺2..., ̺K}. For example, partition ̺3 might consist of o4, o5 and o6, denoted

by ̺3 = {o4, o5, o6}. The problem, however, is that the identities of the objects that

should be grouped together are unknown, but are based on a specific but hidden crite-

rion, known only to an “Oracle”, referred to as the “State of Nature”. The Oracle noisily

presents the objects that should be together in pairs, where the degree of noise specifies

the difficulty of the problem. Thus, we assume that there is an true partitioning of the

objects, ∆∗, and the solution algorithm determines a partitioning, say ∆+. The solution

is optimal if ∆+ = ∆∗. The initialization of the objects is indicated by ∆0.

The Combinatorics of the OPP: The combinatorial nature of partitioning leads to the

complexity of the issues related to the existing OMA and the PSR-OMA algorithms.

In OPPs, queries are encountered as time proceeds, and we do not have a performance

parameter that directly indicates a particular partitioning’s fitness. Thus, we cannot per-

form an exhaustive search to determine the optimal partitioning of an OPP.

Bell Numbers: An unordered Bell number gives the number of possible partitions of

a set of objects. In OPPs, we assume that the ordering of the objects does not matter.

Consequently, the Bell number is of an unordered type, and we only consider whether

the correct objects are together. Here, we want to partition O objects into K non-empty

sets, where each object can only be inside a single group. Accordingly, we have BO par-

titioning options, where BO is the O-th Bell number, and the O-th Bell number is given

by BO =
∑O

k=1

{

O
k

}

, with
{

O
k

}

being the Stirling numbers of the second kind [1], and

k ∈ {1, ..., O}. The O-th Bell number obeys:
(

O
e lnO

)O
< BO <

(

O
e1−λ lnO

)O
, which

has an exponential behavior for O and λ > 0. However, in our case, the partitioning

is pre-defined, independent of whether we have an EPP or an NEPP. Consequently,

we need to consider the different combinations of objects in the various partitions.

For the partitions, where each of the groups has the possibility to consist of a differ-

ent number of objects, the number of possible combinations, W , can be expressed as

W = O!
ρ1!ρ2!ρ3!...ρK ! , where ρk, k ∈ {1, ...,K}, is the number of objects in each parti-

tion [2]. Further, ρ1 is the number of objects in ̺1, ρ2 the number of objects in ̺2 and so

on. Note that in the given expression for W , none of the numbers of objects are equal,

and thus, ρ1 6= ρ2 6= ρ3 6= ... 6= ρK and ρ1 + ρ2 + ρ3 + ...+ ρK = O. For partitions in

which some of the partition sizes are equal, we have W = O!
(u!)xx!(v!)yy!...(w!)zz! , where

we have x groups of size u, y groups of size v, and so on for all groups and sizes, im-

plying that, in this case, ux + vy + ... + wz = O. Furthermore, when all the groups

are of equal size, we can express W as: W = O!

(O
K

!)
K
K!

, where O
K

is an integer. As a

result of the above, we observe that the solution space for an EPP or an NEPP has a

combinatorial complexity.

Complexity of EPPs/NEPPs: EPPs and NEPPs have fewer possible combinations than

a Bell number because the partition sizes are specified and known. However, the in-

teractions between the Environment and the algorithm may be contaminated by noise.

This means that the queries may include misleading messages. Thus, due to the sys-

tem’s stochastic nature, the problem is more complicated than just finding an optimal

partitioning for a given time instant. The optimal partitioning is defined stochastically.

Evaluation Criteria: As in [11], γ will be the accuracy of the partitioning determined

by the algorithm. We calculate γ by dividing the number of object pairs in ∆+ that

4 R. Omslandseter et al.

exist in ∆∗ with the total number of possible correct object pairs in ∆∗. Clearly, when

∆+ = ∆∗, the scheme will have 100% accuracy, which implies an optimal solution.

We denote the number of queries generated from the Environment by ΨQ, and let Ψ be

the number of queries that the LA has considered. We also use symbol ΨT to denote the

number of transitivity pairs made in the TPEOMA variant. Note that Ψ = ΨQ for the

OMA and the EOMA variants.

3 The Proposed PSR-OMA Scheme

The newly-proposed PSR-OMA can handle partitioning problems with partitions of ar-

bitrary non-equal or equal sizes. The primary difference between PSR-OMA and the ex-

isting OMA solutions is that PSR-OMA can adaptively swap the partition sizes through-

out its operation. In designing it, we encounter some obstacles that are not present for

the EPP and the GCD-OMA solution of [11]. Specifically, when we have partitions of

pre-specified cardinalities, the objects can become stuck in situations that we refer to as

a Standstill Situations3. Such a “Standstill Situation” is one in which the objects become

“stuck” in a loop that might not even be resolved after an infinite time-frame.

Standstill Situation: In this situation, the LA cannot reach convergence due to the con-

straints imposed by the pre-specified cardinalities. Also, once the partitions have been

initialized with their respective number of objects, these allocations will, without mod-

ification, be the same. Thus, the objects of a smaller partition, that randomly happen

to be within a larger partition, prevent the excess objects in that partition from being

grouped with the objects that they, in reality, should be together with, and traps them.

Because the traditional OMA algorithms need to have the same number of objects in

each partition, our initial belief was that a new initialization process was the only com-

ponent needed to solve the NEPP. However, as discussed above, the Standstill Situation

is a serious issue, and the difficulty associated with solving NEPPs is more intricate.

We can explain this with an example where we have a partitioning problem with

three partitions. We have room for three objects in one partition, three objects in the

second, and two objects in the third. Consequently, we have eight objects and three par-

titions. Let us assume that there are four states associated with each partition, and that

the true partitioning is given by ∆∗ = {{o1, o2, o3}, {o4, o5, o6}, {o7, o8}}. Consider

the case in which we use the existing EOMA, and we randomly initialize the objects

into the different boundary states. After considering an arbitrary number of queries, the

EOMA might be stuck in a Standstill Situation, as visualized in Fig. 1.

We observe that in Fig. 1, o4 is stuck in ̺1. o4 will, most likely, depending on the

level of noise in the system, be queried together with o5 or o6. Consequently, o4 will be

swapped with o5 or o6 according to the policy schemes of the EOMA, since our starting

premise is that we specify the cardinalities a priori, and make no additional modifica-

tions to the algorithm. The swapping process will then continue until the objects are

randomly moved out of ̺1 and made accessible by the whole group of o4, which makes

convergence unlikely to occur within a reasonable time-frame.

3 The Standstill Situation must not be confused by the Deadlock Situation previously considered

by the authors of [3].

PSR-OMA Solution to Non-Equal Partitioning Problems 5

1 2

%1

3 4

8

7

6

%2

5

12 11

%3

10 9

o7 o8 o4

o5 o6

o1 o3o2

Fig. 1. Example of objects stuck in a Standstill Situation.

The reader should note that the scenario depicted in Fig. 1 is not merely included

for explanatory purposes. Rather, this represents an actual Standstill Situation which

can occur for many different distributions of objects, and for other courses of action.

Thus, sometimes the OMA might be able to converge due to the randomness in the

initialization process and the levels of noise in the system. However, without changing

the policy schemes according to the constraints imposed by NEPPs, we can have OMA

algorithms that perform poorly by yielding slow convergence, or by not even attaining

to convergence at all. Specifically, if the queries provided by the Environment are noise-

free, upon entering a Standstill Situation, an OMA will not be able to converge at all.

On the contrary, if some queries are noisy, the OMA algorithm could resolve the issue,

and be able to ultimately converge. However, the convergence rate would be very slow.

Understandably, the Standstill Situation becomes more critical as more partitions

are introduced to the OMA algorithm, and its effect increases with the difference in the

number of objects in each partition. Thus, when we have more possibilities for a smaller

partition to be stuck in a larger partition, the complexity for solving the problem with

pre-specified cardinalities increases, and the probability of the OMA algorithm having a

slow convergence rate, or not converging at all, correspondingly increases. To mitigate

this, the PSR-OMA (which deviates from the OMA) is designed in detail below. In

the interest of brevity, the algorithms for the OMA Reward, the OMA Penalty and the

EOMA Penalty are not given here. They can be found in [9] and [11], respectively.

Proposed Functionality: The PSR-OMA can be seen to be an extension of the existing

OMA algorithms. Its first phase concerns the initialization of the objects. Because the

fundamental operation of the OMA and the EOMA algorithms are different, these two

methods will be considered separately. To achieve this, we first remember that for the

OMA, the objects are distributed randomly across the KS states of the LA, while the

objects in the EOMA are distributed randomly across the LA’s K boundary states. For

both the algorithms, the difference due to the pre-specification of cardinalities is that

we need to distribute the objects among the partitions of the automaton according to

the pre-specified number of objects in each partition. The new functionality is similar,

independent of whether the group sizes are equal or unequal.

6 R. Omslandseter et al.

Algorithm 1 PSR Process for Standstill Situation

Input:

– The states of all objects θl, where l ∈ {1, 2, ..., O}.
– The query Q = 〈oi, oj〉.
– ρk for all k ∈ {1, 2, ..., K}.
– The boundary states, Bk of all k ∈ {1, 2, ...,K}.

Output:

– The next states of oi, oj and other affected objects.

For ease of explanation, let us assume that oi is in the innermost state of ̺i and oj is in the

boundary state of ̺j .

1: if moving oj to ̺i will let our system keep the specified sizes then

2: θj = θi // Move oj to ̺i
3: else // If more than one object is required to fulfill all ρk
4: for all objects ox in ̺j \ oj do // All objects in ̺j except oj
5: if θx = θj or θx = θj − 1 then // If ox is in (or nearest to) the boundary state

6: I ← ox // I is the set of possible objects to move

7: end if

8: end for

9: if |̺i| > |̺j | then // There are more objects in ̺i than in ̺j
10: ν = |̺i| − |̺j | // |̺i| is the number of objects in ̺i
11: else if |̺i| < |̺j | then // There are more objects in ̺j than in ̺i
12: ν = |̺j | − |̺i|
13: else // This means |̺i| = |̺j |
14: Continue Process Penalty // Continue with the remaining statements in Alg. 2/3

15: end if

16: if |I|+ 1 ≥ ν then // The number of objects in I are bigger than (or equal to) ν

17: Randomly select ν − 1 objects from I and put them in a new set J .

18: if |̺i|+ ν and |̺j | − ν fulfills all ρk then // If the size requirement is fulfilled

19: θj = Bi // Move oj to boundary of ̺i
20: for all objects oz in J do

21: θz = Bi // Move objects in J to boundary state of ̺i
22: end for

23: end if

24: else // It was not possible to make a legal swapping of objects

25: Continue Process Penalty // Continue with the remaining statements in Alg. 2/3

26: end if

27: end if

In the second phase of the PSR-OMA, we try to mitigate the Standstill Situation

by introducing a new policy when the system receives a Penalty. This occurs when an

object in a query is in a boundary state, and at the same time, the other object is in the

innermost state of another partition. When such a situation occurs, we check the number

of objects in the partition of the object in the innermost state. We, thereafter, move the

boundary object to the innermost object’s partition if such a transition fulfills the size

requirements for all the partitions. If such a transition requires more objects to fulfill the

size requirements, and if there are more objects in the boundary or in the second nearest

PSR-OMA Solution to Non-Equal Partitioning Problems 7

1 2

%1

3 4

8

7

6

%2

5

12 11

%3

10 9

o7 o8 o4

o5 o6

o1 o3o2

o4

Fig. 2. Example of the Penalty functionality for the Standstill Situation.

state to the boundary of the boundary object’s partition, we check the partition sizes and

move the required number of objects from these states (chosen randomly) together with

the boundary object, to the innermost object’s partition. This solution to the Standstill

Situation is depicted in Fig. 2, where o4 is allowed to move to the partition of o5 and

o6, without requiring any replacement.

Migration of Objects: We emphasize that when we move a single object according

to the new policy, we move it to the same state as the queried object in the innermost

state. If we move more than a single object, we might choose some objects in the pro-

cess that, in reality, should not be changing its partition. Thus, when moving more than

a single object in this process, we will move them to the boundary state of the inner-

most object’s partition. In this way, we compromise between the scheme’s convergence

rate and accuracy. The new Penalty function is presented in Algorithm 1. Observe that

for Algorithm 1, we introduce the parameter θBk
, which indicates the boundary state

of partition k, k ∈ {1, 2, ...,K}. Additionally, we assume that the distribution of the

randomly-chosen objects in the scheme is uniform. If we are not able to move any ob-

jects in the new Penalty, we check the rest of the Penalty statements. Thus when, for

example, an object is in an innermost state, the other is in a boundary state, and we are

not able to swap partition sizes, we handle them as if one object is in the boundary and

the other object not being in the boundary according to the EOMA’s existing rules.

By introducing the new functionality, the LA can actively swap the cardinalities

and partition relations while it is executing its operation. An example of this function-

ality, where one object changes its partition without replacement, and thus, changes the

partition size of the partition it moves to, is depicted in Fig. 2.

Implementation Details: The PSR-OMA includes a new initialization of objects. Thus,

the objects need to initialized into the partitions according to their pre-specified sizes.

This should be done randomly. The second part of the new functionality is invoked as

the machine encounters a certain placement of the objects and receives a Penalty. More

specifically, the new functionality comes into play when the LA receives a Penalty

and one queried object is in the innermost state, and the other queried object is in the

boundary state. Consequently, if moving the boundary object, or more objects from

the partition of the boundary object, fulfills the size requirements for the partitions,

8 R. Omslandseter et al.

Algorithm 2 PSR-OMA Process Penalty

Input:

– The query Q = 〈oi, oj〉, and ρk for all k ∈ {1, 2, ..., K}.
– The states of the objects in Q ({θi, θj}).

Output:

– The next states of oi, oj and other affected objects.

1: if θi mod S 6= 0 and θj mod S 6= 0 then // Neither are in boundary states

2: θi = θi + 1
3: θj = θj + 1
4: else if θi mod S = 1 and θj mod S = 0 then // oi is in innermost state

5: PSR Process for Standstill Situation (Algorithm 1)

6: else if θi mod S = 0 and θj mod S = 1 then // oj is in innermost state

7: PSR Process for Standstill Situation (Algorithm 1)

8: else if θi mod S 6= 0 and θj mod S = 0 then // oj is in boundary state

9: θi = θi + 1
10: else if θi mod S = 0 and θj mod S 6= 0 then // oi is in boundary state

11: θj = θj + 1
12: else // Both are in boundary states

13: temp = θi or θj // Store the state of Moving Object, oi or oj
14: θi = θj or θj = θi // Put Moving Object and Staying Object together

15: ol =unaccessed object in group of Staying Object closest to boundary

16: θl = temp // Move ol to the old state of Moving Object

17: end if

a legal swapping of object(s) from the boundary object’s partition to the innermost

object’s partition is executed. Consequently, the LA is able to change the partition sizes

throughout its operation, as long as we, in total, always maintain the pre-specified sizes.

By way of example, consider the scenario that we have a problem with the pre-specified

sizes of 5, 6 and 7. If ̺1 changes from being the size of 5 to 6, the earlier partition with

size 6 needs to become the 5-sized one. By operating in this manner, we will always

maintain the partition sizes as being 5, 6 and 7.

The reader should observe that the proposed functionality can be directly imple-

mented into the currently-existing algorithms by merely changing some of their already-

established behaviors. To crystallize matters for the new Penalty functionality, the pro-

posed Penalty operations for the OMA and the EOMA are given in Algorithm 2 and

Algorithm 3 respectively.

To summarize, for the PSR-OMA its Penalty functionality is given by Algorithm 2,

while the rest of the established method remains the same. For the PSR-EOMA, the

Penalty scheme is given by Algorithm 3. Again, the other functionalities of the PSR-

EOMA behavior are similar to that of the existing EOMA. Additionally, the function-

ality of “PSR”-based functionalities can be easily extended to the PEOMA and the

TPEOMA, yielding what we will refer to as the PSR-PEOMA and PSR-TPEOMA re-

spectively. The details of these LA is trivial and not included to avoid repetition.

PSR-OMA Solution to Non-Equal Partitioning Problems 9

Algorithm 3 PSR-EOMA Process Penalty

Input:

– The query Q = 〈oi, oj〉, and ρk for all k ∈ {1, 2, ..., K}.
– The states of the objects in Q ({θi, θj}).

Output:

– The next states of oi, oj and other affected objects.

1: if θi mod S 6= 0 and θj mod S 6= 0 then // Neither are in boundary states

2: θi = θi + 1
3: θj = θj + 1
4: else if θi mod S = 1 and θj mod S = 0 then // oi is in innermost state

5: PSR Process for Standstill Situation (Algorithm 1)

6: else if θi mod S = 0 and θj mod S = 1 then // oj is in innermost state

7: PSR Process for Standstill Situation (Algorithm 1)

8: else if θi mod S 6= 0 and θj mod S = 0 then // oj is in boundary state

9: θi = θi + 1
10: temp = θj // Store the state of oj
11: l = index of an unaccessed object in group of oi closest to the boundary

12: θj = θi
13: θl = temp

14: else if θi mod S = 0 and θj mod S 6= 0 then // oi is in boundary state

15: θj = θj + 1
16: temp = θi // Store the state of oi
17: l = index of an unaccessed object in group of oj closest to the boundary

18: θi = θj
19: θl = temp

20: else // Both are in boundary states

21: temp = θi or θj // Store the state of Moving Object, oi or oj
22: θi = θj or θj = θi // Put Moving Object and Staying Object together

23: ol =unaccessed object in group of Staying Object closest to boundary

24: θl = temp // Move ol to the old state of Moving Object

25: end if

4 Numerical Results

In this section, we demonstrate the performance of the PSR-OMA, both for an EPP

and two NEPPs. Section 4.1 demonstrates results for an EPP, and it is compared with

other existing OMA algorithms. Section 4.2 displays the PSR’s performance for NEPPs,

which cannot be compared with any of the existing OMA algorithms due to their lim-

itation of requiring equally-sized partitions. Our simulations included “Noise”, which

represents the proportion of queries with objects that did not belong together in ∆∗.

Such queries present disinformation to the LA, and indeed, the hardness of the problem

(the Environment) increases with the level of noise. Therefore, we use:

Noise = 1− Pr{oi, oj accessed together} = 1−Πoi,oj , for oi, oj ∈ ∆∗, ∀i, j,

as the probability measurement for the LA being presented with a noisy query in the

simulations [11], to demonstrate its performance in harder Environments. Consequently,

Πoi,oj is the probability of oi and oj being accessed together and being together in ∆∗.

10 R. Omslandseter et al.

4.1 Existing OMA and PSR-OMA for an EPP

Let us first consider the simulations for an EPP where we simulated a partitioning prob-

lem with 30 objects to be grouped into three partitions, implying that O
K

= 10. Table 1

shows the simulation results for different existing OMA types, and Table 2 presents

results obtained for the PSR-OMA types.

One of the main differences between the PSR-EOMA and the existing EOMA is that

it considers the scenario when a single object in the query is in the boundary, and the

other is in the innermost state of another partition. However, because in problems with

equally-sized partitions, no legal swapping of objects is possible without replacement,

the new policy does not apply to these problems. We thus expect the PSR-OMA to yield

results similar to those of the existing OMA types. The results obtained in Tables 1 and 2

verify this hypothesis, as the existing OMA types and the PSR-OMA types have similar

performance for the different noise levels.

Note that for the PEOMA and TPEOMA, we have the κ value indicating the number

of queries that have to be processed before we start filtering the queries before letting

the LA process them (i.e., deploying the Pursuit concept) and making transitivity pairs.

Additionally, we have τ , indicating the threshold for whether a query should be consid-

ered or not [12, 13].

Table 1. Statistics of existing OMA types for a case involving 30 objects, 3 partitions and 10

states averaged over 1,000 experiments.

Type Noise γ ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT κ τ

EOMA 0% 100% 100% 0% 305.36 305.36 - - -

EOMA 10% 100% 100% 0% 425.08 425.08 - - -

PEOMA 0% 100% 100% 0% 307.42 309.71 - 270 0.1
O

PEOMA 10% 100% 100% 0% 398.11 417.58 - 270 0.1
O

TPEOMA 0% 100% 100% 0% 369.55 275.46 96.28 270 0.2
O

TPEOMA 10% 100% 100% 0% 555.63 316.91 253.81 270 0.2
O

Table 2. Statistics of PSR-OMA types for a case involving 30 objects, 3 partitions and 10 states

averaged over 1,000 experiments.

Type Noise γ ∆+ = ∆∗ Not Conv. Ψ ΨQ ΨT κ τ

PSR-EOMA 0% 100% 100% 0% 304.44 - - - -

PSR-EOMA 10% 100% 100% 0% 417.89 - - - -

PSR-PEOMA 0% 100% 100% 0% 308.65 310.91 - 270 0.1
O

PSR-PEOMA 10% 100% 100% 0% 393.14 411.80 - 270 0.1
O

PSR-TPEOMA 0% 100% 100% 0% 362.26 274.16 90.08 270 0.2
O

PSR-TPEOMA 10% 100% 100% 0% 551.48 315.43 250.13 270 0.2
O

4.2 PSR-OMA for NEPPs

We now demonstrate the performance of the PSR-EOMA for general NEPPs. Clearly,

the existing OMA types cannot solve these problems because they do not have equally-

sized partitions. Further, the reader should observe that unlike the problems presented

for the GCD-OMA in [11], these do not possess a non-unity GCD requirement. We

configured 106 as the maximum number of queries.

We considered two partitioning problems in our simulations. The first problem

had “many partitions”, and the second problem had “big partition size differences”.

PSR-OMA Solution to Non-Equal Partitioning Problems 11

These problems are referred to as NEPP 1 and NEPP 2, respectively. The first problem,

NEPP 1, has ρ1 = 4, ρ1 = 5, ρ2 = 6, ρ3 = 7, and ρ4 = 8. The second problem,

NEPP 2, has ρ1 = 4, ρ2 = 9, and ρ3 = 13. Note that only results for PSR-EOMA are

presented here due to space limitations.

Results for the PSR-EOMA for NEPP 1: Let us first consider PSR-EOMA’s perfor-

mance for NEPP 1. In Table 3, the percentage of experiments that discovered the op-

timal partitioning increases from 91% to 98% and 99% for 10%, 20% and 30% noise,

respectively. The PSR-OMA was able to find accurate solutions that were not far from

the optimal ones. The accuracy level increased together with the noise level. With in-

creased noise levels, the objects were forced to move in “unexpected ways”, which

could have contributed to discovering the optimal partitioning with a higher probabil-

ity. Nevertheless, independent of the noise level, we observed that the average accuracy

(γ) was at the same level. Combining the results for the accuracy and the percentage of

finding the optimal partitioning, we understand that for the non-optimal solutions, there

were only one or two objects in the incorrect partitioning as the LA converged.

Table 3. Statistics of PSR-EOMA for NEPP 1, with different noise levels and 6 states, averaged

over 100 experiments.

Noise γ ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)

10% 99.25% 91.0% 0% 1,704.01

20% 99.83% 98.0% 0% 3,379.18

30% 99.95% 99.00% 0% 22,631.58

Results with PSR-EOMA for NEPP 2: In Table 4, we present the statistics for simu-

lations for NEPP 2 with PSR-EOMA. From these results, we see that the method again

had better performance in terms of accuracy and convergence as the noise increased.

For 30% noise compared with 20% noise, the required number of queries was less than

halved. Ironically, the noise seemed to increase the algorithm’s ability to reach conver-

gence for NEPP 2.

Table 4. Statistics of PSR-EOMA for NEPP 2, with different noise levels and 6 states, averaged

over 100 experiments.

Noise γ ∆+ = ∆∗ Not Conv. Conv. Rate (Ψ = ΨQ)

10% 97.11% 90.62% 36% 134,405.40

20% 100% 100% 0% 44,974.36

30% 100% 100% 0% 4,764.84

As the results above indicate, the PSR-EOMA struggled for partitioning problems

with lower noise levels as the difference between the partition sizes increased, as for

NEPP 1. For such cases, the noise helps the algorithm continue “exploring” by keeping

objects in the outer states. This happens when all the objects, except some, are correctly

placed. In that case, they might be introduced to a noisy query that could help them get

“un-stuck”. For more manageable problems, like for NEPP 1, the noise has the opposite

effect by increasing its number of required queries. Indeed, for problems with smaller

differences between the partition sizes, the noise complicated the LA’s convergence by

misleading it. For both issues, in general, we attained relatively high accuracy levels.

12 R. Omslandseter et al.

5 Conclusion

Existing algorithms within the OMA paradigm can only solve partitioning problems

with partitions of equal sizes or problems with a GCD between the partition sizes. In

this paper, we have proposed a solution that can solve NEPPs in general with known

partition sizes. Our experimental results show that the proposed algorithm has compa-

rable performance to the existing algorithms regarding solving EPPs and that it can also

solve NEPPs accurately. As far as we know, this is the only known solution that resolves

this problem.

References

1. Berend, D., Tassa, T.: Improved Bounds on Bell Numbers and on Moments of Sums of

Random Variables. Probability and Mathematical Statistics 30(2), 185–205 (2010)

2. Brualdi, R.A.: Introductory Combinatorics. Pearson, 5th edition edn.

3. Gale, W., Das, S., Yu, C. T.: Improvements to an Algorithm for Equipartitioning. IEEE Trans-

actions on Computers 39(5), 706–710 (May 1990). https://doi.org/10.1109/12.53585

4. Oommen, B. J., Fothergill, C.: Fast Learning Automaton-Based Image Examination and Re-

trieval. The Computer Journal 36(6), 542–553 (1993)

5. Oommen, B. J., Ma, D. C. Y.: Deterministic Learning Automata Solutions to the Equiparti-

tioning Problem. IEEE Transactions on Computers 37(1), 2–13 (1988)

6. Oommen, B. J., Ma, D. C. Y.: Stochastic Automata Solutions to the Object Partitioning

Problem. The Computer Journal 35, A105–A120 (1992)

7. Oommen, B. J., Zgierski, J. R.: A Learning Automaton Solution to Breaking Substitution

Ciphers. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(2), 185–192

(1993) https://doi.org/10.1109/34.192492

8. Oommen, B. J., Zgierski, J. R.: Breaking Substitution Cyphers Using Stochastic Automata.

IEEE Transactions on Pattern Analysis and Machine Intelligence 15(2), 185–192 (1993)

https://doi.org/10.1109/34.192492

9. Omslandseter, R. O.: Learning Automata-Based Object Partitioning with Pre-Specified Car-

dinalities. 178 (2020), University of Agder,

10. Omslandseter, R. O., Jiao, L., Liu, Y., Oommen, B. J.: User Grouping and Power Allocation

in NOMA Systems: A Reinforcement Learning-Based Solution. In: IEA/AIE 2020

11. Omslandseter, R. O., Jiao, L., Oommen, B. J.: A Learning-Automata Based Solution for

Non-Equal Partitioning: Partitions with Common GCD Sizes. In: IEA/AIE 2021

12. Shirvani, A., Oommen, B. J.: On Invoking Transitivity to Enhance the Pursuit-

Oriented Object Migration Automata. IEEE Access 6, 21668–21681 (2018).

https://doi.org/10.1109/ACCESS.2018.2827305

13. Shirvani, A., Oommen, B. J.: On Enhancing the Deadlock-Preventing Object Migration

Automaton Using the Pursuit Paradigm. Pattern Analysis and Applications (Apr 2019).

https://doi.org/10.1007/s10044-019-00817-z

