
Microprocessors and Microsystems 103 (2023) 104949

A
0

C
2
S
a

b

A

K
M
T
A
P
F

1

M
u
l
c
f
p
f
i
t
r

✩

i
i
e

A

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

onvolutional Tsetlin Machine-based Training and Inference Accelerator for
-D Pattern Classification✩,✩✩

vein Anders Tunheim a,∗, Lei Jiao a, Rishad Shafik b, Alex Yakovlev b, Ole-Christoffer Granmo a

Centre for Artificial Intelligence Research, University of Agder, Grimstad, Norway
Microsystems Group, School of Engineering, Newcastle University, Newcastle upon Tyne, UK

R T I C L E I N F O

eywords:
achine learning
setlin machine
ccelerator
attern classification
PGA

A B S T R A C T

The Tsetlin Machine (TM) is a machine learning algorithm based on an ensemble of Tsetlin Automata (TAs) that
learns propositional logic expressions from Boolean input features. In this paper, the design and implementation
of a Field Programmable Gate Array (FPGA) accelerator based on the Convolutional Tsetlin Machine (CTM)
is presented. The accelerator performs classification of two pattern classes in 4 × 4 Boolean images with a
2 × 2 convolution window. Specifically, there are two separate TMs, one per class. Each TM comprises 40
propositional logic formulas, denoted as clauses, which are conjunctions of literals. Include/exclude actions
from the TAs determine which literals are included in each clause. The accelerator supports full training,
including random patch selection during convolution based on parallel reservoir sampling across all clauses.
The design is implemented on a Xilinx Zynq XC7Z020 FPGA platform. With an operating clock speed of
40 MHz, the accelerator achieves a classification rate of 4.4 million images per second with an energy per
classification of 0.6 𝜇J. The mean test accuracy is 99.9% when trained on the 2-dimensional Noisy XOR dataset
with 40% noise in the training labels. To achieve this performance, which is on par with the original software
implementation, Linear Feedback Shift Register (LFSR) random number generators of minimum 16 bits are
required. The solution demonstrates the core principles of a CTM and can be scaled to operate on multi-class
systems for larger images.
. Introduction

Recently, the Tsetlin Machine (TM) was proposed as an alternative
achine Learning (ML) model [1]. The TM benefits from natural logic

nderpinning and low-complexity, as its foundation is propositional
ogic that leads to primarily Boolean operations. This operational con-
ept of TM is hardware (HW)-friendly, and makes it highly suitable
or low-power implementations [2]. The TM has shown competitive
erformance on several benchmarks in terms of accuracy, memory
ootprint and learning speed. It has been tested on tabular data [1],
mages [3,4], regression [5] and natural language [6,7]. In addition,
he TM is highly interpretable [6–8], which makes it promising for
igorous applications, such as medical and law related solutions. The
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✩ This paper is a revised and significantly extended version of a paper presented at the First International Symposium on the Tsetlin Machine (ISTM 2022),

n June 2022, in Grimstad, Norway, (Tunheim et al., 2022). The current paper presents results from a corrected and updated accelerator design with significant
mprovements in test accuracy. It also includes measurements of the effect of the bit length of the random number generators, and significantly more detailed
xplanations of the CTM-based accelerator’s inference and training procedures.
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convergence properties of the TM are confirmed for basic operators
in [9–11].

For embedded solutions, software (SW) implementation of ML tasks
can result in low throughput and increased power consumption, due to
a significant burden on the system processor. To overcome this, one can
employ HW-acceleration, where a dedicated peripheral module offloads
the main processor from specific demanding tasks. Such modules can be
implemented by, e.g., Field Programmable Gate Arrays (FPGA), stand-
alone Application Specific Integrated Circuits (ASICs) or submodules in
larger System-on-Chips (SoCs).

Edge-nodes in Internet-of-Things (IoT) systems are often battery
operated. If such devices are to perform ML tasks, energy-efficient
solutions are needed. Frequent interaction with a cloud server is costly
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in terms of processing power, data-to-decision latency and access to
networks. For certain applications it could therefore also be advanta-
geous if a node can perform online-training, i.e., update its ML model
when new training samples are available. This can enable a node
to adapt to changes in dynamic environment and fulfill individual
learning requirements. The online learning concept can also be applied
for systems utilizing federated learning. Here collaborative learning is
obtained without compromising the privacy of the participants.

ML solutions at the edge are commonly implemented using Deep
Neural Networks (DNNs). These systems exhibit intrinsic arithmetic
as well as model complexities, making energy efficiency and online
learning highly challenging. Due to the logic-based foundation of the
TM, it is a promising alternative for low-power edge nodes with ML
functionality, including on-device training.

Among various applications for IoT devices, 2-D pattern classifi-
cation, e.g., for images, is central. For example, low-power hyper-
spectral sensors and cameras can be deployed for attention detec-
tion, gesture recognition and event/occupancy detection for heat-
ing/ventilation/alarm systems. Traditional solutions are mainly based
on varieties of Convolutional Neural Networks (CNN). For low-power
applications, Binary Neural Networks (BNNs) are gaining widespread
adoption and there are numerous FPGA and ASIC implementations [12–
15]. Similarly, in the TM domain, Convolutional TM (CTM) is best
suited for image classification, and has obtained a peak test accuracy of
99.4% on MNIST, 96.31% on Kuzushiji-MNIST and 91.5% on Fashion-
MNIST [3]. However, FPGA or ASIC implementation of CTM solutions
is still an open research field.

Paper Contributions:

• This work describes a VHDL/FPGA implementation of a CTM-
based accelerator for 2-D pattern classification. In more detail,
it recognizes two-class patterns within 4 × 4 images. The ac-
celerator includes complete online training of the CTM model.
To our knowledge, this is the first fully functional reported HW
implementation based on the CTM. The solution is designed
and prepared for scaling for larger images and for multi-class
classifications.

• TMs are in general highly suited for parallel operation, and we
describe the degree of parallelization as the most important de-
sign trade-off regarding inference and training throughput against
hardware resources.

• A key aspect of the learning phase of TMs is stochasticity. In
this design, Linear Feedback Shift Registers (LFSRs) are used as
random number generators. The effect of different lengths of the
LFSRs on the test accuracy is evaluated.

The remainder of the paper is organized as follows. In Section 2,
elated studies are summarized. In Section 3, we review the general
TM operation and explain how it differs from the vanilla TM. The

‘2-Dimensional Noisy XOR’’ problem, that is studied in this work, is
lso presented. The accelerator architecture is described in Section 4,
ncluding important design choices and trade-offs. Measurement results
f the FPGA implementation are presented in Section 5 before we
onclude the work in the last section.

. Related work

There is a wide range of HW solutions reported for image classi-
ication targeting low power edge-operation, and most of them target
nference-only. As one would expect, the reported power consumption
f FPGA solutions is typically several orders of magnitude higher
ompared to ASICs.

For edge-node operations, BNN architectures are particularly popu-
ar mainly due to their simplicity. In [12], an FPGA implementation of
BNN solution that operates at 200 MHz, achieves up to 12.3 million
2

lassifications per second on the MNIST dataset with 95.8% accuracy,
and 21 906 classifications per second on the CIFAR-10 dataset with
80.1% accuracy. This is not a low-power solution as it draws about
25 W. Nevertheless, it demonstrates the capabilities of the FPGA and
optimized architectures for BNN solutions.

In [16] an FPGA-based DNN inference solution, operating on the
MNIST dataset, with only 16 nJ per Classification and a total power
consumption of 0.16 W is reported. This is achieved with a wired-logic
structure, which means that the HW is dedicated to the implemented
algorithm. This is in contrast to accelerators based on a programmable
architecture, which is a more desired solution in most cases.

The BNN accelerator IC module in [13] is implemented in a 22 nm
Complementary Metal Oxide Semiconductor (CMOS) technology, and
its energy cost per binary operation at its optimum is 21.6 fJ. It can
execute the ResNet-34 BNN topology in less than 2.2 mJ per frame at
8.9 frames per second (FPS). This accelerator is included in a System-
on-Chip (SoC) [14], which achieves a peak power envelope of only
674 μW and 15.4 inferences/s for the CIFAR-10 dataset.

Several analog and mixed-signal chips are reported that target ultra-
low-power image classification. For example, in [17] a time-domain
neural network is presented that achieves an energy efficiency of 48.2 T
synaptic operations per second per watt, with an accuracy of 98.4%
for MNIST. A mixed-signal BNN processor is described in [18]. The
technology used is 28 nm CMOS and the power consumption is 0.9 mW.
It achieves 3.8 μJ/classification on CIFAR-10 at 237 FPS.

In [15], a digital BNN test chip is reported. It is manufactured
in 10 nm FinFET CMOS and achieves a peak energy efficiency of
617 TOPS/W, thus approaching the energy of analog/mixed-signal
compute-in-memory solutions. It operates on the CIFAR-10 dataset and
consumes 5.6 mW. The accuracy achieved is 86%.

The solutions referenced so far in this section only support training
in the sense that they can be used for the classification task included
in a training setup based on a system processor and external memory.
One example of a solution specifically targeting training is proposed
in [19]. Here an accelerator for a stochastic gradient decent based
training algorithm in 16-bit fixed-point-precision numbers is described.
The implementation is done both in an FPGA and in an ASIC.

From a system’s perspective, one should take into account the en-
ergy and the latency for data transfer from and to the external memory,
and, if required, the activation of the system’s main processor. This is
well reflected, e.g., in the TinyML main benchmarks [20], which are (i)
inferences per second, (ii) test accuracy and (iii) energy per classification.
For CTM-based solutions, such system-oriented performance parame-
ters are considered favorable. This is especially the case for energy
consumption, as no intermediate results need to be written to memory
during inference nor training, provided the required hardware features
are included. For CTM accelerators, writing to external memory is
only required when a complete training has been performed and the
model needs to be stored. Reading from external memory is needed for
restoring a model after system wake-up, and for re-accessing training
data during different training epochs.

Special encoding can compress a TM model by up to 99% with-
out accuracy loss [21]. This implies reduced memory footprint and
improved energy efficiency, and is of particular importance for ultra-
low-power IoT-systems with intermittent operation.

The chip in [2] is the first TM-based ASIC reported. It supports
training and inference, and implements an ultra-low-power solution
for the 3-class Binary Iris data set [22]. The chip is manufactured in
a 65 nm CMOS technology and is based on the vanilla TM.

3. Overview of CTM and problem statement

This section explains the basic operational concept of the CTM and
the pattern recognition problem. The detailed vanilla TM operation,
found in [1], is described in Appendix.
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3.1. Review of the convolutional Tsetlin machine

The CTM is especially suited for 2-D image classification [3]. The
examples to learn from, or to classify, are a set of images, each with
dimensions 𝑋 × 𝑌 and consisting of 𝑍 channels. Each channel has a
pixel value represented by 𝑈 bits.

In a CTM, a convolution window of size 𝑊𝑋 ×𝑊𝑌 is applied, with
𝑍 channels, to generate different patches of 𝑊𝑋 ×𝑊𝑌 ×𝑍 ×𝑈 Boolean
features. In addition, a clause has to be location-aware, and thermome-
ter or one-hot encoded patch coordinates are appended to the features.
In addition to improved accuracy, a main benefit of the convolutional
operation, compared with the vanilla TM, is a significant reduction in
the number of features that needs to be processed simultaneously.

The number of evaluations of the convolution window across the
image is given by Eq. (1), where 𝐵𝑋 and 𝐵𝑌 are shown in Eqs. (2) and
(3) respectively. The parameters 𝑑𝑋 and 𝑑𝑌 are the stride values (step
sizes) of the convolution window in the X and Y directions, respectively.

𝐵 = 𝐵𝑋 × 𝐵𝑌 , (1)

𝐵𝑋 = (𝑋 −𝑊𝑋 )∕𝑑𝑋 + 1, (2)

𝐵𝑌 = (𝑌 −𝑊𝑌 )∕𝑑𝑌 + 1. (3)

The number of features, 𝑁𝐹 , applied to the CTM per patch is given
by

𝑁𝐹 = 𝑊𝑋 ×𝑊𝑌 ×𝑍 × 𝑈 + (𝑌 −𝑊𝑌 ) + (𝑋 −𝑊𝑋 ), (4)

where (𝑌 −𝑊𝑌 ) + (𝑋 −𝑊𝑋 ) represents the number of bits that encode
the patch’s position.

An appropriate encoding technique is applied, per channel, to the
original pixels of the sample images [3]. E.g., for the MNIST dataset,
there is a single channel (𝑍 = 1), and each pixel value is converted to
a Boolean value (𝑈 = 1) through simple thresholding.

The features and their negations are together denoted as the literals.
In a CTM, the clauses can be viewed as filters, and each clause is
composed by 2 ×𝑁𝐹 literals.

During inference, a CTM follows the classical TM operation for pat-
tern recognition, as described in Appendix. However, there is a notable
difference between CTM and vanilla TM. During the convolution, each
clause in a CTM will output 𝐵 values per image, i.e., one value per
patch. After the convolution is completed, a clause in a CTM will output
1 if it has recognized a pattern at least once in any of the 𝐵 patches for
a given image, i.e.,

𝑐𝑗 =
𝐵−1
⋁

𝑏=0
𝑐𝑏𝑗 , (5)

where 𝑐𝑗 is the 𝑗th clause of the CTM, and 𝑐𝑏𝑗 is the 𝑏th output of this
clause obtained during the window sliding.

For learning, the classical TM procedure is applied with one major
difference [3]: For a given clause, 𝑐𝑗 , the CTM randomly selects a single
patch among those that made this clause evaluate to 1 during the
convolution. The clause is then updated according to this patch with
the standard TM feedback types of Type I𝑎 or Type II, see Appendix. If
no patch made 𝑐𝑗 evaluate to 1, Type I𝑏 feedback will be applied, which
is not dependent on the literal.

For a multi-class CTM, the Target Class is trained as a classical TM
according to 𝑦 = 1. A different class, i.e., the Negative Target Class,
is randomly selected [1]. For the same training sample, the Negative
Target Class is trained according to 𝑦 = 0.

3.2. The 2-Dimensional Noisy XOR problem

The machine learning problem we adopted as a test case for the
CTM accelerator is the Two-dimensional (2D) Noisy XOR dataset [3,23].
This contains single channel images of size 4 × 4, where each pixel has
a Boolean value. Fig. 1 shows the patterns used for the two classes,
3

Fig. 1. Patterns representing Class 1 (blue) and Class 0 (Orange) for the 2D Noisy
XOR dataset.

Class 1 and Class 0. They are placed in the middle of the two upper
rows. The x’es in the figure represent random Boolean values. The
datasets generated have approximately equal numbers of Class 1 and
Class 0 examples, and for each class, the different subpatterns are
also represented by an equal portion. Class 1 is associated with a
diagonal line, while Class 0 is associated with either a horizontal or
vertical line. Thus, the dataset models a 2-dimensional version of the
XOR-relation [3].

As the dataset includes a huge number of non-informative features
(that is, the x’es in Fig. 1), it measures the CTM model’s susceptibility
towards the ‘‘curse of dimensionality’’ [3]. Furthermore, to examine the
model’s robustness against noise, 40% of the labels of the training data
are randomly inverted. There are 2500 samples in the training dataset
and 10 000 samples in the test dataset. The SW CTM implementation
achieves a mean test accuracy of 99.99% for this problem. For the work
described in this paper, the training dataset consists of 2500 samples
while 8192 samples are used for testing.

4. Design overview

The general inference and training operations of the CTM accelera-
tor are described in this section. In addition, we explain the window
sliding, the method applied for random patch selection per clause
during training, and the implementation of random number generation.
High-level architectural trade-offs for latency and hardware resources
are also described.

4.1. Main operation

Fig. 2 shows the block diagram of the accelerator. The module is
self-contained and interfaces to the FPGA’s system processor.

The 2D Noisy XOR dataset described in Section 3.2 represents a
two-class classification problem. To prepare for future multi-class ap-
plications, we designed the CTM with two separate TMs, one for Class 0
(TM0) and one for Class 1 (TM1). Each of these modules contains teams
of Tsetlin Automata (TAs) that form clauses, and adders that sum the
clause outputs. The Class Decision module compares the class sums and
takes the class with the largest sum as the predicted class.

We applied the hyperparameter configuration of the CTM as de-
scribed in [3]. The number of clauses (per TM), 𝑚, is configured as
40, the convolution window size is 2 × 2, and the convolution window
stride value, in both directions, is 1.

The patch generation module takes image samples of size 4 × 4 as
input, and produces 𝐵 patches per sample (𝐵 = 9 according to Eq. (1) in
our case). The features per patch consists of 4 bits (from the convolution
window) plus 2 bits to encode the 𝑥-position and 2 bits for the 𝑦-
position. Therefore, a patch feature vector consists of 8 bits. Including
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Fig. 2. Block diagram of the CTM accelerator.
the negated versions, we have a literal vector of 16 bits to be processed
by the CTM accelerator per patch.

The predicted class is compared with the label of the data sample
in the Evaluate module that keeps track of the results, i.e., the number
of errors during testing.

There are two training modules, one for the Target Class and one for
the Negative Target Class. The training modules perform the random
selection of patches, per clause, to be used during updating (see Sec-
tion 4.4.1) and compute the Type I𝑎, Type I𝑏 or Type II feedback (see
Appendix). For a given training image sample, it is the sample’s label
that determines whether TM0 or TM1 is to be trained as the Target
Class. For this 2-class problem, the Negative Target Class is always
the other class. A Bank of LFSRs is used for the generation of random
numbers required during training.

For simplicity, the complete training and test datasets were initial-
ized in the FPGA’s on-chip RAM module via the VHDL code and the
FPGA bitstream. The overall CTM operation is controlled by the main
state machine module. It is possible to perform training or inference on
just a single sample at a time.

The tasks of the FPGA System Processor include: (a) to program the
accelerator with the number of samples to evaluate, the number of
training epochs, the LFSR settings, and the selection of dataset, (b) to
initiate the inference/learning session and (c) to read out the results
(the number of errors) after session completion. All other functions are
performed solely by the accelerator.

4.2. Inference

During inference, the data can be processed in a continuous stream
without any wait states. Nine clock cycles are required per sample clas-
sification. Thus, operating the accelerator at 40 MHz, the classification
rate is 4.4 million FPS.

To generate the output sum per TM, we need to add 40 numbers,
corresponding to the 40 clauses. This is implemented by adders con-
nected in a tree structure and with a 6-stage pipeline. The disadvantage
with the pipeline is an additional latency of six clock periods. However,
during inference, the classification rate (throughput) when operating
on a stream of data samples is not affected. On the other hand, during
training, see Section 4.4, this latency adds to the number of clock cycles
required per sample.

To implement the function in Eq. (5), a register of width correspond-
ing to the number of clauses (𝑚 = 40) is applied, i.e. the clause output
register. During the patch generation, the contents of this register is
ORed with the clause outputs for the actual patch, thus implementing
a sequential OR function.

Clause integer weights, as described in [3,24], are not utilized in
this solution due to the small image size. Thus, an alternative imple-
mentation could have been to employ a simple popcount solution –
4

Fig. 3. Window sliding. The window position (green) is fixed, and shift operations are
utilized to generate the different patches. Each square represents a D flip-flop.

without pipelining – to find the class sums, i.e., the numbers of odd and
even clauses that evaluate to 1, see Eq. (11) in Appendix. The class sum
would then be the difference between these two numbers. However, to
prepare for future scaled-up solutions, the design is prepared for integer
weighting, and therefore adders are employed.

The class decision is performed by comparing the class sums from
TM0 and TM1, and selecting the class with the highest sum. This
design is also prepared for multi-class operation, with a general argmax
module as used in [2]. Algorithm 1 shows how inference of a single
sample 𝑋 is performed.

When performing inference, the modules that are only needed dur-
ing training are turned off. This is implemented by setting their register
clock enable signals low. If implemented in an ASIC, clock and power
gating could be employed to reduce the power consumption further.

4.3. Window sliding

The window sliding or patch generation is an essential operation
during the convolution, which needs to be performed efficiently. We
employ simple register shift operations to achieve this. Fig. 3 shows the
register structure and how the different feature patches are generated.
Initially a complete picture is uploaded from RAM into four rows as
shown in Fig. 3(a). Each square here represents a D flip-flop, and
the green area is the window of size 2 × 2. To generate the second
patch, we shift the uppermost two rows one position to the left, shown
in Fig. 3(b). As can be seen, the window position is fixed, and it is
the shifting of data that generates the different patches based on the
content in the window area. After the last part of the uppermost two
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Algorithm 1 Inference
1: procedure Classify(𝑋) ⊳ 𝑋 is a single image example.
2: Reset clause output register.
3: for 𝑖 = 0 to 𝐵 − 1 do ⊳ Ref. Section 3
4: In parallel during a single clock cycle:
5: * Generate patch(𝑖) of 𝑋
6: * Evaluate all clauses, 𝑐𝑗, 𝑗 ∈ {0,… , 𝑚 − 1}, for patch(𝑖)
7: * OR the clause output register content with the new clause outputs,
8: and update clause output register ⊳ Ref. Eq. (5)
9: end for
0: Calculate class sums 𝑣(0) and 𝑣(1) ⊳ Ref. Eq. (11)

11: return argmax(𝑣(0), 𝑣(1)) ⊳ Returns predicted class
12: end procedure
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Table 1
Position encoding of the 2 × 2 convolution window within a
4 × 4 Boolean image. x with position 0 means leftmost column, while
y with position 0 means uppermost row.

(x,y) position Encoded bit pattern

(0,0) 1010
(1,0) 0110
(2,0) 0010
(0,1) 1001
(1,1) 0101
(2,1) 0001
(0,2) 1000
(1,2) 0100
(2,2) 0000

rows are positioned in the window registers, shown in Fig. 3(c), the
second row is shifted up and two places to the right, and a new row is
loaded into the second upper-most row, shown in Fig. 3(d). In a similar
manner, we continue until the whole picture has been processed. The
same principle can be applied for CTMs operating on larger multi-layer
images.

A patch’s position information is appended to the four bits from
the convolution window. One-hot encoding, with two bits for each
coordinate, is performed as shown in Table 1.

During the patch generation, the output of each clause is determined
by Eq. (5) and the clause output register is updated for each patch
valuation.

.4. Training

Each training module in Fig. 2 takes as inputs the following signals
rom each of the two separate TMs it trains: (a) the clause outputs, (b)
he TM’s output sum, (c) the actions of the TM’s teams of TAs, and (d)
he literals (that come from the randomly selected patch as described
n Section 4.4.1).

During clause updating, the training module outputs – for each
lause in sequence – reward/penalty signals to the TA teams. All 16 TAs
n a clause’s TA team obtain their update signals in parallel. The specific
raining hyperparameters are according to [3], namely, 𝑇 = 40 and
= 3.9. To save HW resources and energy, fixed hyperparameters are
sed. This implies that all required multiplications can be performed
ith specific combinations of shift and addition operations.

As in [2], each TA is implemented as a binary up-down counter.
e have used 8 bit counters. Thus, there are 28 = 256 states in total for
TA, ranging from −128 to +127 (two’s complement representation).

f the TA state is 0 or higher the given literal will be included in the
lause. The TA’s most significant bit can therefore directly be applied
s an include/exclude signal in the clause logic.

Training data can be processed in a continuous stream. The patch
eneration requires nine clock cycles, as for inference mode. Due to
he pipelined adders in the class sum stages of the TMs, a delay of six
5

lock cycles is necessary per sample before the output sum is ready and
he clause updating can start. The clauses are then updated in sequence,
ne by one, and this takes 40 clock cycles. In total, the number of clock
ycles required per training sample with this architecture is 55. The
raining procedure is carried out in parallel for the Target Class and
egative Target Class, as the patch generation is the same for both.

For random number generation required during training, a bank of
FSRs is employed, and the details are given in Section 4.4.2.

.4.1. Reservoir sampling and patch selection
During the learning phrase, one has to randomly select a single

atch, per clause, among those that made the clause evaluate to 1 dur-
ng the convolution (window sliding) operation. We have implemented
his by utilizing the reservoir sampling algorithm [25]. Specifically,
ersion R of the algorithm is applied.

The patches that made a given clause evaluate to 1 constitute the
et for the reservoir algorithm for the clause, and the number of these
atches is 𝑛. We are interested in selecting randomly only a single
ample (i.e., one patch), from the set, and the algorithm ensures that,
hen it has finished executing, every element of the set is selected with
robability 1∕𝑛. Only a single pass of the elements is needed with this
lgorithm, which fits nicely with the timing of the patch generation.

For a given clause, 𝑐𝑗 , 𝑗 ∈ {0,… , 𝑚 − 1}, the input data stream to
the reservoir sampling algorithm in the CTM accelerator is empty until
𝑐𝑗 evaluates to 1. Then a register 𝑁𝑗 is incremented, where 𝑁𝑗 is the
number of times 𝑐𝑗 evaluates to 1 during the patch generation.

For each clause independently, a new sample, that is, patch(𝑖), 𝑖 ∈
{0,… , 𝐵 −1}, is only fed to the reservoir sampling algorithm when the
given clause evaluates to 1. For each time a new sample is added, the
reservoir algorithm for this clause randomly decides whether it shall
replace the existing sample in the clause’s patch register, PatchReg(𝑗),
𝑗 ∈ {0,… , 𝑚−1}. After the patch generation is completed, PatchReg(𝑗)
will contain the randomly selected patch that will be used during
updating of clause 𝑗. The maximum number of times a clause can
evaluate to 1 during the patch generation is 𝐵, which is 9 in our
configuration. Algorithm 2 details the reservoir sampling.

For the random patch selection, look-up tables are employed for the
multiplications required. All other multiplications are implemented by
specific combinations of shift and summation operations.

Independent reservoir sampling is performed in parallel for all
clauses, both for the Target Class and the Negative Target Class. This
is effective, but requires additional hardware resources, mainly for
the registers for storing the randomly selected patches and LFSRs for
generating random numbers.

4.4.2. Random number generation
Stochasticity is key for the learning phase of TMs [1]. For HW

implementations, we need to generate and access random numbers with
adequate stochasticity, which should also be accomplished with low
power consumption.
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Algorithm 2 Reservoir sampling
1: procedure Reservoir Sampling(𝑋) ⊳ The reservoir per clause has a single element, i.e., a patch.
2: Reset the count and patch registers, 𝑁(𝑗), PatchReg(𝑗), per clause, 𝑗 ∈ {0,… , 𝑚 − 1}
3: for 𝑖 = 0 to 𝐵 − 1 do ⊳ 𝐵 is the number of patches, ref. Section 3
4: In parallel during a single clock cycle:
5: * Generate patch(𝑖) of 𝑋
6: * Evaluate all clauses, 𝑐𝑗 , 𝑗 ∈ {0,… , 𝑚 − 1} for patch(𝑖)
7: if 𝑐𝑗 = 1 then
8: 𝑁(𝑗) ← 𝑁(𝑗) + 1
9: 𝑟 ← random integer in the range [1,𝑁(𝑗)]

10: if 𝑟 ≤ 1 then
11: PatchReg(𝑗) ← patch(𝑖)
12: end if
13: end if
14: end for
15: return For each clause, 𝑐𝑗, 𝑗 ∈ {0,… , 𝑚 − 1}:
16: PatchReg(𝑗) with randomly selected patches and count register 𝑁(𝑗)
17: end procedure
Maximum-length sequences (MLS) implemented by LFSRs are suit-
ble for generating the required random numbers [26,27], and we
pplied this for our design. It is desirable to have as short LFSRs
s possible to limit the required HW resources (mainly D flip-flops)
nd the associated energy consumption. We have implemented the
esign with the option to choose between 6-, 7-, 8-, 10-, 12-, 14-,
6-, 18- and 24-bit LFSRs to evaluate the performance impact of the
andom number generators. Correct implementation of each LFSR type
nd their number sequence time periods are verified through VHDL
imulations.

All LFSRs in the accelerator have different seeds, i.e., distinct start
onditions from reset, to avoid statistical dependence between simul-
aneous random decisions. The only exception is the 6-bit LFSRs due
o their short number sequence and therefore the limited number of
ossible seeds. To avoid the same start conditions per run (after reset),
he LFSRs were operated for a small random time period, controlled by
he system processor, before the start of the training.

.4.3. Updating of clauses and TA teams
Algorithm 3 shows the complete training procedure, which is per-

ormed in parallel also for the Negative Target Class. After patch
eneration and reservoir sampling have been performed, the accel-
rator updates each clause, 𝑐𝑗 , and its associated TAs, in sequence,

according to Type I𝑎, Type I𝑏 and Type II feedback, described in
Appendix.

The details of the stochastic parallel updating of the TAs per clause
are shown in Algorithm 4. This procedure is performed for each clause,
𝑐𝑗 , 𝑗 ∈ {0, 𝑚−1}, in sequence. Table 2 describes the various parameters
for Algorithm 4.

Before learning starts, all TAs are initialized in state 𝑁 −1 (state −1
in our design), i.e., with action exclude [1], see also Fig. 5 in Appendix.
This implies that all clauses are empty initially. For an empty clause,
the clause output is forced to 1 during learning.

4.5. Architectural trade-offs

The main design trade-off for the CTM accelerator is the classi-
cal question of parallel versus sequential operation. This determines
throughput and the amount of HW resources required, and thereby also
the peak power consumption.

For inference, the limiting factor of classifications per second is the
patch generation. With one window register, 𝐵 clock cycles are re-
quired per classification. One can parallelize this by employing several
convolution windows, each operating on different parts of the image.
However, the TM’s clause outputs are required for all patches that
are evaluated simultaneously. Therefore, one would need to include
6

Table 2
Overview of parameters in Algorithm 4.

Parameter Description

TC TC = 1 if Target Class, otherwise 0.
𝑚 Number of clauses
𝑐𝑗 Clause 𝑗, 𝑗 ∈ {0,… , 𝑚 − 1}.
PatchReg(𝑗) Randomly selected patch, per clause, ref. Algorithm 2.
𝑁𝐹 Number of features, ref. Eq. (4).

𝑙𝑘 Literal 𝑘 from the randomly selected Patch(𝑗),
𝑘 ∈ {0,… , 2 ×𝑁𝐹 − 1}.

𝑓 𝑓 = 1 if 𝑗 is odd, where 𝑗 ∈ {0,… , 𝑚 − 1}. Otherwise 𝑓 = 0.

𝑢𝑝 Stochastic signal given by Eq. (12)
𝑢𝑝 = 1 if clause 𝑐𝑗 in Target Class is to be updated.

𝑢𝑛 Stochastic signal given by Eq. (13)
𝑢𝑛 = 1 if clause 𝑐𝑗 in Negative Target Class is to be updated.

𝑔𝑘 Stochastic signal for literal 𝑘. 𝑔𝑘 = 1 if a random number 𝑟𝑛𝑑𝑘
for literal 𝑙𝑘 is < (𝑠 − 1)∕𝑠, else 0, ref. Table 4.

ℎ𝑘 Stochastic signal for literal 𝑘. ℎ𝑘 = 1 if a random number 𝑟𝑛𝑑𝑘
for literal 𝑙𝑘 is < 1∕𝑠, else 0, ref. Table 4.

𝑇𝐴𝑗,𝑘 State of TA for clause 𝑗 controlling 𝑙𝑘.

𝛼𝑗,𝑘 Action of 𝑇𝐴𝑗,𝑘. For include action 𝛼𝑗,𝑘 = 1
and for exclude action 𝛼𝑗,𝑘 = 0.

multiple copies of the TM clause logic. The TA teams’ include/exclude
signals can be reused. For example, for 4 × 4 images, an alternative
implementation could be to adopt three different convolution windows,
enabling a 3-fold increase in the classification rate.

During training, the reservoir sampling is performed in parallel
with the patch generation. This can be parallelized further in the same
way as for inference. Following the reservoir sampling, the clauses are
updated in sequence one by one, as shown in Algorithm 3. The motiva-
tion for this is to save LFSRs. It is possible to reduce the processing
time per training sample by updating more clauses in parallel. For
example, if two clauses were updated simultaneously, we would need
only 20 clock cycles for the clause updating, instead of 40, reducing
the total number of training clock cycles per sample from 55 to 35.
The number of LFSRs in this case would be approximately equal to
the number of LFSRs required for the reservoir sampling. However,
increasing the parallelism for the reservoir sampling further would
require more LFSRs.

The number of D flip-flops needed for the TA teams per TM, 𝑁𝑇𝑀 ,
is given by Eq. (6):

𝑁𝑇𝑀 = 2 ×𝑁𝐹 × 𝑚 ×𝑁𝑇𝐴, (6)

where 𝑁𝐹 is the number of features (in our case 8, see Section 4.3), 𝑚

is the number of clauses (40 per TM) and 𝑁𝑇𝐴 is the number of bits in
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Algorithm 3 Training
1: procedure Train( ((𝑋0, 𝑌0),… , (𝑋𝑘−1, 𝑌𝑘−1)) ⊳ 𝑘 training examples.
2: Initialize TAs ⊳ Set all TAs to state 𝑁 − 1 (exclude).
3: for 𝑛 = 0 to 𝑘 − 1 do
4: Reset clause output register and patch registers.
5: for 𝑖 = 0 to 𝐵 − 1 do ⊳ Ref. Section 3
6: In parallel during a single clock cycle:
7: * Generate patch(𝑖) based on (𝑋𝑛)
8: * Evaluate all clauses, 𝑐𝑗 , 𝑗 ∈ {0,… , 𝑚 − 1}, for patch(𝑖)
9: * Perform reservoir sampling for all clauses, ⊳ Ref. Algorithm 2

10: and find a random patch, per clause, and store in PatchReg(𝑗).
11: * OR the clause output register with the new clause outputs
12: and update clause output register ⊳ Ref. Eq. (5)
13: end for
14: Calculate class sums 𝑣(0) and 𝑣(1) ⊳ Ref. Eq. (11)
15: for 𝑗 = 0 to 𝑚 − 1 do ⊳ Ref. Section 3
16: In parallel during a single clock cycle:
17: * Randomly decide, based on 𝑐𝑗 (If 𝑁(𝑗)=0 then 𝑐𝑗 = 0, otherwise 𝑐𝑗 = 1),
18: class sum, 𝑌𝑛 and 𝑇, whether 𝑐𝑗 shall be updated ⊳ Ref. Appendix
19: * Update stochastically all TAs for 𝑐𝑗 ⊳ Ref. Algorithm 4
20: end for
21: end for
22: return Updated TAs for all clauses
23: end procedure

Algorithm 4 Updating of the TAs per clause - detailed operation
1: procedure Update TAs(for clause 𝑐𝑗 , for randomly selected patch from PatchReg(𝑗))
2: ⊳ For parameter descriptions, see Table 2
3: Do in parallel for all 𝑇𝐴𝑗,𝑘, 𝑘 ∈ {0,… , 2 ×𝑁𝐹 − 1},
4: for clause 𝑗, during a single clock cycle:
5: if 𝑇𝐶 ∧ 𝑢𝑝 then ⊳ Training of Target Class
6: if 𝑐𝑗 ∧ 𝑓 ∧ 𝑔𝑘 ∧ 𝑙𝑘 then
7: 𝑇𝐴𝑗 (𝑘) ← 𝑇𝐴𝑗 (𝑘) + 1 ⊳ Type Ia feedback
8: else if 𝑐𝑗 ∧ 𝑓 ∧ ℎ𝑘 ∧ ¬𝛼𝑗,𝑘 ∧ ¬𝑙𝑘 then
9: 𝑇𝐴𝑗 (𝑘) ← 𝑇𝐴𝑗 (𝑘) − 1 ⊳ Type Ia feedback

10: else if ¬𝑐𝑗 ∧ 𝑓 ∧ ℎ𝑘 then
11: 𝑇𝐴𝑗 (𝑘) ← 𝑇𝐴𝑗 (𝑘) − 1 ⊳ Type Ib feedback
12: else if 𝑐𝑗 ∧ ¬𝑓 ∧ ¬𝛼𝑗,𝑘 ∧ ¬𝑙𝑘 = 0 then
13: 𝑇𝐴𝑗 (𝑘) ← 𝑇𝐴𝑗 (𝑘) + 1 ⊳ Type II feedback
14: end if
15: else if ¬𝑇𝐶 ∧ 𝑢𝑛 then ⊳ Training of Negative Target Class
16: if 𝑐𝑗 ∧ ¬𝑓 ∧ 𝑔𝑘 ∧ 𝑙𝑘 then ⊳ Type Ia feedback
17: 𝑇𝐴𝑗 (𝑘) ← 𝑇𝐴𝑗 (𝑘) + 1
18: else if 𝑐𝑗 ∧ ¬𝑓 ∧ ℎ𝑘 ∧ ¬𝛼𝑗,𝑘 ∧ ¬𝑙𝑘 = 0 then
19: 𝑇𝐴𝑗 (𝑘) ← 𝑇𝐴𝑗 (𝑘) − 1 ⊳ Type Ia feedback
20: else if ¬𝑐𝑗 ∧ ¬𝑓 ∧ ℎ𝑘 then
21: 𝑇𝐴𝑗 (𝑘) ← 𝑇𝐴𝑗 (𝑘) − 1 ⊳ Type Ib feedback
22: else if 𝑐𝑗 ∧ 𝑓 ∧ ¬𝛼𝑗,𝑘 ∧ ¬𝑙𝑘 then
23: 𝑇𝐴𝑗 (𝑘) ← 𝑇𝐴𝑗 (𝑘) + 1 ⊳ Type II feedback
24: end if
25: end if
26: return Updated TAs for clause 𝑐𝑗
27: end procedure
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a TA when implemented as a counter (8 in our design). The factor of 2
is included to take into account the negated version of the features. We
have two TMs (TM0 and TM1) in our design. Thus, the total number
of D flip-flops required for the TA teams is 10 240.

For the patch feature registers, employed during the reservoir sam-
pling and clause updating, the number of D flip-flops needed, 𝑁𝑃 , is:

𝑁𝑃 = 2 × 𝑚 ×𝑁𝐹 , (7)

where the factor of 2 in Eq. (7) is due to the parallel training of the
Target Class and Negative Target Class. In our design 𝑁𝑃 is configured
as 640.

The number of D flip-flops required for the LFSRs is also important.
For the reservoir updating, 𝑚 LFSRs are employed for each of the Target
Class and the Negative Target Class. As the subsequent clause updating
is performed sequentially, 1 + 2 × 𝑁𝐹 LFSRs are utilized in this phase
for each of the Target Class and the Negative Target Class, where the
addition of 1 is due to the requirement of an additional random number
generator to determine if a clause is to be updated, see Eqs. (12) and
(13) in Appendix.

LFSRs applied for the reservoir sampling can be reused during
the clause updating. Thus, the number of LFSRs required for our
architecture is the maximum of two numbers:

𝑁𝐿𝐹𝑆𝑅𝑠 = max
{

2 × 𝑚, 2 × (1 + 2 ×𝑁𝐹 )
}

. (8)

For our design, the first part is the largest, and a total of 80 LFSRs
are utilized. With an LFSR length of 16 bits, the number of D flip-flops
needed is 1280. The total number of D flip-flops in this accelerator,
from these three main contributions, is 12 160. In our design, additional
D flip-flops are needed for implementing LFSRs of varying lengths.
For multi-class system, the TA teams’ relative contribution to the total
number of D flip-flops will increase. We believe the architecture chosen
for our implementation is an adequate compromise for this study,
demonstrating the core CTM principles in HW, and for implementation
on a low-cost FPGA.

5. Implementation results

The system configuration and the results from the experiments are
detailed in this section. The CTM accelerator was designed in VHDL,
and the simulations were performed with Xilinx Vivado. A Xilinx Zynq
XC7Z020 FPGA on a Zybo Z7-20 board from Digilent was adopted for
the implementation.

The accelerator occupies 44.3k Look-Up Tables (LUTs) and 25.5k D
flip-flops, which corresponds to 83.3% and 24% utilization respectively
of the LUTs and D flip-flops available in this FPGA. Included on the
FPGA are two hardcoded ARM9 cores, and one of these processors was
used to apply control signals to the accelerator and to read out results.
The Xilinx Vitis program was applied to compile the C-programs for the
system processor.

During inference, the accelerator achieves 4.4× 106 classifications/s
when operating with a clock frequency of 40 MHz. This is given
directly by the design characteristics of nine clock cycles per inference,
and by the solution’s capability to process input data samples in a
continuous stream. During training, with 55 clock cycles per sample,
the accelerator processes 0.73 × 106 samples/s. Thus, a training session
(run) based on 2500 samples and 250 epochs takes approximately
0.9 s. The inference and training rates described here excludes the
time required for commands and reading of results by the processor.
However, this is very small as all training and test data are available
directly from the dataset RAMs that were initialized from the FPGA
bitstream.

A simple throughput comparison between the HW accelerator and
the SW implementation was performed. The server running the SW
implementation was equipped with Intel Xeon Platinum 8168 CPUs
operating at 2.70 GHz. With the CTM HW accelerator, we obtained
8

Fig. 4. Mean test accuracy of the CTM accelerator versus LFSR bit length.

a throughput increase of 13.3 times for inference and 12.1 times for
training.

The effect of the LFSR bit length on the accelerator’s performance
was explored. Experiments with LFSRs with bit lengths of 6, 7, 8, 10,
12, 14, 16, 18 and 24 were made. For each LFSR type, 100 independent
runs were performed, each with 250 training epochs. Fig. 4 shows the
mean test accuracy and Table 3 shows the results for mean, maximum,
minimum, 95%-percentile and 5%-percentile test accuracy. With a 16-
bit LFSR employed during training of the CTM, we measured a mean
test accuracy of 99.99% and a minimum test accuracy of 99.34%.

The performance of the CTM accelerator, as shown in Table 3, is
on par with the results from the SW implementation in [3], as long as
the lengths of the LFSRs are 16 or greater. Interestingly, all LFSR types
obtain a MAX test accuracy of 100%. However, with shorter LFSRs one
can note the significant degradation in performance, especially for the
MIN and 5% percentile results.

We measured the power consumption of the FPGA by monitoring
the voltage across an external resistor on the Zybo Z-20 board. The
current through this resistor was a direct representation of the current
draw of the FPGA. Although the accuracy of these measurements
has a wide tolerance, relative measurements are considered to give a
good indication of the differences in power consumption for various
operating modes. In idle mode the total FPGA power consumption was
measured to 2.522 W.

The increase in power consumption, from idle mode, to inference
and training modes, was 7 mW and 187 mW respectively. If we con-
sider the total power consumption of the FPGA, including the system
processor and interface modules, the energy required is approximately
0.6 μJ per classification and 3.7 μJ per training example. Based on the
power estimation tool in Vivado, about 90% of the power consumption
is associated with the FPGA system processor.

In this work, the main target was to demonstrate a HW imple-
mentation of the CTM and to explore architectural trade-offs. As the
accelerator operates on a custom-made dataset, direct comparison with
other solutions is challenging. However, based on the achieved uti-
lization of HW resources and the obtained energy consumption, we
believe there is great potential for designing CTM accelerators with
high performance operating on larger images. A significant reduction in
power consumption can be expected by utilizing either (i) a low-power
FPGA with a significantly simpler microcontroller than the one used
in this work, (ii) a low-power FPGA in combination with a separate
low-power microcontroller, or (iii) an ASIC solution.

We anticipate that scaling up the current design to support 28 × 28
images, for, e.g., the MNIST dataset, approximately 370 clock cycles
will be required per classification. With an operating frequency of
40 MHz, this would correspond to about 1.1 × 105 classifications per
second. Here we assume that a convolution window of 10 × 10 is
utilized. In addition, booleanization of the greyscale MNIST images
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Fig. 5. A Tsetlin Automaton (TA) for two-action environments [9].
Table 3
Measured classification performance of the CTM accelerator, for varying LFSR bit lengths. For each LFSR type, 100 independent runs were
performed, each with 250 training epochs.

LFSR length (bits) 6 7 8 9 10 12 14 16 18 24

Mean test accuracy (%) 84.51 96.05 99.67 99.03 99.62 99.42 99.48 99.99 99.95 99.88
Test accuracy MAX (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Test accuracy MIN (%) 56.38 86.87 90.95 82.46 91.17 81.81 94.49 99.34 98.34 97.84
Test accuracy 95% perc. (%) 100.00 99.79 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Test accuracy 5% perc. (%) 64.99 89.80 99.38 94.96 98.00 95.03 94.49 99.88 99.80 98.90
must be performed before the samples are fed to the accelerator.
Simple thresholding of the pixel values can be employed for MNIST
classification by the CTM [3].

6. Conclusion

In this work, we have implemented a self-contained CTM acceler-
ator for two-dimensional pattern classification on an FPGA platform,
with full support for both training and inference. To the authors’
knowledge, this is the first fully functional HW implementation of a
CTM-based solution. The accelerator achieves a classification rate of
4.4 MFPS when operating at 40 MHz on 4 × 4 Boolean images. It
achieves 99.9% mean test accuracy for the noisy 2-dimensional dataset,
with 40% noise present in the training data labels, which matches the
original SW solution. LFSR random number generators with a length of
16 bits or greater are required to obtain this performance.

Several architectural trade-offs are identified, and one can increase
the classification and the training rates significantly by further par-
allelization. As our solution does not require complex arithmetic, in
contrast to DNN solutions, we believe CTM-based solutions for image
classification show great potential for low power applications. This
work paves the way for future CTM-based HW solutions that can
operate on more complex patterns and images. Our future research
includes scaling the CTM accelerator to operate on the MNIST and
CIFAR-10 datasets, and implementations in FPGAs and ASICs.

Data availability

Data will be made available on request

Appendix. Basic operation of the TM

The input to a TM [1] is a feature vector 𝑋 consisting of 𝑜 proposi-
tional Boolean variables, 𝑥𝑢 ∈ {0, 1}, 𝑢 = 0,… , 𝑜−1. A new input vector
𝐿 with in total 2𝑜 literals is formed by appending the negation of the
variables to the input: 𝐿 = [𝑥0,¬𝑥0, 𝑥1,¬𝑥1,… , 𝑥𝑜−1,¬𝑥𝑜−1].

A TM consists of several teams of Tsetlin Automata (TAs) that
operates on the literals [1]. Each team of TAs forms a discriminative
conjunctive clause by including or excluding literals. There are m
clauses, 𝑐𝑗 , where 𝑗 ∈ {0,… , 𝑚 − 1}, and 𝑚 is a user specified even
integer. The odd indexed clauses are defined with positive polarity,
while the even indexed ones have negative polarity.
9

The basic building block of the TM is the Tsetlin Automaton (TA),
of two-action type. Its include/exclude decision for a given literal is
achieved during the learning process.

Fig. 5 shows the structure of a single TA with 2𝑁 states. Action 2
(include) is employed if the TA is in one of the states from 𝑁 to 2𝑁 −1,
while the states 0 to 𝑁 − 1 result in Action 1 (exclude). The TA is a
finite-state-machine and in hardware it can typically be implemented
as a binary up-/down-counter.

The output of a single clause, 𝑐𝑗 is given by:

𝑐𝑗 =
⋀

𝑘∈𝐼𝑗

𝑙𝑘, (9)

where 𝑙𝑘 is the literal with index k, and k belongs to 𝐼𝑗 ⊆ {0,… , 2𝑜−1}.
𝐼𝑗 denotes the set of indexes of all the TAs that select action include in
𝑐𝑗 . See Fig. 6(a).

In a basic two-class TM, classification is given by

�̂� =

{

1 if 𝑣 ≥ 0,
0 if 𝑣 < 0.

(10)

where the output sum, 𝑣, is defined in Eq. (11). See Fig. 6(b).

𝑣 =
(𝑚∕2)−1
∑

𝑗=0
(𝑐2𝑗+1 − 𝑐2𝑗 ) (11)

A 𝑞-class TM, as shown in Fig. 6(c), is constituted by several TMs,
one for each class, from 0 to 𝑞 − 1. In this case, the final decision is
made by an argmax operator that classifies the input data according to
the highest vote sum [1].

A TM learns online, processing one training example (𝑋, 𝑦) at a
time. Learning takes place through a novel finite state learning au-
tomata game that coordinates the collective of TAs and leverages
resource-allocation and frequent pattern mining principles [1]. Feed-
back mechanisms are employed and each TA is given either a reward
or a penalty. If a TA does not receive reward nor penalty, the effective
feedback is inaction, leaving the state unaffected. In Fig. 5, only the TA’s
state transitions related to reward and penalty are shown.

If a reward is applied, the TA will move deeper, i.e. towards state
0 or 2𝑁 − 1 depending on the action. With penalty the TA will move
towards the center and will eventually switch to the other action.

During learning, there are two types of feedback: Type I and Type II.
Table 4 shows the update probabilities and conditions for Type I
feedback while Table 5 shows those for Type II feedback.
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Fig. 6. (a) A TA team forms the clause 𝑐𝑗 . (b) A two-class TM with 𝑚 clauses. (c) A 𝑞-class TM [1].
Table 4
Type I feedback conditions and update probabilities. The feedback is for a single TA
that decides whether to include or exclude a given literal 𝑙𝑘 into 𝑐𝑗 . NA means not
applicable. 𝑠 is a hyper-parameter greater than 1.

Clause value (𝑐𝑗 ) 1 0

Literal value (𝑙𝑘) 1 0 1 0

TA: Include literal

𝑃 (Reward) 𝑠−1
𝑠

NA 0 0

𝑃 (Inaction) 1
𝑠

NA 𝑠−1
𝑠

𝑠−1
𝑠

𝑃 (Penalty) 0 NA 1
𝑠

1
𝑠

TA: Exclude literal

𝑃 (Reward) 0 1
𝑠

1
𝑠

1
𝑠

𝑃 (Inaction) 1
𝑠

𝑠−1
𝑠

𝑠−1
𝑠

𝑠−1
𝑠

𝑃 (Penalty) 𝑠−1
𝑠

0 0 0

Type I feedback is given stochastically to clauses with positive
polarity when 𝑦 = 1 and to clauses with negative polarity when 𝑦 = 0.
Each clause, in turn, updates each of its TAs based on: (1) its output
𝑐𝑗 (𝑋); (2) the action of the TA controlling the literal – Include or
Exclude; and (3) the value of the literal 𝑙𝑘 assigned to the TA. Type
I feedback is governed by two rules, as can be seen from Table 4:

• Type Ia feedback: Include is rewarded and Exclude is penalized
with probability 𝑠−1

𝑠 𝐢𝐟𝑐𝑗 (𝑋) = 1𝐚𝐧𝐝 𝑙𝑘 = 1. This reinforcement is
strong and makes the clause remember and refine the pattern it
recognizes in 𝑋.

• Type Ib feedback: Include is penalized and Exclude is rewarded
with probability 1

𝑠 𝐢𝐟 𝑐𝑗 (𝑋) = 0 𝐨𝐫 𝑙𝑘 = 0. A large s will typically
result in clauses with more literals.

Type II feedback is given stochastically to clauses with positive
polarity when 𝑦 = 0 and to clauses with negative polarity when 𝑦 = 1.
It penalizes Exclude actions with probability 1 𝐢𝐟 𝑐𝑗 (𝑋) = 1 𝐚𝐧𝐝 𝑙𝑘 = 0.
Thus, this feedback combats false positive outputs. Table 5 shows the
update probabilities and conditions for Type II Feedback.

Resource allocation: To ensure that clauses distribute themselves
across different frequent patterns, the learning procedure includes a
mechanism for resource allocation. For any input 𝑋, the probability
of updating a clause gradually drops to zero as the TM output sum
in Eq. (11) approaches a user-configured target/hyperparameter 𝑇 . A
higher T increases the robustness of learning by allocating more clauses
to learn each sub-pattern [24]. Optimum settings of m, T and s are
dependent on the specific ML problem.
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Table 5
Type II feedback conditions and update probabilities. The feedback is for a single TA
that decides whether to include or exclude a given literal 𝑙𝑘 into 𝑐𝑗 . NA means not
applicable.

Clause value (𝑐𝑗 ) 1 0

Literal value (𝑙𝑘) 1 0 1 0

TA: Include literal
𝑃 (Reward) 0 NA 0 0
𝑃 (Inaction) 1.0 NA 1.0 1.0
𝑃 (Penalty) 0 NA 0 0

TA: Exclude literal
𝑃 (Reward) 0 0 0 0
𝑃 (Inaction) 1.0 0 1.0 1.0
𝑃 (Penalty) 0 1.0 0 0

Eq. (12) shows the update probability, 𝑝+𝑗 , for clauses of the Tar-
get Class, while Eq. (13) gives the clause update probability for the
Negative Target Class.

𝑝+𝑗 =

{

1 with probability 𝑇−max(−𝑇 ,min(𝑇 ,𝑣))
2𝑇 ,

0 otherwise.
(12)

𝑝−𝑗 =

{

1 with probability 𝑇+max(−𝑇 ,min(𝑇 ,𝑣))
2𝑇 ,

0 otherwise.
(13)
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