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Abstract: The reliable operation of power transmission networks depends on the timely detection
and localization of faults. Fault classification and localization in electricity transmission networks
can be challenging because of the complicated and dynamic nature of the system. In recent years, a
variety of machine learning (ML) and deep learning algorithms (DL) have found applications in the
enhancement of fault identification and classification within power transmission networks. Yet, the
efficacy of these ML architectures is profoundly dependent upon the abundance and quality of the
training data. This intellectual explanation introduces an innovative strategy for the classification and
pinpointing of faults within power transmission networks. This is achieved through the utilization of
variational autoencoders (VAEs) to generate synthetic data, which in turn is harnessed in conjunction
with ML algorithms. This approach encompasses the augmentation of the available dataset by
infusing it with synthetically generated instances, contributing to a more robust and proficient
fault recognition and categorization system. Specifically, we train the VAE on a set of real-world
power transmission data and generate synthetic fault data that capture the statistical properties
of real-world data. To overcome the difficulty of fault diagnosis methodology in three-phase high
voltage transmission networks, a categorical boosting (Cat-Boost) algorithm is proposed in this work.
The other standard machine learning algorithms recommended for this study, including Support
Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), and K-Nearest Neighbors (KNN),
utilizing the customized version of forward feature selection (FFS), were trained using synthetic data
generated by a VAE. The results indicate exceptional performance, surpassing current state-of-the-art
techniques, in the tasks of fault classification and localization. Notably, our approach achieves a
remarkable 99% accuracy in fault classification and an extremely low mean absolute error (MAE)
of 0.2 in fault localization. These outcomes represent a notable advancement compared to the most
effective existing baseline methods.

Keywords: electrical power systems; support vector machines; random forest; machine learning;
wavelet transform; transmission lines fault; electrical power quality; short circuit; classification of
faults; localization of faults; decision trees; ensemble learning; k-nearest neighbors

1. Introduction

Electrical power transmission networks are susceptible to faults and failures. Power
transmission networks are now becoming extremely critical infrastructures that deliver
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electricity from power plants to households and businesses, and sudden abnormal condi-
tions on these networks can cause power outages, damage to costly equipment, and even
serious safety hazards. The rapidly growing demand for electric power is increasing the
complexity of power networks day by day. The abnormal condition occurs due to different
reasons like environmental, accidental, incidental, and aging factors also responsible for
the occurrence of faults. Any type of abnormal condition on the transmission line can
damage the system in both directions, i.e., generation and utilization. Power transmission
network fault analysis is a major subject under investigation in the field of predictive main-
tenance [1,2]. In the field of power transmission networks, the detection and localization
of faults is very important and advanced signal processing techniques for that purpose
are gaining heightened popularity. Machine learning frameworks rely on the concept that
systems should undergo training based on statistical data and mathematical models to
identify fault patterns with minimal human intervention [3]. Hence, the implementation of
cutting-edge machine learning algorithms with extensive datasets becomes imperative due
to the progress in intellectual electronic integration within smart grids. This will pave the
way for the deployment of precise and reliable ML structures for the detection of abnormal
conditions [4]. Figure 1 shows the illustrative demonstration of two-terminal transmission
networks for transmitting power from generating sources to multiple types of loads and
the occurrence of abnormal conditions on it.
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Figure 1. Diagrammatic representation of the two-terminal transmission line system.

Various types of techniques, such as wavelet analysis, genetic algorithm (GA), phasor
measurement unit (PMU), and multi-information-based techniques are extensively used
in the literature for the categorization of abnormal conditions on power transfer lines.
Traditionally, fault diagnosis and localization in power transmission networks have been
performed using rule-based or model-based approaches that require a detailed understand-
ing of the network topology and fault characteristics [5,6]. However, the advent of artificial
intelligence approaches is replacing the trade-off methodologies, which are incredibly
time-consuming, and their accuracy is limited due to the complexity of the networks and
variability of fault conditions. Tracing abnormal conditions by implementing machine
learning and deep learning architectures on power transmission networks is a research
area that aims to develop accurate and efficient algorithms for predictive maintenance
compared to conventional techniques [7,8]. Figure 2 shows the overview to diagnose faults
on transmission lines.
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Unfortunately, acquiring labeled data poses significant challenges and time constraints,
particularly within power systems where abnormal conditions are infrequent and often
unpredictable. To address this issue, recent studies have investigated the potential of
utilizing synthetically generated data to enhance the performance of ML architecture.
Specifically, (GANs) and variational encoders (VAEs) have been utilized to create artificial
data that closely align with the unique data distribution [9,10]. VAEs are data creation
models that can be trained as a low-dimensional representation of the input data and
employed to generate new data points. In [11], the authors proposed a signal spectrum-
based machine learning approach by employing diverse algorithms to diagnose the hidden
patterns of abnormal conditions by predictive maintenance. In [12], the acoustic emission-
based fault diagnosis of the power transformer is proposed. In [13], the authors proposed
a VAE-generated synthetic data-based fault diagnosis method for power transmission
lines to augment the limited labeled data and achieve higher accuracy than traditional
machine learning algorithms. In [14], researchers proposed a novel protection scheme for
double-circuit transmission lines, aiming to classify shunt faults and accurately localize
them through KNN. In [15], the authors recommended an approach using Variational
Autoencoders (VAE) which was put forward for fault diagnostics in wind turbines by
utilizing synthetic data. Figure 3 shows the classification of major types of shunt faults
that commonly take place on power transmission networks. The standardized approaches
employed in this article beyond the suggested ML algorithm are discussed in Table 1.
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Figure 3. Classification of fault types (series faults and short circuit faults) most commonly occurred
in three-phase transmission lines.

Table 1. The details of standardized approaches employed in this paper are given below.

Algorithm Type Use Case Pros Cons

Support Vector
Machines Supervised Classification

Regression

Effective handling of
outliers through

kernel tricks

Creates problems
with noisy &
large datasets

Decision Trees Supervised Classification
Regression

Highly interpretable
and easy to
implement

Small changes in
data create different

tree structures

Random Forests Supervised Classification
Regression

Implement
ensemble averaging

for predictions

Less interpretable
due to the large

number of
Decision Trees

K-Nearest
Neighbors Supervised Classification

Regression

Minimum
assumptions for
data distribution

Computational cost
and sensitivity of K

1.1. Variational Autoencoders

Variational autoencoders (VAEs) are creative models for probabilistic data comprehen-
sion. These autoencoders can learn the probability distribution of input data and create
new data points that match the training data. VAEs use auto-encoders and probabilistic
models for unsupervised data generation and dimensionality reduction. These methods
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are used in image, audio, natural language processing, and data compression [15,16]. VAEs
train latent data representations through variational inference, which is their main novelty.
This requires optimizing an objective function that balances autoencoder reconstruction
error with a regularization term to achieve a desirable probability distribution for the latent
representation. The regularization term is usually chosen to be a normal distribution, which
allows for efficient sampling of the latent space and generation of new data points. The
VAE intends to optimize the following loss function:

L = reconstruction_loss + KL_divergence_loss

where L shows the overall loss to be minimized during training of VAE, reconstruction
loss evaluates the variance among the input data, and KL divergence loss assesses the
distinction between the distributions across the latent representation, as the predetermined
prior distribution.

1.2. Data Synthesis

Data synthesis or data augmentation is a common machine learning method for
producing new training data from existing datasets. This method improves model resilience
by adding non-training data variability. Classifiers perform better when sampling data
class feature spaces. In domains where data is scarce, pattern recognition tasks can be
particularly challenging due to limited variability in the available data, hindering the
model’s ability to learn effective generalization [17]. Data augmentation can be used to add
changes to training data while keeping labels to solve this classification problem. This can
increase guidance class variance and restore model generalization. It includes combining
data from several sources using statistical or computational approaches to find patterns,
correlations, and trends that may not be visible from individual datasets. Data synthesis
can transcend the limitations of individual studies by combining data from multiple studies
to form a complete picture.

1.3. Forward Feature Selection

Feature selection (FS) plays a vital role in supervised learning tasks by identifying
pertinent features that exhibit strong correlations with the target variable, while simultane-
ously removing redundant ones. This crucial process helps reduce computational burdens
and improve the accuracy of results. By eliminating redundant features, the selection
process ensures a more efficient and effective analysis. In this research, forward feature
selection is employed to pick a subset of inputs and eliminate redundant attributes. The
process of forward feature selection commences with an initial empty set of features and
progressively incorporates the most crucial ones. A preset criterion, such as the strongest
association with target variables or the lowest statistical test p-values, guides this. This
continues until max features or model performances are met. The majority of synthesized
datasets had imbalanced data; hence, this study used stratified cross-validation [18,19].
This paper contains the following notable characteristics and contributions:

• Introduction of variational autoencoders VAE for generation of synthetic data for trans-
mission lines fault classification and localization that can improve the classification
accuracy better than traditional methods.

• The technique is cost-effective and practical since it eliminates the requirement for a
large volume of labeled real-world data.

• Demonstrates the capacity to detect faults in real-time and respond quickly, which can
reduce the likelihood of power outages and improve grid dependability.

• Highlights the system’s ability to save time and effort by reducing the frequency of
human monitoring and intervention.

• Tuned proposed machine learning architectures for greater accuracy compared to
standard methods.
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• Shows how machine learning techniques using enhanced synthetic data can accurately
classify power transmission network issues.

• Research publications with scientific information contain limitations due to their
design, methodology, and context.

• Predictions may be distorted by selected data points due to selection bias and the
generated dataset must have 5000 data points to produce acceptable results.

• The proposed architectures require feature selection and hyperparameter adjustment
and measurement errors also impact algorithm performance and lead to dataset
inaccuracies.

2. Modeling of 220 KV Transmission Networks

Modern power systems depend on transmission lines to accurately transmit electricity
across vast distances with minimal losses. Abnormal transmission network conditions are
infrequent, making incorrect data capture nearly impossible. Aspen one-liner, a powerful
simulation tool used in industrial applications, is used to acquire datasets for practical
training in all ML and DL architectures [20]. VAE variational autoencoders are used to
construct and expand samples of all T/L shunt faults to improve power analysis for fault
identification, categorization, and regression. In Tables 2 and 3, transmission network
parameters for their generation are provided. The line-to-ground (AG, BG, and CG),
line-to-line (AB, BC, and AC), double line-to-ground (AB-G, BC-G, and AC-G), and three-
phase-to-ground faults were created using this concept. This paper calculates parameters
using the 220 KV three-phase transmission network model in Figure 4.

Table 2. System components parameters for the proposed transmission network model.

Parameter Unit Value

Phase to phase (voltages) KV 220

Source resistance (Rs) Ohms (Ω) 0.7896

Source inductance (Ls) Henry (H) 13.43 × 10−2

Fault incipient angle (ϕ) Degrees 0◦ and −30◦

Fault resistance (Ron) Ohms (Ω) 0.001

Ground resistance (Rg) Ohms (Ω) 0.01

Snubber resistance (Rsn) Ohms (Ω) 0.9 × 10−4

Fault capacitance (Cs) Farad (F) infinite

Switching time Seconds b/w 0.1 and 0.2

Table 3. Sequence parameters for the proposed transmission network model.

Sequence Parameters Unit Value

Positive and negative sequence
resistances (R1 and R2) Ohms/Km 0.01154

Zero sequence resistance (Ro) Ohms/Km 0.3165

Positive and negative sequence
capacitance (C1, C2, and C3) nF/Km 10.14

Zero sequence capacitance (Co) nF/Km 5.7853

Positive and negative sequence
inductances (L1, L2, and L3) mH/KM 0.7945

Zero sequence capacitance (Lo) mH/KM 2.9981
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Data Preparation and Extraction

It is very crucial to extract real-world data in their original form, particularly in the
context of modeling 220 KV power transmission networks. In our case, faulty data are
extracted from the Aspen one-liner simulation tool to ensure that the information is correct
and effectively utilized for modeling, analysis, and further research in this era. Voltage
and current waveforms are employed to take out useful information and validate the
occurrence of abnormal conditions on power transmission networks through machine
language. Figure 5 shows the standard waveforms for voltage and current signals in the
healthy state.
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Under healthy conditions, waveforms of voltage and currents are in purely sinusoidal
forms and have no distortion or noise, and the presented resultant waveform is standard.
Power transmission networks experience extremely abnormal current flow and gradually
drop the voltage to zero when an abnormal condition occurs. Figure 6 shows the single
phase-to-ground fault and due to this, the voltage and currents of phases (A–C) are distorted
due to abnormal instances on the line. The switching moment of the abnormal conditions is
set between 0.1 and 0.2 and the location of fault is 132 km along the transmission networks.

Similarly, Figures 7 and 8 show the line-to-line fault and dual-phase to-ground fault
waveforms where, Ia, Ib, Ic, and Va, Vb, Vc, show sudden degradation in their magnitude.
From these given circumstances, fault current and voltages are generated through machine
languages which are further enlarged by variational autoencoders VAE to generate training
datasets for classification and localization on power transmission networks. Figures 5–8
illustrate the scenarios of a healthy state, single phase-to-ground fault, double phase-to-
ground fault, and three-phase-to-ground faults generated from machine language.
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3. The Use of Cat-Boost Architecture for Fault Classification and Localization

Yandex developers built Cat-Boost architecture to automatically handle crucial aspects
and suggested model 2017 [21]. It adds priors to target its victim using variable statistics
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and combines category features to expand the dataset. It also trains practical datasets for
transmission network abnormality classification and localization using machine language.
It outperforms PCA, SVM, and ANN because it automatically handles categorical features
to improve classification and regression. Cat-Boost does not require feature-to-number
conversion or pre-processing for numerous fault categories. Cat-Boost minimized hyperpa-
rameter modification and used binary Decision Trees as basis predictors to solve complex,
noisy, and hydrogenous problems [22]. It loads all sample datasets into the training archi-
tecture, mixes a GBDT with unconditional features, and transforms each sample’s x-tics
before sampling for calculation. Using a sample size for data:

D = {(Xj, Yi)}; j = 1.

Based on a vector of n characteristics (Xj = Xj1, Xj2, . . ., Xjn) and a binary value (0, 1),
the sample (Xj, Yi) is distributed uniformly and independently by an unknown distribution
P(.,.). The function trains H: Rn→R to minimize the anticipated loss in the equation:

L (H) = EL(y, H(x))

where L stands for plane function and (X, Y) is the test dataset from training dataset D.
Sampling all data points for training in Cat-Boost architecture increases model resilience.
When changing each data point’s x-tics, the desired value is sampled and then assigned
relative weights. Cat-Boost requires minimal data training and accepts missed statistics
and non-coded integer attributes.

Dataset Training Employing Cat-Boost Architecture

About 18898 data points are generated for the mentioned diverse kinds of abnormal
conditions, including healthy state, line-to-ground, line-to-line, double line-to-ground,
and three-phase-to-ground faults. Data points are split into training for 70% and testing
for 30%, respectively. Cat-Boost architecture is implemented as a machine language on
the dataset for practical training and it can handle categorical features automatically for
excellent classification and regression results. The input data to the proposed architecture
are three-phase current and voltage data points, and their optimization parameters are
listed in Table 4. The suggested technique is superior to other machine learning models
which have longer training time and demand high computational cost. The optimized
parameters for the Cat-Boost algorithm are selected carefully through the tuning process
for admirable outcomes.

Table 4. Optimization parameters for Cat-Boost.

Hyperparameter Description Value

Iterations No. of boosting iterations 1000

Depth Depth of the tree 6

Learning rate Learning rate 0.1

Loss function LS for classification/regression Log loss/RMSE

Class weight List of categorical features 0.01, 0.001, 0.9, 0.0001

Verbose Print progress every X iterations

Random strength Search randomly a certain number
of combinations 0.1

4. Proposed Methodology

A lot of data is needed to develop good models for many machine-learning appli-
cations. Synthetic datasets are too important to generate when real-world data is scarce.
Machine learning and deep learning algorithms can create synthetic data from existing
datasets to guide ML architecture. The datasets train the model for fault classification and
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transmission line localization. The datasets with no missing values are considered as ideal.
Datasets train machine learning models. Classifying faults requires these ML models. After
training the ML model, testing is carried out on the ML model to check the accuracy models.
Figure 9 shows the proposed methodology for the classification and regression of abnormal
circumstances in transmission-carrying networks. SVMs are useful for fault classification
and localization, assisted by supervision to find the hyperplane for separating data point
types [23]. They may considerably improve fault classification and localization processes
to find the best hyperplane in n dimensions [24,25].
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Define a maximum tree depth to minimize overfitting in Decision Tree classifiers
that employ information gain and Gini index scoring algorithms. The system adjusts
depth to balance generalization and training set performance [26]. Gini index, entropy,
and CART determination analyze points [27,28]. Random Forest divides the dataset into
training data (the “in bag” data) and validation data (the “out of the bag” data) to detect
power system problem characteristics [29,30]. This unpredictability diversifies ensemble
trees and improves algorithm performance [31,32]. KNN improves power transmission
system fault management by detecting and categorizing defects [33]. Euclidean, Man-
hattan, and Mahalanobis distances are used to improve the K-Nearest Neighbors (KNN)
method [34,35]. Approximate KNN approaches use indexing structures like KD-trees and
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Hash tables to reduce the search space and improve computing performance, especially for
big, unbalanced datasets.

5. The Process of Data Generation and Simulation for T/L with Aspen One-Liner

The proposed methodology involves the utilization of experimental platforms en-
compassing both two-terminal and three-terminal transmission networks. The assessment
of these transmission models entails the application of Aspen one-liner, a productivity-
enhancing tool geared toward analyzing and modeling transmission and distribution
networks. This software effectively compiles replicated data by simulating diverse trans-
mission network defects under varying operational conditions, facilitating the export of
relay testing fault data. During instances of transmission network malfunction, post-fault
voltages in all three phases (Va, Vb, and Vc) along with the ground mode are meticulously
recorded for a single cycle at each terminal. In pursuit of generating real-time datasets, fault
levels are manipulated by introducing alterations in various transmission network fault
conditions across multiple locations. This real-time dataset is then employed to enhance
the original dataset, resulting in the creation of a synthetic dataset. Table 5 presents compre-
hensive data sample information about a range of shunt faults that have occurred on both
the two-terminal and three-terminal transmission lines. Applying variational encoders
(VAEs) to the list of defects within Table 5 yields a total of 2183 synthetic samples, further
enriching the dataset.

Table 5. Fault sample information.

Fault Type Fault Label

Line-to-ground AG

Line-to-ground BG

Line-to-ground CG

Double line-to-ground faults ABG

Double line-to-ground faults BCG

Double line-to-ground faults ACG

Line-to-line faults AB

Line-to-line faults BC

Line-to-line faults AC

Three line-to-ground faults ABC-G

VAEs are talented algorithms that can create synthetic data for double and triple power
transmission networks for abnormal condition classification and localization. This novel
method uses Aspen one-liner data samples to construct a new dataset. VAEs, a sort of
generative model, may encode input data into a compact latent space and decode it to
generate novel data samples that closely match the original data distribution as shown in
Figure 10. This strategy has shown promise in several applications, including resolving
imbalanced class distributions by using synthetic examples [36]. Generating a synthetic
dataset from the original dataset is extremely beneficial in critical situations where the
existing dataset is small and imbalanced, and we want to generate some additional data
to get better recital of the ML model. After generating some samples of shunt faults
for transmission networks, variational encoders (VAEs) are employed to enlarge this
synthetically. Real-time fault recorders are used for recording real-time faulty samples for
transmission networks [37,38].

They also duplicate the patterns present in the initial dataset by employing encoder
and decoder functions. These functions transform the original dataset into a smaller version,
effectively creating an expanded synthetic version. These datasets include information,
such as phase voltages, location details, and various examples of shunt faults found
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in transmission networks. These artificially generated data are utilized to teach the ML
architectures and assess the effectiveness of the designs [39,40]. For three-terminal networks,
only two samples are taken as faulty samples for each fault type and similarly, for two-
terminal networks, one faulty sample is considered as faulty. Attributes of training and
testing datasets are shown in Table 6, while all types of shunt faults as mentioned in Table 7
are simulated at each value for both transmission networks. The fault classification accuracy
and localization error of the given dataset by employing machine learning algorithms are
99.13% and <2%, respectively.
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Table 6. Attributes of training and testing datasets.

Attributes Training Dataset Testing Dataset

Fault types All kinds of shunt faults All kinds of shunt faults

Fault resistances 0, 25, 50, 75, 100, 150 0, 25, 50, 75, 100, 150

Fault distances Increments of 4.4 km to 150 km Increments of 4.4 km to 150 km

Size 14,400 4498

Data Splitting

The dataset includes two essential sets: (a) the training set, and (b) the evaluation
set. In the domain of ML algorithms, the process of dividing action datasets into training
and testing sets holds great importance. In our suggested approach, the dataset has been
partitioned, allocating 70% for training purposes and 30% for testing. After the algorithm
has been trained, the model’s effectiveness will be assessed by examining its performance
on the testing data.
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Table 7. Optimum parameters for proposed architectures.

Hyper-Tuning Parameters for SVM Hyper-Tuning Parameters for DT

Tuning parameters Values Parameters Values
Kernel function linear Criterion entropy

Regularization parameter (C) 0.1 Splitter best
Kernel Coefficient (gamma) 0.1 max_depth 90

Coefficient of kernel 1 min_samples_split 3
Validation accuracy 1 min_samples_leaf 2

max_features 5
ccp_alpha 0.01

Hyper-Tuning Parameters for Random Forest Hyper-Tuning Parameters for KNN
Parameters Values Parameters Values
Criterion entropy n_neighbors 3
Splitter best weights distance

max_depth 90 metric Euclidean
min_samples_split 3
min_samples_leaf 2

max_features 5

6. Performance Evaluation and Comparative Analysis

This section aims to provide a concise overview of the synthetic dataset, highlight-
ing its connections to various types of shunt incidents occurring on transmission lines,
along with their respective locations. Furthermore, we will introduce a comprehensive
set of assessment metrics that effectively gauge the performance of both the classifier and
regressor models. To visually portray the data distribution, we will adopt scatter plots, a
technique that presents data points on a two-dimensional graph. This method serves as a
robust tool for visualizing relationships and patterns embedded within the dataset. The
utilization of scatter plots is intended to enhance the clarity and intuitive understanding
of the dataset’s complexities, facilitating a deeper exploration of individual interactions
and behaviors. Figure 11 provides the scatter plot information of every value present in the
synthetically generated dataset through VAEs for classification and localization of faulty
points of (a) phase 1, (b) phase 2, and (c) phase 3, respectively.

6.1. Confusion Matrixes for Predictive Modeling of Classification Algorithms

In this study, we employ a confusion matrix to assess various types of shunt faults,
encompassing line-to-ground faults (AG, BG, and CG), line-to-line faults (AB, BC, and AC),
double line-to-ground faults (ACG, BCG, and ABG), as well as three-phase faults (ABC-
G). Four tentative scenarios are evaluated to measure the performance of the proposed
ML algorithms based on accuracy for calculating the ratio of the correctly classified and
unclassified abnormal circumstances against the total number of values. The accuracy is
calculated as:

Accurcay =
TP + TN

TP + TN + FP + FN
In the context of classification analysis, the acronyms TP (True Positive), TN (True

Negative), FP (False Positive), and FN (False Negative) hold significant meaning. These
descriptions result from a confusion matrix that presents a counter-process of the predictive
performance of a classification model. Figure 12 shows the confusion matrix for the
diagnosis of predicting outcomes based on proposed architectures for all kinds of shunt
faults on power transfer networks. Similarly, ROC curves and regression outcomes obtained
from Cat-Boost architecture are presented in Figures 13 and 14, respectively.
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6.2. Models Hyperparameters Tuning

Hyperparameter research was carried out to find the best settings for RFR and the
other models to be compared with. To find the optimal hyperparameters, researchers can
choose one of two routes: There are two types of searches: grid searches and random
searches. Using a sample of the data, grid search was used to investigate the important
parameters for each model and their optimal values. For KNN, we settled on uniform
and distance weighting functions, each with different numbers of neighbors. In SVM,
both polynomial and radial basis function (RBF) kernels were selected. In addition, we
looked at several different values for the regularization parameter C. The lowest number of
samples required to divide a node internally in DT was found, and various values were
examined to regulate unpredictability inside the tree. Alpha and lambda were chosen
as the shape parameters for DT. Alpha represents the gamma distribution before alpha,
while lambda represents the distribution before lambda. To find the appropriate split,
the RFR technique used two maximum feature methods, sqrt, and log2, to calculate the
number of characteristics to evaluate [41,42]. The best parameters for each model are
highlighted. Table 7 shows the optimal hyperparameter through a hyperparameter search
for appropriate values to enhance the accuracy of the training model of the SVM for the
proposed methodology.

To calculate the classification truth of shunt faults, the dataset is separated into training
and testing subsets, with 70% of the data allocated for training and the remaining 30% for
testing. The confusion matrix offers valuable insights into classification precision, where the
diagonal elements signify accurately predicted cases, and the off-diagonal values represent
misclassifications. Figure 15 illustrates the visual representations of the confusion matrices for
(a) SVM, (b) DT, (c) RF, and (d) KNN to diagnose shunt faults on power transfer networks.

The confusion matrix is employed to visualize the numeric test results, including true
positives, true negatives, false positives, and false negatives, highlighting the effective-
ness of the machine learning classifier [43]. In this matrix, the diagonal values represent
accurately classified instances, while the non-diagonal values correspond to unclassified
instances in the fault classification task for power transmission lines. Table 8 presents the
fault classification results for the proposed machine learning algorithms, namely SVM, DT,
RF, and KNN, as utilized in this study. It also demonstrates that the classification results for
shunt defects that occurred on power transmission lines using the ML algorithms proposed
in this article are of extremely high accuracy of up to (99.50%).
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Figure 15. Confusion matrix results for classification of transmission lines faults using standard
algorithms (a) SVM, (b) DT, (c) RF, and (d) KNN.

Table 8. Testing outcomes of fault classification employing suggested ML learning algorithms.

Machine
Learning Model Fault Types No. of Test Data

Samples

Accurately
Classified
Samples

Misclassified
Samples

Accuracy
%

SVM

LG (a-g, b-g, c-g) 270 268 2 99.25

LL (a-b, b-c, c-a) 270 266 4 98.51

LL-G (ab-g, bc-g, ac-g) 270 266 4 98.51

LLL (abc) 90 90 0 100

DT

LG (a-g, b-g, c-g) 270 261 9 96.66

LL (a-b, b-c, c-a) 270 268 2 97.74

LL-G (ab-g, bc-g, ac-g) 270 262 8 98.95

LLL (abc) 90 90 0 100

RF

LG (a-g, b-g, c-g) 270 269 1 99.62

LL (a-b, b-c, c-a) 270 269 1 99.62

LL-G (ab-g, bc-g, ac-g) 270 267 3 98.88

LLL (abc) 90 89 1 99.62
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Table 8. Cont.

Machine
Learning Model Fault Types No. of Test Data

Samples

Accurately
Classified
Samples

Misclassified
Samples

Accuracy
%

KNN

LG (a-g, b-g, c-g) 270 269 1 99.62

LL (a-b, b-c, c-a) 270 269 1 99.62

LL-G (ab-g, bc-g, ac-g) 270 267 3 98.88

LLL (abc) 90 90 0 100

6.3. Performance Evaluation Parameters for Classification Models

There are various methods to evaluate the efficiency of classification architectures,
which rely on the attributes of the test dataset. These methods include recognized measures,
such as precision, accuracy, recall, and F1 score, derived from the confusion matrix analysis.
These evaluation parameters are computed based on the elements of the confusion matrix
plot, tailored to the specific domain of the problem, and offer a thorough understanding
of the analysis. The outcomes of these assessment metrics are demonstrated in Table 9,
presenting the results of the classification models in terms of their assessment measures.

Table 9. Performance evaluation parameters for classification models.

Classifier Accuracy Precision Recall F1 Score

SVM 0.99 0.99 0.99 0.98

DT 0.97 0.98 0.97 0.98

RF 0.99 0.99 0.99 0.99

KNN 0.98 0.99 0.97 0.98

6.4. Receiver Operating Characteristic (ROC) Analysis for Proposed Architectures

ROC curves assess classification models and show the model’s classification efficiency
when thresholds change through the ability to distinguish classes by balancing sensitivity
and specificity. Four classifiers—SVM, Decision Tree, Random Forest, and KNN—were
examined. We predicted class membership probability for the test dataset after training
each classifier. These predicted probabilities generated ROC curves. FPR and TPR are on x
and y. The random guessing ROC curve is a dashed black diagonal line. Classifiers hope
curves over this diagonal outperform random chance. Starting with the SVM classifier
(solid lines), we get fault-type-specific ROC curves with AUC values. Dashed Decision Tree
classifier ROC curves capture complex decision boundaries. The Random Forest classifier
(dotted lines) uses many Decision Trees to smooth fault-type curves [44]. ROC curves for
the neighborhood-based K-Nearest Neighbor (KNN) classifier (dot lines). Dataset and
neighbor count affect KNN performance. ROC curves reveal each classifier’s strengths
and weaknesses. This helps us find fault-tolerant and multi-class models. We prioritize
ROC curves and AUC values for classification model evaluation. These metrics help select
a problem domain’s best classifier by assessing a model’s class discrimination. Figure 16
shows the ROC curves for SVM, DT, RF, and KNN to show the accuracies of classification
results on the power transmission lines.

6.5. Fault Localization Results

Once a specific type of fault is identified through the proposed classifier architecture,
the precise prediction of shunt fault locations within transmission networks is achieved
using regression models. The primary objective of these regression models is to establish
a functional mapping between the input features (independent variables) and the target
variable (a continuous value). Furthermore, regression serves as a means to uncover the
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intricate relationship between continuous input variables and their corresponding output
variables. In the capacity of a regressor, a selection of diverse machine learning algorithms
comes into play to pinpoint power line faults. The process involves conducting regression
computations for unforeseen data instances, accounting for both the proximity and distance
of the ends under observation. The regression outcomes are delineated in Figures 17–20,
illustrating a comparative analysis between the actual fault locations and those forecast by
the suggested ML algorithms (SVM, DT, RF, and KNN).
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Table 10 presents the outcomes of the regression model for both real and predicted
fault localization values. It also illustrates the extent of error experienced in power transfer
lines due to the implementation of the suggested approach. The actual values are shown
by a blue line as mentioned in the regression graph and the regression line is shown by the
red dotted line. So, the regression line is linear, and the accuracy of the regression system
predicted good results. The term absolute error is used to evaluate the regression results
on the power lines. The absolute error gives the results of the actual length on which the
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fault occurred and predicted results, which are predicted by machine learning models. In
absolute error, y-predicted is the value predicted by the machine learning model and y-true
is the true fault distance. The absolute error is given as

Absolute error =|true f ault distance− predicted f ault distance|

Table 10. Table for true and predicted values of fault localization and amount of error.

Machine Learning
Model True Fault Distance Predicted Fault

Distance % of Error

SVM

116.9 115.6 1.3

104.4 103.7 0.63

52.4 51.5 0.9

115.1 113.8 1.36

DT

21.6 21.2 0.4

114.2 112.8 1.4

74.4 73.3 0.7

50.0 49.2 0.8

RF

61.2 59.7 1.5

48.1 47.6 0.58

103.3 102.4 0.92

146.4 145.9 0.9

KNN

115.6 114.8 0.8

104.4 103.9 0.48

112.8 112.2 0.6

21.2 20.2 0.99

7. Conclusions

This study demonstrates the different machine learning algorithms for the recognition
of all types of shunt faults on transmission lines and their location tracing based on synthetic
data instead of using traditional trade-off planning. Transmission networks are the most
critical part of the power transfer system and are used to transfer power from one end to
other far ends. Different protecting relaying systems are installed on the grid/substation
for the sensitive operations of transients which mostly occur on the power system. When
abnormal conditions occur, then it will be necessary to remove the faults within no time
and restore the power to end-users. The collection of real data for making datasets is the
major problem in implementing and training models. This study is based on the analysis
of data obtained from simulations of transmission networks using Aspen one-liner, which
is further expanded by employing variational encoders to enlarge it synthetically. Machine
learning algorithms are the best solution for complex networks. These algorithms are
easy to implement, and the best performance results can be obtained, restoring the power
supply for a safe and reliable country’s energy system. The proposed methodology is
simple to implement for the existing protection system. Machine learning models are
trained by datasets and feature selection methods. In the classification process, the model is
trained to classify the shunt faults, which mostly occur in the power system. Support Vector
Machines, Decision Trees, Random Forests, and KNN models are used for classification and
regression. All the classifiers provide admirable results for the classification and localization
of faults on transmission networks. This research work also highlights the importance of
data quantity, and increasing the amount of data synthetically for training improves the
accuracy of architectures they also emphasize the need for accurate fault data labeling and
feature selection to achieve optimal results.
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