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Preface

The author of this Ph.D. dissertation, Ahmed Abdulrahem Abouzeid, comes from
Egypt, where he had received his Bachelor’s in Computer Science in 2006. Then,
he practiced Software Engineering in the industry for more than eight years. In
2017, he received his Master’s degree in Informatics from Eötvös Loránd University,
Budapest, Hungary.

The author believes that the central structure of an experience is its intention-
ality, and hence being directed towards such an experience with a particular belief
concluded from past experiences. Therefore, this dissertation’s motivation can be
viewed as a reflection of a life’s journey — since the Egyptian revolution occurred
in 2011 and the chance to witness the Egyptian people’s dreams as they pursued
liberty and equality. However, the people’s movement challenged political manipu-
lation, which led to the neutralization of their movement. Nevertheless, since then,
a spirit, and a mind have been shaped and evolved, committing to the matter of
Truth revealing.

The author believes that Artificial Intelligence (AI) is yet to be matured in
societal issues such as hate speech detection, fake news detection, and political
manipulation on Social Media (SM). One of the primary reasons for that is the
lack of enough collaboration between the AI community and the Social Science
community. That causes AI models to learn from biased or limited representations
of the tackled problem. Therefore, the primary consideration of this study was to
understand the learning problem before understanding the learning methods.

The following research study focused on representations and realistically design-
ing the learning problem in addition to the learning methods. The work could inter-
est readers from AI and Computational Social Sciences communities, where topics
such as Stochastic Optimization, Non-sequential Reinforcement Learning (RL) for
decision making, and SM users’ behavior modeling were studied.
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Summary

The increasing amount of misleading information on Social Media (SM) platforms
is problematic. The reason is that these platforms have become one of the primary
sources of information due to their ease-of-use and cheap cost of information acqui-
sition. One example is that misleading information can disturb the social order and
recovery from emergencies, recently actualized by the infodemic of COVID-19 and
the Russian-Ukrainian information war. As the amount of misleading information
on SM increases, we risk that consumers start mistrusting even reliable information
sources. To this end, a wide range of Artificial Intelligence (AI)-based solutions were
proposed to combat such an issue. One common approach is the intervention-based
misinformation mitigation on SM, where the task is to mitigate the exposure to
misinformation by alternatively boosting the exposure to factual information. Tra-
ditionally, the exposure to a particular information type for each user is defined as
the count of propagated content of that information type by the adjacents of that
user, e.g., followees on Twitter. To boost exposure to online factual content, SM
users are incentivized to propagate these facts first, and their network adjacents such
as their followers on Twitter can then reach and interact with these facts. Hence,
in this context, intervening with users means incentivizing them to change their
information dissemination behavior by propagating more factual information.

Because each user has a different number of adjacent users and each user has
a different level of exposure to misinformation, the individual incentives should be
determined differently according to the following. On one hand, (A) how much
misinformation exposure a user has? On the other hand, (B) how much exposure
to misinformation do adjacent users have? In all cases, (C) How likely are a user or
the adjacent users will accept or be influenced by the determined incentivization?

Traditionally, the learning of individual incentives is facilitated through the Re-
inforcement Learning (RL) framework. In the latter, the dynamics of SM users’
online engagements are modeled through a simulated social network environment
from which the RL agents can learn about users’ behavior. However, there have
been relatively few intakes on how to learn and evaluate the optimal individual in-
centivization required to achieve optimal mitigation outcomes. For instance, existing
criterion functions and representations mainly focused on quantities of misinforma-
tion and factual information which each user is exposed to, without considering the
root causes that drive these exposures. Hence, the answer to question (C) was not
investigated adequately. We believe the latter is a noticeable drawback in the pro-
posed solutions because the simulated network and the incentivization procedure
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should be conducted over the best possible representation and criterion function
that reflect real-world dynamics on SM.

In this research, we propose a novel approach utilizing RL, specifically Learn-
ing Automaton (LA). Our method combines the principles of RL with the adaptive
decision-making capabilities of LA to address the challenges of user needs-based in-
centivization learning. Further, we propose a novel simulation-based optimization
framework with novel users’ activity representation to model the task of intervention-
based misinformation mitigation. Driven by the novel activity representation, we
propose a novel criterion function that considers the key factors that influence infor-
mation propagation on SM instead of only calculating quantities of misinformation
and factual information exposures. These key factors were proposed in recent Social
Science literature and illustrated what dictates misinformation spread on today’s
SM platforms. In that manner, we propose temporal activities of societal bias, con-
tent engagement, and the propagation patterns of both misinformation and factual
information. Thus, we do not assume incentives to be assigned based on the quan-
tities of exposure to misinformation only but rather evaluated and assigned based
on the probability of agreeing with a content or an opinion that has a particular
bias, in addition to the probability of engaging with it in the first place. Further,
the study proposes preliminary algorithms to help verify and self-learning of SM
activity categories such as political bias and information type. Finally, our empiri-
cal results show three main significant properties. First, they demonstrate how our
novel mitigation algorithms perform better in most of the scenarios when compared
to traditional RL algorithms. Second, the results indicate how our proposed criterion
functions are robust to different network statistics in terms of different percentages
of misinformation exposure among users. Third, our novel activity representation
is more transparent and extended the analytical capacity to a misinformation miti-
gation solution. The latter is recognized in the provided capabilities of tracing the
change in probabilities of societal bias and content engagement as a consequence of
the intervention.

In all brevity, this research investigates questions and problem variables beyond
the existing misinformation benchmark datasets and their underlying representa-
tions. The study gathered additional comprehensive and crucial data to create a
well-developed learning setting and standard for the proposed LA agent. Our re-
search aims to connect the realms of AI and Social Science by examining pertinent
theoretical studies concerning the issue of misinformation spreading on SM and the
interconnected dynamics that oversee this process.



Sammendrag

Den økende andelen av villedende informasjon på sosiale medier er problematisk, da
disse i økende grad har blitt en av hovedkildene til informasjon grunnet deres bruker-
vennlighet og lave informasjonskostnad. Misvisende informasjon kan forstyrre sosial
orden og hindre gjenoppretting fra nødsituasjoner, som nylig ble aktualisert gjennom
«infodemien» av COVID-19 og den russisk-ukrainske informasjonskrigen. Økningen
i villedende informasjon kan føre til at brukere mister tillit til også pålitelige infor-
masjonskilder. Flere kunstig intelligens løsninger har blitt foreslått for å bekjempe
dette problemet. En vanlig tilnærming er en bekjempelses-strategi der man demper
spredningen av villedende informasjon ved å øke eksponeringen for faktisk «korrekt»
informasjon. Tradisjonelt sett blir eksponeringen av en spesifikk informasjonstype
for hver bruker definert som antall ganger innhold av den informasjonstypen er
blitt delt i brukerens nettverk, for eksempel av personer brukeren følger på Twitter.
Altså, for å øke eksponeringen for faktisk «korrekt» innhold på nettet, blir sosiale
mediebrukere oppmuntret til å spre det korrekte innholdet først, og deres nettverk-
skontakter, som deres følgere på Twitter, kan deretter nå og samhandle med denne
«korrekte» informasjonen. Måten man påvirker brukerne i denne sammenhengen er
ved å motivere dem til å endre sin atferd når det gjelder spredning av misinformasjon
ved å spre mer «korrekt» informasjon.

Fordi hver bruker har et ulikt antall tilstøtende brukere, og hver bruker har
ulik grad av eksponering for villedende informasjon, bør individuelle insentiver
bestemmes forskjellig i henhold til følgende. På den ene siden, (A) hvor mye ek-
sponering for villedende informasjon en bruker har? På den annen side, (B) hvor
mye eksponering for villedende informasjon har tilstøtende brukere? I alle tilfeller
(C), hvor sannsynlig er det at en bruker eller en tilstøtende bruker vil akseptere eller
påvirkes av det bestemte insentivet?

Tradisjonelt sett brukes forsterkningslæring for å finne de beste insentivene for
hver enkelt bruker i kampen mot misvisende informasjon. Med forsterkningslæringsme-
toder, blir dynamikken til de sosiale medie-brukernes online-engasjement modellert
gjennom et simulert sosialt nettverksmiljø, der forsterkningslærings-algoritmene kan
lære fra brukeradferden i det simulerte miljøet. Imidlertid har det vært relativt få
forsøk på å lære og evaluere de optimale individuelle insentivene som kreves for å
oppnå en optimal demping av misvisende informasjon. For eksempel har nåværende
kriteriefunksjoner og -representasjoner hovedsakelig fokusert på hvilke mengder av
villedende og faktisk «korrekt» informasjon som hver bruker har blitt eksponert for,
uten at det har blitt tatt hensyn til de grunnleggende årsakene som driver disse ek-
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sponeringene. Altså er ikke spørsmål (C), slik nevnt ovenfor, tilstrekkelig undersøkt i
nåværende forskning. Vi mener at dette gir en ulempe i eksisterende løsninger, fordi
den simulerte nettverksmodellen og incentiviserings-prosedyren bør gjennomføres
basert på den beste mulige representasjonen og kriteriefunksjonen som reflekterer
virkeligheten på sosiale medier.

I denne forskningen presenterer vi en ny tilnærming ved å bruke forsterkn-
ingslæring, og mer spesifikt, en såkalt læringsenhet referert til som Learning Au-
tomaton (LA). Metoden vår kombinerer prinsippene i forsterkningslæring med de
adaptive beslutningsevnene i LA for å håndtere utfordringene med læring av insen-
tiver basert på brukerbehov. Videre foreslår vi en ny simuleringsbasert optimalis-
eringsmodell med en innovativ representasjon av brukeraktivitet for å modellere
oppgaven med intervensjonsbasert demping av misvisende informasjon. Med ut-
gangspunkt i den nye aktivitetsrepresentasjonen, har vi utviklet en ny kriteriefunksjon
som tar hensyn til nøkkelfaktorene som påvirker informasjonsspredning på sosiale
medier, i stedet for å kun beregne mengder av eksponering for villedende og faktisk
«korrekt» informasjon. Disse nøkkelfaktorene ble foreslått i nyere samfunnsviten-
skapelige studier og illustrerer hva som styrer spredningen av misvisende informasjon
på dagens sosiale medieplattformer. På den måten har vi foreslått temporære ak-
tiviteter som samfunnsmessig skjevhet, engasjement med innhold og spredningsmøn-
steret til både villedende og faktisk «korrekt» informasjon. Derfor antar vi ikke at
insentiver blir tildelt bare basert på mengden eksponering for villedende informasjon,
men at insentivet heller blir vurdert og tildelt basert på sannsynlighet for å være
enig med et bestemt innhold eller mening som har en spesiell skjevhet. I tillegg veier
sannsynligheten for at brukeren engasjerer seg med innholdet i utgangspunktet inn.
Videre foreslår studien algoritmer for å hjelpe til med å verifisere og selv lære om
aktivitetskategorier på sosiale medier, som for eksempel politisk skjevhet og infor-
masjonstype. Til slutt viser våre empiriske resultater tre hovedegenskaper. For det
første viser de hvordan våre nye misvisende informasjon-dempingsalgoritmer er bedre
i de fleste scenarier sammenlignet med tradisjonelle forsterkningslærings-algoritmer.
For det andre indikerer resultatene hvordan våre foreslåtte kriteriefunksjoner er ro-
buste mot forskjellige nettverksstatistikker med ulike prosentandeler av villedende
informasjonseksponering blant brukere. For det tredje er vår nye aktivitetsrepre-
sentasjon mer forklarbar og utvider den analytiske kapasiteten til en misvisende
informasjon-dempingsløsning. Det sistnevnte funnet anerkjennes gjennom evnen til
å spore endringer i sannsynligheten for samfunnsmessig skjevhet og engasjement
med innhold som en konsekvens av intervensjon.

I korte trekk undersøker denne forskningen spørsmål og problemstillinger som
går utover eksisterende referansedatasett for desinformasjon og deres underliggende
representasjoner. Studien har samlet inn omfattende og avgjørende data for å skape
en godt utviklet læringssetting og standard for den foreslåtte forsterkningslærings-
agenten. Målet med vår forskning er å koble sammen fagområdene kunstig intelligens
og samfunnsvitenskap ved å undersøke relevante teoretiske studier om problemet
med spredning av misvisende informasjon på sosiale medier og de sammenhengende
dynamikkene som styrer denne prosessen.
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Chapter 1

Introduction

This chapter gives an introduction to the study conducted in this dissertation. The
chapter highlights the scientific and societal motivation for the research focus and
provides an overview of the key topics and research questions covered in the study.

1.1 Motivation

The increasing amount of misleading information on Social Media (SM) platforms is
problematic [1]. The reason is that these platforms have become one of the primary
sources of information due to their ease-of-use and cheap cost of information acqui-
sition [2]. One example is that misleading information can disturb the social order
and recovery from emergencies [3], recently actualized by the infodemic of COVID-
19 [4] and the Russian-Ukrainian information war [5]. As the amount of misleading
information on SM increases, we risk that consumers start mistrusting even reliable
information sources [6]. Therefore, increasing the veracity of the information on SM
platforms is critically required [7].

Unfortunately, SM platforms such as Facebook and Twitter are geared towards
maximizing user engagement over similar preferences instead of optimizing for in-
formation veracity [8]. The latter causes the so-called Echo Chambers Effect [9],
which traps users inside their comfort zones and blocks them from exploring other
systems of beliefs and opinions. Hence, narrow-minded societal bubbles emanate
[10], intensifying polarization and extremism.

Polarization and extremism on SM platforms lead to another harmful phenomenon
[11]: the so-called Confirmation Bias. The latter occurs when users search for, in-
terpret, and favor information that satisfies their prior beliefs. Hence, Confirmation
Bias could have a crucial impact on how online users would perceive online content
[12] — for instance, the political climate in society is likely to become vulnerable to
manipulative online political campaigns [13, 14, 15].

The effect of Echo Chambers and Confirmation Bias can also be observed in how
the social network’s extreme polarization extends the lifetime of manipulative online
political campaigns [1]. In this manner, the network’s societal bubbles that embrace
the manipulated contents will turn the latter into opinions [16]. That leads to the
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problem of the unintentional spread of false content [16], a.k.a. “misinformation”.
The problem of misinformation on SM is very challenging since misinformation

by nature is resilient towards fact-checking attempts [17]. This is because a machine
learning-based fact-checking classifier is trained on particular linguistic features —
but, when a random person expresses a deceptive opinion with a random text, that
could introduce many outliers that lower the classification accuracy of the model
[18]. Further, fact-checking methods are judgmental in the sense that they provide
a definite classification of users’ contents, hence, any error in their outcomes will
violate the freedom of speech, which is an ethical concern about machine learning
classifiers [19].

Thus, the above challenges led us to investigate novel machine learning ap-
proaches and methods that learn how to boost factual information on SM by incen-
tivizing online users to share verified content, a.k.a. “intervention-based misinforma-
tion mitigation”. Unlike machine learning classifiers for misinformation detection,
the adopted approach in this study allows for ideological debates, the democratiza-
tion of combating misinformation, and reducing the risk of violating human rights.

1.2 Scope

This section introduces the approaches that sum up the scope of this dissertation. In
subsection 1.2.1, we give an overview of the approach of misinformation mitigation.
In subsection 1.2.2, we briefly demonstrate information diffusion modeling, which is
a fundamental technique in SM analysis to predict online activities. Additionally,
subsection 1.2.3 briefly explains how controlling a diffusion model could achieve
misinformation mitigation. In subsection 1.2.4, we give a quick overview of the
knapsack optimization problem, which has been used to define a wide range of
optimization tasks. Figure 1.1 illustrates the flow of information and interaction
between the methods under the scope of our study. In brief:

• An information diffusion model predicts the users’ temporal activities through
a parametric prediction function.

• The prediction function parameters are adjusted through optimized values by
a control model. The latter should then reshape the social network toward
optimal temporal user activities that serve our purpose of mitigating misinfor-
mation exposure. The exposure to a particular information type for each user
in a given period of time is traditionally defined [20] as the count of propagated
content of that information type by the neighbors of that user (e.g., followees
on Twitter).

• Repeat the above in the same order until convergence to optimal knapsack
items’ values, where the latter represents the prediction function parameters
adjustments within a constrained capacity of a knapsack [21].
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Figure 1.1: The flow of information and interaction between the main elements of
the scope of this dissertation

1.2.1 Misinformation Mitigation

As discussed above, misinformation can persist on the network as it becomes a point
of view. Thus, approaches such as fake news detection [22] and troll detection [23]
are insufficient. That is because these approaches are usually offline solutions, and
topics such as polarized opinions and societal denial of other points of view are not
in the scope of these models. In contrast, a misinformation mitigation approach
can focus on the network dynamics that influence the ongoing process of misleading
content and proposes an online intervention-based resolution [20].

Further, since fake news and fake accounts detection methods are judgmental
by providing a definite classification of users’ contents or profiles, any error in their
outcomes will violate the freedom of speech [24]. Alternatively, the misinforma-
tion mitigation approach aspires to democratize and intensify other viewpoints by
considering the online content as opinions to interact with and possibly be changed.

One common technique in the misinformation mitigation approach and also what
we adopted in this study is to learn about the incentives required for each user to
support and contribute to a truth1 campaign to neutralize the misinformation on
the network [25, 20].

The idea behind incentivizing users to share the other point of view is to make
them introduce a diversity of information to the network. However, the latter also
creates a paradox of diversity and polarization — because in a very heterogeneous

1In this dissertation, we are using the word “truth” without capitalization — except for titles
since we cannot argue that our truth campaign’s factual information means a transcendent idea in
the platonic sense. Hence, a truth campaign is just a method to propagate the other point of view
that is believed and hoped to be true. Thus, we would also like to highlight our recommendation
regarding utilizing our method under the supervision of society and its authentic institutions to
protect against the misuse of technology.

5



society, the polarization can be sustained under intense pressures [26], and people
become more protective of their ideas when others oppose their beliefs. Such paradox
makes accomplishing misinformation mitigation very challenging.

1.2.2 Information Diffusion Modeling

Learning about users and their potential information dissemination patterns requires
observing their temporal activities on the network [27]. In an intervention-based
truth campaign [25], further intervention with users aims to reshape their network
activities to circulate factual information. Hence, more challenges arise since real-
time intervention with the social network is infeasible. The latter challenge occurs
because an external algorithm cannot reach, intervene, and observe changes in all
users on the SM platform. Thus, one way to observe and evaluate different inter-
vention strategies is by modeling the information diffusion process on the network.

The idea of an information diffusion model [28] is to simulate users’ activities and
predict future information dissemination patterns and consequences of different in-
tervention strategies. For example, interventions that incentivize users to propagate
a particular type of information. Therefore, there is a critical need for obtaining
realistic representations and a trustworthy simulated network [29] that reflects real-
world dissemination patterns.

Figure 1.2 demonstrates an example of a social network and its temporal users’
activities prediction from an information diffusion model, where the latter pre-
dicts the temporal dissemination patterns of harmful political propaganda and non-
propaganda content types in a political context.

1.2.3 Diffusion Model Control

Traditionally, Policy-based Reinforcement Learning (RL) methods [30, 25, 20] en-
abled the intervention with the simulated social network to learn about campaign
incentives. These methods control the diffusion model, where the latter estimates
the temporal users’ activities before and during the intervention. The RL agents’,
where each is associated with a user on the network — are tasked to learn a policy
of the optimal incentive values required for each user during an intervention. The
intervention is in the form of assigning some hypothetical incentive values based on
a predefined criterion that characterizes users’ needs in terms of being vulnerable to
misinformation, and hence, each user would need more factual information exposure.

The RL agents can learn an optimal incentivization policy through a designed
criterion reward function that evaluates how good an incentive was for each user. Af-
ter assigning such incentives, the reward function evaluates the predicted consequent
temporal activities from the diffusion model. If an agent receives a positive reward,
it commits to the current assigned incentive value. Otherwise, it rolls back to a
previous incentive value, given that an initial value of an incentive is 0. Iteratively,
the agents perform state transitions that characterize the assignment of different
incentive values until they converge to optimal values of individual incentives.
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Figure 1.2: A colored graph showing information dissemination patterns inferred
from a diffusion prediction function, where nodes and edges represent users and
their following relationships, respectively. Colors represent the dissemination over
time of a particular information type
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1.2.4 Knapsack Optimization

Knapsack optimization aims to maximize the outcome of some utilized items that
can fit into a knapsack without exceeding a maximum capacity constraint [21].
Therefore, the choice of the particular items with the specific amount of each item
should be optimal to maximize the benefit within the capacity boundary. With an
analogy to the task of misinformation mitigation via incentive learning, the knapsack
items can be considered the individual users’ incentives whose determined values
influence the optimality of the knapsack. Therefore, the users’ incentive values
should be optimal and add up to a value within an incentivization budget constraint.

The advantage of defining the problem of misinformation mitigation as a knap-
sack optimization problem is how easy it becomes to understand and analyze the
learned users’ incentives with their relevance to the optimal mitigation results we
seek. Moreover, the knapsack optimization will provide more insights learned from
previous optimization algorithms over the knapsack. For example, whether or not
greedy algorithms could be better for solving a particular knapsack problem [31].

1.3 Research Gaps

The existing limitations in intervention-based misinformation mitigation can be di-
vided into three primary categories: (1) the mitigation learning algorithms, (2) the
representation of the problem variables, which is reflected in the configuration of the
information diffusion model, and (3) the perspective of Artificial Intelligence (AI)
trustworthiness. We provide an overview of some of these limitations in this section.

1.3.1 The Mitigation Learning Algorithms

The work proposed by Farajtabar et al. (2017) [20] has established a novel truth
campaign approach by reshaping the simulated network activities to boost factual
information during misinformation circulation on SM. That was achieved through
policy-based RL to optimize an information diffusion model. The successively pro-
posed learning algorithms for the same task have also utilized the same framework
[25, 30] to learn the mitigation policy. Since the truth campaign optimization task
on SM is relatively new, there is an expansive scope of contribution to novel methods
other than the existing policy-based RL. That drives the need and curiosity to inves-
tigate more lightweight algorithms since the nature of the problem is time-critical.

Further, the existing criterion reward functions for the RL algorithms [20, 25, 30]
mainly assumed that evaluating an incentive value for its optimality should be con-
ducted based on how much a user needs to be exposed to more factual information.
One common technique to quantify the latter was by calculating the difference be-
tween misinformation and factual information exposures [20]. However, we believe
more research should investigate what else could be governing the dynamics of such
a process and then replicate that to contemporary criterion reward functions.
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1.3.2 Representation of the Problem Variables

Intervention-based misinformation mitigation algorithms on SM generally depend on
how information circulates and users’ activities occur. In these scenarios, a control
model intervenes with an information diffusion model, where the latter characterizes
the social network dynamics [20]. These diffusion models require temporal historical
network data to learn interdependencies of network activities for predicting future
temporal propagation. Unfortunately, the currently existing data sources do not
provide a comprehensive representation of the problem variables. For instance, the
currently available datasets [32, 33, 34, 35, 36, 17] focused mainly on information
veracity labels and the timestamps of true or false contents, ignoring other interde-
pendent time-varying contexts, such as the individual political bias and the biased
community engagements on SM [37]. Therefore, a more realistic diffusion model
needs to learn from diverse time-tagged samples on the various categories of the
problem variables rather than just one category of information.

Moreover, the above is also connected to the existing RL criterion reward func-
tions [20, 25, 30] which as a result suffered from such limited representation. In
this manner, existing criterion reward functions returned a reward signal based on
naive heuristics such as a stochastic signal from a single-modality diffusion model
with only timestamps information about the dissemination of either true or false
information.

1.3.3 Trustworthiness of the Method

The currently proposed truth campaign optimization methods must be verifiable
to suggest the learned users’ incentives in the real world. Hence, one fundamental
question is: what do these incentives mean in the real world?

The answer to the above question will be significant in the field of intervention-
based misinformation mitigation research. Unfortunately, the currently proposed
mitigation methods did not fill that research gap. However, interpreting and ver-
ifying the converged incentive values is essential since these incentives are being
evaluated within a simulation (i.e., the diffusion model) and not the real world. Fur-
ther, it is challenging for a diffusion prediction model to accurately predict human
behavior, because the human brain’s decision-making process is highly challenging
[38].

Another aspect of any proposed solution’s trustworthiness is how the misinfor-
mation mitigation approach depends on a machine learning classifier to detect and
categorize the targetted information categories for the diffusion model. These clas-
sifiers are usually a black box and cannot provide interpretability of their results
[39], which is a big disadvantage when judging people’s authenticity.
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1.4 Contributions

1.4.1 Major Contribution

This dissertation’s major research focused on utilizing Learning Automaton (LA)
[40] as an incentive control model for a knapsack optimization problem. The latter
was applied to solve a truth campaign optimization for misinformation mitigation
via controlling an information diffusion model. We utilized Multivariate Hawkes
Processes (MHPs) to characterize the network diffusion volumes [41].

The main diffusion volumes we eventually sought to optimize were the counts of
temporal users’ activities regarding their engagement with factual information. The
latter was then evaluated with regard to the knapsack optimality and the predefined
criterion for that. To the best of our knowledge, our research is the first attempt
to utilize LA to control a MHP-based knapsack for the problem of misinformation
on SM, where our proposed network of LAs solved another non-convex optimization
problem [42].

Our choice of the LA as a diffusion control model was due to how easily im-
plementable and lightweight an automaton is. Therefore, we believe our research
significantly widens the application of LA in the literature and opens the venue for
more decentralized and easily implementable methods for time-critical issues such
as emergency responses to an infodemic on SM [43].

To this end, our coupling of LAs and MHPs allowed for the below major contri-
butions:

• The study proposed novel temporal user activity representations to provide
close-to-reality SM dynamics by modeling and predicting the interdependence
between multiple temporal activity categories.

• Driven by the above point, we modeled the recently proposed theoretical strat-
egy of intensifying the societal acceptance on SM [44]. Hence, this dissertation
provided an example of integrating Social Science and AI for a typical soci-
etal problem and provided a well-established criterion reward function for the
proposed LA mitigation algorithm.

• The societal acceptance awareness in our study yielded a novel optimization
loss function where societal acceptance awareness was constructed through
novel function domain variables.

• The study proposed easy-to-implement and lightweight novel LA-based miti-
gation algorithms with sampling techniques for size-scalable social networks.
Further, the work offered mitigation software that facilitates interactive visu-
alization of consequent diffusion scenarios to provide an informative evaluation
of different mitigation strategy parameters.

• All the above contributions resulted in finding a novel architecture and mathe-
matical model. Thus, this dissertation proposed the Multiplex-Controlled Mul-
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tivariate Hawkes Processes (MCMHP) — a unified model to define parametric-
MHP control tasks formally. As one possible application of the proposed
MCMHP, the latter was evaluated for the integration of multiple interdepen-
dent diffusion volumes categories to optimize. The latter functionality ex-
tended the analytical capacity of existing intervention-based misinformation
mitigation models. Hence, instead of only optimizing and tracing the inten-
sities of factual information engagement, we also traced and optimized other
network dynamics that derive the engagement with factual information.

1.4.2 Minor Contribution

As a minor contribution, we proposed a preliminary self-supervised machine learn-
ing scheme and architecture based on the so-called Tsetlin Machine (TM) [45] to
self-learn categories without the existence of the ground truths. Our proposed ar-
chitecture allows for interpretable [46] clustering of such categories, which is crucial
when judging the authenticity of users’ generated content on SM. Further, the self-
learning characteristics facilitate an independent and transparent misinformation
mitigation pipeline since no manual work is needed to annotate the data before
training the MHP. Additionally, we proposed a causal graph-based mechanism to
verify users’ trustworthiness on SM, which could also be fine-tuned to verify the
learned truth campaign incentives.

1.4.3 Availability of Collected Datasets and Source Code

The collected datasets and developed source code for all experiments done for this
dissertation; were made public2.

1.4.4 Research Questions

This dissertation investigated the following five research questions (RQ) to fill some
relevant research gaps for the required sub-tasks for the problem of intervention-
based misinformation mitigation on SM. While we deeply investigated some of these
questions and believed we made a major contribution, we contributed with some
preliminary methods to initially answer the other questions.

• Major - RQ1: How to design a lightweight control model and misinformation
mitigation algorithm using LA for truth campaign optimization?

• Major - RQ2: How to introduce ethical considerations, like fairness, into the
criterion and optimization loss functions, while maintaining effective mitiga-
tion?

• Major - RQ3: How can contemporary information diffusion models be enriched
to capture community behavior, and how can the resulting enriched models
lead to improved mitigation loss functions for our LA design?

2https://github.com/Ahmed-Abouzeid?tab=repositories
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• Minor - RQ4: How can the misinformation mitigation strategy’s learned in-
centives be verified for correctness in real-world practices?

• Minor - RQ5: What could be the best approach to provide transparency and
independence for a misinformation mitigation pipeline? For example, how
to self-learn the temporal activities of online users with justification on the
classification results?

1.5 Dissertation Outline

This dissertation is organized into two parts. First, Part I gives an idea of the
motivation, scope, contributions, research questions, theoretical background, and
proposed methods. Part I has four chapters, chapter 1 demonstrates the motivation
and scope of the study. chapter 2 provides more details on the relevant theoretical
background work and positions this dissertation’s main focus. chapter 3 explains the
proposed methods. Eventually, chapter 4 concludes the dissertation and provides
some insights on future directions. Second, Part II provides the full text of all
submitted or published research papers as an outcome of this study. We demonstrate
below the primary outcome of each paper with its relevance to the dissertation and
the other included papers.

• Paper A (see Appendix A): This paper was our first attempt to investigate
the problem of misinformation on SM. The paper proposed a probabilistic
causal model as a theoretical view on the problem of normal users’ credibility
on SM. The work introduced a Causal Bayesian Network (BN) [47] inspired by
the potential main entities that would be part of the misinformation process
dynamics. The paper’s methodology examined the problem solution in a causal
manner which considered the task of misinformation detection as a question
of cause and effect rather than just a classification task.

The causality-based approach provided a practical road map for some sub-
problems in real-world scenarios, such as sensitivity analysis [48] and verifica-
tion of the learned truth campaign incentives. For example, the LAs decided
incentives could be represented as causal parent nodes with a misinforma-
tion state as a child node, and polarization with societal engagement could
be represented by other interconnected nodes. Moreover, the causality ap-
proach facilitates intervention simulations which would unveil a more casual
analysis of the diffusion patterns on the network. Hence, this paper outcome
contributed partially to RQ4 as highlighted in subsection 1.4.4.

• Paper B (see Appendix B): This paper proposed a novel lightweight
intervention-based misinformation mitigation framework using decentralized
LAs to control the MHP simulated network. Each automaton was associated
with a single user to learn how effective the latter is when gets involved in a
truth campaign to circulate factual information.
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The approach conducted in this paper showed fast convergence and increased
the factual information exposure on the simulated network. These results per-
sisted independently from network structure, including networks with central
nodes, where the latter could be the root of misinformation. Further, the
LAs obtained these results in a decentralized manner, facilitating distributed
deployment in real-life scenarios.

This work answered RQ1, where we evaluated the LA on the problem of
stochastic knapsack optimization for misinformation mitigation. Thus, this
paper established the basis to answer RQ2 and RQ3 in subsection 1.4.4, and
its extended work is proposed in Papers D, E, and G.

• Paper C (see Appendix C): This preliminary study investigated how an AI
model can provide excitation for the other human partner during a dyadic text-
based conversation. As a first step, we proposed a Neural Emotion Hawkes
Process (NEHP) based on the Neural Hawkes Process [49] for predicting the
future emotional dynamics of the other conversation partner. Moreover, we hy-
pothesized that NEHP could facilitate learning of different intervention-based
emotional consequences of different excitation strategies. Thus it would allow
for goal-directed excitation behavior by integrating with emotional chatbot
agents [50].

Our preliminary results in this paper showed promising emotion prediction
accuracy over future conversation turns. Furthermore, the proposed model
captured meaningful excitation without training on explicit excitation ground
truths, unlike what was proposed in recent studies [51]. The outcome of such
excitation simulation could facilitate a learning environment of emotion dy-
namics on SM conversations. The latter can construct another learning layer
to mitigate polarization through positive and factual-based emotional inter-
vention by LA-based chatbots where the automaton learns optimal emotional
expressions that would mitigate the negative emotions in a conversation se-
quence. Therefore, this paper can contribute to mitigating the harshness in
the diffusion model environment, which can be further controlled to mitigate
misinformation by the algorithms and architectures proposed in Papers B,
D, E and G.

• Paper D (see Appendix D): This paper extended the work done in Paper
B. It proposed a generic misinformation mitigation algorithm that is robust
to different social networks’ misinformation statistics, allowing a promising
impact in real-world scenarios. Further, a novel loss function was proposed to
ensure fair mitigation among users.

The paper further answered RQ1, RQ2, and RQ3 in subsection 1.4.4 and also
has relevance with Papers B, E and G. The paper extended the work done
in Paper B, established the basis for the proposed software in Paper E and
the further improvement made in Paper G.
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• Paper E (see Appendix E): This paper proposed a Misinformation Mit-
igation Storytelling Simulation software. The software has an interactive in-
formation diffusion visualization technique to facilitate the informative visual
evaluation of different consequences of applying different incentives to a truth
campaign. The latter could be beneficial to emergency responders to help in
the decision-making process during an infodemic that threatens the societal
order [52].

The work done in this paper provided more practical implementations for the
tasks tackled in RQ1, RQ2, and RQ3 as demonstrated in subsection 1.4.4, and
has relevance to Papers B, D, and G.

• Paper F (see Appendix F): This paper proposed a self-supervised learning
scheme inspired by the self-correction and interpretability of a standard TM
[45]. The proposed architecture used a twin of Label-Critic Tsetlin Automaton
(TA) [53]. The Label-TA learns the individual samples’ correct labels guided
by a self-corrected TM logical clause. At the same time, the Critic-TA validates
the learning and approves the Label-TA reward.

The empirical results on synthetic and real data showed promising capabili-
ties for self-supervised learning and interpretable clustering. Hence, this paper
proposed a preliminary model that can help self-learn annotations of categories
such as SM temporal activities used to train and estimate the parameters of a
MHP. The interpretability and self-learning capabilities provide transparency
in judging users’ generated content and allow for an independent misinfor-
mation migration pipeline. Therefore, this paper partially answered RQ5 as
introduced in subsection 1.4.4.

• Paper G (see Appendix G): This paper concluded our dissertation and
proposed a novel representation of temporal users’ activity on SM. We fur-
ther embed these in a knapsack-based mitigation optimization approach. The
optimization task was to find ways to mitigate political manipulation by in-
centivizing users to propagate factual information.

In this study, we have created PEGYPT, a novel Twitter dataset to train a
novel multiplex diffusion model with political bias, societal engagement, and
propaganda events.

The collected dataset and the novel approach align with recent theoretical
findings on the importance of societal acceptance in information circulation on
SM as proposed by Olan et al. (2022) [44]. The paper empirical results showed
significant differences from traditional representations, where the latter assume
users’ exposure to misinformation can be mitigated despite their political bias
and societal acceptance. Hence, This paper opened venues for more realistic
misinformation mitigation with extended analytical capacity.

The work is considered an extension to the earlier proposed methods in Papers
B, D, and E and answered more maturely RQ1, RQ2, and RQ3.
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Chapter 2

Theoretical Background

In chapter 1, we gave an overview of the scope and contributions of this study. We
introduced the concept of controlling an information diffusion model in a simulation-
based optimization framework to find the optimal incentives for a truth campaign
on Social Media (SM).

In this chapter, we go further and provide more details on the theoretical back-
ground on the relevant topics in the scope of this dissertation. section 2.1 gives an
overview for the problem of deception on SM and the different approaches adopted
in the literature, emphasizing the truth campaign as the followed approach in this
study. section 2.2 explains the different techniques of modeling information diffusion
on SM, where more details are given on the Multivariate Hawkes Process (MHP) as
our utilized method for diffusion modeling. Eventually, in section 2.3, we demon-
strate the fundamentals and relevant learning schemes for the Learning Automaton
(LA) as our adopted control model approach.

2.1 Misinformation on Social Media

2.1.1 Key Terminologies and Approaches

SM enables users to be connected and interact with anyone, anywhere, and any-
time. Moreover, user engagement over information such as online news articles,
posts, and comments carries implicit judgments from the users to the propagated
information. Unfortunately, not all judgments are fair on such online platforms [54],
which opens a window for persistent manipulative content that people might believe
and further propagate. That motivated researchers to observe users’ activities on
an unprecedented scale to investigate the harmful effect of unauthentic content on
SM.

The definition of unauthentic content on SM has evolved due to the increased
complexity of such social problems and how recent technological efforts have pro-
gressed. To this end, there are different definitions and demonstrations of this
phenomenon. For instance, the spread of fake news on SM has been considered the
intentional dissemination of false information in online news articles [55]. The latter
issue is also known as disinformation [56]. Hence, a common approach is disinfor-
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mation detection, where the goal is to classify false information early by evaluating
the truthfulness of the claims mentioned in a news article or shared online content.

Online content can have multiple modalities, such as text, image, and video. The
latter features help create what is known as content-based disinformation detection
[57]. That technique employs supervised machine learning models, which are trained
on features from single or combined modalities [58] to be able to classify future
content. Alternatively, context-based detection models [59] utilize co-occurrence-
based word embeddings [60] for the content, and user-driven societal engagements
[61].

Unsupervised machine learning techniques were also integrated with supervised
machine learning classifiers for propagation-based detection models [62]. The latter
approach takes advantage of the echo chamber cycle on SM and investigates network-
based structural features such as propagation trees [63].

Other research work gave attention to a broader scope of the problem, such as
rumor detection [64], SM fake accounts detection [65, 66], and the unintentional
spread of false content, a.k.a “misinformation” [56]. In rumor detection models, the
task is to identify rumors which are statements whose veracity is not quickly or
ever confirmed. As in disinformation detection models — content-based, context-
based, and propagation-based features were investigated for the problem of rumor
detection. However, since the nature of rumors makes them have no reliable source to
verify their veracity, it is usually harder to collect annotated data to train supervised
machine learning models for rumor detection [67].

Another potential cause of incorrect or inconsiderable information is SM fake
accounts. The latter can be categorized into three categories: Trolls [68], Cyborgs
[69], and Social Bots [70]. Trolls are deceptive accounts run by a human who aims
to motivate others to react emotionally to agree with deceptive content. Cyborgs
are semi-automated accounts that objectively try to spread fake information. Social
Bots are usually run by a computer program and used in many cases, like advertising
and fake news circulation. In general, fake accounts detection models investigate SM
users’ online engagement and profile features such as the number of followers, friends,
and mentions [71].

The criticality of misinformation and disinformation on SM is relative to the
context of such an issue. For instance, the large-scale manipulation carried out dur-
ing political events is one of the greatest threats to social justice and democracy
[72]. That was observed in the so-called Cyber Army of Russian Trolls attack on
the U.S.A 2016 presidential elections [65]. Moreover, the problem of misinformation
is a more persistent issue. That is because a biased group would confirm and em-
brace false content that has been intentionally circulating at some point, and they
unintentionally spread the underlying idea on the network [56]. Thus, this study
focused on the problem of misinformation in the political context.
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2.1.2 The Truth Campaign Approach

The risk of violating freedom of speech is considered an ethical concern [19] about
machine learning classifiers (i.e., the misinformation detection approach) since one
false positive violates human rights if the associated account or content is suspended
accordingly. Therefore, alternative approaches were encouraged. In this manner, re-
cent studies showed that exposing social network users to factual information would
significantly mitigate the effect of misinformation [20, 30, 73]. Hence, a mitigation
approach that allows for ideological debates, democratization of combating misin-
formation, and reducing the risk of violating human rights, arose.

In common mitigation methods, the task is to boost the exposure to valid in-
formation. There are different techniques to achieve such a boost on SM [74]. For
instance, influence blocking [75] is a technique to target a subset of users on the
network to block their access to misinformation. In the latter technique, this subset
of users is prioritized to have minimal access to misinformation, which is assumed
to minimize the risk of misinformation exposure over the whole network.

Truth campaigning is another common mitigation technique, where the task is
to learn an optimal mitigation strategy by incentivizing a group of users to circu-
late factual information. An example of incentivization can be learning and then
delivering personalized verified news articles to suit users’ reading preferences [76].

Another example of incentivization is to learn about the number of incentives per
user that would acquire the latter to accept propagating the verified information on
the network [20]. Intervention-based techniques are followed to learn such optimal
incentives. That is, by intervening with users and learning from their online activities
such as their responses to a particular content type, the mitigation model ensures
a maximal delivery of authentic content to the network by targeting suitable users.
The individual learned incentives could then characterize the user readiness to help
boost the factual information when asked by authorities or platform moderators, for
instance.

Typically, in an intervention-based truth campaigning approach, an intervention
with the network users is modeled through the Reinforcement Learning (RL) frame-
work to learn the optimal mitigation policy [20]. The intervention procedure allows
the RL agents to learn about the users’ online activity. The latter is simulated with
an information diffusion model where Point Processes are commonly utilized [77].

This study adopted the intervention-based truth campaigning approach and pro-
posed novel RL algorithms and architectures to learn the campaign’s incentives.
section 2.2 and section 2.3 give more details on the theoretical background of infor-
mation diffusion modeling and our proposed RL method, respectively.
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2.2 Information Diffusion Modeling

2.2.1 Definition and Techniques

Diffusion processes have received interest from various scientific fields due to their
ability to characterize a broad range of real-world scenarios. For instance, infor-
mation dissemination in both offline [78] and online [79] situations, the transfer of
stress in earthquakes [80], and the spread of disease in a population [81].

Information diffusion modeling on SM simulates the dynamics of a social net-
work by how the information propagates and users engage and influence each other.
According to the relevant literature [82], there are three main components in a dif-
fusion process on SM: information, users’ activities, and social vectors. These three
main components influence each other in the process. For instance, the social vector
represents the influence between the adjacent users on the network and then dictates
the patterns of users’ activities. Consequently, the information will propagate on
the network according to these influence relationships. However, other external fac-
tors also dictate the propagation — for example, the motivation from the physical
world relationships and users’ biological and political perspectives, such as gender
and political preferences [83].

Further, the time factor is essential to information propagation since the moment
a particular user makes a social action on the network (e.g., retweet, comment),
cascaded information is constituted [84] (e.g., further comments, retweets).

There are five main steps to building an information diffusion model on SM [82].
We explain below each step and its level of importance to obtain a realistic diffusion
model.

2.2.1.1 Data Collection

The first step to obtaining a diffusion model is to get sufficient representative data.
The data can be collected from SM platforms through their provided APIs (e.g.,
Twitter API [85]). An alternative channel for obtaining social network data is
through published and available datasets [32, 33, 34, 35, 36, 17]. The collected data
can be processed into three categories: cascades, social topology, and corresponding
user information.

The cascades are the propagation paths of information through different users.
That data category acts as the ground truth for any diffusion model since part of
the data could be separated for evaluation purposes. The users’ topologies represent
users’ relationships on the network, such as friendship and following. Topologies are
also fundamental to any diffusion model as they affect the speed of the information
diffusion [86], and they are crucial features to help predict the diffusion. Corre-
sponding users information such as their profile information and generated content
semantics are also essential to filter candidate users based on learning their content
preferences. Thus, the combination of these three categories improves prediction
accuracy, mainly when utilized in state-of-the-art popularity prediction diffusion
models based on Deep Learning and Natural Language Processing architectures
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[87].
As mentioned earlier in subsection 2.2.1, the temporal information of social net-

work data should be considered. Therefore, at least cascade data must be indexed
with a finite set of discrete time windows to infer the diffusion speed and predict
the correct time windows of a particular cascade.

There are a variety of published SM datasets which include some of the mentioned
data categories [32, 33, 34, 35, 36, 17]. However, as introduced in section 1.3, these
available datasets are not enough to establish a realistic diffusion model for the
problem of misinformation mitigation.

2.2.1.2 Diffusion Mechanism Analysis

Analyzing the mechanism of a diffusion process is crucial to understanding the es-
sential features needed for modeling such diffusion. The analysis can be viewed as
three main focus points. First is the social vector, where network structures and
user relationships play a fundamental role in predicting information diffusion. An
example of the latter is a link prediction model which simulates the future incidents
of users’ associated social vectors [88].

The second focus feature is users’ activities (e.g., retweeting, commenting). The
latter feature is very important since it tells about the societal activities on the
network. However, users’ activities are complicated to learn and predict since the
human brain’s decision-making process is highly challenging [38]. Therefore, mod-
eling these activities in a realistic manner is one of the main goals of our study.

Finally, the third feature to analyze is the scope of information to represent in
the modeled diffusion. That involves semantic analysis to filter out the content type
that should be predicted [89].

2.2.1.3 Feature Extraction

As a result of the diffusion mechanism analysis step, there will be critical needs
for more specific features. For example, in an online content popularity prediction,
content-based features such as statistical insights about used terms frequency [90],
and deep semantics of the content such as sentimental and emotional features [91, 92]
are crucial. While for link prediction diffusion models (e.g., predicting the new
relationships between two users), structural features are essential. Some examples
of such structural features are degree distribution [93], density [94], and cascade
structures which refer to propagation trees and diffusion hops [95]. Some other
techniques utilize user-related features, such as predicting users’ content preferences
[96].

Further, as a common foundation for all diffusion models, temporal features
such as the time windows between activities or user actions’ timestamps are re-
quired. Temporal features can be constructed from two main types: sequence-based
features and statistical-based features. Sequences of counts of particular event type
(e.g., retweets, comments on a particular hashtag) over defined time windows can
construct the temporal sequential features [95]. Statistical features are secondary

19



processing of sequential features and aim to find potential diffusion laws to provide
mathematical expressions for a diffusion model [97]. In this dissertation, we focused
on sequence-based and statistical-based features in our diffusion processes. In sub-
section 2.2.3, we discuss in more detail the theoretical foundations of our diffusion
method.

2.2.1.4 Establishing the Model

An established information diffusion model can be described in terms of its ap-
proach. The different extracted features and targeted diffusion mechanisms define
the particular approach. Therefore, the two main approaches to information dif-
fusion modeling can be divided into time-series, and data-driven approaches [82].
Time-series approaches provide diffusion models in terms of mathematical expres-
sions and hypothetical diffusion laws driven by the sequential and statistical elements
of the time-series features. In that approach, likelihood maximization and simula-
tions are studied over the time-series sequence to provide estimated parameters and
prediction functions [98], respectively. In data-driven, one does not need to give
explicit expressions or fixed parameter values since data-driven approaches take ad-
vantage of machine learning algorithms to predict the diffusion by automatically
learning from features [99].

There are three typical possible outputs from diffusion models [82]. For instance,
the model can output volumes, individual information, and propagation relation-
ships. Volume models only capture the change in the diffusion volumes over time
[100]. Individual models investigate, and output details about influenced users [101].
The propagation relationships models demonstrate the information paths within the
inferred influence from individuals [102].

For the scope of this dissertation, we utilized a volume-based information dif-
fusion model since our main focus was to boost the amount of true information to
combat the false ones. In subsection 2.2.3, we give more details on the adopted
volume-based information diffusion approach.

2.2.1.5 Model Evaluation

The evaluation of information diffusion models can be understood in the scope of
how typical data-driven machine learning models are evaluated. For example, the
task of a diffusion model can be either a classification or a regression task [82]. There-
fore, we can utilize the convenient evaluation metric according to the desired output.
However, evaluating an information diffusion model is considered a challenging task
[82]. chapter 3 demonstrates how this study contributed to a more convenient eval-
uation of an information diffusion model for the task of misinformation mitigation
on SM.
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2.2.2 Point Processes as Diffusion Models

Point Processes [103] are stochastic processes that can be utilized to construct the
volume-based diffusion models described in subsubsection 2.2.1.4. The core feature
of such diffusion models is the temporal aspect of the volumes of information propa-
gation caused by users’ activities. Therefore, the diffusion process can be considered
a stochastic process with a Poisson distribution [104] where the discrete probability
distribution calculates the probabilities of a particular volume (i.e., count) of inde-
pendent activities occurring in discrete-space partitions or discrete-time intervals.

In the context of SM, non-exhaustive examples of users’ activities can be tweets,
mentions, and comments — with their associated discrete-time intervals T of occur-
rence. In this manner, a point process can estimate the diffusion contribution (i.e.,
counts) made by each user’s activities.

A Poisson process is the simplest form of a point process. In the latter, the
probability of a random variable k that represents a diffusion count is calculated
inclusively within the discrete-time intervals T = {t1, t2, ..., tr}. Moreover, the dif-
fusion activities are independent of each other, and it is assumed that there is no
external influence on them.

The Poisson probability distribution of an activity x occurs within a discrete-
time interval ts can be calculated as given in Equation 2.1. Where k is a particular
activity count we calculate for, and λ is the expected count. For r discrete-time
intervals in T, Equation 2.1 is applied for each ts ∈ T.

P ts
x (k) =

λkexp−λ

k!
. (2.1)

λ is also called the intensity rate, and when the intensity rate is constant over
different time intervals, the process is called a homogeneous Poisson process. Al-
ternatively, a non-homogeneous Poisson process has a variable intensity rate λ over
time [105]. Figure 2.11 demonstrates an example of three independent activities
with their calculated Poisson distribution over a discrete-time interval ts.

Point Processes have been utilized as diffusion models for a wide range of appli-
cations [103] since they realize any generic bursty behavior with a sequence of point
events on the real line, either in time or space. To characterize more complicated
real-world scenarios, an extension to Poisson Point Processes was proposed [106]. In
subsection 2.2.3, we demonstrate how the non-homogeneous Poisson Processes con-
structed the fundamentals of Hawkes Processes (HPs), where more realistic physical
world patterns have been considered [106].

2.2.3 Multivariate Hawkes Processes

According to Equation 2.1, Poisson Processes do not consider the external motiva-
tion and historical occurrence of activities when estimating the probability of their
counts. Alternatively, HPs offer the excitation mechanism where the history of
activities propagation patterns influence the future occurrence of the latter [106].

1The figure was legally downloaded from https://commons.wikimedia.org/w/index.php?curid=9447142
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Figure 2.1: An example of three independent activities with their calculated Poisson
distribution over a discrete-time interval ts

Furthermore, HPs estimate an external influence parameter to model external mo-
tivation of activities which is more realistic.

Let i denotes a particular activity of user i on SM, for each user i, let λi(T) de-
notes the intensity of a single HP within the discrete-time intervals T = {t1, t2, ..., tr}.
Similarly, let µi(T) denotes an external influence parameter over user i to do the
activity, and gi(T) be a kernel function that estimates temporal influence between
user’s activity i and other n users’ activities, where the temporal influence is es-
timated from the history of all activities inside the social network that occurred
before t1. We refer to the historical time intervals by HT. To this end, a HP can
be defined by the intensity λi(T) which is conditioned over HT and estimates the
count for activity i within T.

The above mechanism is also called the mutual-excitation Point Process and is
defined according to Equation 2.2 and Equation 2.3. The mutual excitation rep-
resents the estimated internal influence relationships inferred from the activities
history and denoted by A ∈ Rn×n as the internal influence matrix, where the matrix
entry aij > 0 indicates if activity j excites activity i with the excitation weight
value from aij, and aij = 0 indicates no influence at all. Finally, 0 ≤ w ≤ 1 is an
exponential decay factor that characterizes the decay of the influence while going
forward on time over the discrete-time intervals T. The optimal value w can be
estimated through a grid search.

λi(T|HT) := µi(T) + gi(T, A), (2.2)
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gi(T, A) =
r∑

s=1

n∑
j=1

aij w exp−wts . (2.3)

To predict diffusion intensities for n users on the social network for a particular
activity, n HPs to be established. One significant advantage of HPs is how they
provide flexibility when defining the representations of the activities. That can be
observed in a wide range of HP-based proposed diffusion models where activities
could be of the same type or marked for different interdependent types [107, 108].

We demonstrate in chapter 3 how we proposed a diverse range of activity cat-
egories and simulated each category as a group (i.e., HPs) of activities where the
latter relate to the same information category and have mutual excitation over user
level as described in Equation 2.3. Then, we proposed a higher level of excitation
between these groups. For example, HPs that modeled misinformation activities
from all network users can be excited by HPs that modeled political bias activities
from the same network users.

When multiple activities exist, the process is called Multivariate Hawkes Process
(MHP) [41]. Figure 2.2 demonstrates a MHP for a network of three users (i.e., three
activities) and discrete-time intervals T = {t1, t2, t3, t4, t5, t6}, where each interval
has a window of 5-days. The three colors of circles represent three marks, where
each color is associated with an individual user, and each circle is an activity occur-
rence. As observed in Figure 2.2, for each user, intensities vary over time. In the
latter example, these variations represent the time-decayed predicted counts of the
information propagation based on the inferred parameters for the MHP, namely the
time-decay scalar w, internal influence matrix A ∈ R3×3, and the external influence
vector µ ∈ R3. In such parametric MHP, these parameters are constant over T.

2.2.3.1 Excitation Between Activities

In a simple one-dimension HP, a historical sequence of activities from the same
single type influences the occurrence of these activities over time [106]. When that
happens, the process is called self-excitation HP. The self-excitation phenomenon
has been studied in the literature on diverse application domains [109]. There are
many self-excited phenomena. For instance, many musical instruments have self-
excited vibrating [109], and our human body is self-excited as in human-structure
interaction when footsteps are altered subtly, giving a net damping effect on the
body structure [110]. Further, social and political activities can be explained as
self-excited vibrations [109]. However, more complex real-world problems are usu-
ally multi-dimensional. In this manner, in a MHP, the influence and dependency
through the activity’s history have mutual excitation rather than self-excitation.
The mutual excitation exists between the dimensions of the MHP. In the context
of this dissertation and the application of SM, these dimensions can represent the
social network users.

As discussed in subsubsection 2.2.1.3, the statistical-based extracted features for
the MHP mean finding and establishing diffusion laws such as the mutual excitation
matrix A. One more critical aspect of the diffusion of temporal information is how
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Figure 2.2: A MHP with the dimensionality 6× R3

the mutual excitation and its consequent propagation decay over time. For instance,
as time elapses, online content loses its popularity in SM [111]. Another example is
epidemics, where a pathogen loses its infectiousness over time [112].

There are different time relaxation functions to model the time-decay character-
istic. Four primary time relaxation functions [103] exist for Point Processes-based
diffusion: exponential [113], power-law [114], lognormal [115], and gamma decay
[116]. Exponential decay defines the process of reducing an amount by a consistent
percentage rate over a period of time. For SM dynamics, the exponential decay
function is the most commonly utilized relaxation function and was utilized in our
study.

2.2.3.2 MHP Fitting and Evaluation

One of the common approaches to establish the MHP to predict counts of activities
in future discrete-time intervals is through parametric mathematical expressions as
demonstrated in Equation 2.2 and Equation 2.3. That means we first must estimate
the parameters µ as the vector of baseline intensities across the users’ space and A
as the squared influence matrix of all users. Further, a good value for the decay
factor w should be explored to ensure realistic temporal influence decay behavior.

One of the most traditional and established approaches to estimating the MHP
parameters is what Ogata (1988) proposed [117]. The latter work calculated the
maximum log-likelihood over the parameter space θ = {(µ1, A1), (µ2, A2), ...}, which
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was obtained numerically by a standard nonlinear optimization technique. It was
then possible to evaluate which of θ possible values provide the best fit for the
process data. Finally, the expression in Equation 2.4 was proposed to define the
conditional likelihood.

logL(θ) =
r∑

s=1

log λ(ts; θ)−
∫ r

1

λ(t; θ)dt. (2.4)

Alternatively, there were different proposed techniques for MHP predictions
where a non-parametric approach was adopted. For example, Mei and Eisner (2017)
[49] modeled streams of discrete events in continuous time by forming a neurally
self-modulating MHP. In the latter method, the intensities of multiple event types
evolved according to a novel continuous-time Long short-term memory neural net-
work [118].

The advantage of utilizing a non-parametric approach to diffusion models is
extending the model’s capacity so that no constant parameters control the diffusion,
which could be more realistic. However, when the required task is to control a
diffusion model to optimize some propagation patterns, a parametric diffusion model
would be more beneficial since it is easier to control and evaluate different simulated
scenarios through its parameters. The evaluation of the different approaches to MHP
predictions is not the scope of this dissertation, and we adopted the maximum log-
likelihood approach for a parametric MHP in our research study.

Figure 2.3 demonstrates a generic structure of representing temporal activities
category’s associated samples from a SM collected data over a number of days and
hours — to feed in the MHP. As observed in Figure 2.3, the temporal activities
per user are grouped into ordered discrete-time intervals. Then, the grouped times-
tamps per interval and user are fed into a MHP parameter estimation based on
Equation 2.4. The parameter estimation means inferring the influence and diffusion
laws that govern these historical user-generated counts.

Since the final target is to predict diffusion volumes, the MHP intensities cal-
culated through Equation 2.2 and Equation 2.3 are interpreted as predicted activi-
ties count through the MHP modified thinning simulation algorithm introduced by
Ogata (1981) [119]. We adopted the same diffusion volumes simulation technique in
our study.

To evaluate the MHP predictions, the predicted counts for an activity for each
user are compared to the relevant real counts from the test dataset. Therefore,
and as shown in Equation 2.5, the absolute difference average error ϵ is usually
calculated [25] to measure how close to reality a MHP simulation is. Where n is
the number of users and NH, NR represent the counts of the arrived activities from
MHP predictions and real data, respectively. The evaluation is made independently
per each discrete-time interval ts.

Ets =
1

n

n∑
i=1

|NH
i (ts)−NR

i (ts)|. (2.5)
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Figure 2.3: Feeding the MHP with temporal activities’ associate samples from a SM
dataset. The same structure applies to other activity categories
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2.2.4 Multiplex Multivariate Hawkes Processes

So far, we previewed MHP as a model that characterizes the information diffusion
dynamics over multiple users and their activities on SM. However, the interactions
between the social network nodes (i.e., users) encompass more diverse and complex
hidden propagation and excitation patterns. Thus, the inference of these hidden in-
fluence patterns becomes a challenging task. We believe a typical mutual-excitation
MHP is not enough for the problem of misinformation propagation analysis. There-
fore, this dissertation extended the traditionally adopted MHP-based control ap-
proach to multiplex MHPs-based control.

A multiplex diffusion model can be viewed as different interdependent groups
of MHPs. These groups are the different information categories, and inside each
group, there is a diffusion model that predicts the generated activity counts of the
network users for the associated information category. For instance, Starnini et al.
(2016) [120] measured and modeled the characterization of inter-group correlations
to investigate how some activities in one information group excite societal interaction
in another. Further, Sun et al. (2018) [121] proposed a multiplex diffusion model
incorporating multiple parametric MHPs for different topic models groups. In the
latter approach, they connected the diffusion between the topic groups so that a
change in one topic propagation count would excite the propagation of another
topic. Therefore, we followed a similar approach in this study and extended these
proposed methods for the MHP control scenario. In this manner, we studied how
a single control (e.g., incentivize for a truth campaign) of a user’s activity over one
information group will excite other users on all information category groups.

chapter 3 explores in more detail the proposed Multiplex-Controlled Multivari-
ate Hawkes Processes (MCMHP) for the interdependent problems of societal bias,
societal acceptance, and information veracity as our proposed three main diffusion
groups on SM.

2.3 Learning Automaton

2.3.1 The Learning Problem

According to psychologists, a learning system is a system that changes its perfor-
mance desiring the accomplishment of a specific goal [122]. Such change character-
izes the ability to improve behavior over time by observing past experiences and
learning from them [40]. A learning task has two parts: the learning system and the
environment.

There are three main approaches to designing an artificial learning system: Su-
pervised Learning [123], Unsupervised Learning [124], and RL [25]. In the latter
approach, the learning system learns from interacting with its environment through
trial and error by waiting for either a positive or a negative reward (a.k.a “penalty”)
as a consequence of the system’s trial [125]. RL problems can be classified into two
categories [126]: sequential and non-sequential. In sequential problems, the task is
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β(k)

Learning Automaton Stochastic Environment,
e.g., MHP 

Figure 2.4: The interaction of a LA and an environment. For instance, a MHP

to maximize the total reward of sequential actions made by the system [127]. On
non-sequential RL, the task is to learn the optimal action or system state among
the action or state space, respectively.

The non-sequential RL has been studied extensively in the field of LA [128].
LA is suitable when the environment dynamics are unknown [128] to the learning
system (e.g., a stochastic process). Further, LA is an easy-to-implement algorithm
compared to Q-learning algorithms [129], where the latter is a well-known technique
to learn from a stochastic signal. Therefore, LA is the learning system adopted in
this dissertation to learn optimal incentives for a misinformation mitigation strategy
over an information diffusion model as its environment (e.g., MHP).

Figure 2.4 shows the interaction of a LA and a MHP-based environment, where
a and β are the selected action and its consequent reward signal at interaction step
k, respectively.

2.3.2 The Learning Environment

The mathematical definition for a LA environment can be expressed in the form of
the quintuple ⟨X ,A, β, F,Q⟩, where X is a set of context vectors, A denotes the set
of inputs, β is the set of reinforcement signal values, {F = f(a,x)|a ∈ A,x ∈ X}
represents the set of probability distributions over β, and Q denotes the probability
distribution over X .

Both F and Q are assumed to be unknown, where the main task of an automaton
toward its environment is to eventually estimate F by learning the optimal input a
for the associated context x. a(k) and β(k) define an automaton’s action (or state)
and its consequent reinforcement signal in the interaction step k, respectively. k is
a step in the discrete-time interaction indices {0, 1, 2, ...}.

The set of probability distributions F dictates if the environment is stationary
[130] or non-stationary [131]. For example, in a stationary environment, the proba-
bilities in F are fixed over time, while in the non-stationary, it varies with time.
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Further, the nature of β determines three possible types of the environment [132]:
P-, Q-, and S-models. In a P-model environment, β(k) could have two possible
discrete output values that represent a reward or a penalty (e.g., {0, 1}). In a Q-
model environment, β(k) output is finite discrete categorical symbols (e.g., {-1, 0,
1}). In S-model environments, β(k) outputs a finite number of values in the interval
[0, 1].

In this dissertation, we evaluated both a P-model environment for the proposed
LA interaction algorithms, where the environment was a non-stationary MHP.

2.3.3 The Automaton

A state-based automaton can be defined by the quadruple ⟨X , β,Φ,F⟩, where X
is a set of context vectors, β is the set of reinforcement signal values, Φ denotes
the set of internal states of the automaton and equivalent to the input set A of the
environment (see subsection 2.3.2). Finally, F : X × Φ × β → Φ denotes a state
transition function, where the automaton’s state ϕ(k + 1) ∈ Φ is determined based
on the context vector x, step signal β(k), and the automaton’s state ϕ(k) ∈ Φ.

In a structure of an automaton that is represented by its state space, the automa-
ton task is to learn the optimal state value that will ensure an environment positive
feedback β when the automaton is in that state with the context x. In general,
an automaton is considered to be deterministic if its state transition probabilities
when either rewarded or penalized are equal to One. Otherwise, the automaton
is considered stochastic. There have been various proposed learning schemes and
architectures to implement the transition function F . We highlight the most com-
mon methods to our study in subsection 2.3.4 and subsection 2.3.5. In general, the
utilization of LAs has the below benefits to many applications [126].

1. The automaton can learn optimal decisions without any prior knowledge of its
environment.

2. When a network of LAs is utilized, it can facilitate a multi-agent and dis-
tributed systems framework for a more complicated task.

3. In general, an automaton’s structure can be simple and easy to implement,
besides its few mathematical operations, making it a practical, lightweight
system for real-time applications.

4. It has been shown that LAs are optimal in single, hierarchical, and distributed
structures.

2.3.4 Common Architectures and Learning Schemes

In the following, we demonstrate the current LA-based techniques relevant to our
proposed LA-based architectures and algorithms. These existing techniques and
architectures can be considered fundamentals to the contribution of our study, which
we discuss further in chapter 3. We gradually begin with the most straightforward
architecture and advance to more complicated ones.
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Figure 2.5: The state transition graph for a TA

2.3.4.1 Tsetlin Automaton

The Tsetlin Automaton (TA) [133] operates in a P-model environment (see subsec-
tion 2.3.2) and has a simple structure with two actions, each having N associated
states. Hence, the overall number of states is 2N , and the actions can be denoted
as a1 and a2.

Figure 2.5 shows the structure of a TA, where the state space Φ is divided into
two partitions, where each of the latter is associated with one action. The automaton
selects its action a(k) at step k based on the current state space partition it is in,
and then the state transition is made based on the environment feedback β(k).

The initial state of the automaton is selected according to a uniform probability
distribution over the states {ϕN , ϕ2N}, to guarantee a fair final action selection by
starting in the middle of the state space structure.

In general, an automaton’s state structure acts as a memory to remember the
best action selection after some interaction steps. If a current state is far away from
the middle states, it means that the current state is more favorable. Hence, the
associated action with that state partition is more likely to be the optimal action.
For instance, if the state ϕN is a current state, the automaton will select the action
a1. Then, the environment evaluates the selected action and sends the feedback
signal β. If the signal was a reward (e.g., β = 0), the next state will be ϕN−1, and
a1 will remain the action to select in the next interaction step. Otherwise (i.e., a
penalty where β = 1), the automaton moves toward the direction of the opposite
state partition, and the next state will be ϕ2N , giving a chance to explore the other
action a2. Figure 2.5 shows such state transition scenarios on both reward and
penalty, when being in any state.

In a learning scheme of an automaton, the state transition is usually probabilistic
to give the automaton the capacity to explore non-visited states or actions. In this
manner, the TA is categorized as a fixed-structure-LA [134], which means the state
transition probabilities among its states are not varying over the interaction steps.

Fixed-structure-LAs are helpful to avoid unnecessary complexity in the learning
algorithm, for instance, when an action is rewarded, and it is unnecessary to explore
other actions [135]. Furthermore, Fixed-structure-LAs are also helpful when learn-
ing in environments that dictate consistent relationships between the automaton’s

30



β=0

β=1

a2

a2

a1

a1

φ1 φ2 φ3 φN-1 φN φ2N φ2N-1 φN+3 φN+2 φN+1

φ2N φ2N-1 φN+3 φN+2 φN+1φ1 φ2 φ3 φN-1 φN

Figure 2.6: The state transition graph for a KA

states. The latter can be demonstrated when applying Fixed-structure-LAs on the
so-called Static Mapping Problem [136]. On the contrary, in chapter 3, we discuss
how states can have inconsistent relationships with each other in a truth campaign
optimization, where a state ϕ3 would be better than its preceding state ϕ2 in the
interaction step ki, while ϕ2 could become better than ϕ3 in another interaction
step km. The latter usually occurs because of the dynamics of information cascades
on SM [137] where learning one optimal high-value state for one user could make
having other high-values of states for other adjacent users unnecessary.

2.3.4.2 Krinsky Automaton

The Krinsky Automaton (KA) [138] is similar to the TA except in how the former
performs state transition when rewarded from the environment. Figure 2.6 shows
the structure and state transition mechanisms of the KA, where the automaton’s
state moves directly to the edge state of the associated state partition in case of being
rewarded. That means the automaton will always need N successive penalties to
switch between its two actions if it was rewarded in a previous interaction step. The
KA also belongs to a fixed-structure-LA family since its state transition probabilities
are fixed over the interaction steps with an environment.

The different state transition mechanism demonstrated in KA is an example
of how different environment settings would acquire various learning schemes to
ensure the fastest convergence to the optimal action. For instance, in some cases,
the environment is more confident about rewarding, but the uncertainty in giving a
penalty is high. Hence, the KA can be a better option since it applies exploration
on penalty and moves to an edge state (i.e., most confident state) when rewarded.

2.3.4.3 Variable-Structure Learning Automata

Variable-structured-LAs [139] are LAs with varying state transition probabilities
over the interaction steps. These LAs can be represented by the quadruple ⟨A, β, p, T ⟩,
where A = {a1, a2, ..., ar} is a set of r possible actions to select, β denotes the set
of possible feedbacks from the environment, p = {p1, p2, ..., pr} represents the action
probability vector such that pi(k) is the probability of selecting the action ai(k) at
the interaction step k.
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T represents the learning algorithm that updates the action probability vector
with regard to the particular environment feedback.

To understand the general idea of how a learning algorithm T works in variable-
structured-LAs schemes, Equation 2.6 and Equation 2.7 demonstrate how the action
probability vector is updated when the environment responds with a reward or with
a penalty, respectively.

pi(k + 1) = pi(k) + γ[1− pi(k)],
pj(k + 1) = pj(k)− γ[pj(k)] ∀j ∈ p : j ̸= i.

(2.6)

pi(k + 1) = (1− ψ)pi(k),

pj(k + 1) =

(
ψ

r − 1

)
+ (1− ψ)pi(k) ∀j ∈ p : j ̸= i,

(2.7)

where r represents the number of the automaton’s possible actions, and the
reward and penalty parameters (0 < γ < 1), (0 < ψ < 1) determine static increase
and decrease rates of the action probabilities, respectively.

The tuning of the parameters γ and ψ has a crucial influence on how the learning
algorithm works and converges. For instance, when γ = ψ, the learning algorithm
is considered a linear reward-penalty algorithm [140] and is usually abbreviated as
LR−P , where getting a reward or penalty on a given action, will result in an equal
decrease or increase among other actions probabilities, respectively.

In cases when γ > ψ, the algorithm is a linear reward-ϵpenalty with 0 < ϵ < 1

[141] and abbreviated as LR−ϵP , where getting a penalty on a given action will result
in a smaller decrease of that action probability, compared to its amount of increase
when getting a reward.

A particular case is when ψ = 0, which means the action probabilities remain
unchanged when the environment sends a penalty signal. The latter algorithm is
called a linear reward-Inaction [142] and abbreviated as LR−I .

The convenient selection of the parameters γ and ψ values depends on the na-
ture of the task. Further, the smaller the value for γ, the slower the convergence.
Therefore, carefully selecting the latter is vital to avoid slow convergence (e.g., γ is
too small) or less accurate learning (e.g., γ is too high) [143].

variable-structured-LAs are helpful when the environment has higher uncer-
tainty. In the latter scenario, optimal actions or states require much exploration
and verification of what is optimal and what is not.

This dissertation proposed a group of novel variable-structured-LAs with a dy-
namic rate for updating the action selection probabilities, where that rate changes
based on the frequency of actions being rewarded, unlike the fixed values of γ and
ψ. chapter 3 demonstrates the proposed variable-structured-LA learning algorithm
for the intervention-based misinformation mitigation task.
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2.3.4.4 Non-estimator vs. Estimator Algorithms

So far, we introduced different learning schemes of a LA that depend only on the
environment’s recent response to update its state transition mechanism or the action
probability vector. That class of algorithms is known as non-estimator LAs [126]. In
the non-estimator schemes, there is no consideration of the long-term environment
responses [144]. The latter characterization can be observed in how the action
probability vector in Equation 2.6 and Equation 2.7 is updated without memorizing
the accumulated feedback from the environment, i.e., only the feedback from the
current interaction step β(k) is considered for what should happen in next interaction
step k + 1.

Alternatively, estimator algorithms characterize the action probability vector to
pursue the action that is currently estimated to be the optimal action. This is
achieved by increasing the probability of selecting the action whose current estimate
of being rewarded is maximal [145]. The below steps show how an estimator algo-
rithm adds more layers of calculation and pursues the estimation of the maximal
rewarded action while updating the action selection probabilities.

Step 1) at the step k, the action ai(k) is selected according to the probability distri-
bution in p as introduced in subsubsection 2.3.4.3.

Step 2) if and only if receiving β(k) with a reward from an environment, instead of up-
dating pi directly, the update takes place as in Equation 2.8 and Equation 2.9,
and according to di(k) and dj(k), ∀dj : j ̸= i. Where di(k) is the estimated
reward probability from choosing action i until step k. In cases when β(k)

is a penalty, the action probability vector can be updated as introduced in
Equation 2.7.

pi(k + 1) = pi(k) + γ
∑
j ̸=i

[di(k)− dj(k)]

.

[
Gij(k)pj(k) +Gij(k)

(
pi(k)

r − 1

)
(1− pj(k))

]
,

pj(k + 1) = pj(k)− γ[di(k)− dj(k)]

.

[
Gij(k)pj(k) +Gij(k)

(
pi(k)

r − 1

)
(1− pj(k))

]
,∀j : j ̸= i.

(2.8)

Gij(k) = 1 if di(k) > dj(k), and,

= 0 if di(k) ≤ dj(k).
(2.9)

Step 3) in all cases, the action long-term reward probability estimates vector d(k+1),
where the latter is cumulatively updated from previous interaction steps [146].
Equation 2.10 demonstrates an example of how to estimate whether action ai
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is an optimal action, in parallel with updating its selection probability from
Equation 2.7 and Equation 2.8. Hence, the action selection probability update
is pursued:

Wi(k + 1) = Wi(k) + (1− β(k)),
Zi(k + 1) = Zi(k) + 1,

di(k + 1) =
Wi(k + 1)

Zi(k + 1)
,

(2.10)

where Wi(k) represents the number of times the action ai was rewarded up to
step k, and Zi(k) is the number of times the same action was selected until step
k. β(k) = 0 if the environment feedback is a reward. Hence, di at interaction step
k+1, is the estimated probability that action ai would be rewarded as of step k+1.

Compared with the linear reward-Inaction scheme LR−I , estimator algorithms
can converge almost an order of magnitude quicker than the former [147]. In our
research study, we only considered the update of the action selection probability as
in the non-estimator LAs. However, we did that cumulatively by considering the
actions reward probability estimates as in Equation 2.10 to be the action selection
probability update mechanism. The latter can also be interpreted as proposing
a dynamic rate for updating the action selection probability, unlike in traditional
variable-structured-LAs (see subsubsection 2.3.4.3). We further explain and claim
the reasons behind our proposed learning schemes and their empirical results in
chapter 3.

2.3.4.5 Random Walk and Knapsack Algorithms

Random walks are stochastic processes that describe a path projection in some space
[148]. The possibility of being in a current location during such a walk is stochastic
and depends on the previous location. An example is an object that attempts to
perform stochastic moves on the real line. In a more complicated scenario, there
could be n-dimensional random walks [149] where a joint probability distribution
governs the joint moves.

A wide range of problems can be represented as a random walk. For example,
in a stochastic knapsack optimization problem [150], the optimal amounts of items
that maximize the total knapsack value can be estimated over such a random walk.
Hence, the multidimensional random walk tasks can represent a Multidimensional
Knapsack Problem (MKP). MKP is known to be NP-hard in operations research
and has a wide range of applications in engineering and management [151].

Liu et al. (2016) [151] proposed a binary differential search method to solve
MKP where a Brownian motion-like random walk guides the stochastic search. In
their proposed framework, the movement of a superorganism was described by a
Brownian-like random-walk model seeking the optimal migration movement gain as
an optimal knapsack value. In the latter approach, they utilized a meta-heuristic
method to help boost the optimal knapsack value. These heuristics can be viewed
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as the context X described in subsection 2.3.2 when the random walk is conducted
through a LA.

Figure 2.7 gives an example for a structure of a random walk LA for the knap-
sack problem where state transitions go either to the left or to the right direction
over a discrete-state space. The latter can also be viewed as two potential actions
representing two opposite moves over the state space.

β=0
φ1 φ2 φ3 φmφ4 φ5 φm-2 φm-1

β=1
φ1 φ2 φ3 φmφ4 φ5 φm-2 φm-1

Figure 2.7: An example of a random walk LA for the knapsack problem. The LA has
m discrete states and increases its state value by going to the right when rewarded
(β = 0) or decreasing its state by going to the left when penalized (β = 1)

The state transitions are non-deterministic and based on a stochastic signal from
a knapsack. The latter sends an evaluation signal for each conducted state transition
to indicate how the state value would contribute to maximizing the knapsack’s total
value. With an analogy to the truth campaign’s incentives (see subsection 2.1.2)
investigated in this dissertation, these state values can represent the being-learned
incentives during the interaction between the LA and the information diffusion en-
vironment (i.e., SM predicted dynamics), where such an interaction can be defined
as a knapsack optimization problem.

In chapter 3, we discuss further how our proposed LA-based algorithms per-
formed a multidimensional random walk, where state transitions probabilities were
updated similarly to the concept in Equation 2.10.

2.3.5 Relevant Social Network Applications

LAs have been employed in many social network problems. For example, Khomami
et al. (2016) [152] proposed an algorithm based on distributed LAs for community
detection in complex networks. In their proposed work, they assigned each vertex
on the network to an automaton, and each updates its action probability according
to coordination between all the LAs. At the same time, the algorithm interactively
tried to identify high-density local communities. In such an algorithm, the action
probabilities were updated according to the environment feedback, where the latter
was based on an evaluation of a loss function. In this manner, the loss function was
evaluated in interaction step k when a particular action dictates the projection of
the function output. Then, the function value at step k − 1 was compared to its
value at step k — and if the obtained value was decreased from what it was in the
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previous step, the automaton was rewarded and the action probability vector was
updated accordingly.

Other applications, such as link prediction, have also been studied through the
framework of LAs. For example, Moradabadi and Meybodi (2017) [153] proposed
a time-series link prediction-based LA. The automaton had two actions to decide
whether there should be a link between two adjacent nodes on the network. In this
method, the action probabilities were updated according to similarity measurements
between the link candidate neighbors. The latter acted as a P-model environment
feedback where β = 0 if similar and β = 1 if not. In their approach, they utilized a
linear reward-penalty algorithm.

Further, Ghavipour and Meybodi (2018) [154] utilized LAs for propagating trust
through trust networks by inferring the trust between two indirectly connected users.
In their approach, they utilized distributed LAs to capture the dynamicity of trust
during the trust propagation process and dynamically update the found reliable
trust paths based on a dynamic reward parameter.

Other efforts have also been made to address the problem of influence-based
propagation. For instance, Ge et al. (2017) [155] extended the confidence interval
estimator-based LA [156] to model the social network environment as S-model and
proposed an end-to-end approach for influence maximization. Their approach esti-
mated the maximal rewarded actions to update the action probability vector as in
estimator algorithms.

This dissertation investigated similar techniques to some of these previewed ef-
forts on social networks. For instance, our proposed architectures assigned each
automaton to each user to learn the optimal incentives for that user to join a truth
campaign on SM. Furthermore, we modeled an environment signal through a loss
function, where the latter encapsulated the proposed social context representations
and dictated the state transition of the proposed LAs.
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Chapter 3

Proposed Methodologies

In chapter 1, we introduced the idea of information diffusion modeling to simu-
late Social Media (SM) users’ activities and predict their information dissemination
patterns. Moreover, we introduced how Reinforcement Learning (RL) agents can
control an information diffusion model through interventions to optimally incen-
tivize users to propagate facts. We also discussed some research gaps in the existing
solutions, such as the need for more realistic criterion functions, the limited represen-
tation of users’ activities in the diffusion model, and the need for transparency and
verification of the learned incentives. Further, chapter 2 provided theoretical back-
ground on Multivariate Hawkes Processes (MHPs) and Learning Automata (LAs)
as the basis for our proposed Multiplex-Controlled Multivariate Hawkes Processes
(MCMHP). The MCMHP can provide a mathematical framework for modeling in-
formation diffusion with LA, where the LA can be utilized as a diffusion intervention
algorithm. In this manner, the LA converged state value can be interpreted as an
incentivization value for tasks such as intervention-based misinformation mitigation.

In this chapter, we introduce our proposed methods and research outcome that
filled some of the research gaps for the problem of intervention-based misinformation
mitigation on SM. In section 3.1, we demonstrate the major contribution and find-
ing of our study by explaining our novel approach: “societal acceptance-aware truth
campaign”, which is based on our novel users’ activities representation encapsulated
in the MCMHP framework. Therefore, we demonstrate the details of the MCMHP
framework in section 3.2 and provide a general mathematical framework to control
interdependent groups of MHP-based diffusion models via decentralized LAs. In
the latter, the LAs are rewarded based on a proposed criterion function that traces
interdependent temporal diffusion dynamics. Eventually, section 3.3 shows empiri-
cal results after evaluating the LA-based misinformation mitigation algorithms on
multiple datasets. Moreover, section 3.3 provides some preliminary results of other
helper methods, which we believe can improve the trustworthiness and analysis of
the MCMHP framework in the future.
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3.1 Societal Acceptance-aware Truth Campaign

To characterize the propagation of misinformation caused by political manipulation
on SM, we utilized MHPs as our time-series information diffusion modeling ap-
proach (see subsection 2.2.3). We believed fitting a good diffusion model for online
misinformation needed to interconnect the interdependent temporal features that
characterize the concept of societal acceptance. The latter concept is a fundamental
factor in understanding information dissemination patterns on SM [44]. Therefore,
this dissertation proposed novel temporal features representation to characterize
users’ expressed beliefs toward others’ opinions. The proposed features extended
the traditional existing feature space [20, 25, 30] for the problem of intervention-
based misinformation mitigation on SM, where the feature space was mostly limited
to misinformation and factual information activity counts.

3.1.1 Online Users’ Activity Representation

According to Olan et al. (2022) [44], societal acceptance is considered a game-
changer for controlling the spread of misinformation on today’s SM platforms. The
reason is how societal and political beliefs control how users react to online content
[12]. On SM, contents live and circulate over societal bubbles [10], where a societal
bubble is a circle of biased users embracing a particular opinion or idea. Therefore,
we believe modeling the temporal formulation of these circles’ engagements and the
nature of such engagements can reveal the patterns of societal acceptance. Some
examples of these engagements can be in the forms of retweeting, commenting, and
liking. The nature of the latter engagements can be agreeing, disagreeing, or being
neutral to what ideas these circles are talking about.

Paper G (see Appendix G) which concluded this dissertation — proposed that
a societal acceptance incident can be interpreted as a societal circle that accepts to
be changed, weakened, and hence transformed into another unharmful circle. An
example of the latter is when the number of users agreeing with a harmful circle’s
political or societal belief1 becomes very small. In this manner, we proposed the
users’ activity representation through three MHP diffusion groups to simulate and
predict three online activities: information veracity-related activities, societal bias
levels-related activities, and societal engagements-related activities. We calculated
the counts generated from the MHP diffusion group associated with societal circles’
engagement to measure the change in a societal circle after applying incentivization
through the LA-based misinformation mitigation algorithm. Similarly, we calculated
the counts from the societal bias diffusion to measure the nature of engagements.
The latter estimated how likely a user would accept or be influenced by an in-
centivization to propagate or deny the factual information. Overall, because the

1The judgment of a political or a societal belief is relative to the point of view from which we look
at it. Therefore, in our research case studies, we considered a political or a societal belief harmful
according to human rights reports from organizations such as Amnesty or our common sense when
it is obvious. An example of the latter is when Donald Trump propagated false information about
Covid-19 during the early phase of the pandemic [157].

38



dynamics of societal engagement and bias are strongly dictating the generated mis-
information or factual information, we needed to measure the counts of generated
misinformation and factual information activities. We demonstrate our proposed
interdependent diffusion groups below:

• Information Veracity: That had two MHPs, one MHP to predict counts
of misinformation activities, and another MHP to predict counts of factual
information activities.

• Societal Bias: That had three MHPs, each was concerned with the nature
of users’ engagements toward a particular topic, where one MHP predicted
counts of agreeing activities, and another MHP predicted counts of disagreeing
activities. Finally, the third MHP predicted the counts of being neutral-related
activities.

• Societal Engagement: That had the number of different societal or political
beliefs engagements (i.e., societal circles) which discussed the particular topic.
For example, a MHP predicted the counts of agreements on a topic while
expressing misinformation around it. Another societal engagement MHP pre-
dicted the counts of agreements while expressing factual information. Another
MHP predicted the counts of being neutral while expressing factual informa-
tion. Hence, by having three possible engagements natures (i.e., societal bias),
and two possible veracity levels, we ended up with six societal circles MHPs.

To obtain the above representation, we had to collect and annotate a novel
dataset with the three temporal labels that illustrate the three diffusion categories.
The temporal information was based on a user level, e.g., each user’s tweet or retweet
was indexed by its timestamp and was given three labels: its veracity, bias, and
associated societal circle. Eventually, the data has branched to different temporal
versions to train the different MHPs models to predict the associated activities.

Analogically to current approaches of misinformation mitigation [20, 25, 30],
Figure 3.1 shows the proposed design of diffusion and control models interaction,
compared to the typical existing solutions as shown in Figure 3.2. The truth cam-
paign optimization problem introduced in subsection 2.1.2 was solved in Paper G
according to the proposed mechanism in Figure 3.1. In this manner, we proposed
interaction between a network of LAs and multiplex MHPs. The LAs network was
built on top of the social network users, meaning for each network user, there was
an associated LA to optimize the truth campaign incentive needed for that user.
However, unlike how the optimization task was conducted in the existing methods
[20, 25, 30], our proposed intervention model, the LA, was rewarded and guided
through its state transitions based on a novel criterion from diverse and complex
interconnected MHPs rather than just one MHP. That constructed the proposed
MCMHP from our research study, where we proposed a shared LA state as a shared
incentivization among the three interdependent diffusion groups as in Figure 3.1.
We provide the complete details of the MCMHP framework in section 3.2.
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Figure 3.1: A toy example of a social network with 6 users and the proposed design
of MCMHP interaction

3.1.2 Applying Truth Campaign Interventions

The shared automaton’s state means that the being-learned incentive for propagat-
ing a particular activity inside a diffusion group (e.g., factual information) will be
the same as for other incentivized interconnected diffusion groups (e.g., particular
bias and engagements). This incentive value was shared because when incentiviz-
ing a user to circulate factual information or a particular type of information, we
also incentivized the particular bias direction that information had. Similarly, we
incentivized the user to be a member of the societal circle where such information
and bias direction was associated with the circle’s political or societal beliefs. We
demonstrate below, the mechanism of applying the truth campaign incentives.

• An associated LA for each user can conduct its state transition and learning
of the optimal incentive through societal acceptance-aware criterion feedback.
The feedback is received after interaction with multiplex MHPs-based diffu-
sion. The latter facilitates the prediction of users’ activities over the simulated
social network as demonstrated earlier in subsection 2.2.3.

• The societal acceptance awareness is achieved because rewarded incentives
will be determined based on how an incentive (LA state) is applicable with
regard to the estimated user’s probability of accepting outsider ideas (i.e.,
truth campaign content). We provide the complete details about the proposed
societal acceptance-aware criterion in subsubsection 3.3.1.3.

• Suppose our task is to intervene to incentivize and predict the counts of three
interdependent MHPs activities: x, y, z, and only predict the counts of the
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Figure 3.2: A toy example of a social network with 6 users and the typical design
of MHP interaction with a control model

MHP activity w without any intervention. Then, for each user i inside the set
of users U , a LAi conducts a state transition to a particular incentive value, and
the incentive is passed to the activity x of factual information MHP to boost
its counts in the future. The latter is performed through Equation 3.1, where
ϕi is a current state being-learned for user i. Further, the same incentive ϕi is
passed to a societal bias activity y (see Equation 3.2) and a targetted societal
circle activity z (see Equation 3.3), while the activity w is only predicted
without any intervention (see Equation 3.4).

• Activities such as the activity w will only be predicted without any incen-
tivization because they represent independent or undesired-to-be-incentivized
diffusion with regard to the truth campaign. For instance, an activity w can
be the activity of misinformation events that will not be affected by the in-
centivization of factual information since we only incentivize the latter and its
relevant activities such as particular bias and engagements.

• Suppose the factual information diffusion incentivization resulted in increased
counts of factual information but did not change the societal bias or the societal
circle activity counts in terms of accepting the truth campaign beliefs. Hence,
the associated automaton will not be rewarded for being in the current state
since the user bias and societal circle membership remain against the truth
campaign.
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∀i ∈ U : λxi (T|HT
x ) = ϕi + µx

i (T) + gxi (T, A
x), (3.1)

∀i ∈ U : λyi (T|HT
y ) = ϕi + µy

i (T) + gyi (T, A
y), (3.2)

∀i ∈ U : λzi (T|HT
z ) = ϕi + µz

i (T) + gzi (T, A
z), (3.3)

∀i ∈ U : λwi (T|HT
w ) := µw

i (T) + gwi (T, A
w). (3.4)

The above illustrates how the novel activity representation informed the LA in-
tervention algorithm with the interdependencies between the different dissemination
patterns. Thus, the intervention did not rely on the naive assumption that increased
counts of factual information mean that the intervention succeeded. In this manner,
a change in the societal bias or the societal circle activity counts will result in a
change in the estimated probabilities of being in a particular bias or being a mem-
ber of a particular circle, respectively. As a result of the latter, the optimization
procedure can be traced at any point to see how the current incentives succeeded in
reshaping the societal bias and engagements on the network and that empowered the
transparency and analytical capacity of the solution. For complete details about the
proposed activity representation and the fitting of the multiplex diffusion groups,
see Appendix G.

3.2 The MCMHP Framework

By proposing the MCMHP framework, we contributed with the abstraction and
simplification to model relevant scenarios where LAs are required to optimize a
volume-based diffusion model to boost the counts of a particular activity on a social
network. In this section, we define the problem statement and assumptions to set
boundaries for when we believe the MCMHP framework can be relevant. Further,
we provide the mathematical notion and topology of the MCMHP. Eventually, we
demonstrate the learning model inside the MCMHP.

3.2.1 Problem Statement and Assumptions

Given a simulated social network where multiple interdependent activities circulate,
we want to boost the circulation for some of these activities to increase exposure
to them. Hence, the challenge is to learn to incentivize network elements to elevate
particular activities. Below, we demonstrate the assumptions for when we believe
the MCMHP framework can be applied:

• A social network element, such as a user, can be influenced to elevate some ac-
tivity [41] by an unknown outsider influence and an unknown internal network
influence from other elements, such as other network users.

• The unknown internal network influence is temporal (i.e., based on temporal
patterns) and variable to each element and not exclusive to only directly con-
nected elements, but a diffusion law [41] of temporal influence exists between
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the elements. For instance, those exposed to the activity of others because
they were active on the network at the same time of these activities.

• The unknown outsider influence is variable to each network element because
of the different external physical world conditions that govern these elements
[158].

• The physical world conditions and activity dynamics intensity can be charac-
terized by a diffusion model where both outsider and internal influence can be
quantified [41].

• Social network activities can be categorized into different diffusion model
groups based on an information category. For example, all activities that
relate to expressing misinformation or factual information can be categorized
inside an information veracity diffusion group. Other activities can be consid-
ered part of another predefined diffusion groups. See Figure 3.1 as an example
of three predefined diffusion groups.

• In general, influences occur when some interaction happens between two ele-
ments on the network or outside it, whether in an agreement or disagreement
manner since the influence process does not necessarily indicate the immediate
acceptance of an induced behavior [159].

• Internal influence is decayed over time within a particular time window [41].

• In addition to the influence over network element level, another level of in-
fluence exists over the diffusion groups, that is how some activities inside a
diffusion group can trigger other activities in another diffusion group. For in-
stance, the activity of propagating misinformation content based on a political
opinion will trigger the activity of boosting the political bias of that opinion.

• A network element i can internally influence its adjacent element j (e.g., fol-
lowing relationship on Twitter between i and j) through the intensity of an
activity generated by i. Hence, j becomes influenced by i through exposure
to that activity.

3.2.2 Notations and Topology

The MCMHP framework can be expressed with the sextuple ⟨U,G,Z,ZH , L, F ⟩.
Let U be a social network where U = {u1, u2, u3, ..., un} is a finite set of n network
elements. Then, let G = {G1, G2, G3, ..., Gl} be the set of l predefined MHPs dif-
fusion groups, where each represents a group of MHPs to predict the diffusion of
different network element activities that relate to the same information category.
For example, all activities that relate to expressing misinformation or factual infor-
mation can be categorized inside an information veracity diffusion group.

Further, let Z = {Z1, Z2, Z3, ..., Zn} be a set of n sets, where each underlying set
is associated with a network element ui, where Zi = {λ1, λ2, λ3, ..., λk} is the finite
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set of the k predicted counts of network activities, i.e., the predicted counts of ui
activities from the MHP diffusion groups. ZH = {ZH

1 , Z
H
2 , Z

H
3 , ..., Z

H
n } also contains

underlying sets associated with network elements, but ZH
i = {H1, H2, H3, ..., Hk} is

the finite set of the k historical counts (i.e., before prediction), each associated with
a network activity.

To predict the count λx of a particular activity x inside a MHP diffusion group,
the unknown vector µx ∈ Rn that represents the outsider influence on n network
elements must be estimated first from the historical data of activity x. Similarly,
the internal influence matrix Ax ∈ Rn×n is also to be estimated to measure the
internal influence between any two network elements. For example, the matrix entry
aij quantifies how much the element i influences the element j and that guides a
diffusion law during the propagation of activity x. See subsection 2.2.3 for complete
details about how activity counts are predicted and evaluated for MHPs.

Further, let L = {LA1, LA2, LA3, ..., LAn} be the set of n LAs associated with n
network elements, where LAi observes ui activities over the MHP diffusion groups.
Therefore, L establishes a network of LAs that learns the unknown set Φ∗ =

{ϕ∗
1, ϕ

∗
2, ϕ

∗
3, ..., ϕ

∗
n}, where ϕ∗

i is the desired optimal LAi discrete state value for the
element ui. The latter is interpreted as an optimal incentive value to boost the
circulation of some activities for element ui. In this manner, an optimization loss
function F (Z,ZH ,Φ) is defined to send a multiplex MHP-based environment feed-
back to each LAi based on evaluating its current state value with regard to the
predicted diffusion counts after assigning the state value (i.e., incentive), seeking
the LAs network to eventually converge to an equilibrium [160]. F (Z,ZH ,Φ) is
optimized over the current state values set Φ of all LAs and both the predicted and
historical counts of all predefined network activities. The use of ZH is important in
the MCMHP to evaluate how the intervention (i.e., incentivization) with the MHP-
based environment improved the diffusion with regard to the initially calculated
diffusion from the historical counts. Moreover, part of the counts in ZH is used as
a test dataset to evaluate the MHPs prediction.

Figure 3.3 demonstrates the topology of the MCMHP entities discussed above,
with an example of three interdependent activities counts to be incentivized and
predicted: λx, λy, λz and one activity λw to be only predicted. Three predefined
MHP diffusion groups: G1, G2, G3 are illustrated in the example.

3.2.3 Learning the Optimal Incentives

The proposed LAs network architecture to learn the optimal activity incentives
within the MCMHP is demonstrated in Figure 3.4. The proposed architecture be-
longs to a variable-structure LA (see subsubsection 2.3.4.3) where a state transition
probability can be different at each step the LA interacts with its environment.
However, unlike traditional variable-structure LAs, we proposed a rate of increasing
and decreasing state transition probabilities that varied with time. Further, the
LAs interacted with a P-model MHP-based environment where the feedback signal
β = 0 if the LA was rewarded, and β = 1 in case of a penalty. Our novel learning
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mechanism was as follows:

• An individual LAi has a discrete state space with a memory depth m, where
m > 0. The best value for m can be obtained from a grid search and according
to how responsive the increase or decrease amounts in the parameters of the
selected diffusion model are. That is because a converged state value of LAi

will be utilized to optimize the diffusion model parameter for the network
element ui, i.e., the external incentive that influences ui.

• All LAs are initialized to start in state ϕ1, which indicates an incentive value
of 0. When a LAi is in a state ϕj : m > j > 1, then, it has three possible state
transitions: ϕj−1, ϕj, ϕj+1 indicating going to left to decrease the state value
(a2), staying at the same state, and moving to the right to increase the state
value (a1), respectively.

• Each LAi could only have the two state transitions: ϕ1, ϕ2 or ϕm−1, ϕm if and
only if its current state is ϕ1 or ϕm, respectively.

• Only one LAi can be active at a time and conducts its state transition. Then
it awaits for the remaining LAs to complete their state transitions in the
same manner, and after that, if not converged, LAi becomes active again and
performs another transition.

• For each LAi, to explore different state values and eventually reach an optimal
or sub-optimal state ϕ∗

j , each state in LAi has a state transition probability
distribution vector to guide the moves directions from that state.

• When being in a current state, the LAi needs to learn a decision whether that
state should be optimal or sub-optimal. Therefore, the LAi needs to learn the
probability vector of the possible transitions of that current state. The LAi

does the same for all states’ probability vectors until the latter converges to
a steady value. For instance, when being in an optimal state, the latter will
have a probability of transition to itself closer to 1. If that probability does not
change over multiple upcoming interactions with the environment, the LAi is
considered to be converged.

• Inside each automaton with m states, the above mechanism can be formally
defined as overlapping m Markov chains [161] inside each LAi, where each
state has its associated Markov chain that dictates the LAi transition, where
that transition depends on the learned probabilities in the current Markov
chain. That ensures the LAi will have at least one Markov chain with a state
probability of transition to itself closer to 1 and then the LAi conducts no
further transitions when it is in that state. Figure 3.5 illustrates these Markov
chains and the update of the state transition probability vector for each state
until convergence.

Equation 3.5 demonstrates the state transition function δ for each LAi. The
transition works as follows. At each interaction step k, the probability of the LAi
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where state transition probabilities for each chain are updated when being in a state
that relates to that chain and receives the MHP-based environment signal β

being in the next state ϕj(k + 1) depends on its state from the current step ϕj(k),
the transition direction conducted at the current step ai(k), the MHP environment
signal at the current step β(k), and state transition probability vector πj(k) for
the Markov chain associated with state ϕj and calculated until step k. Hence, the
transition function δ determines the next state ϕj(k+1) and updates the transition
probability vector πj(k + 1) for the associated Markov chain with the state ϕj.

δ(k) : ϕj(k), ai(k), β(k), πj(k)→ ϕj(k + 1), πj(k + 1). (3.5)

During the interaction with the MHP environment at a step k, all LAs conduct
state transition according to Equation 3.5. However, at each interaction step k, the
LAs wait except only one LA which can be active at a time. Then, the active LAi

conducts a move over its discrete state space based on a greedy selection from the
state transition probabilities associated with the Markov chain of its current state.
If the conducted move was rewarded with β(k) = 0, the LAi commits such a move.
Otherwise (β(k) = 1), the LAi stays in the same recent state as before the move.
In all cases, the LAi updates its state transition probability distribution vector for
the state it was in before the move, seeking at least one of the Markov chains to
have a state probability of transition to itself closer to 1, so the LAi converges and
determines that such state is the suggested incentive value for the network element
ui.

The LAs probabilistic moves can be seen as a joint random walk over their
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discrete state space, where the signal β(k) is determined by the active automaton’s
tried state transition and also by evaluating all current states of the remaining LAs
in the network. Equation 3.6 and Equation 3.7 explain how the criterion β(k) was
calculated for each possible set of LAs state values. Where mk,mk−1 were the slopes
of a loss function F (Z,ZH ,Φ) at the interaction steps k, k − 1, respectively. We
provide more details about the optimization loss functions in subsection 3.3.1. The
optimization task was defined as a constraint knapsack optimization [162] where
the knapsack item amounts were represented by the state values. Therefore, K was
a knapsack signal indicating whether the knapsack was full (K = 1) or not yet
(K = 0).

βk(mk,mk−1) :=

{
1, if mk >mk−1 ∨K = 1

0, otherwise

}
, for ϕj,j′′ , (3.6)

βk(mk,mk−1) :=

{
1, if mk >mk−1

0, otherwise

}
, for ϕj,j′ and ϕj,j. (3.7)

For each LAi, the Markov chain state transitions probability distribution vector
for a current state ϕj was updated based on the stochastic signal from the MHP
environment and calculated as Equation 3.8 and Equation 3.9.

πk+1(ϕj,j
′′ ) =

vk(ϕj,j′′ )

wk(ϕj,j′′ )
, (3.8)

πk+1(ϕj,j′ ) =
πk+1(ϕj,j′′ )

2
,

πk+1(ϕj,j) =
πk+1(ϕj,j′′ )

2
,

(3.9)

where π(ϕj,j′′ ) is the state transition probability of moving to the right direction
(i.e., increase incentive) from a current state ϕj to its adjacent state ϕj′′ according
to the associated Markov chain transition probability distribution vector πj. In
this manner, the value order of the three adjacent states in the chain is as follows:
ϕj′ < ϕj < ϕj′′ . The variables vk and wk represented how many times a transition
(i.e., the direction of a move from that current state) was rewarded and selected
for an automaton up to interaction step k, respectively. Hence, that can be seen as
directly pursuing the optimal transition required for the task through a dynamic rate
of changing the transition probability. Finally, Equation 3.9 was applied to update
other possible transition probabilities in the associated Markov chain probability
distribution vector, where the elements in the latter must add to 1.

The Papers B (Appendix B), D (Appendix D), E (Appendix E), and G (Ap-
pendix G) provide the complete details of the proposed LA learning algorithms and
how we extended their capabilities during our research study in terms of the MHP-
based environment criterion β and practicality (check Paper E for practicality). In
section 3.3, we show empirical results on both real-world and synthetic datasets to
indicate how these algorithms performed in different scenarios.
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3.3 Evaluation

In this section, we demonstrate some of the empirical and preliminary results from
our published research outcome for the task of intervention-based misinformation
mitigation on SM. subsection 3.3.1 presents empirical results on multiple misinfor-
mation datasets, showcasing the evolution of our state transition criterion in the
LAs, as demonstrated through the optimization loss functions we have refined over
time. That also illustrates how online users’ activities were represented in a loss
function domain and how such representation evolved over the time frame of our
research study and resulted in the proposed MCMHP framework. Further, subsec-
tion 3.3.1 shows how our proposed LAs compete with previously proposed Policy
Iteration algorithms on the task of intervention-based misinformation mitigation on
SM. Eventually, in subsection 3.3.2, we show other preliminary models and results
for some helper models that can be integrated with the major methods described in
section 3.1 and section 3.2.

3.3.1 Empirical Results

3.3.1.1 Average Difference Loss Function

According to Paper B (see Appendix B), Figure 3.6 and Figure 3.7 show the opti-
mization performance of three proposed variable structure LA schemes that learned
how to allocate truth campaign incentives for network users: reward-penalty (RP),
reward-Inaction (RI), and penalty-Inaction (PI). See subsubsection 2.3.4.3 for more
details about the variable structure LA schemes. The optimization was conducted
according to concepts similar to what we demonstrated in subsection 3.2.3, except
that only one MHP diffusion group was proposed as the representation of users’
activities. The latter was embedded in a mitigation objective function (i.e., loss
function). Moreover, the limitation of employing only one diffusion group was due
to the available representations in the available datasets, where only activities for
misinformation and factual information existed.

We selected three considerable performance baselines for the experiments. The
three baselines represented three different measures we sought to outperform, these
were the state of misinformation before mitigation, misinformation after uniform,
and random distribution of the incentivization budget. The state of misinformation
was calculated according to evaluating a proposed loss function as in Equation 3.10
and Equation 3.11, where the latter introduced the bound C, which represented
a knapsack capacity where the incentives must stay within, i.e., truth campaign
incentivization budget.

F (Z,ZH ,Φ) =

[∑n
i=1F(Zi, Z

H
i )

n

]
−
[∑n

i=1 T (Zi, Z
H
i , ϕi)

n

]
, (3.10)

subject to
n∑

i=1

ϕi ≤ C, (3.11)
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Figure 3.6: Optimization evaluation of different LA schemes on Twitter-15 mis-
information dataset. The evaluated learning schemes were reward-penalty (RP),
reward-Inaction (RI), and Inaction-penalty (PI). The optimization utilized the eval-
uation of boosted factual information over all social network users, on average

Figure 3.7: Optimization evaluation of different LA schemes on Twitter-Covid19
misinformation dataset. The evaluated learning schemes were reward-penalty (RP),
reward-Inaction (RI), and Inaction-penalty (PI). The optimization utilized the eval-
uation of boosted factual information over all social network users, on average
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where Z and ZH had only two activities per each network user, and that rep-
resented the exposure counts of propagated misinformation activity F and factual
information activity T , where these counts were calculated from both historical
activities ZH and predicted activities Z. Exposure counts meant how much of a
particular content activity a user i was exposed to. The latter was calculated by
summing all counts of that activity among the adjacent users of i, including i as
adjacent to itself. In the case of calculating the exposure to factual information
activities, the value ϕi was considered in the calculation of T , since ϕi incentivizes
the factual information activity counts in the simulated network.

The calculation in Equation 3.10 was as follows. On a simulated social network
with n users, for each user i, Zi = {λ1, λ2} was the set of predicted network activity
counts for both misinformation λ1 and factual information activities λ2, where the
misinformation activity count was calculated from a MHP as illustrated earlier in
Equation 3.4, and the factual information activity count was calculated from another
MHP as in Equation 3.1. Similarly, ZH

i = {H1, H2} defined the set of historical net-
work activity counts of both misinformation H1 and factual information H2. Hence,
F(Zi, Z

H
i ) was a counting function that accumulated both historical counts and

predicted counts of misinformation activities for each user i, and T (Zi, Z
H
i , ϕi) was

a counting function that accumulated both historical counts and predicted counts
of factual information after applying the incentivization value from a being-learned
LA state value ϕi, for each user i. Finally, the loss function was defined as the
difference between the generated counts from both misinformation and factual in-
formation, until a given time window, i.e., history + predicted time window counts.
The latter was calculated over all network users and an average was taken for each
activity before calculating the difference. In this manner, as the difference decreased,
the criterion for evaluating the effectiveness of misinformation mitigation indicated
improvement.

According to Figure 3.6 and Figure 3.7, our LA-based intervention algorithms
outperformed the three baselines with the three proposed LA schemes on two real
datasets: Twitter-15 political misinformation [32] and Twitter-Covid19 misinforma-
tion [163]. On Twitter-15 experiment, we noticed that the PI and RP LA schemes ex-
hibited a nearly identical optimized loss after multiple rounds, referred to as epochs.
An epoch represented a single round where all LAs experienced one state transition
each. However, the RP scheme was the one with a remarkable early convergence.
On Twitter-Covid19, we even observed how the RP scheme outperformed the other
methods by far. Hence, it became obvious that the RP scheme was the most reliable
learning scheme for our optimization since it converged earlier with better results
in all experiments. For the complete details of the work done in Paper B and the
proposed Average Difference Loss Function, see Appendix B.

3.3.1.2 Fairness Loss Function

In subsubsection 3.3.1.1, we have seen the proposed loss function from Paper B,
where the definition of the loss was used to evaluate the performance of different
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LA schemes. To this end, we concluded that the reward-penalty scheme was the
best to learn truth campaign incentives for the task of intervention-based misinfor-
mation mitigation on SM. However, the proposed loss in Paper B was based on
calculating an average difference between misinformation and factual information
activity counts, which is not robust for situations when there is a sparse distribu-
tion of misinformation among users. In the latter scenario, certain users will require
more attention than others when it comes to the incentives they receive. There-
fore, Paper D (see Appendix D) introduced a new approach that combined the
reward-penalty LA scheme with a unique fairness loss function. This function en-
sured that incentives were allocated fairly, taking into account the specific needs
of each user. To evaluate the robustness of the fairness loss function over multiple
social networks’ scenarios, we introduced a mitigation efficiency metric which was
calculated as follows.

1− a

b
: b ̸= 0, (3.12)

where a and b were the overall average misinformation percentages on the network
after and before mitigation, respectively. Therefore, a higher value of that metric
indicated a better misinformation mitigation performance. According to Figure 3.8,
the proposed Fair-LA outperformed both the AVG-LA introduced in Paper B
and uniform allocation of incentives in most of the scenarios. The proposed Fair-
LA had the exact reward-penalty LA learning scheme as in AVG-LA but the LAs
conducted their state transitions based on a fairness criterion from a novel loss
function as in Equation 3.13.

F (Z,ZH ,Φ) :=
n∑

i=1

F (Zi, Z
H
i , ϕi) : F (Zi, Z

H
i , ϕi) :=

n
′∑

j=1

(1−Rϕi

j )2, (3.13)

subject to
n∑

i=1

ϕi ≤ C, (3.14)

where n represented the number of network users and n
′ was the number of

adjacent users connected to user i, where user i was also considered adjacent to
itself. Therefore, j was the index that represented i and all its adjacent users over the
summation. Rϕi

j represented the updated ratio between factual and misinformation
exposure counts after applying the recent incentivization value ϕi to the factual
information MHP diffusion activity associated with user i, since the recent value ϕi

influences the exposure counts of users adjacent to i. As noticed in Equation 3.13,
we squared the subtraction 1−Rϕi

j to maintain positive values in the interval [0,∞),
while the task was to minimize the loss as much closer to 0 as possible. Thus, the
expression (1−Rϕi

j )2 means that the more the ratio Rϕi

j approaches a value of 1, the
more the individual Fairness Loss Function for user i approaches 0. The latter also
means that whenever user i adjacents’ exposure to factual information is increased
to at least as much as the exposure to misinformation, the assigned incentive for user
i becomes fair and hence the remaining incentivization budget will be consumed on
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Figure 3.8: Evaluation of the previously successful reward-penalty LA scheme on
different social networks with a varied distribution of misinformation. An average
difference-based LA loss was compared against fairness-based LA loss

other users. In all brevity, we kept incentivizing user i until all its influenced (i.e.,
adjacents) users became exposed to enough facts.

It is important to highlight that the total loss was calculated through the achieved
individual loss of each user during the allocation of incentives (i.e., the associated
LAi and its current state ϕi). That means the total loss in Equation 3.13 ensured
optimal or sub-optimal assigned incentivization values over Φ as the set of all LAs
current states. Finally, the consumption of all incentivization values (LAs states)
must not exceed the bound C, which represented a knapsack capacity during the
state transitions and optimization.

According to Figure 3.8, the proposed Fair-LA was evaluated in different sce-
narios where users’ exposure to misinformation varied. For example, a synthetic
network can have only half or a quarter of its users exposed to misinformation. To
provide these scenarios, we created synthetic datasets to replicate different statistics
of misinformation on the network. Finally, we observed how the fairness loss resulted
in a more robust mitigation efficiency when applied to different scenarios. The only
exception was on a version of the Twitter-Covid19 real dataset where 89.5% of net-
work users were almost equally exposed to misinformation. In the latter, it was
normal to observe how the uniform allocation of incentives outperformed both loss
functions since the more the users are equally exposed to misinformation, the more a
uniform allocation will be optimal and outperform. As noticed in Equation 3.13, the
Fair-LA also conducted its state transitions based on a single MHP diffusion group
criterion, where only activities of misinformation and factual information were rep-
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resented. For the complete details of the work done in Paper D and the proposed
Fairness Loss Function, see Appendix D.

3.3.1.3 Societal Acceptance Loss Function

Paper G (see Appendix G) introduced PEGYPT, an innovative dataset that fo-
cuses on misinformation in the political domain. This dataset includes temporal
labels that indicate whether the information is misinformation or factual, as well as
bias directions and dynamics related to societal circle formulation. These temporal
labels provide insights into the activities of online users on today’s SM platforms.
Therefore, it became possible to model three MHP diffusion groups based on the
collected dataset (see Figure 3.1). To this end, Paper G proposed a unique opti-
mization loss function. This function encompassed the possible values in sets for
information veracity, temporal bias, and information from societal circles, which are
crucial aspects of the problem domain [44]. The loss function guided the state tran-
sitions in the reward-penalty LA scheme, enhancing its effectiveness in combating
misinformation.

The work done in Paper G extended the Fairness Loss Function introduced in
Paper D. In the latter, the allocation of incentives was accomplished according
to how many incentives each user needs to reduce the exposure of users’ adjacents
to misinformation. In this manner, we kept maintaining the concept of fair incen-
tivization in Paper G. However, in addition to representing only temporal activities
of misinformation and factual information, we proposed additional information on
the temporal societal circles and temporal bias, to model the occurrence of societal
engagement and its nature, respectively (see subsection 3.1.1). That means we pre-
dicted the propagation of factual information (e.g., non-propaganda), misinforma-
tion (e.g., harmful political propaganda), engagement of users with societal circles,
and the bias directions of users, all until a specific time window. Such a combination
gave more close-to-reality dynamics of information diffusion and characterized the
societal acceptance concept that governs social networks [44]. Equation 3.15, Equa-
tion 3.16, and Equation 3.17 demonstrate the Societal Acceptance Loss Function
with its maintained fairness.

F (Z,ZH ,Φ) :=
n∑

i=1

[
Λ

′

i(Zi, Z
H
i , ϕi) + F (Zj, Z

H
j , ϕi)

]
, (3.15)

F (Zj, Z
H
j , ϕi) :=

n
′∑

j=1

[
2−Rϕi

j − Λj(Zj, Z
H
j )
]2
, (3.16)

subject to
n∑

i=1

ϕi ≤ C, (3.17)

where Z and ZH represented different types of activity counts in multiple MHP
diffusion groups, unlike what was proposed in the Average Difference Loss and the
Fairness Loss. Further, to keep the fairness concept (see subsubsection 3.3.1.2), Rϕi
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defined the exposure counts ratios between non-propaganda and harmful propaganda
activities for n′ adjacent (i.e., influenced) users with user i, including i as adjacent to
itself, and until the recent value of state ϕi, since the latter influences the exposure
counts of users adjacent to i. The function Λj(Zj, Z

H
j ) was calculated according to

Equation 3.18 and represented a joint probability of two events. First, cj, which was
the probability that an adjacent user j with user i would engage with the societal
circle that the truth campaign aimed to attract individuals to. This is because
a campaign inherently possesses a certain perspective, even if it is a neutral one.
Second, the probability that j had the same bias of the truth campaign and denoted
as biasj. Through the calculation of this joint probability, we were able to determine
the likelihood of an adjacent user j, actively engaging with and accepting the factual
information propagated by the incentivized user i. This consideration represented
a novel approach to evaluating truth campaign incentives, as it ensured that user
i would not consume resources allocated for incentivization if the adjacent user j
would ultimately ignore the factual information being shared by i. It is essential to
highlight that such probabilities were calculated as per the latest state transition
from LAi, where the latter suggested a recent value for the incentive ϕi. That is
because an intervention with ϕi to the associated activities MHPs (i.e., societal bias
and societal engagement diffusion groups), would change the generated counts for
bias and societal engagement MHPs activities at each epoch since different state
transitions would be performed by LAi at each epoch. Hence, Λ traced the LAs
interventions’ consequences on the probability of societal engagement with the circle
we sought acceptance of its concept and the agreement with that circle during such
an engagement. See section 3.1 for the complete details of intervening with multiple
MHP diffusion groups.

Λj(Zj, Z
H
j ) := P (cj) · P (biasj). (3.18)

While LAs interventions caused different incentives and accordingly different
diffusion counts, given an increased value of Λj(Zj, Z

H
j ) will decrease the individual

loss in Equation 3.16, then, the associated LAi will be rewarded. However, the
individual loss for user i could be increased by the function Λ

′
i(Zi, Z

H
i , ϕi), which

represented the probability of user i not being in the same bias direction of the
truth campaign. That means no matter how the adjacent users of i would engage
and agree with the circle we seek, the loss will always be high if user i’s bias disagrees
with the truth campaign. Equation 3.19 shows how the function Λ

′
i(Zi, Z

H
i , ϕi) was

calculated.

Λ
′

i(Zi, Z
H
i , ϕi) := 1− P (biasi). (3.19)

The mechanism in Equation 3.18 and Equation 3.19 means that users will be as-
signed incentives wisely and according to their probability of accepting the incentives
and being influential in their online surroundings. Therefore, this approach aims to
optimize the allocation of incentives based on users’ acceptance and influence, rather
than relying on a simplistic or naive assignment method.
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Table 3.1 shows empirical results on the PEGYPT dataset and how the proposed
societal acceptance representation in Paper G outperformed the traditional repre-
sentation used in the fairness-only loss from Paper D. We can also observe that
the percentage of harmful propaganda exposure mitigation was significantly higher
than the percentages in both polarization mitigation and societal acceptance boost.
We believe that was due to the traditional less strict definition of propaganda con-
tent exposure and its mitigation metric [20]. The latter usually considers the counts
of activities a user is assumed to access through an adjacency relationship on the
network such as “following” [20]. However, we believe that would be a naive assump-
tion since “following relationships” do not guarantee actual exposure in the future.
Therefore, it was essential to adopt more strict metrics from our proposed represen-
tation, such as the actual dynamics of societal acceptance and polarization, which
estimated how likely an engagement would occur and to what degree it would be
an agreeing engagement. Moreover, despite how we were still able to calculate the
polarization mitigation and societal acceptance boost performances from the Fair-
ness Loss, that would not be feasible without the multiple MHP diffusion groups
as a novel representation of the task. Therefore, our proposed novel representa-
tion in Paper G improved the justification and transparency in intervention-based
misinformation mitigation methods, despite the utilized learning algorithm.

Table 3.1: LA obtained performance on PEGYPT dataset when utilizing different
optimization loss functions

Metric Fairness Societal Acceptance + Fairness
Propaganda Mitigation 0.89 ±0.05 0.88± 0.05

Polarization Mitigation 0.23± 0.10 0.26 ±0.09
Societal Acceptance Boost 0.16± 0.03 0.19 ±0.05

Figure 3.9 demonstrates the difference in behavior between the Fairness Loss
Function and Societal Acceptance Loss Function on PEGYPT dataset, in terms
of how the incentivization budget was consumed on which types of users. For in-
stance, Figure 3.9 on the left side, explains how the top 200 (with higher incentive
values) users engaged with what societal circles. We observed that the Fairness
Loss-based LA intervention consumed most of the incentivization budget on users
who contributed to around 60% of the engagements in circles F and C, while circle
F was the most harmful circle and circle C also had a different bias than the truth
campaign. On the contrary, the Societal Acceptance Loss-based LA intervention
consumed most of the budget on less than 30% of these circles’ engaged users. The
latter behavior indicates how the temporal bias and societal circles’ information ma-
tured the truth campaign more and incentivized users based on the probabilities of
accepting the campaign incentive and being accepted by others. Moreover, on the
right side of Figure 3.9, it shows how the Societal Acceptance Loss-based LA inter-
vention highly prioritized the smaller amounts of incentives (LAs with significant
small ϕ values) for users that engaged with the circles F, C.

Additionally, Figure 3.10 illustrates our approach to influencing users to join
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Figure 3.9: Optimization evaluation of the previously successful Fairness Loss Func-
tion and its extended capabilities in Societal Acceptance Loss, on how truth cam-
paign incentives were assigned to the social network users on PEGYPT dataset
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circle B by actively participating in and accepting its ideology, rather than engaging
through disagreement. Consequently, we observed a rise in both the probability of
being biased against (being in opposition to an idea where circle B opposes the same)
and the probability of engaging with circle B. The latter represented modeling the
engagement occurrence, while the former modeled the acceptance of that engage-
ment since circle B represented a bias-against concept (same as truth campaign
bias in Paper G experiments). This analysis also demonstrated how incorporat-
ing temporal bias and engagements within societal circles enabled us to track and
analyze user activities associated with different diffusion groups in the context of
misinformation propagation.

Finally, on the left side of Figure 3.11, we show how the LAs environment,
characterized by our societal acceptance representation, was more strict and gave
relatively fewer rewards. We attribute this outcome to the incorporation of a greater
number of interdependent variables within the Societal Acceptance Loss Function.
Nonetheless, this rigidity proved beneficial in mitigating polarization, fostering so-
cietal acceptance, and providing slightly higher confidence in the learned incentives.
On the right side of Figure 3.11, to measure the level of uncertainty in the solution,
we evaluate the Shannon entropy [164] of the probability distribution for individ-
ual incentives, which was obtained through Monte Carlo sampling. Notably, we
observed a larger population of users with significantly lower entropies when the
Societal Acceptance Loss Function was employed. These lower entropies indicate
lower uncertainty in the learned incentives. To ensure clear differentiation in the
results, the entropies shown in Figure 3.11 only pertain to users with discernibly
different entropy values between the two loss functions.

For the complete details of the work done in Paper G and the proposed Societal
Acceptance Loss Function and users’ activities representation, see Appendix G.

3.3.1.4 Learning Automaton vs Policy Iteration

Table 3.2 demonstrates by how far our LA-based method outperformed random
and uniform allocation of incentives for an intervention-based truth campaign to
mitigate misinformation on SM. Further, we made an analogy of the results with
previously proposed Policy Iteration-based methods for the same task. In particular,
we compared with the following previously proposed methods:

• EXP: an exposure-based Policy Iteration algorithm [20] which depends on
computing an exposure-based closeness centrality to model diffusion dynamics
in terms of finding influential nodes on the social network.

• V-MHP: a vanilla MHP Policy Iteration algorithm [20], where a reward crite-
rion was received from a single MHP diffusion group for information veracity
related activities. Particularly, factual and misinformation activities.

• U-MHP: a user bias response MHP Policy Iteration algorithm [25], where
another MHP diffusion group modeled the political bias activities in addition
to the information veracity MHP diffusion group. However, U-MHP assumed
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Figure 3.10: Example of breaking the harmful societal circles on PEGYPT dataset
by incentivizing some users to alternatively accept and engage with the truth cam-
paign circle B
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Figure 3.11: PEGYPT dataset evaluation for the previously successful Fairness Loss
Function and its extended capabilities with societal acceptance awareness loss on
the average cumulative rewards during incentive learning with entropy of the finally
decided incentive values
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static societal bias diffusion, where biases do not change once expressed. In
contrast, our method incorporated temporal changes, capturing the evolving
nature of biases and reflecting the dynamic influences within a social network.

Table 3.2: Relative performance of LA-based and Policy Iteration-based misinfor-
mation mitigation, against random and uniform methods

Model Tw15-rnd Tw15-unif Tw16-rnd Tw16-unif
LA-MHP 2.37 2.11 2.35 1.71

U-MHP 2.06 1.93 3.20 1.80
V-MHP 1.54 1.87 2.80 1.50

EXP 1.33 1.21 2.04 1.12

We referred to our method as LA-MHP, and the evaluation metric was a ratio
between a correlation maximization Y obtained from each baseline method and
a correlation maximization obtained from either random or uniform allocation of
incentives when applied on two real datasets: Twitter-15 [32] and Twitter-16 [33].

The exposure counts to both factual information T (after applying the incentives)
and misinformation F were considered the correlation variable and the constant,
respectively. For instance, Y = T ×F , where the ratio that indicated how LA-MHP
performed against the random allocation of incentives with regard to correlation
maximization was calculated as YLA−MHP

Yrnd
, where Y was calculated twice for both

LA-MHP and the random method over their incentivized and predicted MHP counts
T , and only predicted MHP counts F . The results given in Table 3.2 proved how the
proposed lightweight LA-MHP model was either outperforming or at least competing
with all baselines.

3.3.2 Other Preliminary Models and Results

3.3.2.1 Trustworthiness Causal Graph

Paper A (see Appendix A) proposed a probabilistic graphical model as a theoretical
view on the problem of normal users’ credibility on SM during a political crisis, where
polarization and deception were key properties. The paper introduced a hypothetical
Causal Bayesian Network (BN) [165], inspired by the potential main entities that
would be part of the online discussions dynamics. The causality-based approach
provided a practical road map for some sub-problems in real-world scenarios such as
individual polarization prediction, misinformation detection, and sensitivity analysis
for the latter two tasks. Moreover, it facilitated intervention simulations with other
causal entities if added to the causal graph, such as the learned incentives of a truth
campaign. These intervention simulations could be used to verify the LAs’ learned
incentives from the algorithms proposed in Papers B, D, E, and G.

The proposed causal graph demonstrated a causal representation of our assump-
tions about the task of evaluating online users’ credibility. It demonstrated the de-
pendencies between the task’s hypothetical entities (i.e., graph nodes). In a causal
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Figure 3.12: Hypothetical SM discussion causal graph

graph, edges from parent nodes to child nodes mean a causal relationship. That
means a child node variable is considered as an effect of its parent node variable. In
this manner, Figure 3.12 shows a causal graph of a social network from information
veracity and users’ trustworthiness perspectives.

As demonstrated in Figure 3.12, there were three main potential deceptive causes
of manipulation in an online community (i.e., a societal circle): Trolls, Cyborgs, and
Deceptive Social Bots. Because online users would agree on what was deceptively in-
fluencing them during their engagements with societal circles, users’ trustworthiness
degrees of their potentially propagated deception should be measured. Moreover,
we hypothesized that polarization levels and the level of diversity to which content
users are exposed will affect the trustworthiness degrees of users [12]. Further, we
adopted the concept that users’ levels of exposure to diversity can influence both
polarization levels and societal engagements [166]. We also considered other soci-
etal engagements that might influence one’s engagement like when a user replies
to others while approving or denying their opinions. Finally, a topic initiative and
a concluded deception opinion were proposed to collect more evidence about the
trustworthiness degrees.

To quantify the dynamics inside the causal graph in Figure 3.12, we built a BN
that can be utilized to learn the posterior joint probability distribution over the
hypothetical network topology. For the complete details of the proposed BN and
Paper A, see Appendix A.

3.3.2.2 Neural Emotion Hawkes Process

According to the definition of emotional inertia [167], conversation partners tend to
stick to a particular emotional state, unless some external motivation excites them to
change that state. Usually, the excitation comes from the other conversation partner.
Therefore, by considering one partner as a chatbot agent [168], we conducted a
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Figure 3.13: LSTM-based MHP for dyadic conversation emotion change prediction

preliminary study in Paper C (see Appendix C) to investigate how to learn hidden
excitation patterns in emotional conversations, so the agent can control the outcome
from other partner’s emotions by re-planning its own (chatbot) expressed emotions.

Figure 3.13 shows a proposed End-to-End architecture of the Neural Emotion
Hawkes Process (NEHP), where the latter utilized Long-Short Term Memory (LSTM)
to predict emotion semantics in future conversation turns. We believed that the
utilization of the LSTM would be sufficient as a preliminary study, where the con-
versation input sequence length was relatively short and the conversation expressed
emotions were completely related, due to the complementary nature of emotions in
dialogues [169]. However, self-attention mechanisms [170] are recommended for the
analysis of long and multi-context conversations.

The NEHP was fed by two categories of inputs as follows. First, the two part-
ners’ one-hot-encoding vector over n steps, where n was the number of conversation
turns, where multiple sequenced turns for one partner were considered as a sin-
gle turn. Therefore, only one partner was represented in each turn whereas two
sequenced turns must have two partners. For instance, the two partners’ one-hot-
encoding vector can be in the form: (0, 1, 0, 1, 0, 1, ..., in), where each ith turn repre-
sented a unique bit value for a partner. The second input category was the vector of
emotion representation associated with each conversation turn. In the latter, each
vector entry represented a particular emotion expressed by a conversation partner
in a turn and quantified by a scalar value based on an emotion taxonomy represen-
tation technique. To learn the hidden excitation between the expressed emotions
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Table 3.3: Prediction accuracy of other conversation partner over two turns in future,
and P-values obtained from excitation trials

Dataset Emotion Representation Acc (1) Acc (2) Avg Acc Excit
Topical partner difference 0.82 0.51 0.67 0.16
Movies partner difference 0.80 0.35 0.57 0.40
Topical incremental partner difference 0.89 0.62 0.76 0.05
Movies incremental partner difference 0.82 0.20 0.51 0.45
Topical partners difference 0.85 0.54 0.64 0.06
Movies partners difference 0.81 0.37 0.59 0.24
Topical incremental partners difference 0.94 0.57 0.76 0.06
Movies incremental partners difference 0.92 0.76 0.84 0.16

between two conversation partners, the NEHP utilized a non-parametric MHP over
the hidden state vector of the LSTM. In this manner, the discrete-time intervals in
the MHP setting were defined as the turns indices of the dyadic conversation where
even indices were associated with one partner while the odd ones represented the
other partner.

The work done in Paper C investigated how emotions in the NEHP model
input should be represented to allow for high prediction accuracy and learning of
optimal excitation strategies from intervention models. See subsubsection 2.2.3.1 for
more details about excitations in HPs. To facilitate interventions with the NEHP,
a RL chatbot agent can interact with the former as the RL emotion dynamics
environment, and then, learn optimal emotion expression strategies. To evaluate a
potential successful integration with chatbot agents in further studies, we manually
re-planned the expressed emotions of one partner in the NEHP emotion sequence
input. We defined the re-planning of one partner’s emotions as the replacement
of a particular emotion in its associated conversation utterances sequence. Then,
we evaluated if such a plan would succeed to excite the other partner for a more
positive emotional outcome. Hence, we conducted a T-test [171] and accepted only
significant emotion change outcomes with P-value ≤ 0.05. Then, we calculated the
percentage of these successful excitation trials that influenced the emotional flow of
the conversation. Two public text-based conversational datasets were studied for
the preliminary experiments, one was from imagined conversations in movies [172],
and the other was sentiment-annotated human-to-human conversations [173].

Table 3.3 shows the preliminary results for our proposed NEHP where four emo-
tion representation techniques were evaluated. These results indicated promising
prediction accuracy and the possibility of learning emotion excitation patterns dur-
ing a dyadic conversation to help mitigate extreme polarization in online discussions.
The learned excitations were not a result of any supervised learning as practiced by
Poria et al. (2021) [51], since the only given ground-truths were partner ids and
their associated emotion semantic representation. Such capability of the NEHP
highlighted how the utilization of MHP and LSTM together was beneficial for the
task.
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The emotion representation methods varied from each other in terms of how the
emotion taxonomies scalar values sequence was calculated. For example, “partner
difference” meant that we only focused on the sequence of turns associated with each
partner alone and calculated the differences between every two sequent turns of the
same partner. So, we obtained a transformed sequence that represented an emotion
change pattern for each partner independently from the other partner, where at
each associated turn, we captured how emotions changed from the previous turn
of the same partner. Additionally, the “partners difference” representation meant
that we calculated the differences from every two adjacent turns’ emotion scalar
values. Since every two adjacent turns in our setting were associated with two
different partners, the latter technique allowed for creating dependencies between
partners in the representation. Finally, the incremental technique was applied to the
two mentioned representation approaches but instead of calculating the differences
between every two turns, differences were calculated accumulatively, hence, it could
capture longer dependencies over conversation turns instead of only focusing on a
previous turn. For the complete details of the proposed NEHP, see Appendix C.

3.3.2.3 Self-supervised Learning

As introduced earlier in chapter 1, fact-checking methods on SM are judgmental be-
cause they provide a definite classification of users’ contents, and any error in their
outcomes will violate the freedom of speech. The latter is considered an ethical con-
cern about machine learning classifiers [19]. Moreover, as introduced in chapter 2,
MHPs are highly dependent on annotated temporal data to learn the diffusion pre-
diction function. Thus, we were motivated to study novel methods to provide both
transparency and automatic data annotation for intervention-based misinformation
mitigation pipelines. To this end, Paper F proposed a novel architecture inspired
by the established Tsetlin Machine (TM) [174] to self-learn data categories. We
referred to our method as the Label-Critic TM where the standard TM capacity
was extended to perform classification or clustering tasks without the guidance of
ground truths. To achieve that, as in the standard TM where Tsetlin Automata
(TAs) are attached on a feature level, we further attached TAs on a sample level.
Hence, each data sample was assigned a single TA to learn its correct label. The
samples’ assigned TAs shared the same structure and each had one of two possible
decisions to make: either the sample belongs to class A or B. In this study, we
interchangeably used the terms class and cluster to refer to the same concept. Our
approach was similar to top-down hierarchal clustering [175], where all data samples
were considered as one large cluster before splitting them into smaller ones until a
cluster converges without further splitting.

Since a standard TM performs binary classification, we recursively split the
data into two groups: A and B, where each had the group-associated positive sub-
pattern(s) learned by a standard TM. Then, another standard TM learned discrim-
inative sub-pattern(s) for A and B, separately. For each investigated data group, If
the standard TM found no discriminative sub-patterns, the current group converged
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Figure 3.14: Novel Label-Critic TM invokes the True Clause generation by removing
contradicted literals. The figure shows the same class clauses contradiction removal
procedure

as one cluster, otherwise, more training loops were performed to further split. Fi-
nally, data samples in the learned clusters can be labeled according to the converged
cluster. For instance, for four learned clusters, their underlying sample labels could
be A′

, A
′′
, B

′
, B

′′ , where A′ and A′′ are child clusters from their original parent clus-
ter node A. Similarly for B′ and B

′′ , as child clusters from their original parent
cluster node B.

In a standard TM, the training data feature space is represented by binary
vectors, where a value of 1 indicates the occurrence of a feature and a value of
0 indicates the absence of the feature for a given data sample. Further, a standard
TM conducts binary classification through the so-called “learned clauses”. A clause
is a conjunction of literals, where a literal is a propositional feature input (L : 1)
or its negation (¬L : 0). Hence, the final sub-pattern recognition task can be
performed according to a voting scheme from all learned clauses against a given
data sample to be classified. For the proposed Label-Critic TM, when learning a
sample label in a data group, a Label-TA was a single TA assigned to the sample
with a randomly determined initial label. The Label-TA then sent its decision to
the standard TM team, where the latter learned the TM clauses that represent the
sub-patterns. In parallel, a Critic-TA task was to clone the current decided label by
the Label-TA and send the label to another standard TM team to perform separate
clause learning. The duality of Label-TM/Critic-TM ensured validation of the final
learned clauses. Both Label-TA and Critic-TA validated their decisions according
to a final True Clause generated by their associated TMs after some post-processing
as demonstrated in Figure 3.14.

A True Clause was the final learned literals that suggested a final pattern of
a cluster, so when data samples shared a particular True Clause pattern, they
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were considered as a cluster. The latter was an example of self-corrected learn-
ing facilitated by the standard TM propositional logic approach since noisy literal-
contradicted clauses can be corrected and concluded into one logically True Clause.
As seen in Figure 3.14, the Label-Critic TM invoked a class True Clause genera-
tion by removing contradicted clauses’ literals caused by noisy training data in the
standard TM because of the randomly initialized data labels. However, the contra-
dictions would exist in literals between the two classes’ clauses as well, in that case,
a final True Clause per each class was concluded according to the discriminative
literals. For instance, if class A had the positive literal Li, then the class B True
Clause cannot have the same literal unless it was negated.

As indicated in Figure 3.14, the generated clauses by the standard TMs would
have contradicted literals due to the randomly assigned labels. However, proposi-
tional logic-based learning equipped the Label-Critic TM with self-correction capa-
bilities. For instance for n learned clauses by a standard TM team for a particular
class, if the kth feature had the propositions Lk, Lk,¬Lk, Lk, it was concluded to
Lk, Lk since Lk was canceled only once by its contradiction ¬Lk. At each training
epoch of the Label-Critic TM, the acquired True Clause was accumulated to previ-
ous ones, and the same literal can have multiple instances in that case, making the
True Clause more informative and tuned by adding weighted literals. The generated
True Clause literals were then used for a similar voting scheme, just like a standard
TM but on a literal level. The latter voting mechanism determined whether a data
sample should belong to which of the two clusters based on the two True Clauses.
Each Label-TA evaluated its label selection and was rewarded if and only if: its
decision matched the cluster which got the higher votes, and its twin Critic-TA
decided the same label for the associated data sample, otherwise penalized. Critic-
TAs rewards were received the same way as in Label-TAs except that they did not
require evaluation of their twin Label-TAs. Eventually, it became possible to obtain
transparency of the clustering results through the propositional logical statements
embedded in the True Clauses associated with each converged cluster.

Figure 3.15 demonstrates the fundamental components and recursive cycles of
the proposed Label-Critic TM where a recursive binary classification-based splitting
was performed over the unlabeled data samples. For further details on True Clause
generation and the cluster voting scheme, see Appendix F.

Figure 3.16 shows how the Label-Critic TM along with the DBSCAN method
outperformed other clustering methods, including hierarchal-based clustering such
as the Agglomerative method. Two synthetic data groups were evaluated for such
experiments. The first data group represented small balanced datasets with 400

features and 300 samples per cluster (class). The second data group represented
relatively larger and unbalanced datasets with several features up to 2, 000, and
the number of samples varied among clusters. For instance, one cluster had 1, 000

samples while another had only 300 only. Further, the learning loops of the Label-
Critic TM can be observed in Figure 3.17 where the learning was achieved through
optimizing the total number of penalties from the Label-TAs. The number of original
clusters in data dictated how many standard TM training loops were required to
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keep splitting the data into smaller clusters. Loops would eventually converge after
some epochs. In some cases, due to the randomness of label initialization, a loop
would be repeated if it reached a particular epoch (threshold) without convergence.
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Figure 3.16: Label-Critic TM performance comparison with benchmark clustering
algorithms
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Figure 3.17: Recursive self-supervised Label-Critic TM learning curve of conducted
loops over a different number of sub-patterns, with one sub-pattern per cluster
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Chapter 4

Conclusion

In the past decade, intervention-based misinformation mitigation was proposed as
an approach to combat misinformation on SM. In this manner, misinformation miti-
gation is achieved by boosting the exposure to factual information. To boost factual
information on the social network, users are incentivized to propagate facts, with
different incentivization levels determined based on users’ needs and vulnerability
to misinformation. Traditionally, intervention-based learning of incentives was per-
formed through Reinforcement Learning (RL), where the majority of the proposed
methods were Policy Iteration algorithms that learned an optimal mitigation pol-
icy for a so-called truth campaign. The relatively narrow focus on Policy Iteration
algorithms led us to investigate alternative methods, leveraging recent insights on
the problem of misinformation propagation on SM. For instance, two crucial ques-
tions are what incentivization strategies are most effective and which factors should
be optimized for effective mitigation, apart from the individual user’s needs and
their vulnerability to misinformation. To address these questions, this dissertation
proposed novel Learning Automaton (LA) algorithms to learn user-directed truth
campaign incentives on SM, introducing novel criterion functions based on a recent
understanding of SM dynamics. To learn the optimal incentivization for each user
with limited incentivization resources overall, we defined the problem as a knapsack
constraint optimization procedure. Then, the incentivization efforts were limited to
a predefined knapsack capacity. Further, we integrated our knapsack-based model
with novel modeling of temporal users’ activity and optimization variables, devel-
oping dedicated parametric Multivariate Hawkes Process (MHP). The latter was
our adopted information diffusion technique to simulate and predict social network
activities. Then, the hypothesized incentives can be evaluated for their effectiveness
over the simulated social network.

In this chapter, we present the key findings of our study and demonstrate the
possible impacts of these on the current challenges of Artificial Intelligence (AI)-
based misinformation mitigation on SM. Finally, we highlight the limitations of our
research and suggest future research directions.
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4.1 Key Findings in the Study

According to our investigation, the utilization of LA algorithms as an easily imple-
mentable and lightweight optimization framework was beneficial to boost the factual
information on simulated social networks. This was particularly the case for reward-
penalty LA schemes with a variable structure. In most cases, the latter showed a
significant performance advantage compared to other LA schemes or traditional RL
algorithms such as Policy Iteration. However, the proposed LA algorithms did not
give faster convergence to the optimal incentives unless they followed a greedy prob-
abilistic state transition strategy. The probabilistic greedy state transition strategy
meant that a transition with higher probability was always performed, without ex-
ploring other possible moves over the discrete state space. Further, the proposed
LA learning schemes had a dynamic rate of state transition probability updating
that pursued the transition with the higher reward. We found that the combination
of fully greedy exploitation, variable structure, and maximal reward pursuit-based
state transition provided significantly faster convergence. The latter behavior was
obtained in a stochastic and non-stationary MHP-based environment.

Further, traditionally, a loss function drives learning in RL and LA, translating
the environment signal into simple rewards/penalties. The loss function thus helps
the intelligent agents find proper state transitions. Accordingly, it solves its task by
minimizing the loss function. Therefore, the loss function must provide a sufficiently
comprehensive and rich representation of the environment to build a trustworthy and
traceable solution. The loss functions should further be interpretable through the
transparency of their dynamics if monitored during the optimization procedure. We
found that SM misinformation activities and their mitigation should be modeled
with the interdependent patterns that govern the propagation of misinformation.
That is, interconnecting the temporal variables for societal bias, societal engagement,
and information veracity was vital to provide a convenient criterion and traceable
interventions for the incentive-learning agents.

Finally, because of the nature of the truth campaign technique and how it aims
to deliver factual information to SM users, the achievement of societal fairness in the
proposed algorithms is crucial and could be obtained through dedicated expressions
that facilitate fairness or other societal objectives. The latter was practiced in the
proposed fairness and societal acceptance-aware optimization loss functions.

4.2 Impact

The work done in this research study contributed to the following areas. First, the
study contributed to the scientific knowledge of LA by providing novel techniques to
variable structure LAs. Our novel LA technique demonstrated how a combination
of the estimator and variable structure schemes was beneficial to the task of knap-
sack constraint stochastic optimization, with a multiple-dimensional random walk.
The latter also showed how more complicated knapsack settings will require new
approaches in the design of the proposed LA, unlike traditional interaction between
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LAs and knapsack-based environments where the latter needed only a deterministic
LA in terms of its state transition selection.

Second, the LA proposed algorithms showed robustness after being evaluated on
multiple misinformation datasets with statistical variations regarding the percentage
of misinformation exposure. Such robustness is crucial for generalizing the proposed
misinformation mitigation optimization functions to unseen social network statistics.

Third, unlike only conducting empirical experiments for the proposed AI models
on existing datasets, the study collected more descriptive and representative data to
establish a more realistic learning environment and objective for the proposed learn-
ing agent. In this manner, the study bridged AI and Social Science by investigating
relevant theoretical studies on the problem of misinformation propagation on SM
and the interdependent dynamics that govern such propagation. All the above led
to a novel computation model that encapsulated Social Science theories and allowed
for their empirical applications and a novel misinformation dataset.

Fourth, we contributed with the Multiplex-Controlled Multivariate Hawkes Pro-
cesses (MCMHP), a mathematical framework to model problems where LAs are
required to optimize a volume-based diffusion model to boost the counts of a partic-
ular activity on a social network. In our proposed MCMHP, different components
can be easily replaced by a more suitable one depending on the task. For instance,
the MCMHP framework can utilize other proposed loss functions, LA schemes, and
volume-based diffusion models.

4.3 Limitation and Future Work

The proposed SM temporal users’ activity representation was important to extend
the analytical capacity to the truth campaign optimization procedure. However,
this research study did not investigate the improvement of these activity diffusion
dynamics in terms of the diffusion prediction approach. The latter is a deep topic
and requires an entirely separate study. For instance, future work in this regard can
focus on multimodal diffusion modeling where both linguistic and temporal features
can be concatenated to predict future diffusions. Moreover, instead of utilizing
the classical parametric MHPs, neural network-based MHPs can be investigated
where both internal and external influence parameters become dynamic, instead of
representing them with fixed values.

Users’ activities on SM can have multiple cascades, e.g., retweets of retweets on
Twitter. The latter means that exposure to some influence can be indirect through
the indirect relationships over the multiple cascades. In this manner, the investiga-
tions done in this dissertation have only focused on one level of cascades, where ex-
posure to influence was measured according to the direct relationship in the network,
e.g., when two users have a following relationship on Twitter. Hence, proposing ex-
posure measures and optimization over multiple cascaded influences is an interesting
future contribution to our study.

Despite the proposed sampling techniques in Papers D, E and G to facilitate
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robustness on large-scale social networks, the study was constrained by the limited
size of the available misinformation datasets. Investigating larger scale data, involv-
ing millions of users, will be beneficial for further improvement and understanding
of the proposed misinformation mitigation framework. For instance, how will our
framework behave in an increased optimization space, and will it be possible to build
an efficient neural diffusion model for scalability?

Another limitation was how the work evaluated the application of truth cam-
paigns during an assumed normal scenario when misinformation unintentionally cir-
culates. However, there could be other scenarios when a truth campaign challenges
another manipulation campaign at the same time. For example, when deceptive
bots spread misinformation in the same time intervals as the truth campaign. The
evaluation of the truth campaign incentivization procedure will be very interesting
in such adversarial settings.

Finally, the study contributed with preliminary algorithms and structures to ver-
ify the learned truth campaign incentives, and to provide interpretable self-learning
for the detection of some categorical data such as SM activities. Therefore, a future
contribution can be extending these preliminary models to provide a complete analy-
sis of the dynamics of users’ activities with the learned incentives, where verifications
of optimized misinformation mitigation strategies would be possible. Moreover, ma-
tured models for interpretable self-learning of SM activities such as misinformation,
factual information, polarization directions, and societal engagement — will em-
power the misinformation mitigation pipeline with independence and transparency.
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Abstract — Information trustworthiness assessment on political Social
Media (SM) discussions is crucial to maintain the order of society, espe-
cially during emergent situations. The polarity nature of political top-
ics and the echo chamber effect by SM platforms allow for a deceptive
and a dividing environment. During a political crisis, a vast amount of
information is being propagated on SM, that leads up to a high level
of polarization and deception by the beneficial parties. The traditional
approaches to tackling misinformation on SM usually lack a comprehen-
sive problem definition due to its complication. This paper proposes a
probabilistic graphical model as a theoretical view on the problem of
normal users credibility on SM during a political crisis, where polariza-
tion and deception are keys properties. Such noisy signals dramatically
influence any attempts for misinformation detection. Hence, we intro-
duce a causal Bayesian Network (BN), inspired by the potential main
entities that would be part of the process dynamics. Our methodology
examines the problem solution in a causal manner which considers the
task of misinformation detection as a question of cause and effect rather
than just a classification task. Our causality-based approach provides a
practical road map for some sub-problems in real-world scenarios such
as individual polarization level, misinformation detection, and sensitivity
analysis of the problem. Moreover, it facilitates intervention simulations
which would unveil both positive and negative effects on the deception
level over the network.
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A.1 Introduction

Nowadays, SM are an essential part of humans everyday life. The notable increase
of the number of users, the ease and cheap cost of information sharing, and the con-
secutive technological enhancements of different SM platforms, have indeed boosted
SM to be a tough competitor to traditional news outlets. The great benefit of SM
does not lie only in news circulation, but further contexts of propagating it have
been introduced. These modern paradigms of fast and cross-distance social interac-
tion have allowed additional perspectives on how people are responding to the news.
For example, emotions, questions, and disapproval from eyewitnesses have became
part of the process.

Emergencies are not an exception of how people would depend on SM. During
critical scenarios like political rebellions, terrorist attacks, and disasters caused by
natural hazards, a significant amount of information is being propagated. In such
circumstances, authorities and citizens construct various usage patterns of informa-
tion through SM [1]. For instance, citizens would like to get updated by following
authorities verified Facebook pages or Twitter accounts. Also, authorities might
rely on information disseminated by citizens to feed up their emergency manage-
ment systems in order to support decisions, since people could act as eyewitnesses.
Moreover, citizens would interact together to enable more information diffusion, to
express emotions, or to offer help. It has been observed from previous studies that
there is a major challenge in all these patterns, which is the information manip-
ulation and the lack of trust between citizens and authorities or between citizens
themselves [2], [3], [4].

Information veracity assessment on SM is a critical topic because of how mislead-
ing news could affect the social order and the recovery from an emergency. Besides,
the lack of trust between SM consumers threatens SM to serve as a reliable source of
information, and waste all the technological efforts that have been previously accom-
plished. Moreover, how people are more likely to disseminate information regardless
its correctness has its roots in psychological and social literature [5], [6]. Fortu-
nately, with the growing number of consumers and how they depend on SM, users
are playing a fundamental role in questioning and verifying received information,
which can be viewed as a self-defense mechanism. Despite the contradiction of how
both individuals and societies could positively or negatively shape information cred-
ibility, this self-defense mechanism of SM reveals the feasibility of overcoming such
difficulty. Therefore, the study of information trustworthiness on SM has brought
more focus in recent years.

Information accuracy dilemma on SM can be broken into multiple sub-problems:
rumor detection, cyborg/ trolls/ social bots detection, and fake news detection. In
rumor detection, a rumor could be either correct or incorrect. Commonly, a rumor
is created during an emergency and due to the absence of a reinforced report from
official entities. Some literature defines a rumor as a possibility to be either true
or false [7]. Ref. [8] defined a rumor as an item of information which is deemed
to be false. A potential cause of incorrect or inconsiderable information is SM fake
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accounts. Hence, trolls, cyborg, and social bots detection have been studied in
some literature in the preceding years [9], [10], [11]. In the context of SM, trolls
are deceptive accounts ran by a human whom purpose is to motivate the others to
an emotional reaction. On the other hand, cyborgs are a semi-automated accounts
which objectively try to spread fake information. Social bots are usually ran by a
computer program and used in many cases like advertising and fake news circulation.
Fake news detection is the process of discovering false news. Either it was misinfor-
mation or disinformation. Misinformation refers to the unintentionally spreading of
false information. On the contrary, disinformation is purposely circulating of fake
news and usually adopted in political propaganda or in financial manipulations [12],
[13]. In the rest of this paper, we will use the term Misinformation to refer to any
fake news, regardless of the intentions.

Our theoretical study focuses on the circulation of misinformation in political
emergencies like revolutions and uprisings, where corrupted regimes and citizens
might confuse and mislead the public by disseminating deceptive content. One of the
recently revealed methods on SM misinformation is the propagation-based method
which considers that more information trustworthiness evidence to be retrieved from
a majority of eyewitnesses or verified accounts [14]. In propagation-based methods,
credibility networks are built to employ optimization techniques over different pieces
of news giving the underlying point of view. Mining different viewpoints and reac-
tions to news is referred to as Stance Detection [15], [16]. However, in a political
crisis, everyone is biased with their opinions and reactions to other opinions or
shared news [17]. Hence, such context is challenging the assumption that we can
unveil information credibility by investigating different opinions and find out what
the majority of people are believing in. On the other hand, it would be less compli-
cated during disasters caused by natural hazards because people are less biased and
the available opinions would be easily trusted.

A.1.1 Contribution and Paper Organization

This paper focuses on the problem of normal users content credibility assessment
from the perspective of cause and effect as an interpretation of some evidence dur-
ing the investigation. The paper studies a potential novel approach to the problem
by engaging a theoretical foundation from Bayesian analysis and causal inference
[18], [19]. The study challenges the assessment of different opinions trustworthiness
about a specific claim. For that, we propose a probabilistic graphical model based
on a causal BN to reason about possible causes and effects within the dynamics of
information propagation on SM platforms. Our proposed method tries to solve the
challenge of the unreliable opinion-based solutions in polarized scenarios by calculat-
ing a posterior marginal probability of the trustworthiness degree of opinions after
obtaining some evidence. Our research contributions are summarized as follows.

• explain the capabilities of both predictive and diagnostic analysis on BNs to
infer about the trustworthiness of an opinion and estimating polarization level
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and other unknown information, given some evidence and observed causes and
effects;

• illustrate how causal-based SM analysis opens the road to a potential novel
approach for misinformation detection with the three layers of causal inference;

Although the different opinions and reactions to the news are taken into con-
sideration along with the detected biased communities and deceptive accounts in
a social network. However, it is important to highlight that the stance knowledge
extraction task and community deceptive accounts detection techniques are not the
focus of this research paper. The remainder of the paper is organized as follows. sec-
tion A.2 gives a summary of the related work. section A.3 demonstrates the problem
statement and notations. Our causality-based approach is explained in more details
in section A.4. Our proposed methodology provided by a toy example is explained
in section A.5. Finally, we conclude the whole paper and discuss our future work in
section A.6.

A.2 Related Work

Research efforts on SM misinformation have studied the construction of prediction
models for a misinformation classification task [2]. These models can be categorized
into two classes: content-based models, and context-based models. Content-based
models are divided into two main approaches: knowledge-based, and style-based.
Knowledge-based methods propose examining external sources to fact-check the sus-
pected information [20]. Various approaches could be applied for fact-checking as
it could be automated or managed by human experts or crowd-sourcing. Computa-
tional fact-checking methods usually use either open web or a structured knowledge
graph [21]. A knowledge graph is a structured network topology which could be
constructed from the open web such as DBpedia and Google Relation Extraction
Corpus. A fact-checking procedure is adopting a knowledge graph in order to in-
fer about facts on its graph to verify information by exploring evidence from the
external information source [21].

Style-based methods try to capture information manipulators by their writing
style. Style-based methods can be categorized into two main classes: deception-
oriented, and objectivity-oriented [2]. Earlier studies from forensic psychology inves-
tigated the credibility and manipulation of statements [22]. Such studies motivated
the deceptive-oriented methods to detect misinformation. Deep neural network mod-
els, such as Convolutional Neural Networks (CNN), have been applied to classify
deceptive contents according to their deceptive attitudes [23]. Objectivity-oriented
refers to the manipulation of news by decreasing or hiding a key piece of infor-
mation. Such scenarios are likely to happen in political emergencies and political
manipulation campaigns. Linguistic-based features were used to detect objectively
manipulated news articles [24].

Context-based models have two main approaches: stance-based, and propagation-
based. Stance-based studies users reactions on the news. Some work proposed a
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bipartite network of users and Facebook posts using the "like" stance [16]. This
network was used for a semi-supervised probabilistic model to predict how likely a
Facebook post is a hoax. Propagation-based approach focuses on people opinions on
SM, it relies on the assumption that information credibility is highly related to the
sincerity of SM opinions in relevant contents. Propagation-based approach attempts
to infer if there is any conflict in the shared information by exploring other circulated
details associated with a particular topic. Two types of propagation networks could
be built: homogeneous and heterogeneous credibility networks [2]. Homogeneous
credibility networks consist of a single kind of entities, such as posts or events [15].
Heterogeneous credibility networks connect different types of entities, such as posts,
and sub-events [25]. These networks performs an optimization task on their graphs
to conclude the veracity of the information.

It is acknowledged that the problem of misinformation in political situations can-
not be solved by only applying any state-of-the-art technology in similar domains.
For instance, stance detection and text-based solutions can just act as a first phase
for a complicated pipeline. That is because in polarized political scenarios, the
definition of fake news is relative, due to the different perspectives each sub-group
would have. Therefore, what is really misinformation differs from the perceived
false content. Recent efforts in studying the relationship between fake information
and political polarization have revealed a correlation between polarization and what
people consider as fake news on Twitter [26]. That claims an obstacle in the com-
bat of misinformation detection on SM since concepts like biased opinions, actual
fake information, relatively fake contents can be easily confused because of such
correlation.

The polarization caused by both SM platforms and human nature threatens the
reliability of opinion-based misinformation detection methods. In general, many
social network community detection algorithms have been adopted [27]. Previous
studies tried to tackle such problem by assuming that if we enforced more informa-
tion diversity to each social bubble, it would reduce the polarization since the latter
is an effect of the lack of information diversity itself [28]. Other previous work aimed
to detect these communities and identify them as sub-networks or similar connected
nodes in the social graph by analyzing the network cohesion [29]. One of the com-
mon real-world networks in community detection is Zachary’s karate club which is a
real example of a social network of 34 members (nodes) in a karate club and usually
used as a benchmark dataset to evaluate community detection algorithms as well
[30]. One of the recent contributions was an incremental method to detect commu-
nities in dynamic evolving social networks which was motivated by how previous
community detection methods were static [31].

A similar concept to misinformation on SM is disease diagnosis and detection,
both issues are putting people’s lives on danger and they have symptoms and causes.
Both also can spread among societies and their sub-communities. One of the most
advanced techniques in modern medical diagnosis is the BNs [32]. BNs are proba-
bilistic graphical models used to represent conditional relationships between random
variables (graph nodes). These random variables could represent both evidence and
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quires which we aim to reason and infer about. The relations in BNs can be modeled
as causal relations which are more suitable for problems when the causes and effects
are the core of the situation dynamics.

The problem of information veracity assessment on SM is intersected with many
other tasks in the domain of SM analysis during disasters and other related contexts.
Hence, it is important to highlight that in general, research community aims to
extract knowledge from SM during crisis but there are differences between each
sub-task. Knowledge extraction can be applied for sentiment analysis to explain the
social behaviour of citizens during different stages of a crisis [33]. Opinion extraction
used for news credibility tasks or political analysis [34]. Geo-location extraction tasks
are being approached during disasters caused by natural hazards [33]. Hate speech
towards certain groups of people which commonly increases during refugee crisis or
extremely polarized political crisis [35].

A.3 Problem

A.3.1 Misinformation Definition

We aim to define the problem of normal users content credibility assessment on
SM during a political crisis as a cause and effect problem instead of a classification
task. The reason behind such definition is that an ordinary classification approach
would not provide a complete control of such critical issue in our societies. On the
other hand, an intervention view could unveil the root causes or suggest strategies
to prevent misinformation. For that, we define misinformation propagation in terms
of both predictive and diagnostic analysis tasks where causal inference approach is
strongly followed. Misinformation could be viewed as a disease and the task is to
understand when that disease occurs, and why it happens, and how to stop such
issue in advance.

In the process of misinformation spreading, individuals approval to deceptive
contents, and information shared by extremely polarized persons, could be con-
sidered symptoms of the deception phenomenon. Figure A.1 shows misinformation
analysis causal-inspired solution framework. The framework declares how the stance
detection, polarization measures, variety of social content a user is exposed to, de-
ception information, and causal relations are considered as evidence to be collected
in order to compute the trustworthiness of a user opinion. Moreover, an advanced
causal analysis would be applied, such as intervention and sensitivity analysis to
provide more confidence and insights about the inference or to hopefully suggest
defensive strategies [19].

The definition of deception is critical to our proposed causal approach. We con-
sider a political crisis as an environment where trolls, cyborgs, and deceptive social
bots are trying to manipulate the public and motivate them to a specific reaction
(stance). We differentiate between the collected deception information (deceptive
accounts) and the unknown credibility of normal users. The latter is our focus in
this study as we believe normal users are the threatening carriers of a deception
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Figure A.1: Misinformation analysis causal-inspired solution framework

disease in political discussions. Hence, a strategy to only detect trolls, cyborgs, and
deceptive social bots is not sufficient in our opinion.

As Figure A.1 indicates, we define a community deceptive content and a de-
ception conclusion as two different things. Community deceptive content are all
deceptive accounts in all biased communities over the network. For instance, right-
wing trolls would manipulate the right-biased users to agree on a certain topic, on
the other hand, left-wing cyborgs would defend that by propagating a refusal stance,
however, both left/right-wings might share the same stance in some cases. We con-
sider users as less trusted if they agreed on a common deceptive stance which was
disseminated by all detected community deceptive content (left/right-wings). Al-
though, in most cases, these community manipulating accounts would disagree with
each others, therefore, a conclusion of the deception should be defined. Such conclu-
sion means which opinion is considered less trustworthy and which could be dealt
with as a defensive mechanism. To set a conclusion and draw the boundary lines
between the differences in deceptive content stances, one more causal entity should
be introduced, that is the topic initiative.

Topic initiative is defined as which biased party initially circulated the stance
about the claim. For example, initially sharing something with an agreement or
disagreement on it. The topic initiative would help to conclude the actual deceptive
stance when left/right-wings share different opinions which is the most probable
scenario. For instance, if the topic was started by a right-wing party, and right-
wing users agreed to it including their community deceptive trolls, disagreements
stances would be considered high trustworthy. If right-wing users disagreed on a
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topic initiated by their biased sphere and circulated by their trolls while the latter
agreed on the claim, disagreements stances credibility would even become higher,
regardless of how left-trolls responded to it.

A.3.2 Social Media as an Environment

Given Twitter as an example, Figure A.2 illustrates the social engagement of main
tweets Xi, Xj, Xk and their relationships (1=agree/ −1=disagree) with other reac-
tions such as other main tweets, re-tweets, replies, and pressing a love button. Since
SM have a lot of uncertainty and noise, we should differentiate between two sce-
narios. The first case is a certain environment where stances are certain guidelines
for the misinformation detection task. The second scenario is the uncertainty about
such engagements, since they might be biased instead of being subjective. Also they
might be manipulated by other deceptive factors such as deceptive accounts.

Figure A.2: Main tweets and their social engagement

Stance-based methods assume that the majority of opinions would be trusted.
That means the more common opinion a single main tweet X is sharing, the more
likely it is not false. However, it is crucial to define that majority since a polarized
political discussion has an extreme deception possibility, even for its majority of
opinions. In our proposed approach, we define a more likely credible user opinion
according to its unbiased measures along with other main factors such as evidence
indicating a less manipulation by deceptive content and a more variety of social
content the user is exposed to. Hence, all biased and immature opinions should be
more likely low trustworthy.

Figure A.3 indicates the complexity of the problem as a noisy transformation
from certainty to uncertainty. The latter occurs because the stance detection task
is a probabilistic solution to opinion mining problems. Moreover, detecting a social
engagement E with a probability Pr(E) close to unity from a stance detection

103

A



model could still be misleading, since it could be a biased opinion or influenced and
manipulated by other false information or driven by psychological reasons.

Figure A.3: Noisy transformation from certainty to uncertainty

Stance detection models only infer about the semantics of an opinion and do not
consider how honest that opinion was. Hence, it is more convenient to define the
uncertainty of social engagement trustworthiness as a conditional probability where
the veracity of the stance is depending on other factors such as polarization and
other causal relations in the social network. These factors could be referred to as
evidence e. Therefore, we define the social engagement trustworthiness as Pr(T |e).
It is useful to formalize and analyze that transformation process using a causality
and a probabilistic model to represent the uncertainty following the three layers of
causality: observing, intervention, and sensitivity analysis [19].
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A.3.3 Polarization Definition

The problem of misinformation detection is highly correlated with polarization in
a political crisis. Therefore, a definition of polarization is critical to the problem
analysis and solution. We define an honest opinion with regard to its root causes in
the network. One of these causes is the polarized community an opinion is driven
by. We consider polarized opinions in a political crisis to be categorized into the
following main categories which represent the possible communities in the social
network: Far left, left, neutral, right, and far right.

Our proposed categorization should differentiate between misleading opinions
and biased ones, since a false stance is always misinformation but any of the five
bias levels of opinions could be either misinformation or not. Moreover, we define
a polarized opinion as a relative value where one SM stance can be considered less
biased with regard to another content (agree with another community claim), while
the same first stance could disagree with its own community claim. In our opinion,
such relative definition per each case is useful for credibility assessment, for instance,
if two tweets disagreed while they belong to the same community, such stance is very
important since it indicates a certain level of subjectivity and a lower polarization
level.

Some literature considered the less diversity of social content as a major cause
of polarization, that means the more diversity of content a user is exposed to, the
less polarized the user could be in most cases [28]. Furthermore, polarization is not
only influencing normal users trustworthiness, it also dictates the objectively active
deceptive accounts on the network. For instance, different community deceptive
accounts would try to influence their communities such as right-wing and left-wing
trolls, each would try to motivate its community in a certain direction with regard
to a certain topic. Typically, these directions are opposite. Hence, agreeing with a
deceptive content from the right-wing would mean disagreement with another from
the left-wing. Therefore, there should be some measurements for which of these
biased deceptive stances are less trustworthy and which ones are ironically higher in
their trustworthiness.

A.3.4 Notations

Table A.1 describes the problem notations and their descriptions.
Definition of BN: Let BN = (G, θ) be the BN as the pair of Directed Asyclic

Graph (DAG) G and θ as Conditional Probability Tables (CPTs) set. Let Z =

{T,E, P, V,D, I, L, Y,B} be the set of discrete random variables (nodes) of G, where
the edges are causal relations over Z.

Definition of Trustworthiness Degree: Let’s denote T = [1, 10] as a discrete
random variable where its value ranges between 1 and 10, indicating lower to higher
degree of an opinion trustworthiness, respectively. Hence, the trustworthiness degree
of the ith user stance Ei can be denoted as Pr(Ti|e). Where e are all the occurred
evidence calculated through (G, θ) when Ei had a certain value.
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Table A.1: Problem notations and descriptions

Notations Descriptions
(G, θ) BN
G DAG
θ CPTs set
Z Set of random variables (network structure nodes)
e Some evidence over the network

pa(Z) Parent node(s) of Z
Y (Z) Child node(s) of Z
T Trustworthiness
E Social engagement (opinion)
P Polarization level
V Social content variety exposure
D Concluded deception
L Troll
Y Cyborg
B Deceptive bot
I Topic initiative

Definition of Stance: Let’s denote E as a discrete random variable for the net-
work social engagements (stances) where E = {−1, 0, 1} (disagree=−1/ neutral=0/
agree=1).

Definition of Polarization: Let P = [1, 10] be the discrete random variable
for the user polarization degree. P value ranges between 1 and 10, indicating lower
to higher degree of polarization, respectively. Pr(Pi|e) is the probability of the ith
user polarization degree given evidence e.

Definition of Content Variety Exposure: Let V = [1, 10] be the discrete
random variable for the user social content variety exposure degree. V value ranges
between 1 and 10, indicating lower to higher degree of content exposure, respectively.
Pr(Vi|e) is the probability of the ith user content exposure degree given evidence e.

Definition of Topic Initiative: Let I be the discrete random variable for the
topic initiating polarized party, where I = {−2,−1, 0, 1, 2} indicating far left, left,
neutral, right, and far right, respectively.

Definition of Deception: Let’s denote D as a discrete random variable for the
concluded deceptive content opinion, where D = {−1, 1} (disagree=−1/ agree=1).
D can be observed as an evidence through its root causes, for instance, Pr(D|DL, DR, I),
where DL, DR, I are left/right-wings communities deceptive content stances, and the
community which initiated the topic, respectively.
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A.4 Causal Modelling

In this Section, we explain our causality-based approach to clarify the dynamics and
relationships that shape the spreading of misinformation on SM during a political
crisis. The conducted causality analysis in this paper should explicitly demonstrate
our hypothetical assumptions on the problem as discussed in the previous sections.
We aim to ask a question of which interventions are highly linked to information
veracity rather than asking a prediction question only. Therefore, our main task is
to model the cause and effect of the major variables on a social network that might
influence or be affected by misinformation.

A causal graph is a visual representation of our assumptions about the problem
and its data generating process. It should demonstrate the dynamics and relation-
ships of the problem main entities (nodes) and the dependencies which are results
of causal relations. In a causal graph, edges from parent nodes to child nodes mean
a causal relationship. A child node variable is considered as an effect of its parent
node variable. Figure A.4 shows a causal graph of a social network from information
veracity perspective. There could be different hypothesized causal graphs for the
same problem, hence, different probabilistic graphical models could be constructed
as well. Evaluating different causal models is recommended in that case. In this
theoretical paper, we provide one assumption of the problem and the given causal
graph shows the details of this assumption.

A.4.1 Causal Graph

Figure A.4: Polarized political SM discussion causal graph

In Figure A.4, we consider a community deceptive content to be a common
cause of users social engagement on that community. The assumption is that all
users are distributed across different communities on SM, representing their mind-
set and preferences, each community will be influenced somehow by being exposed
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to a deceptive content targeting that community. The idea of small communities
dedicated deceptive content is crucial to the challenge of biased and manipulated
opinions, since by investigating such causal relations, we would be able to weight
different opinions according to their causes.

In general, we consider the three main potential deceptive accounts to be the
cause of a community manipulation: trolls, cyborgs, and deceptive social bots. In a
highly polarized discussion, people would be easily manipulated and would agree on
what is deceptively influencing them in their social bubbles. Hence, normal users
trustworthiness degrees of each reaction to deceptive information should be mea-
sured to evaluate their credibility. Moreover, the trustworthiness degree is affected
by the measures of polarization levels and social content variety exposure, the lat-
ter is directly influencing both polarization levels and social engagements as well
[28]. Eventually, we consider other social engagement that might influence one’s
engagement like when a user is replying to others and approving or denying their
opinions.

As mentioned in the problem definition, a topic initiative and a concluded decep-
tion stance from different community deceptive content should be defined in order
to collect more evidence about the stances trustworthiness degrees. In our causal
graph, we consider the concluded deceptive stance as a result of measuring its hy-
pothesized causes. These causes are the community which has initiated topic, the
stance on the initiated topic, and stances from other community deceptive content.

A.4.2 Graph Semantics

There are three main structures a causal graph could have and each one describes a
unique concept of how the joint probability distribution function will be factorized.
These causal semantics guide the creation of the CPTs. These CPTs are crucial
since they are the model parameters. Figure A.5 demonstrates the three different
causality graph structures. In the chain structure, a cause Z is influencing an
effect X, the latter will trigger another effect Y . That indicates how a directly
connected child node is dependent to its parent node. Moreover, that pattern holds
one important property and it is crucial to the computation, which is that Y is
conditionally independent from Z given that the intermediate node X occurred. By
given X, we can infer about Y even if we do not know anything about Z. That
conditional independence is denoted as (Y ⊥ Z|X). That means if X occurred,
Pr(Y |Z,X) = Pr(Y |X) and that simplifies the calculation. In the common cause
structure, Y , Z, and K are also conditionally independent if X occurred. In such
causal pattern, X is called a confounder of Y , Z, and K as it is considered a common
cause and they are dependent on it.

As the opposite to the previous described casual structures, the collider path or
the common effect structure is different when it comes to the definition of its con-
ditional independence, so by given that X occurred, Y , Z, and K are conditionally
dependent on each other which is denoted as (Y ̸⊥ Z,K|X). A special case for the
collider path is when X is a child node for another parent node pa(X), if pa(X)
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Figure A.5: Possible causal structures

occurred, then Y , Z, and K are also conditionally dependent to each other, even if
we do not know about X.

A.5 Methodology

A.5.1 Causal Bayesian Networks

BNs are fundamental methods in the field of Artificial Intelligence (AI). They provide
efficient ways to calculate large and complex probabilistic inference tasks under
uncertainty [32], [36], [37]. The relations in the network (directed edges) can be
causal relations and the network is constructed as a DAG where no loops inside
any part of the graph can be found. The DAG property is also important for
how the reasoning would be performed, since variables independence in DAG is
compatible with how we can calculate the joint probability distribution of all the
random variables. Figure A.6 shows an abstract BN, modeled according to our
hypothesized causal graph (see Figure A.4) with the defined domain variables (see
Table A.1).

Our proposed BN is a connected graph and its complexity is bounded by the
number of stances E it will investigate. Abstractly, Figure A.6 has three social
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Figure A.6: The derived BN from the assumed causal graph

engagements where Ei and Ej belong to a left-wing community, and Ek is considered
a part of a right-wing community. Although Ei and Ej are social engagements from
the same social bubble, they could have different polarization levels Pi, Pj if they
have different social content exposure measures Vi, Vj, for instance, if user i is more
exposed to other community related content.

Each stance on the given BN represents a possible scenario of interaction such as
the case when Ei is influenced by its community deceptive content DL, its exposed
social content variety estimation Vi, and another stance Ej that motivated user i
to reply. On the other hand, Ek is only influenced by its community deceptive
content DR and its exposed content variety estimation variable Vk. In the real
world scenarios, the number of nodes on such BN could be extremely bigger and the
connectivity degree of the graph will be remarkably higher.

In BN, we can perform two possible types of reasoning: predictive and diagnostic,
where each one dictates the direction of reasoning on the graph, either from the child
node to a parent node (bottom-up) or the other way (top-down). The task of any
BN is to calculate a marginal posterior probability of an unknown variable given
some prior probabilities and likelihoods for other known variables. The process of
calculating a marginal posterior probability is called belief update or probabilistic
inference.

To build up a simulation model based on BN, we should first obtain some
prior and conditional probabilities. Prior and conditional probabilities can be ob-

A

110



tained from observations and conditional frequencies on data samples. Equation A.1
demonstrates how the joint probability distribution of all discrete random variables
on BN is calculated. Furthermore, the factors of the joint probability distribution
function are interpreted as CPTs for child nodes and prior probabilities for root
nodes. These probabilities are considered the network parameters for calculating
the targeted unknown variable. Figure A.6, declares these unknown variables with
a white circle, while other black circles are representing observed evidence (assign-
ments of variables). For example, evidence that are collected by applying stance
detection, polarization estimation, and exposed content variety estimation. More-
over, deceptive accounts detection tools should be applied to collect evidence about
the concluded deceptive content stance D on the network. What remains after
collecting these evidence, is to calculate the marginal posterior probability of the
discreet random variable T which represents the trustworthiness degree of the user
social engagement.

Pr(z1, ..., zn) =
n∏

i=1

pr(zi|pa(zi)). (A.1)

A.5.2 Belief Update

The task of the BN belief update algorithm is to learn the posterior joint probabil-
ity distribution along with the network topology. There are different update belief
algorithms [38]. In this Section, we will give a brief statement on the EPIS-BN
algorithm, which is an evidence pre-propagation importance sampling algorithm for
BNs [39]. In general, importance sampling algorithms seem to be more successful
with extremely unlikely evidence, which would be the case for SM remarkable ran-
domness. It has been stated that exact inference in BNs is NP-hard [40]. Moreover,
with thousands of variables in the network, it becomes infeasible to obtain an exact
inference. Sometimes, the only way to obtain results is the approximate inference.
Approximate inference is also NP-hard [41]. In general, the complexity of the com-
putation increases if the number of parents increases for a child node, that is because
the computational cost of the many entries and calculations in the CPTs.

Importance sampling-based algorithms are inherited from the family of stochastic
sampling algorithms [38]. The former seem to provide a more robust performance,
giving the research efforts to obtain a better importance function which is crucial to
the precision of the inference. Theoretically, the convergence rate of the importance
sampling-based algorithms is in the order of 1√

n
, where n is the number of samples.

In general, an update belief algorithm works by determining the number of sam-
ples and initializing the prior and CPTs of the network. According to our proposed
BN in Figure A.6, for an unknown variable Ti (user i stance trustworthiness), to col-
lect evidence e and update the beliefs for Ti, two subsets (e+, e−) should be defined.
These subsets declare the ancestors and descendants of Ti, respectively. Then, the
algorithm constructs two types of messages calculated and accumulated through e+

and e−: parent to child messages and child to parent messages, respectively. Fig-
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ure A.7 indicates how these messages are being propagated when updating the belief
of any targeted variable Z over the BN, where Z beliefs are updated through all its
incoming messages. We have used the notations pa(Z) and Y (Z) to refer to parents
and children of Z, respectively.

Figure A.7: Information propagation over BN

In a more compact form, Equation A.2 and Equation A.3 demonstrate how to
calculate the incoming messages to the ith user trustworthiness degree variable Ti
over the BN.

π(Ti) =
∏
e+

Pr(Ti|e+Ti
), (A.2)

λ(Ti) =
∏
e−

Pr(e−Ti
|Ti), (A.3)

where π(Ti) and λ(Ti) are representing messages sent to the stance trustworthi-
ness variable Ti from its direct causes (Ei, Pi, Vi, D), and messages sent to Ti from
its effects (no effects for Ti), respectively.

Obviously, our proposed causal BN declares that the trustworthiness node Ti has
no effect on any descendants, hence, λ(Ti) = 1 in that case. On the other hand,
π(Ti) can be rewritten with Equation A.4.

π(Ti) = Pr(Ti|Pi, Ei, D) · π(Pi) · π(Ei) · π(D) · Pr(Vi). (A.4)

As noticed, we did not explicitly include the content variety exposure Vi variable
for θTi

since it will be calculated from the messages coming from the trustworthiness
node to its ancestor content variety node λ(Vi) for the ith user. The same dropping
goes for any discrete random variable that would be duplicated in the equations.
Also, we have added Pr(Vi) instead of π(Vi) since content variety has no parents to
receive messages from. In general, and by using Equation A.2 and Equation A.3, the
belief update algorithm calculates the beliefs of a variable according to Equation A.5.

Pr(Z|e) = α · π(Z) · λ(Z), (A.5)
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where α = 1
e

as the normalization constant and the multiplication of both π

and λ is a pairwise multiplication since they both are considered as probability
distribution vectors over their investigated variables possible values. The result of
this equation should be also a marginal posterior probability distribution for Z over
the evidence e.

The Importance Conditional Probability Tables (ICPTs) are the new introduced
concept to the previous general demonstrated calculations in belief update. In
ICPTs, a table of a node Ti is a posterior probabilities table where Pr(Ti|pa(Ti), e).
The probabilities are conditional on the evidence as well, instead of conditioning
only on the ancestors of Ti.

A.5.3 Toy Example

Our hypothesis about the problem of normal users credibility on polarized SM dis-
cussions is slightly tested in this Section. Our toy example provides three scenarios
to evaluate the proposed causal structure. We have used the EPIS-BN algorithm
from GeNIe software academic version to simulate these scenarios [42]. First, we
evaluate how the algorithm will perform when not all evidence are observed and
the trustworthiness variable T is unknown. Second, we test the performance further
by making a fully observed evidence. Third, we try to mislead the network in the
second scenario by intervene and change some values for some evidence to check if
there would be any contradiction in the results.

As discussed in Figure A.4 and Figure A.6, the community deceptive content is
caused by objectively deceptive accounts like trolls, cyborgs, and deceptive social
bots. For simplicity reasons, we have omitted the variables for these three causes and
instead, we will consider only the community deceptive content variable, regardless
of its causes. The main setup in the three scenarios is as follows:

• two biased communities (left-wing, right-wing) and five users are part of a
political discussion: Bob, Alice, Charlotte, Daisy, and Eric;

• Bob, Alice, and Eric are part of the right-wing community, on the other
hand, Charlotte and Daisy are considered members of the left-wing society;

• the community deceptive content of the left side is disagreeing on a claim,
while the right side deceptive content is agreeing on it. Moreover, the topic is
initiated by the right-wing community;

• the social engagement of Charlotte is also influenced by a social engagement
from Daisy, and Eric social engagement is also influencing Alice opinion;

In order to initialize our proposed causal BN, CPTs should be constructed. Fig-
ure A.8, indicates an example of CPTs for the network. These values were defined
as dummy data, nevertheless, they give a logical conditional frequency of how likely
people would agree or disagree. In case of real data, the values could be constructed
from conditional frequencies in the data itself, for example, given a time series data,
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how many times a user tended to agree to its own community deceptive account
when the user content variety exposure was low.

Figure A.8: Bob social engagement from CPTs

Figure A.9, shows a simple community discussion over SM. Users: Alice, Bob,
Charlotte, Daisy, and Eric were communicating with their different social back-
ground and experience. In this scenario, we have considered that not all evidence
were observed and the task is to update the belief of the five users trustworthiness
degree T , given the collected evidence for all causes of T except the stances E.

In Figure A.9 scenario, the discrete random variable I was indicating that the
topic was initiated by the right-wing community (either normal users or deceptive
accounts in that social bubble). Then, the right side deceptive accounts stances
agreed on the claim of the topic, then, the left side disagreed. Since the topic was
initiated by the right side and the right-wing deceptive accounts reacted with agree-
ments, the BN updated the belief of the discrete random variable D and considered
the agreement stance as the deceptive stance for the topic claim with probability
Pr(D = 1|e) = 83%. Since normal users stances E were not given as part of the
evidence, the BN calculated their beliefs according to the incoming messages for
all the corresponding nodes EA, EB, EC , ED, EE for users Alice, Bob, Charlotte,
Daisy, and Eric, respectively.

Notably, both Charlotte and Daisy were already a left-side community mem-
bers and they both were highly polarized, hence, they both contradicted with the
right-wing initiative and disagreed on it. Moreover, the more the user will disagree
on the claim, the higher the trustworthiness degree will be. For instance, Charlotte
would disagree with a belief Pr(EC = −1|e) = 91%. On the other hand, Daisy
would disagree with a belief Pr(EC = −1|e) = 75%. Consequently, the beliefs for TC
and TD were 61% and 55%, respectively. Furthermore, Bob has a higher belief of dis-
agreement and trustworthiness Pr(EB = −1|e) = 98%, Pr(TB = 10|e) = 82%, even
if he was a right-wing, that might be because of the evidence which indicated his less
polarization and high exposure to diversity of content. In addition, it was noticed
how Alice was considered less trusted since her stance belief was almost to agree
and to share the same deceptive stance Pr(EA = 1|e) = 78%, Pr(TA = 0|e) = 74%.

In the second scenario, Figure A.10 explains what has happened when we re-
placed the beliefs probabilities of EA, EB, EC , ED, EE with certain evidence to in-
crease the probabilities in the first scenario to be certain values with a probability
equal to unity. For instance, from Pr(EA = 1|e) = 78% to just EA = 1, and
from Pr(ED = −1|e) = 75% to just ED = −1. Then, the updated beliefs of
the trustworthiness degree of users became closer to 1. For instance, Daisy high
trustworthiness degree belief changed from 55% to 65%, after giving more evidence
and information. Same occurred to Eric, since his high trustworthiness degree in
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the first scenario was 51%, giving that the beliefs of his stance were distributed as
Pr(EE = 1|e) = 47%, P r(EE = 0|e) = 1%, P r(EE = 1|e) = 52%. However, in
the second scenario with a given evidence of how he has reacted exactly, his high
trustworthiness degree belief became 67%.

Figure A.11 indicates an intervention in the experiment as the third case scenario.
Given the first two scenarios, it was always a majority stance which was considered
as a high trustworthy. For example, first two cases considered the agreement as
a less trustworthy social engagement while only one out of five users had such an
opinion. Our third situation tried to evaluate the challenge of a biased majority
of opinions that might mislead any stance or propagation-based misinformation
detection solution. Hence, we intervened to make the agreement stance as the
major opinion in the discussion with even more confusing evidence, for instance, we
made Daisy agrees but also we made her a less polarized person. Nevertheless, the
results in Figure A.11 shows how the disagreement stance still considered as a high
trustworthy despite of being a minority.

A.6 Conclusion

In this paper, we have introduced a theoretical study for the problem of normal users
credibility on social media in a political crisis. Our proposed methodology could be
a novel solution to the problem of misinformation. We have modeled the problem of
misinformation in social media as a cause and effect process, where causes and effects
are evidence to be collected before calculating the marginal posterior probability
of the trustworthiness degree of the user opinion about a claim. On the other
hand, recent approaches on misinformation lack the definition of polarization and
biased opinions along with a full adoption to the causality approach. For instance,
how traditional misinformation stance and propagation-based methods would be
less efficient in polarized situations. Hence, it is crucial to define the uncertainty
that occurs in a polarized political discussion over social media. Such uncertainty
could not be only the extreme biased opinions as anomalies in the data, therefore,
it would be more efficient to define the cause and effect between all key variables
including the polarization causes, effects, and the effects of the effects. Our proposed
causal BN considered these key variables as the social engagement (stance), the
polarization level, the amount of information and its variety a user is exposed to,
and the deceptive content in the discussion along with the topic initiative. Our toy
example provided three scenarios representing partial observation of these variables,
full observation, and an intervention scenario to evaluate any contradiction in the
proposed causal structure.

Along with updating the beliefs for the normal users stances trustworthiness de-
grees, the given study would be suggested to trace the deceptive accounts, predict
stances, and estimate polarization levels. Eventually, that would lead to the com-
putation of each normal user credibility by employing a Dynamic Bayesian Network
(DBN) to infer the trustworthiness degrees of users stances over time as a tempo-
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ral feature for the credibility assessment [36]. Furthermore, the proposed approach
would be applied on other domains such as fake reviews on commercial products or
disasters caused by natural hazards, by modeling the problem causal relations and
variables within a causal BN.

In order to adopt with the complexity of the social network and the numerous
number of nodes our final BN would reach, the study of how to design the system
with a proper computational cost is necessary. In addition, further work should
be applying some experiments based on artificial and real world data. Moreover,
a complete sensitivity analysis and intervention simulation should be studied and
applied on all demonstrated variables. Finally, the study of the DBN is important
since the time dimension is critical to our problem, especially for measuring the tem-
poral trustworthiness of normal users along with polarization and content exposure
correlation.
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Figure A.9: Partially observed evidence scenario
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Figure A.10: Fully observed evidence scenario
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Figure A.11: Intervention scenario
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Abstract — Mitigating misinformation on Social Media (SM) is an un-
resolved challenge, particularly because of the complexity of information
dissemination. To this end, Multivariate Hawkes Processes (MHPs) have
become a fundamental tool because they model social network dynamics,
which facilitates execution and evaluation of mitigation policies. In this
paper, we propose a novel light-weight intervention-based misinforma-
tion mitigation framework using decentralized Learning Automata (LAs)
to control the MHPs. Each automaton is associated with a single user
and learns to what degree that user should be involved in the mitigation
strategy by interacting with a corresponding MHP, and performing a
joint random walk over the state space. We use three Twitter datasets to
evaluate our approach, one of them being a new COVID-19 dataset pro-
vided in this paper. Our approach shows fast convergence and increased
valid information exposure. These results persisted independently of net-
work structure, including networks with central nodes, where the latter
could be the root of misinformation. Further, the LAs obtained these
results in a decentralized manner, facilitating distributed deployment in
real-life scenarios.
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B.1 Introduction

The spread of misinformation on SM can have critical consequences during a crisis.
Whether the crisis is a disaster, political struggle, terrorist attack, natural hazard,
or a pandemic, misleading information such as rumors and false alarm can impede
or endanger a successful outcome, such as effective response to a natural hazard.
According to a recent study [1], at least 50% of the world’s countries suffer from
organized political manipulation campaigns over SM. Other examples of the dam-
aging effect of misinformation circulated over SM includes the Ebola outbreak in
West Africa [2], which was believed to be three times more worse than the previous
Ebola outbreaks. Nowadays, with a more connected world, the impact of misin-
formation1 is getting more severe, even becoming a global threat. For instance,
the propagated climate change denying content. There is thus an increasing inter-
est among researchers, and society in general, in finding solutions for combating
misinformation.

There are two main strategies for combating SM misinformation [3]. Some re-
search focus on classifying fake news, rumors, or fake accounts such as social bots,
cyborgs, and trolls. Usually, such an approach is referred to as fake news, misinfor-
mation, or rumor identification. To this end, several solutions have been proposed.
For instance, opinion-based or content-based solutions [4] can be used to classify fake
news based on textual content. Another approach is to mitigate actively, through
proactive intervention [5], or after misinformation already is spreading throughout
the social network.

Large-scale manipulation carried out across SM during political events is one of
the greatest threats to social justice [1]. So-called cyber armies like the Russian
Trolls attack on the U.S.A 2016 presidential elections is a well-known example [6].
To the best of our knowledge, most of the attempts to automate the detection of such
malicious accounts are not real-time. Furthermore, these cyber armies change their
behavior over time, and each context would often require a new model. That is, cyber
armies acting in different societies and cultures will have their own linguistic- and
behavioral patterns [7]. This diversity makes it difficult to build all-encompassing
linguistic models, leading to sub-optimal performance. Too high false negative rate
leads to undetected misinformation attempts while too high false positive rates
can be ethically problematic because accounts or content may be falsely flagged as
malicious.

Our work presented in this paper addresses the above challenges by mitigating
misinformation attempts by countering misinformation with rectifying information.
That is, we seek to reducing the harmful effects of misinformation through a targeted
real-news campaign. We propose an approach to single out candidate users for
real-news, so as to maximize the remedying effect of injecting real-news into the

1The term misinformation is sometimes replaced with disinformation in some literature. More
conveniently, misinformation is the unintended spread of malicious content, while disinformation
is purposely spreading malicious content. For the rest of this paper, we will use the term misin-
formation to refer to both phenomenons.
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social network. A real news campaign can be viewed as a counteraction to the
misinformation process over the network. That means selecting some users such
that by sharing a suggested content through them, a maximal influence would occur
on all the other network users, as the latter would became more exposed to valid
information.

B.1.1 Hawkes Simulation

Since real-time intervention with SM platforms is not feasible for experimentation
purposes, we simulate the process of information diffusion by employing Hawkes
Processes (HPs) [8]; [9], as applied in [5]; [10]. HPs are point processes which can
model the arrival or occurrence of events, indexed by time or location. There is a
range of application domains that fall into such a model. For example, in finance,
a HP can describe how a buy or sell transaction on the stock market (an event)
influences future stock prices and transaction volume. Similarly, in geophysics, a
HP can capture how an earthquake event influences the likelihood of another earth-
quake event happening as an after effect. For SM, we consider content such as
tweets or Facebook posts as events, that have at least time-associated indices. The
introduction of new content may trigger a chain of new content, for instance through
retweeting, sharing, replying, and quoting.

For all of the above example processes, a HP is particularly suitable because it
is a self-exciting point process where the arrival of an event is dependant on the
history of all other relevant events. In this paper, we use HPs to modeling each
user, so that we can simulate different user behaviors and social network dynamics,
including the effect of mitigation.

HPs are random and non-linear, suitable for capturing the unpredictable and
intricate nature of SM dynamics. Optimizing mitigation effects thus becomes a
challenging problem, involving spatio-temporal reasoning. Furthermore, the ran-
domness, uncertainty and incomplete information on real-life SM aggravates the
difficulty of finding a global or a local minimum. We therefore Therefore, we pro-
pose a novel LA architecture in this paper, designed to operate in stochastic and
unknown environments.

B.1.2 Problem Statement

Let us consider a scenario where a certain amount of misinformation is circulating in
a social network. The misinformation is affecting different users to varying degree,
depending on the mix of correct information and misinformation facing each user.
We thus define the impact of misinformation for a single user by degree of exposure,
relative to correct information [5]. Similarly, the overall influence of misleading
information on the whole network could be measured by the average exposure on
all users. Since SM events are typical spatio-temporal, these measures should be
quantified and reconsidered over different time stages as well.

In order to mitigate the spread of false content, we can apply an intervention-
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based strategy to increase the amount of valid information against malicious content,
or at least to obtain a balance between the impact of false and true content on the
network. The amount of either false and accurate information could be viewed as a
counts. Such count represents how much each type of content was generated on the
network by each user and at a specific time.

Let A be an adjacency matrix indicating an explicit influence. Let Aij = 1 if
there is a directed edge or an influence indicating that user i follows user j or quotes
(with agreement) content from j, and Aij = 0 if not. For a realization of r time steps
{t0, t1, ... tr}, let F tr , and T tr be the impacts of false- and true content exposure
prior to and including time step tr, respectively. Hence, the impact of both false and
true content on user i till the time stage tr can be calculated as per Equation B.1,
and Equation B.2, respectively.

F tr
i =

tr∑
s=0

n∑
j=1

Aij · F ts
j , (B.1)

T tr
i =

tr∑
s=0

n∑
j=1

Aij · T ts
j . (B.2)

The outer summation
∑tr

s=0 accumulates the impact of information up to and
including time step tr. Furthermore, the impact of misinformation on user i, should
be measured through all possible chances of being exposed to misinformation. That
could be achieved by calculating the amount of malicious content from n adjacent
users where user i is exposed to their content due to a direct following/ retweeting
relationship. The overall average network impacts of both false and true content
prior to and including the time stage tr can be obtained by Equation B.3, and
Equation B.4, respectively, where |U | is the cardinality of the network users set.

F tr =
1

|U |

|U |∑
i=1

F tr
i , (B.3)

T tr =
1

|U |

|U |∑
i=1

T tr
i . (B.4)

To achieve actual mitigation during the spread of misinformation, a reasonable
result would be by making T tr ≥ F tr . That requires some intervention to change
the counts which result in T tr . To apply such interference, we need to obtain the
initial counts before modifying them. Therefore, a HP can be engaged to model the
quantity of the generated content by each user at various simulation time stages.

B.1.2.1 Counting Generated Content

If we look at a point process on the non-negative real numbers line, where the latter
is representing the time, the point process is a random process whose realizations r
consist of the event times stages {t0, t1, ... tr} and they define the time by when an
event has occurred. A point process on a specific time realization ts can be redefined
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with an equivalent counting process. A counting process N ts is a random function
defined on a given time stage ts ≥ 0, and takes the integer values {1, 2, 3, ...} as
the number of events of the point process by the time stage ts. Hence, a random
variable N ts counts the number of events up to time ts as the one below.

N ts :=
∑
i≥t0

1{ts≥ei}, (B.5)

where ei represents an event occurred by time ti and ⊮{.} is an indicator function
that takes the value 1 when the condition is true, and takes the value 0 when it is
false, making it a counting function with a jump of 1 within each time stage it counts
for, while starting from the initial time stage t0 and finishing by the time stage ts.

The most straightforward class of point processes is the Poisson process. In
Poisson processes, the random variables which represent the counts have an inter-
arrival time, the rate of such arrivals per a time unit (stage) is denoted as λ, which
refers to the intensity of the process. The latter is describing how likely and dense
these counts or events to occur in a time sequence. However, in a Poisson process,
the inter-arrival times are independent, in other words, the arrival of historical events
do not influence the arrival of future events.

A well known self-exciting process was introduced by Hawkes [11], the proposed
model was based on a counting process where the intensity λ depends on all pre-
viously occurred events. In a HP, the arrival of an event shifts the conditional
intensity function to an increase. Such a process determines its conditional inten-
sity output based on two fundamental quantities, base intensity µ, and historical
events arrival prior to a certain point in time H ts . With an analogy to Twitter and
the problem of misinformation, the counts are the number of tweets, either true or
dishonest ones. The base intensities can be viewed as the exogenous motivational
factors which influenced a user to react, while the historical events can be viewed as
the network endogenous factors, for instance, how the sub-network of user followees
are acting on the network. In order to mimic Twitter dynamics as an environment
for our mitigation method, we consider MHP by defining U-dimensional point pro-
cesses N ts

U , where U is the network users set, which emphasizes the self-excitation
between events on SM [12]. N ts can be interpreted as F ts or T ts as described in
Equation B.1 and Equation B.2, while |U | is the number of individual users a single
HP is associated with, and ts is the specific time realization or stage. The best way
to describe a HP, is by its conditional intensity function as per Equation B.6.

λi(ts|H ts) = µi +
∑
t
s
′<ts

g(ts − ts′ ), (B.6)

where g is some kernel function over the history associated with user i from the
time stage ts′ prior to time ts. g is concerned with the history of some influence Ai..
We used an exponential decay kernel function g = Ai.e

−wt as practiced in [5], where
w is the decay factor which represents the rate for how the influence is reduced
over time. For all U , the base intensity vector µ, and the influence matrix A can
be estimated using maximum likelihood as presented in [13]. To simulate Twitter
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dynamics for our mitigation task, we can rewrite Equation B.6 as the one below.

λi(ts|H ts) = µi +

∫ ts

0

g(ts − ts′ )dN(ts′ ), (B.7)

where N(ts′ ) is the integration variable and the count of the historical generated
content that influences user i and determined by the HP. In turn, the conditional
intensity λi(ts|H ts), tells how likely user i would act and generate content herself,
by the time ts. Since N(ts′ ) is interpreted as F (ts′ ) and T (ts′ ) and can be calculated
from Equation B.1 and Equation B.2, it is important to highlight that the influence
matrix A is considered explicit influence (following/ retweeting) when measuring
content impacts on users after the simulation. On the other hand, A is considered
implicit or hidden temporal influence when calculating the conditional intensity
function, since the latter is a result of the estimated Hawkes parameters before the
simulation, and indicating the independence from the network explicit structure.
That is, we estimate the simulation parameters to obtain reasonable and inferred
simulated network dynamics from the hidden temporal influence, then, we mea-
sure content impacts based on the explicit relationships on the simulated network
dynamics.

B.1.2.2 Limited Budget Mitigation

To observe the process of the intervention-based mitigation, we followed a social
network reshaping approach as employed in previous work [5]; [10]; [14]. To achieve
such a resolution on the network, we are interested in the base intensity µ, since it
defines any external motivation on the users. Hence, we are interested in adjusting
the value of the base intensity by increasing it. However, there are two main chal-
lenges in this method, not all users would respond to an exogenous motivation, and
not all of them are capable of boosting the activity of the network. Besides, some
users would be spreading misinformation on purpose and they will not respond to
an opposite campaign. Moreover, the time spent for incentivizing users is limited
due to the crisis time criticality. Therefore, the modification of µ is bounded by
a small amount of incentivization that should be allocated wisely among users to
reach the optimum mitigation results.

Let us denote C as the optimization constraint, which represents the limited
budget of incentivization. The optimization objective is to minimize the difference
between misinformation and valid information impacts on the network by incen-
tivizing the true content simulation-base intensities of users with respect to C. We
define the optimization problem as a stochastic knapsack problem [15], where the
selection of some users at a specific time stage is aimed in order to maximize the
mitigation performance. The stochastic knapsack solution is bounded by the max-
imum allowed amount the knapsack can afford, in our case, this is referred to as
C.

The purpose of the knapsack optimization is to fill a knapsack with materials
amounts X = {xi, ..., xn} such that they maximize some value F(X) but, at the
same time, staying within the limited capacity of the knapsack (

∑n
i=1 xi = C).
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With an analogy to our problem, we can define the below minimization objective
and constraint functions.

min F(X) =

|U |∑
i=1

F(xi),where F(xi) =
1

|U |

|U |∑
i=1

F tr
i −

1

|U |

|U |∑
i=1

T tr
i , (B.8)

subject to
|U |∑
i=1

xi = C,where xi > 0 : ∀ui ∈ U, (B.9)

where xi is the incentivization amount for the user i and both F tr
i and T tr

i are
random variables generated from a Hawkes count process N(tr) prior to realization
r at time. Where F tr

i is calculated through the simulation Equation B.7, and T tr
i is

calculated through the simulation Equation B.10, with replacing N by F and T in
both equations, respectively. Therefore, the optimization problem is stochastic with
regard to the objective function. Hence, and by finding the optimum incentivization
amount x, the intervention can be applied by employing another HP for each user
as the one below.

λi(ts|H ts) = xi + µi +

∫ ts

0

g(ts − ts′ )dN(ts′ ), (B.10)

where N(ts′ ) represents the count of true information events in the Hawkes model
prior to the specified time stage ts, giving that ts′ < ts, and ts ≤ tr when r realiza-
tions (time stages) are the time intervals of the whole process.

B.1.3 Paper Contribution and Limitation

It is essential to highlight that our approach is different from traditional approaches
for finding graph centrality measures or most influential users on a social network
[16]; [17]. That is because our method would be under-performing if applied to a
network where most influential users are spreading fake news. On the other hand,
our purpose is to learn normal users who can be effective at a specific moment
and independently from the graph structure and network centrality measures. Such
independence is a crucial advantage of our approach, since it allows for further ex-
ploration and analysis of the temporal hidden influence structure on social networks.
Besides, the timing driven feature is fundamental to crisis mitigation applications.

This paper introduces an adaptative learning method to achieve stochastic opti-
mization over a social network. The optimization task is constrained and stochastic
regarding its objective function. We applied our experiments on Twitter data, and
evaluated our model on two publicly available real-world datasets that were used in
previous work. Namely, Twitter15 and Twitter16 datasets [18]; [19]; [20]. Moreover,
we introduce a new Twitter dataset for the COVID-19 pandemic. The latter rep-
resents a different situation that would demonstrate the flexibility of our solution.
Results showed that with our light-weight computation method, we were able to
find at least a local minimum that serves the required mitigation aims.
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In our solution, we used a LA [21] as an adaptative learning technique. A LA
is a stochastic model, operating in the framework of Reinforcement Learning (RL).
The LA has been found to be a robust method for solving many complex and
real-world problems where randomness is a primary characteristic of the problem.
We built a network of LA, while each is assigned to a user on the social network.
The individual LA should learn if the associated user is a good candidate for the
mitigation campaign or not. Additionally, each LA determines an amount from a
limited budget. The amount reflects how much we can spend from a limited budget.
The latter can be viewed as an optimization constraint and the capacity of how
likely we would depend on each of the suggested candidate(s), who would be part
of an intervention process.

Our LA-based method differs from previous misinformation mitigation with RL
approaches [5]; [10]. The latter had a three dimension state per a user at a time,
where user amounts of true and false events were observed with number of "like"
responses received. Then, the task was to learn a mitigation policy over the con-
structed state space. On the other hand, we redefine the task as a natural opti-
mization problem, and we reconsider the problem of state space from being multidi-
mensional to a single dimension, considering an overall network objective function
with one single variable instead of calculating a multidimensional function across all
users. Therefore, our objective function is only calculating one single value per a
user, that drastically reduced the solution state space required for convergence, since
the number of users on the network becomes the size of the state space. That means
linear state space increase instead of exponential in case of scaling up the solution.
We present our empirical results that show how that led to a faster and more reli-
able resolution without a notable loss in accuracy, where differences between users
exposures to fake and true news have no skewed distribution.

We propose a novel exercise of the LA in the domain of SM misinformation
mitigation. To the best of our knowledge, LA-based approaches were not employed in
that area, and this paper is the first to conduct an LA study on online misinformation
mitigation tasks. We approach that by evaluating three primary learning schemes for
the LA. Moreover, and compare to similar mitigation approaches [5]; [10]. However,
as a limitation in our work, we do not consider the political bias of users, compared
to what has been done in [10], in addition, we focus on non-skewed data points
distribution scenarios where an average value could be the performance measure.
Hence, political bias and skewed data scenarios are left for future improvements.

We evaluate our method and our implementation of the HPs-based simulation on
two baselines datasets (Twitter15, Twitter16 ) after applying some post-processing
on the original data. Furthermore, we introduce a new dataset (Twitter-COVID19 )
which was collected and annotated by us, and represents a different definition from
the traditional fake news cases. The new dataset demonstrates the applicability and
flexibility of our approach in different situations, such as the infodemic of COVID-
19. In such a scenario, a mitigation task would be targeting the reduction of some
propagated content effects, for instance, the irrational statements about an already-
found cure or any incorrect crisis relief content that might motivate people to be
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less careful. Our experiments show promising results on all the evaluated datasets.

B.1.4 Paper Organization

This paper is organized as follows. section B.2 introduces a literature review,
where some of the previous adaptation of HPs are mentioned. Furthermore, other
intervention-based mitigation approaches are briefly explained. The applied method
and datasets are explained in section B.3, a statistical comparison between the
datasets is demonstrated as well. section B.4 shows our empirical results and perfor-
mance metrics. A discussion with comparable results to other mitigation methods
is demonstrated in section B.5. Eventually, we conclude the paper and highlight
possible future work in section B.6.

B.2 Related Work

The definition of fake news or misinformation has evolved through time, not only
due to the increased complexity of such social problem but also because of how recent
technological efforts have progressed. For a long time, the spread of fake news on
SM has been considered as the intentional dissemination of false information in news
articles [22]. However, other research work started to give an attention to the broader
scope of the problem [3]; [61]. For instance, rumor detection [23], malicious accounts
classification [6]; [24], and the causal aspects of misinformation [25]. However, and
to the best of our knowledge, it has been an obstacle to effectively solve the problem
in real-time or without data selection-bias concerns. Moreover, ethical questions
are being asked [26] since fake news detection solutions are judgemental by nature.
Therefore, the need for safer and online strategies that would lead to more generic
and authentic resolutions are critically desirable.

As a motivation for more online resolutions to SM misinformation, intervention-
based mitigation strategies have been practiced in the literature. Reshaping users
activities by applying an interference strategy was introduced in [27]. In addi-
tion, dynamic programming was employed to optimally distribute incentivization
resources among users in different time stages [28]. In such previous work, objec-
tive functions were designed using expected values of exposure counts of the user
content, generated from a HP. The latter has been applied as a simulation for the
SM information diffusion in many recent applications as well [29]; [30]. MHPs have
proven efficiency and robustness in SM analysis and more specifically in the domain
of misinformation.

Since recent advances in misinformation mitigation approaches have achieved
an online and interactive (simulation-based) resolutions [5]; [10], future work would
focus on improving and wider applications rather than a narrow definition of misin-
formation or limited datasets that were examined in previous work [18]; [19]; [20].
For example, the conducted intervention-based mitigation could be used for polar-
ization, hate speech, and infodemics mitigation resolutions. The latter is one of our
interests at this study.

B

134



The use of RL for misinformation mitigation on SM has revealed a promising
future for how such a problem could be tackled. However, to model a large state
space as practiced in [5] and to evaluate an optimum policy through that, is still
a big concern, especially for a mitigation task that needs to be achieved timelessly.
Moreover, user incentivization should be applied according to the problem context,
which causes a loss of generality in some cases. For example, in a political scenario,
a mitigation objective function would consider the political bias of users [10] before
preference them as suitable candidates, since users with an ideological bias would
not respond to the incentivization [22]. The conducted study in this paper aims
to provide a light-weight computation framework that could be applied to different
mitigation contexts without a total re-engineering effort. However, we consider this
paper as the first step for our proposed system structure by evaluating a network of
LAs where a light-weight LA is the core of our framework. Therefore, the political
bias of users is not investigated so far.

A LA is an adaptative learning method which can be viewed as a stochastic
model operating in the framework of RL. A LA has been found to be a robust
method for solving many complex and real-world problems where randomness is
a primary characteristic of the problem. Previous applications of LAs have been
introduced for social network analysis problems. For instance, a stochastic learning-
based weak estimator for learning and tracking a user’s time-varying interest was
practiced for SM-based recommendation systems [31]. A LA-based framework was
also employed for online service selection in a stochastic environment where the latter
has unfair service reviews [32]. A stochastic constraint optimization problem such as
the one approached in this paper could be defined as a stochastic knapsack problem,
where LA has been tasked for by employing the Learning Automata Knapsack Game
(LAKG) [33].

LAKG is a game between n finite automata that interact with a scheduler and
a stochastic environment. The stochastic environment consists of a set of stochastic
material unit volume value functions. If an amount of a certain material is suggested
to the environment and favored, the associated value function takes the value 1 with
probability p and the value 0 with probability 1 − p. Besides, the environment
provides a signal ϕ, which indicates whether the knapsack is full or not, which also
tells if the optimization constraint was reached or not. On the other hand, the
scheduler takes material amounts as its input. The purpose of the scheduler is to
perform the access to the stochastic environment, sequentially. Besides, it makes
sure that the unit volume value functions are accessed with frequencies proportional
to all materials amounts. Such a problem description is similar to an incentivization
across n users, where the incentivization budget is limited. Therefore, we consider
a learning scheme similar to [33]. However, in that knapsack problem, n materials
can be evaluated through the whole problem space. Still, on a large social network,
it would be impossible to assess a value function across the entire problem space.
Therefore, we adapted a different structure to face such an obstacle. Moreover, due
to our problem specification, we distinguished between the learned and the evaluated
material amount for the value function.
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B.3 Methodology

B.3.1 Learning Automata

A LA is a model of intelligent computation where learning is accomplished by explor-
ing and its consequences, in an iterative and reinforcement manner. The objective is
to decide the optimal action to select between all the possible actions. A LA learns
by interacting with an environment. The environment sends a regular feedback for
when the LA explores a particular action. The LA estimates its preferred action
selection in future explorations with regard to the environment recent response.

SM platforms and mainly in an emergency setting, are considered as random
mediums where uncertainty and outliers exist. Such uncertainty and randomness
motivated this paper to practice an LA-based optimization framework as a network
of LA, while each LA is assigned to a user on the social network to learn about
its authenticity probability of being part of a misinformation mitigation strategy.
Figure B.1 shows how an individual LA works by interacting with an environment.
Each LA task is to learn about the best action between two possible moves. That
is, each LA has two possible moves (α0, α1) over an associated random walk line,
representing moving in the direction of assigning less incentivization and the direc-
tion of assigning more incentivization from a mitigation budget C, respectively. For
a given LAi and its chosen action α1 and incentivization amount xi at an epoch i,
the environment sends the feedback V i

i according to Equation B.11.

V i
i =

{
1, if F i(xi) < F i(xj)

0, otherwise
, where i ̸= j, (B.11)

Figure B.1: LA interaction process

where F i(xi),F i(xj) are some investigated objective functions at epoch i for LAi

and LAj at the epoch iterations i and j, respectively. An objective function calcu-
lation is done as per our mitigation objective function definition in Equation B.8.
However, with adapting such calculation in our framework, and for a faster com-
putation, we practically reduce the size of the network by randomly sampling over
a subset of users U−, while |U−| is selected according to the minimum subset size
which does not sacrifice the accuracy of the results, since larger subsets might im-
prove the process of user evaluation but will slow the computation. For that, we
conducted a grid search to estimate the best value of |U−|. A detailed grid search re-
sult and the final selected hyper parameters values are demonstrated in section B.4,
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with respect to the convergence rate and the mitigation performance metric. Con-
sidering a network sample |U−| instead of the whole network size |U |, an objective
function at a given epoch i can be redefined as the one below.

F i(xi) =
1

|U−|

|U−|∑
i=1

F i
i −

1

|U−|

|U−|∑
i=1

T i
i . (B.12)

For each an epoch i inside a specific time stage ts, all LAs are sequentially
visited one time. Therefore, the function F i(xj) is also calculated and compared with
F i(xi), to evaluate how two mitigation functions are different in terms of a minimum
value, since the target is to minimize the overall network difference (F ts−T ts) while
learning the optimum subset of users U∗(ts).

The environment feedback V is stochastic since the mitigation sub-functions are
a result of a stochastic process, namely, a MHP. Therefore, the challenge of our
stochastic optimization framework is to learn how to minimize F(X) under the
constraint C as discussed in Equation B.8, and Equation B.9. During the learning
process, the value X is determined by a learning rate η, as a constant per all users,
time stages, and epochs. For instance, while i ̸= j, xi = xj = η, since evaluating dif-
ferent users should be fairly applied by assigning the same incentivization amount.
The hyper parameter η can be estimated through our grid search as well. On the
other hand, and per each user, the determined X for the mitigation will be the final
converged state of each LA, since that indicates an amount determined through
the LA interaction with the environment. Hence, the final converged network in-
centivization values is a random vector which represents the converged states of the
individual LA over a random walk line for each. section B.4 gives more details about
how different the learning rate η could be on each dataset and what are the factors
that dictates its values.

We designed the network with a uniform learning scheme for the individual LA.
Furthermore, we followed a simple random walk as in [33] to represent the LA state
transitions. However, our individual LA are different in the way they interact with
the environment and in their structure as well. In our case, the environment is
partially observed, we refer to that by network sample size |U−|. We have evaluated
three main learning schemes for our framework, we refer to them as random walk
reward-penalty in action RWRP , random walk reward in action RWRI , and random
walk penalty in action RWPI . Figure B.2 demonstrates the components of our
framework.

As one of the components in our framework, a shuffler, which is triggered every
an epoch after all LAs are visited, to ensure the comparison pair F i(xi),F i(xj) will
be different each time. The sampler component selects a subset of the overall net-
work with size |U−|, determined by a hyper-parameter in our configuration. The
scheduler component maintains sequential and equal visits to each LA to guarantee
equal potential state transitions and actions probabilities update behaviour. The
memory component at each computation time step inside an epoch, helps the sam-
pled partial environment to send its feedback according to the evaluation of the
functions F i(xi),F i(xj).
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Figure B.2: Mitigation framework structure

For our optimization framework to work efficiently, each LA should have two
updating rules, the first is the LA action probability update rule, the second is the
state transition mechanism, which eventually decides the amount of incentivization
that will be assigned for each user. Therefore, the incentivization amounts are
considered shifts (left/ right) in a line where a random walk is exercised. The line
represents the LA state space. The shifts are probabilistic and subject to the LA
action probabilities and the signal ϕ. The latter tells the LA if the budget constraint
C has been met or not yet. Each LA state space has its own boundaries from 0 to C,
indicating a minimum and a maximum allowed state values, respectively. Hence, the
actions (moves) probabilities are updated according to the environment feedback V
at each individual LA visit (epoch). Equation B.13 describes the action probability
updating rule. The higher the probability of moving to the right (αi1), the more
likely the user i is a good candidate for the mitigation.

P i(ai1) =
W i

i1

Z i
i1

, and P i
i(ai0) = 1− P i

i(ai1), where W i
i1
=

i∑
e=1,e≤i

V e
i , (B.13)

where W i
i1

and Z i
i1

are counters for how many times the action ai1 was rewarded
and selected starting from first epoch e and till the current epoch i, respectively.
The RWRP learning scheme is in action when LAi moves are either rewarded or
penalized. Hence, the actions probabilities are updated all the times when LAi

interacts with the environment. Algorithm A.1 gives the complete details of how
RWRP works and how the state transition is applied.
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Differently, the RWRI learning scheme is in action when LAi moves are only
rewarded. Hence, the actions probabilities are updated only when V i

i = 1, according
to the recent interaction feedback of LAi with the environment. Algorithm A.2
demonstrates how RWRI works and its state transition.

The RWPI learning scheme works similar to RWRI except the former is in action
when LAi moves are only penalized. Which causes the actions probabilities to be
updated only when V i

i = 0. Algorithm A.3 gives the complete details of the state
transition and how RWPI works. For any LA, since our purpose is to evaluate for
the incentivization, the action α1 is always performed for all our learning schemes,
and P(α0) is only updated as per Equation B.13.

B.3.1.1 Random Walk Learning

As a result of learning the incentivization amounts per users, by the end of all
computation steps of I epochs on each time realization ts of the HP, each LA
suggests if its associated user would be part of a proposed subset U∗(ts) of mitigation
candidate(s). Where ∀ui ∈ U : ui ∈ U∗(ts), xi = Si(ts), if P(αi1) > P(αi0) by the
end of the computation, and Si(ts) is the final converged LA state value of user i at
the time realization ts. Therefore, Si(ts) will be the final decided assigned value to
the variable xi for the intervention process as demonstrated in Equation B.10.

In the core of our proposed framework, there is a decentralized LA learning
model, which learns such final incentivization amount for a user. The learning
model learns by performing stochastic moves (actions) over a state space (possible
incentivization amounts). The stochastic moves P(αi1),P(αi0) are determined as
per Equation B.13, which is dependant on the environment feedback which is mea-
sured according to Equation B.11, and Equation B.12. Despite how the random
walk moves probabilities are being updated through the different learning schemes
(RWRP , RWRI , RWPI), at a specific MHP time stage, and an epoch i, the user i
associated LA model learns by conducting random walk moves as the below formal
description.

Sts
i (i + 1) := Sts

i (i) +
C

M
, if P(αi1) > P(αi0) and 0 ≤ Sts

i (i) < C

and ¬ϕ,

Sts
i (i + 1) := Sts

i (i)−
C

M
, if P(αi1) < P(αi0) and 0 < Sts

i (i) ≤ C,

Sts
i (i + 1) := Sts

i (i), otherwise,

where ϕ =


true, if C

M
+
∑|U |

i=1 S
ts
i (i) > C,

false, otherwise,
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where M is the constant memory depth of each LA state space bounded by C,
therefore C

M
describes the shift value resulted by the random walk. Since all users

should be evaluated through their own random walk model, the above description
is applied on all LAs, sequentially through the scheduler component as indicated in
Figure B.2. Moreover, Figure B.3 gives a toy example of how a joint random walk
learning process from two sequential LAs moves constructs the network converged
incentivization vector S∗. Where the horizontal line indicates user i state space,
and the vertical line indicates user j state space, given that the latter ended up
being allocated all the incentivization budget (C = 2) after two epochs (i = 2) and
4 time steps. The example then can be generalized for as many number of users
LAs. Eventually, it is important to highlight that at each time stage of the MHP,
the individual LA moves probabilities P(αi1),P(αi0) are reset, to ensure learning
new temporal influential users over different time stages, if exist.

Figure B.3: Toy Example of two LA-based joint random walk

B.3.1.2 Rate of Convergence

For an individual LAi, its convergence is defined according to the optimum incen-
tivization value (random walk converged point) S∗

i . Hence, the whole LA network
optimum random vector S∗ is considered the optimization minimizer vector. There-
fore, the rate of convergence or the asymptotic error of the LA network can be
defined as per Equation B.14, where i represents the current epoch (LA visit).

error :=
||Si+1 − S∗||
||Si − S∗||

. (B.14)

The above definition is then used for evaluating the network hyper parame-
ters. Additionally, from our observation, at least for one of the applied LA learning
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schemes, we obtained a Q-superlinear rate of convergence for all datasets, where
the network asymptotic error approached 0. A detailed explanation for the network
rate of convergence using different hyper parameters values is given in section B.4.

B.3.2 Datasets

B.3.2.1 Twitter15

The Twitter15 dataset has initially been collected and created to debunk rumors
on Twitter [18]. The original dataset had both a political and a more general
context. Two rumor tracking websites (snopes.com and emergent.info) were used
to verify the trustworthiness of the content before categorizing the data into true,
false, and unverified rumors. The results consisted of 94 true and 446 fake stories.
Accordingly, all relevant and matched tweets were collected and labeled. After
downloading and post-processing the original Twitter15 dataset, we obtained 27,547
users, which contributed to 21,279 of true events (tweets/ retweets), and 6,268 of
false ones. However, for our experiments and due to the current limitation in our
computation power, we scaled down the size of the network to only 1,039 users, and
1,188 events, considering scaling that up in future experiments. Our scaled network
also focused only on the American political context. Therefore, the final network
was a result of extracting main tweets with relevant keywords and hashtags from the
standard dataset. Hence, we only extracted main tweets that contain the keywords
and hashtags as demonstrated in Table B.1. The final network had approximately
94.02% of misinformation.

For all datasets, we define the term uinfluencer as the user with the highest node
degree on the network, with regard to the number of edges which represent retweet-
ing from her. In Twitter15 dataset, the top misinformation influencer node moti-
vated 301 users to spread false content. Also, 13 users were motivated to spread
true news by retweeting valid content, since the top influencer user had generated
some trustworthy content as well, that opens a judgemental question if such a user
is spreading misinformation on purpose or not, and how much spread is enough
to measure that in our study. We believe, such question is irrelevant to this study,
however, we will involve these numbers when looking at the results and U∗(ts), since
we aim to have an independence from the network high centrality node(s) when it
is necessary.

B.3.2.2 Twitter16

The Twitter16 dataset was collected initially for a recurrent neural network for
rumor detection in SM [19]. The data was evaluated by the online rumor debunking
service (snopes.com), where 778 events were investigated during March-December
2015, and 64% of the data samples were actual rumors. Similar to Twitter15, the
context of the events are broader than only political struggles. Hence, and after
our post-processing, we ended up with 45, 566 incidents and 44, 114 users, which
contributed to 38, 686 non-rumors, and 6, 880 rumors. However, and after scaling
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Table B.1: Filtered Twitter15/16 datasets tweets

Hashtag/ Keyword (Twitter15) Number of main tweets (Twitter16) Number of main tweets

hillary 16 21

trump 27 37

obama 44 30

america 4 3

americans 12 7

american 19 3

democrat 5 5

republican 1 1

clinton 16 27

white house 2 39

down and focusing only on political struggle related events, our final dataset version
was 1, 206 users and 1, 362 cases, from which there were around 45.59% considered
as misinformation. Table B.1 shows the hashtags and keywords used for filtering
the main tweets from the standard dataset.

The top misinformation influencer node incentivized 230 users to spread mali-
cious content. However, the same user has also incentivized 52 users for retweet-
ing correct information, which means she might not be spreading false content on
purpose. Like in Twitter15 dataset, that insight is useful when evaluating the per-
formance of our method, since the latter should not be driven by such top nodes,
especially when they are circulating fake content on purpose. Therefore, some rele-
vant statistical measures would be useful to set a boundary for how we could accept
the learned U∗(ts), in cases when uinfluencer ∈ U∗(ts).

B.3.2.3 Twitter-COVID19

Our new proposed dataset Twitter-COVID19 was collected during the 28th of March
2020 for the COVID-19 infodemic on Twitter, the dataset had 1, 164 users and 1, 180

events, from which there were around 92.03%, manually labeled as misinformation.
The dataset focused on the circulated irrational content about some found cures
like "silver liquids" and the "anti-malaria" medication. The latter was reported as
a cause of severe harmful side effects for people who tried it without consulting a
health expert 2. To show the flexibility of our approach, the mitigation resolution
can be seen as applicable in any case where there are two opposite campaigns, and
the task is to mitigate one in favor of the other. In our case, we consider a reduction
of the effect of believing these false crisis reliefs, since there was no approved cure
yet, by the time of collecting the dataset. That can be viewed as an exercise for risk
reduction during an infodemic.

In Twitter-Covid19 scenario, the top misinformation influencer node motivated
766 users to spread irrational content. The influencer node had no effect on spreading

2https://www.theguardian.com/world/2020/mar/24/coronavirus-cure-kills-man-after-trump-
touts-chloroquine-phosphate
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any other type of contents during the time window of collecting the data. Therefore,
that is considered a perfect example to evaluate how our method would avoid such
user before suggesting U∗(ts). Table B.2 demonstrates some statistical differences
between the three datasets.

Table B.2: Datasets statistics

Dataset Twitter15 Twitter16 Twitter-COVID19

Num of users 1, 039 1, 206 1, 164

Number of events 1, 188 1, 362 1, 180

Misinformation 94.02% 45.59% 92.03%

Network density .001943 .001778 .001687

Misinformation by uinfluencer 28.87% 19.07% 65.81%

B.4 Empirical Results

B.4.1 Twitter15

Our first experiment was the Twitter15 dataset, which had around 94.02% of mis-
information. This is considered an important example for evaluating our algorithms
on such high percentage. For the HPs, we set the decay factors w = .75 and w = 1

as in [10] for false and true events, respectively. Besides, we set an hourly interval
between time stages (∆ = 1 hour). From the dataset events timestamps, we used
the first 10 hours for learning the Hawkes parameters µ and A, before simulating the
next 30 hours. Therefore, we used the next 30 hours from the real data for testing,
by comparing with events arrivals which were generated from the simulation. We
obtained a relatively good simulation behaviour. Figure B.4 indicates the average
absolute difference error [5] as the performance metric used for the simulation on
both true and false events from Twitter15 and Twitter16 datasets. Equation B.15
demonstrates how the average absolute difference error was calculated.

Ets+∆ =
1

|U |

|U |∑
i=1

|[NH
i (ts +∆)−NH

i (ts)]− [NR
i (ts +∆)−NR

i (ts)]|, (B.15)

where |U | is the number of users and NH, NR represent the counts of the arrived
events from Hawkes simulation and real data, respectively. The calculation is made
between the time stages ts +∆ and ts. It is important to highlight that we consider
improving the simulation process in future, so that we could maintain a more stable
error over time. However, we believe an error up to 1 is still a good indicator since
for 1, 000 users, that means, on average, there is only 1 event arrival difference per
user and prior to a certain time stage. Additionally, we define a random count
range for more convenient simulation results, the count range N t

E± interprets E as a
possible discount in the number of generated events. For instance, if N t = 50 from
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Figure B.4: MHP simulation vs real data on scale of 1 less or more tweet per user
difference on a time stage

the simulation, we might be more confident to say N t
E± = [(1− E) · 50, 50]. In case

of E > 1, it should be normalized between 0 and 1.
For Twitter15 dataset, Figure B.5 shows the optimization performance of the

three suggested learning schemes with three other considerable performance base-
lines. The three baselines represent three different measures we sought to outper-
form, these are misinformation before mitigation, uniform distribution of incen-
tivization budget, and random allocation of incentivization budget. Our optimiza-
tion framework outperformed the three baselines with the three learning schemes
with a budget C = .05. The latter is considered a limited budget according to
its overall effect on the MHP. Moreover, we observed approximately similar perfor-
mance between RWPI and RWRP on longer epochs, but RWRP was the one with
a remarkable early convergence. Eventually, Figure B.6 shows the performance for
difference minimization between misinformation and true events after learning U∗

for the first three time stages (next three hours).

B.4.2 Twitter16

The simulation driven from the Twitter16 dataset can be evaluated as in Equa-
tion B.15. And as indicated in Figure B.4, the false events simulation seemed to be
slightly enhanced compared to Twitter15.

Our version of the Twitter16 dataset is considered as an interesting case, since
it is a situation where misinformation is around 45.59% over the network, that is
considered too low, relatively to both Twitter15 and Twitter-COVID19 datasets.
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Figure B.5: Twitter15 mitigation performance on 1’st time stage, C = .05.

Figure B.6: Twitter15 mitigation performance on first three time stages, C = .05.
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However, it seemed that such scenario was more challenging. That is because when
an extreme level of misinformation exists, it becomes straight forward to distinguish
between nodes with temporal negative influence. On the other hand, when there is
a balance between both campaigns in the network, it is more vague to distinguish
between the authenticity of nodes, since all nodes might be contributing to both
misinformation and true information diffusion. Moreover, it becomes interesting
to see how our method was independent from the network central node(s) in such
cases. The latter perspective is fundamental, as it would indicate how flexible and
intelligent our method is. For instance, sometimes in a scenario like Twitter15 and
Twitter16, a top influencer node might be spreading false content, but still, it is
circulating true content.

For the HPs, we set the decay factors w = .6 and w = 1 as in [10] for false and
true events, respectively. Besides, we set an hourly interval between time stages
(∆ = 1 hour). We used the same duration as in Twitter15 for both learning Hawkes
parameters and testing.

With a budget C = .05, Figure B.7 indicates how our optimization framework
with the learning scheme RWRP performed well with more stability, compared to
other learning schemes in addition to another two baselines. However, the uni-
form distribution method performed approximately the same. Moreover, Figure B.8
shows how the random distribution outperformed all other methods for the next two
time stages. We consider this as an interesting example of how RWRP continued
to be more robust compared to other LA-based learning schemes, but it failed to
compete with both uniform and random strategies. However, a slight improve in
the difference between RWRP and the uniform and random distribution strategies
can be noticed in Figure B.9, after repeating the experiment with only 25% of the
original budget, where C = .0125. Therefore, our LA-based method showed more
robustness when a more strict budget was used.

B.4.3 Twitter-COVID19

As in Twitter15 and Twitter16, the Hawkes simulation performance for Twitter-
COVID19 was measured according to Equation B.15. However, we observed more
density in the events arrivals timestamps. Therefore, we set ∆ = 10 minutes for
a more convenient simulation. Figure B.10 explains the HP performance on both
irrational content and valid content, respectively.

The Twitter-COVID19 dataset is also an interesting case for this study, since it
has only one user who was spreading the undesired content and at the same time
such user had the highest node centrality degree. That is, in such special situation,
we would like to evaluate how our method was independent from the graph structure.

For the simulation, we set the decay factors w = .7 and w = 1 for the irrational
and rational content, respectively, while estimating such values following the same
technique as in [10]. With a budget of C = .05, Figure B.11 shows how most of the
LA-based methods outperformed the three baselines. However, it became obvious
that RWRP is the most reliable learning scheme for our optimization framework,
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Figure B.7: Twitter16 mitigation performance on 1’st time stage, C = .05

Figure B.8: Twitter16 mitigation performance on first three time stages, C = .05
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Figure B.9: Twitter16 mitigation performance on first three time stages, C = .0125

Figure B.10: MHP simulation vs real data on scale of 1 less or more tweet per user
difference on a time stage
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Figure B.11: Twitter-COVID19 mitigation performance on 1’st time stage, C = .05

since it converged earlier with better results in most of our experiments.

B.4.4 Grid-search results

Our method is dependant on three hyper parameters, the learning rate η, the random
walk line (LA states) memory depth M , and the sample size |U−|. Therefore, we
conducted a grid search to determine their best values. We evaluated the grid
search results with respect to how different values of these parameters decreased the
asymptotic error for convergence, and increased the risk reduction metric K. The
latter is discussed in details in section B.5. Figure B.12 shows how we obtained
a Q-superlinear convergence on the three datasets from the final estimated hyper
parameters and the first MHP time stage and with budget C = .05. Table B.3,
Table B.4, Table B.5 gives a detailed explanation for the performance of different
grid search hyper parameters values over all datasets for the first time stage and
with budget C = .05. The selection criteria was mainly how much an acceptable
risk reduction was achieved with the least possible epochs I. Nevertheless, we
considered values which had less effect on the computation speed, since even one
epoch might be slower than another while using different values for |U−|, and η.
That is because the number of calculations inside one epoch will increase when the
network size increases. On the other hand, the learning rate parameter controls the
density of the MHP generated events, since higher values of incentivization would
lead to more generated counts, which would also increase the number of calculation
steps. That is, we approached as much higher K and lower I, while using as much
lower values for |U−|, and η.
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Figure B.12: Convergence plot for the three datasets for T = t0, C = .05

Table B.3: Twitter15 grid-search hyper parameters for T = t0, C = .05

I K |U−| η M

≈ 5 ≈ [125%, 131%] 5 .0001 50

≈ 2 ≈ [125%, 131%] 5 .0001 100

≈ 38 ≈ [106%, 114%] 25 .0001 50

≈ 47 ≈ [119%, 128%] 25 .0001 100

> 60 ≈ [100%, 103%] 50 .0001 50

> 60 ≈ [119%, 128%] 50 .0001 100

≈ 25 ≈ [73%, 79%] 5 .00001 50

≈ 19 ≈ [119%, 128%] 5 .00001 100

≈ 11 ≈ [119%, 128%] 25 .00001 50

≈ 13 ≈ [119%, 128%] 25 .00001 100

≈ 18 ≈ [125%, 135%] 50 .00001 50

≈ 34 ≈ [118%, 125%] 50 .00001 100

N.A [0%, 0%] 5 .000001 50

N.A [0%, 0%] 5 .000001 100

≈ 12 ≈ [120%, 129%] 25 .000001 50

≈ 13 ≈ [120%, 129%] 25 .000001 100

≈ 48 ≈ [73%, 79%] 50 .000001 50

≈ 25 ≈ [126%, 135%] 50 .000001 100
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Table B.4: Twitter16 grid-search hyper parameters for T = t0, C = .05

I K |U−| η M

≈ 4 ≈ [227%, 241%] 5 .0001 50

≈ 5 ≈ [235%, 253%] 5 .0001 100

≈ 30 ≈ [235%, 253%] 25 .0001 50

≈ 30 ≈ [119%, 128%] 25 .0001 100

> 60 ≈ [190%, 209%] 50 .0001 50

> 60 ≈ [184%, 200%] 50 .0001 100

≈ 10 ≈ [219%, 235%] 5 .00001 50

≈ 19 ≈ [250%, 276%] 5 .00001 100

≈ 12 ≈ [168%, 183%] 25 .00001 50

≈ 12 ≈ [242%, 265%] 25 .00001 100

≈ 50 ≈ [506%, 550%] 50 .00001 50

≈ 57 ≈ [242%, 265%] 50 .00001 100

≈ 24 ≈ [243%, 266%] 5 .000001 50

> 60 ≈ [242%, 265%] 5 .000001 100

≈ 24 ≈ [242%, 265%] 25 .000001 50

≈ 13 ≈ [239%, 260%] 25 .000001 100

≈ 48 ≈ [138%, 150%] 50 .000001 50

≈ 18 ≈ [199%, 210%] 50 .000001 100

Table B.5: Twitter-Covid19 grid-search hyper parameters for T = t0, C = .05

I K |U−| η M

≈ 21 ≈ [330%, 340%] 5 .001 50

≈ 29 ≈ [329%, 339%] 5 .001 100

≈ 10 ≈ [330%, 340%] 25 .001 50

≈ 17 ≈ [327%, 338%] 25 .001 100

≈ 15 ≈ [331%, 342%] 50 .001 50

≈ 19 ≈ [300%, 310%] 50 .001 100

N.A [0%, 0%] 5 .0001 50

N.A [0%, 0%] 5 .0001 100

N.A [0%, 0%] 25 .0001 50

N.A [0%, 0%] 25 .0001 100

N.A [0%, 0%] 50 .0001 50

N.A [0%, 0%] 50 .0001 100

N.A [0%, 0%] 5 .00001 50

N.A [0%, 0%] 5 .00001 100

N.A [0%, 0%] 25 .00001 50

N.A [0%, 0%] 25 .00001 100

N.A [0%, 0%] 50 .00001 50

N.A [0%, 0%] 50 .00001 100

The learning rate value had also some other effects on the results, for example,
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Twitter-Covid19 dataset needed a higher value of η to make its users start to re-
spond. That can be seen in Table B.5, where K = 0 in most of the experiments.
Eventually, the memory depth parameter M was also essential to the computation,
since it controls how fast the knapsack became full, which in turn, could affect the
required number of epochs I.

B.5 Discussion

As discussed in section B.4, the random count range N t
E± defines an estimate range

for the random variable N t, considering the random output and the average absolute
difference error E that affects the mitigation metrics such as the difference between
valid and invalid information. Therefore, the risk reduction percentage K can be
calculated with regard to Equation B.3, Equation B.4 as per the one below. Where E
is the sum of errors for misinformation and true events simulated counts, Table B.6
shows the summed error for the datasets.

Kts =

[
(1− E) ·

(√
[(F1 − T1)− (F2 − T2)]2

(F1 − T1)

)
·
(
1

2

)
,

(√
[(F1 − T1)− (F2 − T2)]2

(F1 − T1)

)
·
(
1

2

)]ts
(B.16)

, where F1 − T1 ̸= 0,

Table B.6: Datasets simulation accumulated error E

t0 t1 t2

Twitter15 .076 .076 .140

Twitter16 .083 .083 .163

Twitter-COVID19 .028 .028 .037

where at a specific time stage ts, F1 − T1 represents the difference between false
and true content before mitigation, and F2 − T2 is the difference after mitigation.
Then, Kts indicates the estimates where such uncertain output would be, by mea-
suring the distance between the two points (F1−T1) , (F2−T2) and creating a range
between the weighted and the original calculation results. The estimated range val-
ues are divided by 2 in order to consider the output (F2 − T2 = 0) as only a 50%

reduction, since there is still a 50% chance of being exposed to misinformation on
the network. For cases when (F1 − T1 = 0), we omit it as the denominator, and we
omit the division by 2 as well.

We have investigated how each learning scheme performed on the three datasets
from the perspective of independence from network centrality measures. For in-
stance, when T = t0, we obtained P(uinfluencer ∈ U∗ = 1), P(uinfluencer ∈ U∗ =

.93), and P(uinfluencer ∈ U∗ = .71) for Twitter15 for the three learning schemes
RWRP , RWRI , and RWPI , respectively. On the other hand, for Twitter16, we got
P(uinfluencer ∈ U∗ = .50), P(uinfluencer ∈ U∗ = 1), and P(uinfluencer ∈ U∗ = .57) for
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the three learning schemes RWRP , RWRI , and RWPI , when T = t0, respectively.
While in Twitter-Covid19, we obtained P(uinfluencer ∈ U∗ = .19), P(uinfluencer ∈
U∗ = .20), and P(uinfluencer ∈ U∗ = .19) for the three learning schemes RWRP ,
RWRI , and RWPI , when T = t0, respectively. Since, the latter dataset is the case
where the top influencer user had contributed only to misinformation, while other
datasets had top influencers who contributed to true content, we would consider our
method showing independence from graph structure when the top influencer user is
not showing any potentials for circulating valid content.

B.5.1 Evaluation

As mentioned earlier, we have adopted our own post-processed version of the Twit-
ter15 and Twitter16 datasets. Further, it was unfeasible to apply all previous
baseline mitigation methods on the same data samples we used. However, on the
different datasets versions, Table B.7 demonstrates by how far our LA-based method
outperformed random and uniform budget distribution methods, with an analogy
to previous Reinforcement Learning (RL)-based mitigation methods (MHP-U [10],
V-MHP [5], EXP [5]. We refer to our method as LA-MHP, and the evaluation
metric is the ratio between the correlation maximization Y ts at a given time stage
for each baseline and either random or uniform maximized correlation, when ap-
plied on the associated dataset version. Where the exposure amounts of both fake
and true content are considered the correlation variable and constant, respectively
(Y ts = T tsF ts). For instance, the ratio that indicates how LA-MHP performed
against random distribution with regard to correlation maximization is calculated
as LA−MHPY

RNDY
, where Y is calculated twice for both LA-MHP and RND over their

MHP generated amount T . The results given in Table B.7 proves how the LA-MHP
model is competing with all baselines.

Table B.7: Relative performance against random and uniform methods

Model Tw15-RND Tw15-UNIF Tw16-RND Tw16-UNIF

LA-MHP 2.37 2.11 2.35 1.71

MHP-U 2.06 1.93 3.20 1.80

V-MHP 1.54 1.87 2.80 1.50

EXP 1.33 1.21 2.04 1.12

B.6 Conclusion

The emergence of the MHP and their application on SM, have boosted the ca-
pabilities of SM analysis domain. Hence, MHP-based models became crucial to
understand information diffusion and users actions prediction on social networks.
Moreover, SM intervention-based approaches are highly depending on MHP to eval-
uate and improve the developed methods. MHP can be applied to mimic the users

153

B



future behaviour on social networks after learning from some past actions on the
network. Furthermore, MHP analyze the behaviour of users with regard to different
factors. First, MHP can model an exogenous factor that causes a user to act. Then,
the model takes into consideration the endogenous factors such as the network users
historical behaviour. Therefore, the MHP construct powerful SM dynamics simu-
lation models, where studying internal and external network motivations became
possible and reliable.

Compared to deep RL approaches, which were adapted in similar previous work,
the explanation given in this study showed how our LA-based method is more reliable
for a proactive misinformation mitigation strategy, since a LA is easier to understand
and implement. Besides, our demonstrated method converged faster while using a
notable smaller sample size, compared to the number of samples needed in similar
previous work. Furthermore, and to the best of our knowledge, we were the first to
apply LAs for misinformation on SM.

Future work would investigate how politically biased users might not respond to
a mitigation campaign, which will waste the incentivization budget. Furthermore,
different objective functions should be investigated, for instance, in certain scenarios,
we should consider fair mitigation for the influenced users, instead of calculating the
average of differences between fake and true content, since an average for skewed in-
dividual differences distribution would not be enough to achieve optimum mitigation
results.
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Abstract — Conversation partners tend to stick to a particular emo-
tional state unless some external motivation excited them to change that
state. Usually, the excitation comes from the other conversation part-
ner. This preliminary study investigates how an Artificial Intelligence
(AI) model can provide excitation for the other partner during a dyadic
text-based conversation. As a first step, we propose a Neural Emotion
Hawkes Process (NEHP) for predicting future emotion dynamics of the
other conversation partner. Moreover, we hypothesize that NEHP can
facilitate learning of distinguishable consequences of different excitation
strategies, and thus it allows for goal-directed excitation behavior by inte-
grating with chatbot agents. We evaluate our preliminary model on two
public datasets, each with different emotion taxonomies. Our preliminary
results show promising emotion prediction accuracy over future conver-
sation turns. Furthermore, our model captures meaningful excitation
without being trained on explicit excitation ground-truths as practiced
in earlier studies.
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C.1 Introduction

Nowadays, sequential events are in our every day life, we can observe that in the
huge amount of online data being generated at every second. Data generated on
Social Media (SM) platforms such as Facebook and Twitter is an example. In such
mediums, each user shares a sequence of events though self-opinions and interactions
with others [1]. Besides SM, sequential events also exist in domains like regular
conversations [2]. In general, sequences are characterized by the particular order of
their elements and either their occurrences were temporal, spatial, or both. However,
what actually distinguishes the characteristic of a sequence from another is the
pattern of its behaviour. For instance, some sequences are synchronous where the
temporal or spatial arrivals of events are synced together. On the other hand, some
sequences are asynchronous [3] which means the time intervals between event arrivals
is as important as their order. In the latter scenario, both self and mutual excitation
between events exist [4], and that constructs the dynamics of their behaviour. To
this end, point processes [5] were utilized to capture the hidden influence caused by
event excitation through the different time intervals.

Traditionally, Poisson point process [4] is used as an example for point pro-
cesses. However, the complicated dynamics usually found in asynchronous events
are beyond the capacity of Poisson processes, due to their event history stateless
nature. Hence, Hawkes Processes (HPs) [4] were utilized to capture the historical
dependencies between events, which led to more accurate prediction and inference
of the hidden excitation. However, some generated events could still be unrelated
to each other which is not assumed by the classic HP. That is due to the static
computation of its parameters where the latter is estimated from the data before
prediction. Therefore, alternative approaches were proposed for a non-parametric
HP. First, Recurrent Neural Networks (RNNs) and their variants (e.g., Long-Short
Term Memory (LSTM)) were utilized [6, 7] to model the HP dynamics through
the network hidden state vector, where historical dependencies were implicitly cap-
tured. The advantage of this method is how the process parameters were mutable
over different time intervals which is more likely in real-world scenarios. However,
due to the limitations [8] of the RNN and LSTM, the neural network struggles in
longer sequences with some unrelated dependencies. Hence, a self-attentive HP was
proposed [9] to overcome the challenge of long-term dependencies. In the latter
approach and unlike RNNs, the self-attention mechanism improved the prediction
accuracy by eliminating unrelated dependencies.

According to the definition of emotional inertia [10], conversation partners tend
to stick to a particular emotional state, unless some external motivation excited
them to change that state. Usually, the excitation comes from the other conversa-
tion partner. Therefore, by considering one partner as a chatbot agent [11], this
preliminary study investigates how to learn hidden excitation patterns in emotional
conversations, so the agent can control the outcome from other partner’s emotions
by re-planning its own (chatbot) expressed emotions.

As a first step, we propose a NEHP for the conversation emotion dynamics
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prediction. Moreover, we investigate how the NEHP input conversation emotions
should be represented to allow for high prediction accuracy, and successful excita-
tion from further developed controller models on top of the NEHP. For instance, a
Reinforcement Learning (RL) chatbot agent that interacts with NEHP as its emo-
tional dynamics environment. To evaluate a potential successful integration with
chatbot agents in further studies, we manually re-plan the expressed emotions of
one partner in the NEHP emotion sequence input. We define the re-planning of one
partner’s emotions as the replacement of a certain emotion in its associated conver-
sation utterances sequence. Then, we evaluate if such plan will succeed to excite
the other partner for a more positive emotional outcome. We conduct a T-test and
accept only significant emotion change outcomes where P-value ≤ 0.05. Two public
text-based conversational datasets are studied for the preliminary experiments, one
is from imagined conversations in movies [12], and the other is sentiment-annotated
human-to-human conversations [13].

C.2 Proposed Prediction Model

Figure C.1 shows our proposed End-to-End architecture of the NEHP. The model
utilizes a LSTM. We believe the utilization of a LSTM would be sufficient as a pre-
liminary study, where the input sequence length is relatively short and the conver-
sation expressed emotions are completely related, due to the complementary nature
of emotions [14] in dialogues. However, self-attention mechanisms are recommended
for the analysis of long and multi-context conversations.

NEHP is fed by two categories of inputs: (1) the two partners one-hot-encoding
vector R2 over n steps, where n is the emotion change sequence length, and (2) the
emotion change feature representation vector Rn. The core idea behind the proposed
sequence prediction model is a Multivariate Hawkes Process (MHP). In a MHP,
the excitation between different categories of sequential events can be modelled
via a parametric intensity function λ. In our case, we are interested in modelling
the asynchronous sequential emotion changes from conversation turns. The term
asynchronous is adopted to best describe the importance of the time interval for
when an emotion change occurs, e.g., excitation planning. Time intervals in a dyadic
conversation setting can be viewed as the turns indices, with the clarification that if
one partner interacted with consequent adjacent utterances, all these turns will be
considered one single interval. That is, the intervals even indices will be associated
with one partner while the odd ones will be representing the other partner. The
formal description of a parametric classic MHP is given below in Equation C.1 with
its conditional intensity function. The conditional intensity λ predicts the intensity
of an emotion change event to occur in a particular interval, given some history of
a relevant observation. The prediction captures the mutual excitation between two
conversation partners by considering hidden patterns in the given history [4].

λ(ei, ti|Hts) := µ(ei, ti) +
∑

g(ei − es, ti − ts) : s < i, (C.1)

where g is some kernel function over the history with a decay factor over time,

C

162



Pa
rtn

er
 E

nc
od

in
g 

Em
ot

io
n 

R
ep

re
se

nt
at

io
n

Concatenated Input Layer

LSTM Hidden Layer Dropout Layer FC Layer (Partner)

FC Layer (Emotion Change)

Partner Intensity Vector

Emotion Intensity Vector

a

b

0

1

-1

So
ftm

ax
So

ftm
ax

Figure C.1: LSTM-based MHP for dyadic conversation emotion change prediction

and Hts is the history of emotion change prior to the interval ti. Equivalently, the
index i indicates the current conversation turn index. Typically, g is calculated
over an influence matrix A where its entries estimate self and mutual excitation
between events, e.g., emotion changes. In a short conversation setting, we can
consider no decay of influence since the latter is usually adopted for long temporal
sequence analysis and prediction. Moreover, in a neural network setting such as our
proposed NEHP, the non-parametric conditional intensities are calculated as per
Equation C.2, Where ht is the hidden state vector from the LSTM network.

λ(ei+1, ti+1|Hti+1
) = tanh(hti). (C.2)

C.3 Preliminary Results

Table C.1 shows the preliminary results for our proposed NEHP where four emotion
representation techniques were evaluated. Our preliminary results show promising
prediction accuracy and potential successful excitation over two future turns of the
other conversation partner. The reported excitation results do not involve any RL
methods for the control task, but the latter was simplified as a manual modification
of the emotion sequence input.

The emotion representation methods vary from each others in terms of how emo-
tion taxonomies scalar values sequence is being prepared as an input to the NEHP.
For example, partner difference means that we only focus on the sequence turns
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Table C.1: Prediction accuracy of other conversation partner over two turns in future

Dataset Representation Acc (1) Acc (2) Avg Acc Excit
Topical partner difference 0.82 0.51 0.67 0.16
Movies partner difference 0.80 0.35 0.57 0.40
Topical incremental partner difference 0.89 0.62 0.76 0.05
Movies incremental partner difference 0.82 0.20 0.51 0.45
Topical partners difference 0.85 0.54 0.64 0.06
Movies partners difference 0.81 0.37 0.59 0.24
Topical incremental partners difference 0.94 0.57 0.76 0.06
Movies incremental partners difference 0.92 0.76 0.84 0.16

associated each partner alone and calculate the differences for each. So, we obtain
a transformed sequence that represents an emotion change pattern for each part-
ner independently. On the other hand, partners difference means that we calculate
the differences from each two adjacent turns emotion scalar values. Since each two
adjacent turns in our setting are associated with two different partners, then, the
latter technique allows for creating dependencies between partners in the represen-
tation. Eventually, the incremental technique allows for accumulated differences,
so that it could capture dependencies over time. It is important to highlight that
raw emotion scalar values sequence is not a good choice for representing the NEHP
input. Since the latter gave a very low prediction accuracy. To reproduce the re-
sults, source code and data made available at this link: https://github.com/Ahmed-
Abouzeid/rnn_mhp_emotion.

C.4 Conclusion and Future Work

Conversational emotional dynamics has two main properties: (1) self and (2) inter-
personal dependencies. We consider such setting is applicable with HPs, where the
latter is a point process for modeling mutual and self-excitation in asynchronous
events. This preliminary study presented how we could predict emotion changes
for n text-based conversation turns in the future. Our NEHP captured hidden
excitation of an emotion change point process, and hence could simulate partners’
emotion changes as well. Although the NEHP performs a supervised learning for the
prediction task, the inferred excitation was not boosted by any supervised learning
as practiced in [15]. Therefore, the only given ground-truths were partner ids and
their associated emotion change values. The latter capability of the NEHP highlights
how the utilization of HPs is beneficial in this domain. Furthermore, the prediction
of both partners’ emotions means that the NEHP can be either an observer or an
actor during a conversation. Observing conversations and predicting their dynamics
could be useful in SM analysis to predict the popularity of a post, or the occurrence
of critical events in the future. On the other hand, as an actor in a conversation,
the NEHP excitation simulation could be considered an environment for a RL-based
chatbot, where the latter learns to develop emotional intelligence.
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The domain of emotion recognition is evolving rapidly, opening the venue for
many research questions. Future work can be applying a self attentive-NEHP model
on video recordings-based conversations, where facial and audio features can be ex-
tracted. We believe the NEHP could be utilized for other semantic events as well,
such as context change in conversations. Moreover, this preliminary study could be
a first step towards understanding the behavior patterns of individuals, by studying
some semantic shifts in their conversations.
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Abstract — Recent social networks’ misinformation mitigation approaches
tend to investigate how to reduce misinformation by considering a whole-
network statistical scale. However, unbalanced misinformation exposures
among individuals urge to study fair allocation of mitigation resources.
Moreover, the network has random dynamics which change over time.
Therefore, we introduce a stochastic and non-stationary knapsack prob-
lem, and we apply its resolution to mitigate misinformation in social
network campaigns. We further propose a generic misinformation mit-
igation algorithm that is robust to different social networks’ misinfor-
mation statistics, allowing a promising impact in real-world scenarios.
A novel loss function ensures fair mitigation among users. We achieve
fairness by intelligently allocating a mitigation incentivization budget to
the knapsack, and optimizing the loss function. To this end, a team of
Learning Automata (LAs) drives the budget allocation. Each LA is asso-
ciated with a user and learns to minimize its exposure to misinformation
by performing a non-stationary and stochastic walk over its state space.
Our results show how our LA-based method is robust and outperforms
similar misinformation mitigation methods in how the mitigation is fairly
influencing the network users.
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D.1 Introduction

From a computation perspective, there are many approaches to combat the dissem-
ination of misinformation1. Recently, [1] illustrated some of the main techniques
for classifying misinformation content and how these approaches can be applied in
different scenarios. However, classification methods tend to be offline and limited
to particular social network features to be learned, such as linguistics and the local
political context [2]. Furthermore, such classification models have a potential for
False Positive matches, which may violate human rights conventions by misjudging
and questioning individuals credibility and controlling free speech [3]. On the other
hand, recent work proposed intervention-based resolutions as an online approach to
mitigate the circulation of misinformation on Social Media (SM) platforms. Such
an approach is considered more convenient since it facilitates better collaboration
between humans and technology by providing learned misinformation mitigation
strategies instead of black-box classification models. For example, [4] proposed a
Reinforcement Learning (RL)-based optimization method which provides a strat-
egy to decrease the difference between misinformation and true content exposures
in Twitter, given that such misinformation exposure was dominating the network.
The purpose was to mitigate the effect of misinformation on network users by in-
centivizing the latter to spread true information. A similar method was developed
to facilitate decentralized and faster computation, as proposed by [5].

The latter approach introduces a light-weight decentralized computation that
reduces the optimization sample space and utilizes LAs that learn from reinforcement
feedback [6]. However, the method was evaluated according to the decrease in
difference between the dominating misinformation and the incentivized true content,
averaging over the whole network. The problem with such an approach is that there
would be real-world scenarios where some individuals need mitigation efforts more
than others, while a sub-network individuals would be already protected from high
misinformation exposures. Therefore, we believe a more socially fair intervention
and allocation of mitigation resources should be introduced under the framework of
[5].

This paper proposes a robust LA-based decentralized mitigation method that
addresses a wide range of possible unbalanced exposures to either misinformation
or true content, seeking robustness on a variety of a social network’s statistics. Our
contribution is threefold:

• We propose a novel learning scheme for a LA learning in a stochastic and non-
stationary environment. The randomness comes from an information diffusion
model based on point processes [7], while the non-stationarity comes from the
temporal changes that occur over the whole network when an individual user
responds to incentivization. This non-stationarity is particularly intricate due

1The term misinformation is sometimes used to refer to all forms of fake news/content. However,
in some literature, misinformation is defined as the unintentional spread of false content while
disinformation is the on-purpose spread. In this paper, we refer to all forms of false content as
misinformation.
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to the hidden dependencies in the information diffusion model. The LA task
is to construct a network of individual automata on top of the social network.
Each individual automaton is associated with a single user and performs a
constraint Knapsack optimization via a random walk [8] over the automaton
state space.

• We propose a novel loss function to ensure that true content incentivization
budget is fairly assigned according to individual users exposure needs. To this
end, the problem is defined as a stochastic and non-stationary multi-agent
Knapsack [9] optimization problem.

• We introduce two evaluation metrics (Achieved Mitigation and Achieved Fair-
ness) to measure the efficiency and robustness of the proposed misinformation
mitigation algorithm on different social network’s statistics. And we evaluate
how our proposed technique is more socially fair compared to the proposed
approach in [5]. We conduct our empirical experiments on both synthetic and
real-world social networks. Software source code and data are available here:
https://github.com/Ahmed-Abouzeid/MMSS.

D.2 Preliminaries

D.2.1 Information Diffusion Modelling

In order to apply intervention-based resolutions to misinformation mitigation, an
information diffusion model is required to simulate the social network which to in-
tervene with. The simulation is considered because intervention with the actual SM
platforms is not feasible. We simulate the process of information diffusion by em-
ploying a Multivariate Hawkes Process (MHP) as practiced by [10], [5], and [4]. A
MHP is a multivariate stochastic process [11] which models the occurrence of tem-
poral or spatio-temporal asynchronous events by capturing the mutual-excitation
(dependencies) between these events. To model the social network dynamics, each
user is represented by two Hawkes Processes (HPs), one for misinformation dissem-
ination behavior, and the other for true content. The associated user HPs generate
estimated random counts for both information types, given some behaviour obser-
vation in the past (e.g., estimating number of re/tweeted events given historical
dependency). These counts indicate the intensity of the process at a specific time
realization. Hence, A HP can be defined with its conditional intensity function λ.
The intensity function has two main components: base intensity µ, and exponen-
tial decay function g over an adjacency matrix A. The formal explanation of the
conditional intensity function is given by:

λi(tr|H tr) := µi +
∑
ts<tr

g(tr − ts), (D.1)

where µ is the base intensity that models some external motivation to propagate
some content (independent from inferred relationships in data). On the other hand,
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g is some kernel function over the observed history H tr associated with user i from
the discrete time realization ts prior to time tr. g is concerned with the history of
some influence matrix Ai., where Aij = 1 if there is an influence indicating that user
i influences user j, and Aij = 0 if not. We used an exponential decay kernel function
g = Ai.e

−wt as practiced by [4], where w is the decay factor which represents the
rate for how the influence is reduced over time. For all users, the base intensity
vector µ, and the influence matrix A can be estimated using maximum likelihood
as proposed in [12]. To simulate all users behaviours for each content type, a MHP
is created, given that different intensity rates are generated at different discrete
time realizations. Hence, at each realization, each user behaviour is simulated as
an estimated number of events (misinformation or true content) to be generated.
We set the interval window between realizations to two hours. The HP simulation
algorithm adopted in this study follows the modified thinning algorithm introduced
by [13]. See Appendix A.1 [14] for a detailed explanation of the simulation evaluation
metric.

D.2.2 Mitigated Diffusion

The core idea behind misinformation mitigation is by introducing the true informa-
tion to the network through incentivization. Therefore, users associated true content
HPs are modified. Hence, let xi be the incentivization amount decided for user i,
and the modified HP for mitigation purposes can be redefined by:

λi(tr|H tr) := xi + µi +
∑
ts<tr

g(tr − ts). (D.2)

D.3 Related Work

D.3.1 Misinformation Impact

According to [15], at least 50% of the world’s countries suffer from organized po-
litical manipulation campaigns over SM. Other examples of misinformation can be
observed during the Ebola outbreak in West Africa, which was believed to be three
times more worse than the previous Ebola outbreaks [16]. Therefore, research on
the role of online media and border-free passing through messages became an emerg-
ing topic of interest in scientific communities. Furthermore, investigation on such
a topic is more complicated and requires different perspectives of analysis. For ex-
ample, recent studies [17] argued that the influence of SM on accepting political
misinformation may differ depending on age, culture or gender. Such social studies
actively investigated the social impact of misinformation propagation on different
SM platforms such as Reddit, Facebook, and Twitter. Novel views on the problem
emerged recently. For instance, recent investigations reported that deliberation con-
texts promoted in SM overcome false information about health [18]. An example of
such deliberation can be viewed as a counterfactual campaigns to spread true health
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information against the spread of misinformation as practiced for the COVID-19
case on Twitter by [5].

D.3.2 Misinformation Detection

The spread of fake news on SM has been initially considered as the intentional dis-
semination of false content in news articles [19]. Progressively, others gave attention
to the broader range of the problem [20, 21]. Moreover, rumor detection [22], mali-
cious accounts classification [23, 24], and the causal aspects of misinformation [25]
have been discussed. However, the majority of these methods are highly depending
on linguistic or local features which cause a lack of generality in the final resolution.
To the best of our knowledge, it is hard to solve the problem in real-time or with-
out data selection-bias concerns [26]. [27] expressed similar moral concerns since
fake news detection resolutions are judgemental by nature. Therefore, the need for
safer online strategies that would lead to more generic and authentic resolutions is
critically desirable.

D.3.3 Knapsack Optimization

The utilization of LA with Knapsack optimization problems is widely approached
in the literature. For instance, [28] worked on optimizing the allocation of polling
resources for web page monitoring when the monitoring capacity is restricted. In
web page monitoring systems, the system may involve n web pages that are updated
on different time intervals. Hence, to avoid involving all web pages including the ones
with no updates, the system must determine the most important web pages only,
without exceeding the monitoring capacity. The work utilized a team of LAs, where
each automaton is involved with a particular web page and learns its importance to
a Knapsack total value. Similarly, [29] dealt with a Stochastic Non-linear Fractional
Equality Knapsack problem which is a fundamental resource allocation problem
based on incomplete and noisy information. In the latter work, they proposed
an optimal resolution to the resource allocation problem using a continuous LA
without mapping the Knapsack materials onto a binary hierarchy. In such work,
the proposed LA had a Reward-Inaction (R-I) learning scheme which only updates
the LA actions (transitions) probabilities when rewarded. [30] worked on another
combinatorial optimization problem for Knapsack with a proposed Migrating Birds
Optimization algorithm to solve a 0-1 knapsack problem [31].

D.3.4 Hawkes Processes

The utilization of HPs-based intervention strategies was effectively presented on
minimizing-risk problems. For example, [32] worked on the problem of invasive
species spreading to new areas which threatens the stability of ecosystems and causes
major economic losses. The latter study proposed a novel approach to minimize the
spread of an invasive species given a limited intervention budget, where the spread of

D

174



species was modelled by a HP and the minimization task was considered a constraint
Knapsack optimization problem.

D.4 Methodology

D.4.1 Learning Automata Network

A LA is a stochastic model suitable for learning in random environments [6]. The
LA learns by interacting with the random environment, and updates its actions
or state transitions according to the stochastic signal from the environment. De-
pending on the automaton design and architecture, the task is to find either an
optimum/sub-optimum action or state. The LA seeks convergence to such state
or action, eventually. The advantage of utilizing a LA-based optimization is due
to its decentralized and easy implementation. A LA defined by its stochastic state
transitions can be formally defined as a Markov Process [33]. Therefore, to reach
equilibrium over all LAs, we build a network of LAs, each performs a random walk
over a finite and discrete state space, where the individual optimum or sub-optimum
states will be the recommended incentivization values for a misinformation mitiga-
tion campaign. The individual random walks together form as a multidimensional
joint random walk [34] modelled by a multivariate Markov chain [35]. Figure D.1
demonstrates the proposed LAs network and the underlying multivariate Markov
chain (e.g., three automata with M states, each.), where the joint state transitions
and their probabilities are derived by the individual automata state transitions which
are dictated by a reward signal β.

D.4.2 Learning State Transition

An individual LAi has a state space with memory depth M , where M > 0. If
LAi is in a state Sk

i where 0 < k < M , then, it has a three possible state transi-
tions: Sk,k−1

i , Sk,k
i , Sk,k+1

i indicating going to left, staying at same state, and moving
to the right, respectively. In order to reach an optimum or sub-optimum state
S∗
i , LAi needs to learn the probabilities of its state transitions until it converges.

Consequently, the optimum or sub-optimum S∗
i value will be the recommended in-

centivization value x∗i to modify the information diffusion model with (See Equation
2). LAi could have only two possible state transitions: Sk,k

i , Sk,k+1
i or Sk,k

i , Sk,k−1
i ,

when k = 0 or k = M , respectively. At each interaction step t, the probability of
LAi being in a next state depends on its present state and the transition direction ati.
With a uniform initial state transitions probabilities, LAi determines the next state
St+1
i and updates its state transition probability distribution vector πi according to

the below:

δ : St
i , a

t
i, β

t
i → St+1

i , πt+1
i , (D.3)

where πi states probabilities are updated with regard to their rewarded visits
frequency, and ati represents the applied state transition ati = Sk,j

i , where k, j are
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Figure D.1: The proposed LAs network and the underlying multivariate Markov
chain architecture for three automata

neighbor state indices and k = j if it was a recurrent state transition. Based on ati
and the environment stochastic reward βt

i , LAi conducts a random step move over
its state space. For instance, if at0i = Sk,k+1

i , the state transition function δ commits
the transition Sk

i → Sk+1
i only if βt0

i = 0, and rolls it back if βt0
i = 1. Consequently,

πt1
i = [0k,k, 1k,k+1, ...]t1 or πt1

i = [1k,k, 0k,k+1, ...]t1 , respectively. We denote vti and wt
i

as how many times a transition was rewarded (βi = 0) and performed for LAi up
to interaction step t, respectively. Hence, For the state indices k, j, when k = j +1,
state transition probabilities are updated as the below:

P t+1(Sk,j
i ) =

vti(S
k,j
i )

wt
i(S

k,j
i )

, (D.4)

P t+1(Sj,k
i ) =

1− P t+1(Sk,j
i )

2
, (D.5)

P t+1(Sk,k
i ) =

1− P t+1(Sk,j
i )

2
, (D.6)
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where P t+1(Sk,j
i ) + P t+1(Sj,k

i ) + P t+1(Sk,k
i ) = 1. (D.7)

Since each LA performs a random walk over its state space through a stochastic
state transition, then the optimization problem is solved by the multidimensional
joint random walk over the automata network. Furthermore, the individual state
transitions are dependent to each others due to the shared knapsack capacity and the
inter-connected influence in their environment rewards. Therefore, the probability
of a particular automata network state is calculated as the joint probability of the
individual automata current states. Hence the joint probability can be calculated
as the below, where N is the network size:

P t(Si, Sj...SN) = P t(Si)P
t(Sj, ...SN |Si). (D.8)

D.4.3 Automaton Environment

To learn incentivization values for the social network’s users, all users’ associated
LA interact with a Knapsack which evaluates how valuable the current LA state
(incentive) for the mitigation campaign. The Knapsack evaluation is individual to
each user behaviour on the network. Users behaviours are modeled through a MHP.
Hence, the LA environment has the following main properties.

• Stochastic: which is due to the randomness of each HP itself, which gener-
ates random counts for each user events (e.g., re/tweets).

• Non-stationary: which occurs because of the dependencies between users
HP generated events. For instance, when both users i, j have an explicit
or implicit dependency, a particular incentivization value xi = 0 might not
be optimum for user i but could be optimum when the incentivization value
xj > 0. Since the latter could cause user i to be fairly exposed to true content
without the need to increase for xi (incentivize user i).

To reinforce the learning of targeted state values. each individual LAi will re-
ceive a reward signal βi from its Knapsack environment where βi ∈ {1, 0}, indicating
a penalty, or reward Knapsack signal, respectively. The final committed state tran-
sition for an LAi is driven by the reward signal βi. For instance, if LAi randomly
walks towards the right and received a reward, it commits the transition and updates
its current state. However, if LAi receives a penalty, it rolls back the transition and
stays at its recent current state before that transition. The state update mechanism
also works if LAi randomly walks to the left direction. These random walks proba-
bilities in both directions are learned according to Equation D.4 and Equation D.5.
On the other hand, recurrent state transitions probabilities are updated according
to Equation D.6 until converging to a state where the probabilities of performing
random walks in both directions became almost 0. The detailed information about
how the reward signal βi is calculated for each direction of an LAi random walk:
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Figure D.2: Finding global minima example for an individual LA random walk over
a stochastic and non-stationary HP-based Knapsack response

(→) βi(mi,Φ) :=

{
1, if mi > 0 ∨ Φ = 1

0, otherwise

}
, (D.9)

(←) βi(mi,Φ) :=

{
1, if mi > 0

0, otherwise

}
, (D.10)

subject to mi =
∆F(xi)
∆xi

, where ∆xi > 0, (D.11)

where mi is the slope of a fairness loss function F for the associated user i
and Φ indicates either the Knapsack is currently full (Φ = 1) or not (Φ = 0). The
Knapsack initial capacity starts with 0 and increased or decreased according to each
individual LA state transition, while the current Knapsack capacity is shared across
the LA network. Given that xi = Si : i ≤ M , since the mitigation incentive xi
over time is represented by the current LA state where such an LA has M states.
The above definition of the environment reward for the proposed random walk state
transitions ensures converging to optimum or sub-optimum mitigation incentive val-
ues. Figure D.2 shows an example of our proposed LA state transitions mechanism
where the optimization environment is non-stationary and stochastic. However, the
LA managed to find a sub-optimal state value.

D.4.4 Fairness Loss Function

To achieve fair mitigation, we need to consider each individual user exposures to both
misinformation and true content. Each user exposure associated with a content type
is calculated as how much impact that content has on the user. Therefore, the ratio
between true and misinformation impact for each user is considered. Hence, a more
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skewed initial distribution of these ratios will acquire a fair mitigation strategy to
assign the incentivization budget according to user needs, without wasting the bud-
get on users with already high exposures to true content. During the intervention, a
ratio Ri < 1 means that user i is more exposed to misinformation. Alternatively, a
ratio Ri > 1 indicates that user i incentivization is not necessary since the latter has
already high level of true content exposures. The exposure values used in Ri were
calculated as proposed by [163], see Appendix A.2 [14] for more details. Below, we
define our proposed fair misinformation mitigation loss function:

min F(X) :=
N∑
i

F(xi), where F(xi) :=
n∑

j=0

(1−Rxi
j )2, (D.12)

subject to
N∑
i=1

xi, where xi ∈ [0, C], (D.13)

where N represents the number of network users and n is the number of adjacent
users connected to user i, where user i is considered adjacent to itself. Therefore,
j is the index represents i and all its adjacent over the summation. Rxi

j represents
the updated ratio between true content and misinformation after applying the in-
centivization value xi to the true content HP diffusion model associated with user i.
As noticed in Equation D.12, we square the subtraction 1−Rxi

j to maintain positive
values in the interval [0,∞), while the task is to minimize the loss function as much
closer to 0 as possible (See Figure D.2. It is important to highlight that the total
loss is calculated through the achieved individual loss of each user during the allo-
cation of incentives (e.g., associated LA and its current state value). That means
the total loss ensures optimum or sub-optimum assigned incentivization values over
X, where X can be viewed as the set of all automata current states. Eventually, the
consumption of all incentivization values (LA states) must not exceed the bound C,
which represents the Knapsack capacity.

D.4.5 Misinformation Mitigation

To obtain the optimum or sub-optimum learned states vectors of N automata, we
initialize each individual LAi with an initial state transition probability vector πt0

i ,
and the initial ratio Rxi=0 where no incentivization values yet to be added to the
associated estimated base intensity µt0

i of the relevant HP. Eventually, the initial
fairness loss function F t0

i (xi = 0) is calculated while the Knapsack is initially empty
ct0 = 0. The mitigation algorithm then iterates over the whole LA network until it
converges to all optimum or sub-optimum state probability vectors. Then, converged
states values are suggested as incentivization values for the underlying associated
users on the network. The details of the misinformation mitigation procedure is
shown in Algorithm 1.
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Algorithm 1 Fair misinformation mitigation.
Input: µt0

i , π
t0
i , Rxi=0,F t0

i (xi = 0), ∀i : ui ∈ U, ct0 , and N where |U | = N .
Output: S∗

i ,∀i : ui ∈ U , where |S∗| = N .

1: Let t = 1.
2: while ¬(πt

all ← π∗
all) do

3: for i← 1 to N do
4: if πt

i ̸= π∗
i then

5: ati ← max[P (Sk,j
i ), P (Sk,k

i ), P (Sj,k
i )]t.

6: St
i ← ati.

7: xi ← St
i .

8: ∆xi ← abs(St
i − St−1

i ).
9:

∑n
j=0(R

xi
j )← λ(xi).

10: F t(xi)←
∑n

j=0(1−Rxi
j )2.

11: ∆F (xi)← abs(F (xi)
t − F (xi)

t−1).
12: mi =

∆F (xi)
∆xi

.
13: βt

i ← βt
i(mi,Φ).

14: St+1
i , πt+1

i ← δ(St
i , a

t
i, β

t
i).

15: else
16: continue.
17: end if
18: end for

t← t+ 1.
19: end while
20: return S∗.

D.5 Experimental Setup

In our experiments we design six synthetic social networks {syn1, syn2, syn3, ..., syn6}.
Each with a unique statistical misinformation exposure distribution among users.
The six networks represent the possible real-world scenarios where some user groups
might be highly exposed to misinformation more than other groups on the social
network. Moreover, some individuals in these groups might be also highly exposed
to misinformation more than others from the same group. Allowing for these pos-
sible scenarios in our experiments should stress the evaluation of robustness for a
fair misinformation mitigation resolution. We design our synthetic networks by ran-
domly generate variant true information and misinformation event counts on both
user and network levels. Then, we set different bounds on these synthetic expo-
sures to maintain a variety of statistics for each network. Eventually, we run our
resolution on a real-world social network used in [5] as another benchmark. The
real-world network is a COVID-19 social network and annotated for ordinary and
false re/tweets from Twitter on the 28th of March, 2020. The collected re/tweets
focused on discussions about COVID-19. The criteria for the misinformation an-
notation was if any propagated content urged the public for using false drugs [36]
without any official statements from the health authorities at that time. Within
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Network Knapsack size Overall Misinformation
Syn1 0.06 17.00%
Syn2 0.06 58.00%
Syn3 0.06 88.50%

COVID-19 0.06 89.50%
Syn4 0.18 11.75%
Syn5 0.18 47.25%
Syn6 0.18 86.50%

COVID-19 0.18 89.50%

Table D.1: Configuration details of fair misinformation mitigation experiments on
the proposed social networks

each of our experiments, we consider different mitigation incentivization budget for
the Knapsack capacity to evaluate for different levels of constraints. Due to the
randomness of experiments, we run each for multiple times and take the average as
an estimate of the final outcome. Table D.1 shows the configuration of our exper-
iments, where all networks have 200 users. For the selection of hyper-parameters
values in all experiments, see Appendix A.3 [14].

D.6 Evaluation

D.6.1 Uniform-baseline

To highlight the need for a fair misinformation mitigation method, we make an
analogy with a uniform allocation of the incentivization budget. For instance, if all
or almost network users are equally exposed to misinformation than true content,
a uniform distribution of incentivization budget is theoretically an optimum fair
mitigation strategy. We refer to the latter as Case-0. However, the more the two
content types were unbalanced on the network, the more challenging for a budget
uniform distribution to achieve the desired mitigation results. For example if only
20% of network users were exposed to misinformation, a uniform incentivization
becomes a waste for 80% of the budget, which might cause no mitigation at all since
20% of the budget becomes insufficient to maintain R = 1 for the targeted users.
We refer to the latter as Case-1. Another form of skewness is when the majority
of users are exposed to misinformation but a subset of them are significantly more
exposed to misinformation than others, in such scenario, the uniform method will
suffer as well, since these subset of users will need more incentivization than others.
We refer to the latter as Case-2. It is important to highlight that the purpose
of the HP information diffusion model is to predict future behaviours. Therefore,
the initial distribution of misinformation exposures before any future intervention is
unknown, and a robust incentivization is mandatory to overcome all the potential
misinformation percentages.
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D.6.2 AVG-LA-baseline

We further investigate how our LA-based resolution performs against current existed
LA-based methods [5]. We refer to the latter as AVG-LA, while we refer to our
proposed method as Fair-LA.

D.6.3 Mitigation Efficiency

To evaluate for robustness on multiple social networks’ scenarios, we introduce a
mitigation efficiency metric which is calculated as per the below:

1− a

b
, (D.14)

where a and b are the misinformation percentages after and before mitigation, respec-
tively. According to our synthetic social networks’ different setups (See Table D.1),
Case-1 can be observed in syn1 and syn4, while Case-2 can be observed in syn3,
and syn6. As concluded from Figure D.3, our proposed Fair-LA outperforms both
AVG-LA and Uniform methods in most of the scenarios, especially in Case-1.
Moreover, when Case-2 occurs, Fair-LA still outperforms other methods when the
Knapsack capacity C was larger. From our statistical analysis on the COVID-19
network with 200 users, we observed almost a scenario equivalent to Case-0. There-
fore, the Uniform method performs better than others. However, we can observe
how the efficiency gap is reduced between LA and Uniform when the Knapsack
capacity is more restricted. Eventually, the STD error in the achieved mitigation
efficiency percentages for Fair-LA is significantly lower than AVG-LA which also
shows how our proposed method is more stable.

D.6.4 Fairness Error

Since our proposed loss function (See Equation D.12) is considered a general fairness
concept, we measure how fair the distribution of incentivization budget among all
methods by calculating a normalized total loss. Figure D.4 shows how our proposed
method significantly achieved less fairness error among other methods in all scenarios
with stable STD error as well. Consequently, that resulted in not consuming the
whole incentivization budget by our method. See Appendix A.4 [14] for more details
about how Fair-LA is wisely consuming the Knapsack capacity.

D.6.5 Learning Bias

In the context of our work, a learning bias means unnecessary incentivization val-
ues to be assigned based on incomplete evaluation of users’ needs due to the non-
stationary problem. To reduce such bias, we considered a relatively small learning
rate (the automaton state increase/ decrease value) that ensured all users will be
visited almost equal times before consuming the whole budget. Moreover, the fair-
ness error ensured that no user will consume more than its needs from the budget.
Eventually, political polarization would reshape how the learned incentives could
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actually cause mitigation. Hence, modeling the polarized responses to incentives
should be integrated with our resolution in the future work.

D.6.6 Desired Mitigation Baseline

As demonstrated, the idea of misinformation mitigation is to introduce counter
information by incentivizing users to propagate it on the network. However, a
question remains about to which extend a mitigation should be considered enough.
In other words, what if an equal exposure of counter information to misinformation is
not enough to maintain authenticity on the network. In such scenario, we propose a
balance factor parameter, where the ratios in Equation D.12 are considered fair only
when approaching some balance. For instance, if the desired counter information
exposure needed to be twice the amount of misinformation exposure per each user,
then, the balance factor is set to 2 and the fairness of the ratio R is interpreted
accordingly. See Appendix A.2 [14].

D.6.7 Computation Speed

Due to the criticality of the misinformation problem, time is an important factor
when evaluating misinformation mitigation resolutions. The complete comparison
between AVG-LA and Fair-LA regarding their computation speed is given in
Appendix A.5 [14].

D.6.8 Large Scaled Networks

Appendix A.6 [14] demonstrates how our method could be scaled on larger networks
when sampling techniques are adopted to reduce the optimization space without
sacrificing the mitigation efficiency.

D.7 Conclusion

This paper proposed a socially fair approach to misinformation mitigation on social
networks. We introduced different synthetic social networks to generate diversity
in scenarios where fairness will be critical to how we consume mitigation resources.
Unlike other methods, where the fairness perspective was not considered and there-
fore the social networks which were evaluated were not diverse enough. However, as
a limitation in our work, we did not consider the problem of non-responding users
in a detailed manner. For instance, some users might be extremely polarized to
respond to our incentivization even if their associated HP was responsive. There-
fore, we believe that a model for political polarization can be integrated with our
proposed method in the future.
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Figure D.3: Mitigation efficiency on different social network scenarios. Left image:
C=0.06, right image: C=0.18
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Figure D.4: Normalized fairness error on different social network scenarios. Left
image: C=0.06, right image: C=0.18
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Ahmed Abouzeid, Ole-Christoffer Granmo
Department of Information and Communication Technology

Faculty of Engineering and Science, University of Agder
P.O. Box 509, NO-4898 Grimstad, Norway

E-mails: {ahmed.abouzeid, ole.granmo}@uia.no

Abstract — This paper proposes a modular python implementation of
a storytelling simulation. The software evaluates misinformation miti-
gation strategies over Social Media (SM) and visualizes the investigated
scenarios’ potential outcomes. Our software integrates information diffu-
sion and control models components. The control model mitigates users’
exposure to misinformation with social fairness awareness, while the dif-
fusion model predicts the outcome from the control model. During the
interaction of both models, a graph coloring algorithm traces the inter-
action within specific time intervals. Then, it generates meta-data to
construct visuals of predicted near-future states of the social network to
help support decision-making and evaluate proposed mitigation strate-
gies.
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E.1 Introduction

Our Misinformation Mitigation Storytelling Simulation (MMSS) software works by
receiving social network data. The data must consist of historical observations
regarding the information dissemination behavior for the individual users. Such
behavior is represented by the timestamps of each user for when a particular type
of information was created. The MMSS expects such information to be labeled as
either misinformation or regular content. Then the next task is for the information
diffusion component to model and learn from these recorded observations. Typically,
the information diffusion model task is to predict the future behavior of each user
if either misinformation or regular content will be circulated during a specific time
realization soon. However, the information diffusion model is controlled first before
conducting any predictions, allowing for a misinformation mitigation strategy to
alter the present for better consequences in the future. Therefore, each user is
picked up and assigned an Artificial Intelligence (AI)-based agent to learn how such
a user will influence and be influenced inside the network. The MMSS has a sampler
component to shrink vast networks or target a specific community. Then, the picked
user’s behavior is examined by the controller agent within the sampled network.
Sampled networks can be formed randomly or by targetting specific groups. When
all users are assigned agents and the latter finalized learning and converged, the
controller component reports the results of its interventions to the data visualization
layer to view intuitions about how effective a mitigation strategy could be. The
MMSS helps investigate different mitigation strategies through system parameters.
The experiments and empirical results from adopting our software are illustrated
in [1]. Eventually, reported results are standard colored graphs meta-data that can
be easily integrated with graph visualization software. Figure E.1 shows the main
components and layers of the MMSS software.

E.2 The Motivation for MMSS

Efficient Crisis Management Systems rely on visual analytics to filter and visualize
relevant information extracted from SM platforms like Twitter and Facebook. The
provided analytics from these tools equip emergency responders with different points
of view to explore and better understand the situation and take a specific course
of actions [2]. Recent works have proposed data visualization techniques for emer-
gency operators. These tools took advantage of the large amount of data generated
on the social networks every second. A non-exclusive list of applications is health
monitoring [3], organized crime [4], hate speech [5], and gender bias [6]. On the
other hand, simulation framework designs were introduced for crisis management
as well. The latter has a distinctive advantage in informing emergency responders
of potential risks or preferable actions to mitigate threats in the future. Further-
more, other efforts [7] presented a perennial simulation framework that targets crisis
management simulation. Their framework incorporated concepts of dynamic data-
driven systems, symbiotic simulation, and human-in-the-loop techniques [8]. Others
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worked on visualization-based techniques, [9] and proposed a mass transport sys-
tem simulation to familiarize the operators on the way to handle emergencies by
carrying out virtual drills. To the best of our knowledge, the literature lacks resolu-
tions for simulation-based visualization techniques for the problem of misinformation
mitigation on SM. Hence, the proposed software in this paper tries to fill the gap
and provide a practical resolution to emergency responders to help support their
decision-making when working on an infodemic crisis.

E.3 Methodological Foundation

E.3.1 The Diffusion Model

The information diffusion model is responsible for predicting the behavior of indi-
vidual users on the social network. The model is based on a Multivariate Hawkes
Process (MHP) as practiced by [10], [11], and [12]. A MHP is a multivariate stochas-
tic process [13] which models the occurrence of temporal or spatio-temporal asyn-
chronous events by capturing their mutual dependencies. The behavior of each
individual on the network is modeled through two Hawkes Processes (HPs), one for
the misinformation dissemination the user is involved with and the other for the
regular content dissemination of the same user. The associated user HPs generate
estimated random counts for both information kinds, given some behavior observa-
tion in the past. For instance, predicting future re/tweeted events given the observed
mutual dependencies with other users, where observed dependencies are estimated
from the given social network historical and labeled data. These final counts indicate
the intensity of each behavior style at a specific time realization. Mathematically, a
HP can be defined with its conditional intensity function λ. The conditional inten-
sity function has two significant elements: base intensity µ and exponential decay
function g over an adjacency matrix A which represents the estimated mutual de-
pendencies. The formal explanation of the conditional intensity function is given as
the below equation:

λi(tr|H tr) := µi +
∑
ts<tr

g(tr − ts), (E.1)

where µ is the base intensity that represents some external motivation to propa-
gate some content. On the other hand, g is some kernel function over the observed
history H tr associated with user i from the discrete time realization ts prior to time
tr. g is concerned with the history of some influence matrix Ai., where Aij = 1 if
there is an influence indicating that user i follows user j or quotes (with agreement)
content from j, and Aij = 0 if not. We used an exponential decay kernel function
g = Ai.e

−wt as practiced by [12], where w is the decay factor which represents the
rate for how the influence is reduced over time. For all users, the base intensity
vector µ and the influence matrix A can be estimated using maximum likelihood as
proposed in [14]. To predict all users’ behaviors for each content type, a MHP is
created, given that different intensity rates are generated at different discrete-time
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realizations. Hence, we model each user behavior at each time realization as an es-
timated number of events (misinformation or regular). We utilized the tick library
[15] for our implementation of the Hawkes-based information diffusion model.

E.3.2 The Control Model

On the other hand, controlling the diffusion model means introducing additional in-
formation to the network to alter the diffusion’s future outcomes. The misinforma-
tion mitigation strategies could be implemented by introducing specific information
to the network. For instance, when an individual is exposed to a certain amount of
misinformation and then being exposed to its correction. Such imposed correction
can be viewed as mitigating the impact of manipulating content. Therefore, the base
intensity µ in the regular content HP is the element being under control. Therefore,
For each user, an incentivization value x is added to the external motivation of the
HP. The incentivization values are bounded by a predetermined mitigation budget
C, representing time limitations or other incentivization constraints. Hence, let xi
be the incentivization amount decided for user i and xi ≤ C, the modified HP for
the mitigation purposes can be redefined by the below equation:

λi(tr|H tr) := xi + µi +
∑
ts<tr

g(tr − ts). (E.2)

To intelligently apply incentivizations to the network, we need an intervention
model that can learn from the observed social network dynamics. Therefore, we
utilized Learning Automaton (LA) [16] for its capabilities, easy implementation, and
light-weight computation. We believe easier implementations and lower computation
costs are important and needed for the practicality of our proposed MMSS. For each
individual user, we assign a LA controller to intervene with the simulated user from
the information diffusion model. Therefore, We built a network of user-assigned LAs
[11] for learning optimum incentivization value needed for each assigned user in an
optimum mitigation strategy.

E.3.3 Results Visualization

The data visualization layer takes advantage of our proposed graph coloring algo-
rithm. The latter mainly produces meta-data for colored and sized graph nodes.
The outputted information provides a detailed story that includes temporal changes
in the predicted consequences over the network. For instance, when users start to
follow, tweet, and retweet specific information types with other users, that includes
starting and ending times. The traced temporal information stored for nodes and
edges is important to provide dynamic transitioned graphs overtime frame by frame.
Also, the colored graph meta-data contains different nodes flags to help distinguish
users’ nodes from content nodes. For a fully detailed illustration about the dynamic
graph transitions generated for the different told stories by the MMSS, please visit
the following link: https://www.youtube.com/watch?v=Lqmp4PdWCp4.
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E.4 MMSS Impact and Target Domain

As discussed earlier, there is a critical need for simulation-based visualization tech-
niques for the problem of misinformation mitigation on SM. The proposed MMSS
software provides a resolution and fills such gap. Moreover, the provided mitigation
strategy parameters can help investigating different strategies with different con-
sequences. The latter is a big advantage when working on emergencies and crisis
related to political manipulation for instance. Hence, the proposed MMSS software
can be utilized by emergency responders when an infodemic is causing social disorder
or an extreme level of political polarization based on some political misinformation.
Therefore, mitigating the misleading content on SM could be approached by us-
ing the MMSS to evaluate and adopt learned misinformation mitigation strategies,
where the outcome of the MMSS would be the different consequences of the different
evaluated and simulated mitigation strategies. The latter outcome can also be rep-
resented by a dynamic social network state transitions on temporal basis, generated
by the graph coloring component the MMSS has. The mentioned impact was sci-
entifically evaluated on both real and synthetic data and the work [1] was accepted
under the track of AI for social impact at the AAAI22 venue.

E.5 Adoption of MMSS in Misinformation Research

The development of MMSS considered multiple aspects to provide practicality and
robustness as a misinformation crisis management system. Some of these offered
practicalities are mitigation strategy parameters, traced temporal meta-data while
simulating the mitigation strategy, and an easy and decentralized implementation
inspired by the capabilities of the LAs network. However, the problem of SM misin-
formation is intricate and interconnected with other issues like hate speech, political
polarization, and the echo chamber effect inherited by SM platforms’ technology.
Therefore, we believe the MMSS modular implementation could be the first step
towards a fully integrated pipeline for a storytelling simulation for misinforma-
tion/hate speech/polarization mitigation on SM. The mitigation incentives could
be viewed as motivational causes SM providers can apply to specific users at spe-
cific time intervals. After evaluating different mitigation strategies and supporting
mitigation decisions, how intensive each user’s motivation could be is decided from
the MMSS learning. Moreover, the modular implementation of the MMSS soft-
ware allows for reusing a subset of its components while replacing the others for
the sake of scientific evaluation. For instance, researchers can adopt different con-
troller models to make an analogy between different controllers within the MMSS
pipeline. Similarly, information diffusion model can be replaced with another diffu-
sion methodology.
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E.6 Limitations and Future Work

Modeling human behavior is entirely different and more complicated than model-
ing an artificial system. Hence, formal verification of such social models should
be studied along with interpretable AI consideration in the utilized methods. For
instance, interpretable information diffusion models are highly needed to avoid mis-
taken imitation of users’ behaviors which is considered a drawback of misinformation
classification methods. Additionally, the proposed MMSS depends on labeled his-
torical data from the social network, which makes the MMSS still dependent on such
classification methods. Although, the mitigation approach reduces the risk of these
classifiers’ drawbacks since the former works by incentivization, making a wrong
decided incentivization value less harmful. However, integrating an interpretable
misinformation classifier with MMSS in future work is also highly recommended for
both interpretability and dependability characteristics.
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Abstract — Unlike typical machine learning algorithms such as Artificial
Neural Networks, the Tsetlin Machine (TM) is based on propositional
logic instead of arithmetic operations, promoting it as a novel machine
learning paradigm with interpretable learning outcomes. To this end,
this paper proposes a self-supervised learning scheme inspired by the
self-correction and interpretability provided by a standard TM. The pro-
posed architecture uses a twin of Label-Critic Tsetlin Automata (TAs).
The Label-TA learns the individual samples’ correct labels guided by
a self-corrected TM logical clause. At the same time, the Critic-TA
validates the learning and approves the Label-TA reward. Our empir-
ical results on synthetic and real data show promising capabilities for
self-supervised learning and interpretable clustering. Furthermore, the
Label-Critic TM architecture demonstrates how propositional logic-based
learning provides self-correction with the absence of the ground truths
in data.
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F.1 Introduction

The TM [1] is based on groups of TAs [2] that collaborate to learn unique patterns
in data. Typically, the TM conducts supervised learning where the individual TAs
learn from the provided data labels and features values. A single TA is a finite
state machine that learns by interacting with an environment and updates its state
transition according to a stochastic signal. Depending on the current state a TA
is in, a particular decision is favoured. In the context of TM, each feature in the
training data is assigned a TA. Hence, each TA interacts with its indexed data
feature in all samples and seeks convergence to an optimal decision. In that case,
the decision is to include or exclude the associated feature in a learned propositional
logic statement. From the collaboration of all TAs, a single TM eventually learns
one True clause of propositions, representing a unique sub-pattern with features
corresponding to a specific data class.

A learned clause is a conjunction of literals, where a literal is a propositional
feature input or its negation. The final sub-pattern recognition task can then be
performed according to a voting scheme from all learned clauses against a given
data sample to be classified. Such propositional logic for knowledge representation
provides more interpretable logical rules instead of arithmetic computation found in
deep learning approaches. Furthermore, the core TAs facilitate only incremental and
decremental arithmetic operations during learning, which reduces memory footprints
generated by the TM. Figure F.1 demonstrates how a single TA learns to include or
exclude a feature in a TM clause, where rewards and penalties are stochastic signals
received based on the ground truths in data. The number of states N per each
decision represents the memory depth for that decision, and the larger the depth,
the higher the confidence.

Reward

Penalty

.. .. 1 2 N N+1 N+2 2N

Include Exclude

Figure F.1: TA architecture to include or exclude a feature in a TM clause

The TM clause-based inference structure can be explained in Figure F.2, where
final sub-pattern recognition is achieved from composing multiple clauses from mul-
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tiple TMs before applying the voting. The underlying TAs are coordinated by a
game that optimizes accuracy using the so-called Type I and Type II Feedbacks
which dictate how the reward-penalty signals will be determined from the ground
truths. As indicated in Figure F.2, a standard TM receives a binary vector of fea-
tures as its input. The number of clauses employed is a user set parameter. Half of
the clauses are assigned positive polarity, while the other half are assigned negative
polarity. A class positive polarity clauses are the learned rules that support the class
sub-pattern(s). On the other hand, a class negative polarity clauses are the learned
rules that support that class’s negation. The clause evaluations are combined into
a final output decision (classification) through summation and thresholding.

0 1 0 . . . 1 0 1

0/1 0/1

. . . . 

+ +0/1 0/1- -

0/1 0/1

. . .

sample features

all clauses

output

threshold function

summation

Figure F.2: Standard TM inference structure

During the standard TM learning, teams of TMs are established, where each
team learns the logical rules about a particular class. Hence, Type I Feedback is
triggered whenever the examined data sample has the same class label the TMs team
is tasked for. Hence, Type I Feedback learns frequent features in the sub-patterns.
On the contrary, Type II Feedback is triggered whenever the examined sample has
different ground truth and then learns to boost the discriminative features between
classes. Both Types play the role of rewarding and penalizing all TAs across TMs
teams. For example, a TA receives a reward when it selects the include action on
a feature value of 1 for a sample with the same class the TMs team is assigned for.
Another scenario for rewarding is when the feature value is 0, and a TA selected to
exclude for a sample with the same class the TMs team is assigned for. Furthermore,
rewards are gained in counter scenarios when a feature with a value of 1 is excluded,
and the sample label is from a different class. Similarly, rewards are gained when
a feature with a value of 0 is included as a negated literal, and the sample label
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is from a different class. Type I and II Feedbacks work stochastically to determine
these rewards when their conditions are met; otherwise, they trigger penalties.

F.1.1 Contribution and paper Organization

The main contribution of this work is threefold:

• We propose a novel Reinforcement Learning (RL)-based architecture1 on top
of a standard TM to facilitate hierarchal clustering [3] based on self-corrected
learning [4].

• We provide an interpretable approach to performing clustering tasks.

• We propose an augmentation of the standard TM Feedbacks to self-learn labels
in datasets with large number of unique sub-patterns per class.

The remaining of this paper is organized as follows. section F.2 gives an overview
on the related work. section F.3 explains the proposed Label-Critic TM architecture
and the functionality of its components. section F.4 demonstrates the conducted
experiments setup, datasets, evaluation metrics, and empirical results. The limita-
tion of our work is mentioned in section F.5. Eventually, we conclude the paper in
section F.6 and propose future directions.

F.2 Related Work

Typically, a pretext task is performed first in self-supervised learning, while solving
the pretext allows solving the targeted task. For instance, Zhang et al. [5] colorize
grayscale images by detecting the semantics of the scene and its surface texture
to propose a cross-channel encoder. Pathak et al. [6] propose an unsupervised
visual feature learning algorithm driven by context-based pixel prediction for image
inpainting. In our work, the pretext task can be viewed as narrowing down the
samples that might belong to the same class or cluster by initially assigning them
the same labels. The pretext task usually depends on a supervisory signal generated
from the data features by taking advantage of its structured sub-patterns. Zhu et al.
[7] introduce Auxiliary Reasoning Navigation to leverage additional training signals
derived from the semantic information in the text. Zhang et al. [8] introduce a
self-supervised method that generates affordance labels for images by obtaining a
segmentation mask for the object of interest, then cut it and inpaint the hole in the
context image.

Self-supervised research in speech processing suffers from the absence of vocab-
ulary of speech units over which a self-supervised learning task can be defined. For
example, words in Natural Language Processing make establishing a self-supervised
learning task easier. Therefore, several prominent models are equipped with mech-
anisms to learn an inventory of speech units as proposed by [9], a similar problem

1https://github.com/Ahmed-Abouzeid/Label-Critic-TM
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tackled in [10], [11] for computer vision tasks. Similarly, Caron et al. [12] intro-
duce learning representations invariant to data augmentation. Likewise, this paper
presents augmentation techniques where insufficient information from features gave
poor supervisory signals to our self-supervised algorithm.

Self-supervised learning is highly dependent on how well the pretext tasks are
designed. The pretext tasks could introduce inductive biases during learning, leading
to incorrect final labeling. Huynh et al. [13] recognize false negatives and provide
strategies to utilize this ability to improve contrastive learning frameworks. However,
the majority of these efforts still lack the interpretability in their results. In our work,
we further propose a self-correction mechanism to combat both false negative and
false positive matches, with provided interpretable clustering.

Interpretability is a fundamental quality for an Artificial Intelligence (AI) system.
The TM has shown progress in that matter through recent years. For instance,
Berge et al. [14] use a TM-based approach to learn human-interpretable rules from
examined medical data. Bhattarai et al. [15] show how TM is able to detect novel
content in documents with interpretable linguistic structures. Yadav et al. [16]
introduce TM for word sense disambiguation depending on the surrounding context.
Abeyrathna et al. [17] propose the Convolutional Regression TM for continuous
output problems in image analysis. In all these efforts, the interpretability of TM
results depends on the learned logical clauses. We believe the latter is advantageous
for the self-supervised problems proposed in this paper, since logical clauses could
provide a self-correction mechanism to ensure high-quality supervisory signals during
training.

F.3 Methodology

F.3.1 Proposed Architecture

This paper proposes a novel architecture inspired by the established TM. We refer
to our method as Label-Critic TM where the standard TM capacity is extended to
perform classification or clustering tasks without the guidance of ground truths. To
achieve that, as in the standard TM where TAs are attached on a feature level, we
further attach TAs on a sample level. Hence, each data sample is assigned a single
TA to learn its correct label. The samples’ assigned TAs share same structure where
one of two possible decisions to be made: either the sample belongs to class A or
B. Hence, our approach is similar to top-down hierarchal clustering [18], where all
data samples are considered one large cluster before splitting them into smaller ones
until a cluster converges without further splitting. Recursively, we split the data
into two classes groups: A and B, where each group shares similar sub-pattern(s)
learned by a standard TM. Then, another TM training loop will learn discriminative
sub-patterns for A and B, separately. If no more discriminative sub-patterns were
found, the cluster converges, otherwise, more training loops are performed to further
split. Eventually, data samples in the learned clusters can be labeled according to
the converged cluster. For instance, for six learned clusters, their underlying samples
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labels could be A,A′
, A

′′
, B,B

′
, B

′′ .
When learning an individual sample label, a Label-TA is a single TA assigned

to a sample with a randomly determined initial label. The Label-TA then sends
its decision to the TM team, where the latter learn the clauses, given the data
sample and its decided label. In parallel, a Critic-TA clones the initially decided
labels and sends them to other TM team to perform separate clause learning. The
duality of Label-TM/Critic-TM ensures validation of the final learned clauses, that
is because of the higher probability of noise in training data. Both Label-TA and
Critic-TA validate their decision according to a final True clause generated by their
associated TMs after some post-processing. A True Clause is the final learned
literals that support a particular class. The latter is an example of self-corrected
learning facilitated by the TM propositional logic approach since noise-based literal-
contradicted clauses can be corrected and concluded into one logically True clause.
Figure F.3 shows an example of how Label-Critic TM invokes a class True clause
generation by removing contradicted clauses’ literals caused by noisy training data.
However, the contradictions would exist in literals between two classes clauses as
well, in that case a final True clause per each class is concluded according to the
discriminative literals. For instance, if class A has the positive literal Li, then class
B True clause cannot have the same literal, unless it is negated.

Li Lj Lk Ll Lm

Li Lj Lk Ll Lm Lo

Li Lj Lk Ll Lm Lo

LoTM Clause 2

TM Clause 3

. . . 

TM Clause n

Label-Critic TM True Clause Lj Lk Ll Lm

Lj Lk Ll Lm LoTM Clause 1 Li

Figure F.3: Novel Label-Critic TM invokes the True clause generation by removing
contradicted literals. The figure shows the same class clauses contradiction removal
procedure

As indicated in Figure F.3, the generated clauses by the standard TMs would
have contradicted literals due to the randomly assigned labels. However, proposi-
tional logic-based learning equips the Label-Critic TM with self-correction capabil-
ities. For instance for n learned clauses by a standard TM team for a particular
class, if the kth feature has the propositions Lk, Lk,¬Lk, Lk, it is concluded to Lk

since Lk was canceled only once by its contradiction ¬Lk. At each training epoch
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of the Label-Critic TM, the acquired True clause is accumulated to previous ones
and same literal can have multiple instances in that case, making the True clause
more informative and tuned by adding weighted literals. The generated True clause
literals are then used for a similar voting scheme, just like a standard TM but on
a literal instead of a clause level. Eventually, each Label-TA evaluates its label se-
lection and is rewarded if its decision matches the class which got the higher votes.
However, a Label-TA reward is determined only if its twin Critic-TA has decided
the same label, otherwise penalized. Critic-TAs rewards are received the same way
as in Label-TAs except that they do not require evaluation of their twin Label-TAs.
Figure F.4 demonstrates the fundamental components and recursive cycles of the
proposed Label-Critic TM where a recursive binary classification-based splitting is
performed over the unlabeled data sample.

F.3.2 Augmenting Standard TM Feedbacks

The self-supervised learning proposed by the Label-Critic TM depends on the stan-
dard TM supervised learning mechanism with a minor change. The standard TM
Feedback was designed to match the nature of the supervised learning problem,
where multiple instances of the same feature are provided during features-assigned
TAs learning. However, in our approach, we further attach more TAs to the standard
TM, each TA is attached to an unlabeled training sample. Therefore, a dataset of
unique samples would challenge the accuracy of the decided labels. Such obstacle is
mainly because attached TAs are decentralized per each sample, making one unique
sample not enough to learn a decision. Therefore, instead of augmenting data sam-
ples with a cost to computation time, we augmented Type I and II Feedbacks as
an alternative solution. The latter technique consumed less memory allocation and
gave almost the same expected results. The TM Feedbacks augmentation means
boosting the include and exclude literal action’s effect, by augmenting the state
transitions for each augmented TAi as demonstrated below.

si := si ± λ, (F.1)

where λ is the amount of augmented increase or decrease to the TAi state when
either penalized or rewarded. While in a standard TA and TM Feedback, λ is one
step with value of 1.

F.3.3 Self-supervised Learning Scheme

To provide either a reward or a penalty to each TA selected action (label), we collect
votes from each class True clause (CT

0 , CT
1 ) literals. Each literal would vote +1 or 0

depending on a match with the current sample feature. To reduce voting time, only
features with a binary value of 1 is included in the voting process. Given V0 and
V1 as the final votes for class A and B True clauses, respectively. If the kth feature
in the current sample Xi is 1, a True clause literal Lk should increment +1 to V0.
Otherwise, if the literal is negated (¬Lk), then it increments 0. On the contrary, V1 is
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incremented with +1 if the kth literal is negated (¬Lk), and incremented with 0 if the
latter is positive (Lk). Each class True clause eventually decides either the favoured
class: A IF V0 > V1, or B IF V1 > V0, otherwise, a neutral signal is sent back to
TAi. Consequently, the associated TAi is rewarded with probability P (r) = 1 if
its decision matches the final voted class, otherwise it is penalized with probability
P (β) = ϵ. The parameter 0 ≤ ϵ ≤ 1 is a user set value to allow exploration [19] and
avoid infinite recursions that could occur due to a potential symmetric change in all
TAs decided labels at once. For a sample Xi, given the features set {x1i , x2i , ..., xni },
Equations 2 and 3 demonstrate our proposed self-supervised learning scheme, given
the Label-Critic TM True clauses favoured class denoted by ϕi, where the decided
classes by the sample Xi attached Label-TA and Critic-TA are denoted by ϕl

i and
ϕc
i , respectively.

V0 =
L∑
i=0

1,∀xi ∈ Xi : xi = 1 and Li ∈ CT
0 , (F.2)

V1 =
L∑
i=0

1, ∀xi ∈ Xi : xi = 1 and ¬Li ∈ CT
1 , (F.3)

where ϕi =


A if V0 > V1,

B if V0 < V1,

−1 otherwise,

ϕl
i =

{
A if N ≥ sli ≥ 0,

B otherwise,

ϕc
i =

{
A if N ≥ sci ≥ 0,

B otherwise,

sli =



sli − λ if ϕi = ϕl
i = ϕc

i and 0 ≤ sli ≤ N,

sli + λ if ϕi = ϕl
i = ϕc

i and N + 1 ≤ sli ≤ 2N,

sli + λ if ϕi ̸= ϕl
i and d ≤ ϵ and 0 ≤ sli ≤ N,

sli − λ if ϕi ̸= ϕl
i and d ≤ ϵ and N + 1 ≤ sli ≤ 2N,

sli otherwise,

sci =



sci − λ if ϕi = ϕc
i and 0 ≤ sci ≤ N,

sci + λ if ϕi = ϕc
i and N + 1 ≤ sci ≤ 2N,

sci + λ if ϕi ̸= ϕc
i and d ≤ ϵ and 0 ≤ sci ≤ N,

sci − λ if ϕi ̸= ϕc
i and d ≤ ϵ and N + 1 ≤ sci ≤ 2N,

sci otherwise,
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where d is a random number between 0 and 1, and the state si is bounded by
the TA action’s memory depth.

F.4 Experiments Setup and Empirical Results

F.4.1 The Data Guess Game

Naturally, data classes can be viewed as a set of unique sub-patterns. There could
be one or more unique sub-patterns in data samples, representing different levels of
diversity in a single data class. A unique sub-pattern is a distinct features vector
where a single or multiple samples would share. We challenged our method to play
a data game; we refer to it as the guess game. The purpose of the guess game is
to guess data labels, correctly. The guess game has three primary difficulty levels,
representing simple to more complex data. Therefore, we adopted different types
of unlabeled datasets represented by synthetic, semi-synthetic, and real data. Fig-
ure F.5 shows an example of the game level-1 dataset, where each class is represented
by only 1 unique sub-pattern, where each of the latter has identical samples. How-
ever, the more unique sub-patterns in such a dataset, the more difficult to distinguish
between the data classes.

Level-2 dataset had two classes, a class had either 2 or 5 unique sub-patterns.
It is a semi-synthetic dataset because we augmented the samples to obtain identical
samples per each sub-pattern. The unique sub-patterns were extracted from the
MNIST dataset [20] for the digits Zero and One. On the other hand, we used
the original MNIST dataset for the game’s third level, where also two digits were
extracted but with at least 500 unique sub-patterns per digit (no augmentation).
The latter scenario is more challenging and replicates real-world datasets where a
single class can be represented by hundreds or thousands of distinct samples.

F.4.2 Evaluation Metrics

F.4.2.1 Winning Probability

a straightforward evaluation metric to measure the consistency of the Label-Critic
TM in playing the guess game. Therefore, the game was played over n rounds, and
the probability of winning was simply calculated as how many rounds were won over
all rounds. The game is won only if all labels were correctly identified.

F.4.2.2 Silhouette Score

an evaluation metric [21] used to calculate the goodness for a clustering procedure.
Its value ranges between −1 and 1, where a value closer to 1 means that clusters
are well apart from each other. We believe that metric is more convenient for level-
1 experiments where samples are identical for the same class. Moreover, it was
convenient to use when evaluating other clustering methods.
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F.4.2.3 Visual Interpretation of Clusters

where the visual representation of clusters are the evaluated output. That demon-
strates the interpretability of our method. We believe this is more convenient for
an image-based dataset like MNIST. Therefore, the visual interpretation is mainly
used for the second and third levels of the guess game.

F.4.3 Empirical Results

To assess our proposed Label-Critic TM architecture with an analogy to a simpler
one, we set the guess game for 50 rounds. Then, we evaluated the Label-Critic
TM against a standard TM with only attached TAs for guessing the labels while
dropping the Critic-TAs. Figure F.6 demonstrates how the Critic-TAs architecture
significantly boosted the probability of winning. In that experiment, we employed
three synthetic datasets; each had a different number of unique sub-patterns where
a class is represented by only 1 unique sub-pattern. In all datasets, the number of
samples per class was 100, and the number of features was 400, where the number
of examined sub-patterns was 2, 4, and 6.

On the other hand, to assess the Label-Critic TM architecture on a more chal-
lenging scenario with an analogy to clustering benchmarks [22], we evaluated eight
datasets, each has different number of sub-patterns up to 10, where 1 unique sub-
pattern per class. Figure F.7 shows how Label-Critic TM along with the DBSCAN
method outperformed other clustering methods, including hierarchal-based cluster-
ing such as the Agglomerative method. In a game of 10 rounds, two synthetic data
groups were evaluated. The first data group represented small balanced datasets
with 400 features and 300 samples per class. The second data group represented
relatively larger and unbalanced datasets with the number of features up to 2, 000,
and the number of samples varied among classes. For instance, one class had 1, 000

samples while another had only 300 only.
The learning loops of Label-Critic TM can be observed in Figure F.8 where the

learning is achieved through optimizing the total number of penalties from all the
Label-TAs. The number of original classes in data dictates how many standard TM
training loops are required to keep splitting the data into smaller clusters. Loops
would eventually converge after some epochs. In some cases, due to the randomness
of label initialization, a loop would be repeated if it reaches a particular epoch
(threshold) without convergence.

For a higher level of difficulty in playing the gues game, we considered a class
to be represented by a combination of unique sub-patterns instead of a single one.
Hence, we introduce a semi-synthetic dataset with up to 5 unique sub-patterns per
class. For that, The digits Zero and One were extracted from the MNIST. The
MNIST images were converted to binary features vector where the values 0 and
1 were decided upon some threshold in the original dataset feature values. The
5 unique sub-patterns were augmented into 1, 500 samples per digit, 300 per sub-
pattern. The Label-Critic TM managed to guess correct labels with classification
accuracy of 1.0. Figure F.9 shows the accurate fetched clusters and interpretability
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cabailities of the Label-Critic TM. As observed in the visual clusters, only 3 sub-
patterns were extracted from 10 sub-patterns as in the original data, demonstrating
how Label-Critic TM merged clusters that seemed similar.

The cluster visuals were obtained by reshaping the clusters associated True
clauses literals to a 28 × 28 matrix using the literal indices to place them in their
associated image pixel position. Then, a positive clause literal was intrepreted as
a black pixel while negated literals were left white. For non-image-based datasets,
measuring distances between learned True clauses would help in merging clusters as
well.

Eventually, Figure F.10 shows how the Label-Critic TM managed to recognize
18 unique sub-patterns from the real MNIST dataset filtered by only the digits Zero
and One and with 500 samples per digit. Therefore, the 1, 000 samples represented
1, 000 unique sub-patterns of hand-written Zeros and Ones. By setting λ = 300

instead of augmenting the samples as in previous experiments where λ = 1, the
Label-Critic TM labeled the data samples with an accuracy of around 0.70 and
almost accurate clusters. However, the underlying learned True clauses can be
used to improve the classification accuracy as a further post-processing step. This
experiment demonstrates level-3 of the guess game where the difficulty is maximized
as in real-world scenario datasets where a single data class has hundreds or thousands
of unique sub-patterns. Such difficulty can be observed in the visualized clusters with
unclear patterns.

F.5 Limitation

According to our observation, the Label-Critic TM did not converge to the final
clusters as fast as other clustering methods like Kmeans and DBSCAN. Furthermore,
when evaluated on the real MNIST samples without sample augmentation, the total
penalties optimal value was a bit above 0, meaning not all Label-TAs converged.
The latter behavior demonstrates how the classification accuracy dropped from 1.0

to 0.70 after testing on real MNIST data.

F.6 Conclusion

Self-supervised learning has attracted enormous awareness for its data efficiency and
generalization capability. However, self-supervised methods still lack interpretation
in their results and suffer from obtaining a convenient evaluation of the identified
data groups. The paper proposed a novel self-supervised learning scheme where data
samples can be classified without knowing the ground truths and number of classes
in training data. The proposed method demonstrated how our TM-based learning
scheme can benefit from the logical clauses and self-correct itself. Moreover, the final
True clauses were fundamental interpretable elements for the generated clusters.
Future work would focus on improving the computation time of the Label-Critic
TM architecture. Moreover, investigating the cababilities of our method on other
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datasets with larger number of classes and distinct samples per class. For instance
the complete MNIST and textual datasets.
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Figure F.4: Novel recursive self-supervised Label-Critic TM architecture
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Figure F.5: Synthetic sub-patterns in proposed unlabeled data samples where a
class is represented by only 1 sub-pattern. As noted, completely distinct literals
only exist on 2 sub-patterns (2 classes)

Figure F.6: Performance over 50 game rounds for both Label-Critic TM and the
vanilla TM
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Figure F.7: Label-Critic TM performance comparison with benchmark clustering
algorithms over 10 game rounds on balanced and unbalanced synthetic data
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Figure F.8: Recursive self-supervised Label-Critic TM learning curve of conducted
loops over different number of sub-patterns, one sub-pattern per class
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Learned Sub-pattern 1 Learned Sub-pattern 3Learned Sub-pattern 2

Figure F.9: Label-Critic TM interpreted clustered sub-patterns from augmented
MNIST dataset, filtered with 5 unique sub-patterns per Class and augmented

Figure F.10: Label-Critic TM interpretable clustered sub-patterns from original
MNIST dataset
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Abstract — Intervention-based mitigation methods have become a com-
mon way to fight misinformation on Social Media (SM). However, these
methods depend on how information spreads are modeled in a diffusion
model. Unfortunately, there are no realistic diffusion models or enough
diverse datasets to train diffusion prediction functions. In particular,
there is an urgent need for mitigation methods and labeled datasets that
capture the mutual temporal incidences of societal bias and societal en-
gagement that drive the spread of misinformation. To this end, this paper
proposes a novel representation of users’ activity on SM. We further em-
bed these in a knapsack-based mitigation optimization approach. The
optimization task is to find ways to mitigate political manipulation by
incentivizing users to propagate factual information. We have created
PEGYPT, a novel Twitter dataset to train a novel multiplex diffusion
model with political bias, societal engagement, and propaganda events.
Our approach aligns with recent theoretical findings on the importance
of societal acceptance in information spread on SM as proposed by Olan
et al. (2022) [1]. Our empirical results show significant differences from
traditional representations, where the latter assume users’ exposure to
misinformation can be mitigated despite their political bias and societal
acceptance. Hence, our work opens venues for more realistic misinfor-
mation mitigation.
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G.1 Introduction

In the past decade, Farajtabar et al. (2016) introduced a novel intervention-based
approach for incentivizing users on social networks to change their activities [2, 3].
In this paper, we focus on applying such intervention to mitigate misinformation1 on
SM with Reinforcement Learning (RL) agents [5, 6, 7]. The purpose is to intervene
with the network and learn how to incentivize users to propagate factual information,
the latter is also known as truth campaigning. In brief, each RL agent monitors a
single user i and must persuade those in her friend or follower zone (e.g., users j
and k).

Consider the example when a user k is exposed to misinformation because of
manipulative influence from user l. To counter the influence user l has on user k,
user i would have to exert effort to persuade user k. Consequently, user i should
be incentivized to propagate sufficient counteracting information. Conversely, other
users with less victimized friends or followers may, to a smaller extent, need such
incentivization.

In practice, the capacity to incentivize users may be limited. Then a problem
arises if user i misspends the available incentivization budget, e.g., to convince both
j and k when only k needs incentivization [8, 6]. To address this problem, fairness-
based mitigation techniques [8] were proposed to ensure that all network users make
better use of a limited incentivization budget.

Intervention-based misinformation mitigation approaches usually utilize an in-
formation diffusion model [9] to predict the network dynamics and user propagation
patterns at a specific discrete time window in the future. Hence, the RL agents
can learn about optimal incentivization policies from the simulated environment
by the diffusion model [6]. These RL agents, when interacting with the diffusion
environment, form a control over the simulated dynamics of users’ activities. The
control model tries to optimize a loss function by learning optimal incentivization
strategies under budget constraints. This task was solved as a multi-agent knapsack
optimization problem [10, 5, 8]. However, there are still some research gaps and
open questions to obtain a more realistic information diffusion and misinformation
mitigation. Therefore, we discuss below some of the main challenges.

(A) Information Diffusion Accuracy: Information diffusion models are nec-
essary for intervention-based misinformation mitigation since applying and evalu-
ating multiple intervention strategies on the real social network is infeasible. In a
diffusion model, some users’ activities are predicted to simulate and mimic the net-
work dynamics. Traditionally, for the problem of online misinformation mitigation,
these activities are the users’ temporal propagation of misinformation, and normal
information [6]. However, that comes with a challenge, as the model would have
an inaccurate prediction of the real-world network propagation of these activities.

1The term misinformation is sometimes used to refer to all forms of fake news/content. However,
in some literature, misinformation is defined as the unintentional spread of false content, while
disinformation is the on-purpose spread [4]. In this paper, we refer to all forms of false content,
including political propaganda, as misinformation.
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Moreover, such critical drawbacks, if occurred, will also affect the veracity of the
optimization decisions made by the control model.

(B) Predicting Users’ Engagements: SM users’ engagements occur when
users like, comment, or repropagate other users’ content. Extending an information
diffusion model to simulate more patterns, such as user engagements, is a clear ad-
vantage. For instance, that would answer an important and open research question:
how do we model the incidence of engagement between those who spread misinfor-
mation or victimized by it — and those who would be incentivized to propagate
counterinformation? The latter question is important because political bias can
cause people not to be interested in engaging with other ideas when incentivized to
do so. Consequently, the learned incentives would be meaningless and not represent
the actual behaviors on the network. To that end, users’ activity representation in
diffusion models must be studied wisely. Therefore, which network propagation at-
tributes should be included in such representation becomes a fundamental question
to obtain a robust solution for the problem.

(C) Insufficient Representation: The currently proposed solutions for mit-
igating online misinformation [6, 11, 7] suffer from invoking all critical network
features in the mitigation and diffusion models. The latter drawback exists be-
cause of the limitation in the available datasets [12], from which diffusion models
construct the diffusion prediction function as well. That shows how these datasets
[13, 14, 15, 16, 17, 18] do not reflect on the advances from the social science, a field
where the problem of societal interaction is significantly relevant. For instance, a
recent study illustrates how societal acceptance [1] on social networks can determine
the level of effectiveness when introducing factual information. In the latter study,
Olan et al. (2022) proposed a conceptual framework of how the concept of societal
acceptance explains how communities on SM form societal circles and deny the ac-
ceptance of outliers. A societal circle can be defined as a societal bubble on SM [19]
where a circle is a group of biased users agreeing on a particular opinion or idea.

Thus, modeling the mitigation over sequential misinformation diffusion needs
modeling of temporal activities such as societal circles formulations (e.g., when users
agree and engage with particular ideas), societal bias incidents (e.g., when users
propagate something of a particular bias), and misinformation (e.g., when users
propagate false information).

G.1.1 Contribution and Paper Organization

This work addresses challenges B and C as introduced above, which indirectly con-
tributes to the challenge A since more realistic network dynamics representation
could lead to more accurate information diffusion. We propose modeling the diffu-
sion of users’ engagements, misinformation/normal information, political bias, and
societal circles. Hence, our proposed diffusion model is a multiplex diffusion model
[20] where multiple interconnected and interdepended diffusion groups interact. Our
hypothesis is as follows. What governs users’ activity and how their discussions go
is a universe of ideas. Previous studies on the so-called SM filter bubbles [21] can
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support the latter assumption. These bubbles’ associated ideas construct societal
circles, where each circle gathers a subset of people inside it by engaging with the
concept it represents. Overlapping between circles may exist, but that does not
mean no extreme polarization between them could happen simultaneously.

Polarization causes some of these circles to produce misinformation, which per-
sists in such polarization according to how the SM platforms’ algorithms are designed
[22]. From there, misinformation circulates through these circles with varying de-
grees of influence. As a result, reducing polarization and misinformation requires
weakening the circles that cause or are influenced by misinformation more than
others.

In our proposed solution, a harmful circle is weakened when the number of people
engaged with its underlying ideology is significantly reduced. Such counts and their
variety are obtained from an information diffusion model that predicts temporal
activities such as the propagation of authentic content, misinformation, political
bias, and societal circle engagements. We highlight this paper’s main contributions
below while providing open access to the control model source code2 and dataset
with its post-processing scripts and documentation3:

• We introduce PEGYPT, a novel misinformation dataset with temporal labels
on political propaganda, bias, and societal circle formulation dynamics.

• Based on the above dataset, we introduce a novel technique to represent users’
activities on social networks with our proposed Multiplex-Controlled Multi-
variate Hawkes Processes (MCMHP) diffusion model.

• We propose a novel optimization loss function that takes temporal bias, propa-
ganda, and information from societal circles as part of its domain and guides
the control model reward function.

• We extend the recently proposed intervention-based misinformation mitigation
algorithm [8] to support scaling up network size through Monte Carlo-based
point process simulation with a small sample size. Further, we couple our
novel loss function with the algorithm.

• We provide both quantitative and qualitative analysis to show different be-
havior between a recently introduced misinformation mitigation loss function
[8] and our proposed loss function that considers more convenient domain
attributes such as societal bias and societal circles.

The rest of this paper is organized as follows. section G.2 provides a literature
review, briefly explaining related technical details. Then, section G.3 illustrates
the proposed misinformation mitigation loss function, a novel multiplex information
diffusion model, a novel simulation technique, and a novel dataset with multiple
temporal events. Empirical results, evaluation, and analysis are given in section G.4.

2https://github.com/Ahmed-Abouzeid/MMSS_extended
3https://github.com/Ahmed-Abouzeid/PEGYPT
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A brief discussion about our proposed approach and its limitations and concerns is
given in section G.5. Eventually, section G.6 concludes the work and suggests future
directions on the topic.

G.2 Related Work

The problem of misinformation propagation on SM has attracted attention in the
past decade. Both technical and philosophical efforts were made to investigate the
nature of the problem, its fundamental concepts, and potential solutions. For in-
stance, recent studies investigated the negative impact of misinformation on society
and how SM providers are taking action to reduce misinformation propagation [1].
The latter study highlighted the importance of the societal acceptance concept and
its association with online content and SM platforms. In that manner, they stated
how the social network assembles ideological sub-networks or circles which try to
attract people who share similar values and increase the propagation and polariza-
tion inside these common circles. Further, these circles clamp down on outsiders
who question or oppose these circles’ values.

Moreover, psychological inoculation improved resilience against misinformation
on SM [23]. The latter approach applied interventions to users to inform them about
the manipulation techniques so they could distinguish fake content from authentic
one. In the latter study, one of the primary purposes was to focus on reducing mis-
information susceptibility rather than stopping it. The latter scenario of mitigation
rather than stopping is more realistic since the nature of the technology makes it
impossible to stop the propagation of misleading content completely. For example,
in political contexts and bubbled online discussions on SM platforms, the confir-
mation bias makes people believe in what is aligned with their political beliefs no
matter how authentic it is [24].

As a proposed technique for a wide range of tasks, Artificial Intelligence (AI) was
utilized [25] to address the problem of online misinformation. There are two tasks
where AI can be utilized for the problem. On the one hand, it is the classification
of misinformation, and on the other hand, it is the mitigation of misinformation
exposure and its influence on SM users.

There are different approaches being adopted for the misinformation classifica-
tion task. For instance, content-based [26] Machine Learning classifier approach
focused on extracting the textual features of online circulated news articles and
their headlines. In the latter approach, word embedding techniques were adopted to
represent the semantics of the article’s contents. In addition, these features could be
derived from visual information like typical images, comics, or deceptive pictures.
Such multi-modal approaches took advantage of the combination between text and
image-based features and showed more efficient detection for some applications [27].

Further, fake news detection based on contextual information was widely adopted
in the literature [28]. In the latter, the content representations considered the co-
occurrence between a word i and the context word j instead of only relating words
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to a whole article or content. Additionally, the social context was modeled by
connecting publisher-news relations and user-news interactions simultaneously [29].
The latter technique improved the detection performance in some applications as
well.

Despite the significant enhancements from the above-mentioned efforts, different
challenges [26] stand against fake news detection. For instance, detecting unseen
events became an obstacle since news events would have unseen features during the
training of the original classifiers. Furthermore, noisy multi-modality is possible
since fusion mechanisms would generate inefficient representations. More impor-
tantly, adopting detection approaches is essential, but more is needed — because
judging online content or users’ authenticity would violate freedom of speech [30].
That is, it became challenging in political contexts to draw a sharp line between
what is fake and what is not. Hence, more democratic approaches were needed and
proposed as we discuss below.

Recent utilization of RL methods on the problem of online misinformation showed
that learned policies that expose social network users to factual information would
significantly mitigate the effect of misinformation [6, 5, 8, 7]. The mitigation ap-
proach can be considered an extension of the detection approach since its first task
is to learn users’ activity patterns from the classified historical events on a SM plat-
form. A common mitigation technique is truth campaigning [8] where the purpose
is to learn an optimal mitigation strategy that incentivizes network users to ensure
the optimal delivery of factual information to everybody on the network.

There are different proposed incentivization techniques. For example, the latter
can be delivering personalized verified news articles to suit users’ reading preferences
[31]. However, in RL-based truth campaign, the typical way of incentivization is
to learn about the number of incentives per user that would acquire her to accept
propagating the verified information on the network [6, 5, 8]. In the latter approach,
based on these optimal incentives, the mitigation model ensures a maximal delivery
of the authentic content which would achieve maximal mitigation.

The utilization of the RL framework means that an intervention with the network
users is conducted. The intervention procedure allows the RL agents to learn about
the user’s activity. These activities are simulated with an information diffusion
model, commonly a Hawkes Process (HP) [32].

The temporal activities of users on SM are usually logged with annotations in
datasets that are used to train an information diffusion prediction function [6, 5].
The latter function predicts the information type it was trained on, e.g., misin-
formation or authentic content activities. Unfortunately, the available datasets
[13, 14, 15, 16, 17, 18] need more enriched users’ activity information. For ex-
ample, modeling users’ activity only through their dissemination patterns of either
true or false content does not inform the diffusion model about other aspects, such as
political bias and societal engagement. Hence, this paper proposes a novel represen-
tation of users’ activity, where temporal patterns of bias, societal engagements, and
content authenticity were considered when modeling the RL agents’ interventions.
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G.3 Methodology

This section gives a detailed introduction to our novel users’ activity representation
and how to utilize that for a solution of misinformation mitigation on SM. Hence,
subsection G.3.1 demonstrates our proposed users’ activity dataset’s collection and
annotation processes. Further, subsection G.3.2 explains our proposed MCMHP
architecture that encapsulates these representations in a more realistic information
diffusion model for how misinformation and other interconnected events circulate
over the social network. subsection G.3.3 and subsection G.3.4 respectively illus-
trate our novel optimization loss function and our proposed idea of controlling users’
activity variables to help optimize the loss, achieving misinformation mitigation and
a societal acceptance boost. Eventually, subsection G.3.5 explains our simulation
technique for large-scale networks and how we determine the truth campaign incen-
tives for each user.

G.3.1 PEGYPT Dataset

The dataset samples were collected from Egyptian Twitter hashtags which discussed
the Egyptian presidential election, 2018. The data were extracted using Twitter API
between 24th and 27th of March 2018, a few days before and during election voting
days. The data samples represented three categorized temporal events: political
bias, societal circles engagement, and political propaganda. The forms of these
events varied between original tweets, quoted tweets, retweets, and replies from all
associated hashtags (check hashtags details here4) in the Arabic language. The final
numbers for users and events were 10,534 and 36,390, respectively.

Egyptian specialists manually annotated these temporal events while following
a systematic approach to ensure consistency when evaluating text or media con-
tent in a tweet. That was achieved by establishing predefined keywords and some
combinations of the latter (check for details here5), so when they exist — a partic-
ular judgment (label) is made to the content and overwrites the human given label.
Hence, during the annotation process, we aimed to avoid the human bias factor [33]
by these predefined keywords that were agreed upon as a code for either propaganda
or political bias. For instance, if a content had religious statements and keywords, it
was considered as political propaganda, even if the annotator is religious. The latter
process yielded around 20% of the events’ labels based only on these keywords. We
named the dataset as “PEGYPT", abbreviated from the terms: Polarized, Egypt.

In the below sub-sections, we describe the criteria for how we annotated the
three categorical events. Further, unlike the limited and static labels in the existing
datasets [13, 14, 15, 16, 17, 18], we highlight how our novel approach for temporal
labeling of social network events opens the venue for an extended analytical capacity
of the information diffusion and mitigation tasks, as explained later in section G.4.
For example, when labeling temporal changes of political bias and societal engage-

4https://github.com/Ahmed-Abouzeid/PEGYPT/blob/main/tags.txt
5https://github.com/Ahmed-Abouzeid/PEGYPT/blob/main/annotate_propaganda.py
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ments, we could trace how these variables evolve during an intervention-based truth
campaign. Finally, we provide statistical properties of the collected social network
data to give a better understanding of the context for our experiments.

G.3.1.1 Temporal Bias Label

The temporal bias label had three possible values which evaluated whether the
user-created or engaged-with content was neutral (0), biased towards (1) or against
(-1) the election process. Unlike assuming a static political bias for users [11], our
temporal bias captures whether users changed their opinions when they engaged with
or generated content over time and hence — had contradicted bias between different
contents. That helped to trace the changes in the frequencies of bias levels during
the conduction of the truth campaign and the misinformation mitigation. The latter
guided learning more realistic incentives based on traced users’ willingness rather
than assuming they would accept whatever incentives they would be offered.

G.3.1.2 Temporal Propaganda Label

The temporal propaganda label illustrated the temporal patterns of users with re-
gard to sharing politically manipulative content, in the following sense. The label
had two possible values, which described whether the content was political propa-
ganda (1) or not (0). The criteria for the latter were based on whether a user misled
readers by using religious expressions or misleading propaganda to manipulate the
facts.

G.3.1.3 Temporal Societal Circle Label

We defined societal circles as the finite set of different ideologies in online content,
where each user engages with one or more ideological circles over time. In that
context, an engaged user of a content ideology means a user who created, quoted,
retweeted, liked, mentioned, or replied to that content. The PEGYPT dataset had
six societal circles, where a circle ideology in content was defined according to the
combination of bias and propaganda labels values. Figure G.1 and Figure G.2 give
a better idea of how these combinations constructed the circles.

We extracted the temporal circle information from each content to obtain the
temporal incidents of societal circles events (i.e., temporal labels). In that manner,
for each content, we extracted the ideology of the content and associated it with the
content creation time. On the same content, we further extracted other engagement
forms with their creation times and associated ideologies. For example, when a user
generates a primary tweet with a particular bias and authenticity level, we consider
that as a particular temporal societal circle event. If the latter content had other
engagements such as replies, mentions, likes, retweets, or quotes, we consider other
temporal societal circles accordingly. Thus, a societal circle becomes a structure
that changes its density through time (i.e., the number of users represented in its
predefined ideology changes over time).
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Propaganda Perspective

Bias Perspective

non-propaganda all time

propaganda all time

diverse

biased against all time

biased to all time

diverse

neutral all time

Figure G.1: Colored graph from the PEGYPT network dataset, where nodes and
edges represent users and their engagement, respectively. Colors represent the prop-
agation over time of a particular content type
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Social Circle C

Social Circle E

Social Circle B

Social Circle F

Propaganda Perspective

Propaganda Perspective

Propaganda Perspective

Propaganda Perspective

Bias Perspective

Bias Perspective

Bias Perspective

Bias Perspective

Figure G.2: Extention to Figure G.1: Colored graph from some PEGYPT sub-
networks which represent most populated societal circles. Nodes and edges represent
users and their engagement, respectively. Colors represent the propagation over time
of a particular content type

233

G



Modeling the temporal changes of societal circles structure is essential to char-
acterize a wide range of the network’s user activities. That is why a user’s engage-
ment with a societal circle was defined according to whether that user liked, replied,
retweeted, quoted, or was mentioned in a tweet belonging to that particular circle
concept. That means, engaging with a societal circle did not necessarily mean agree-
ing with its underlying idea. The reason behind that approach is that we wanted
to trace users’ exposures to online content realistically, and timestamped users’ in-
teraction was the tangible measure we could have found. That was different from
previous misinformation mitigation methods [6, 11, 8] where the exposure measures
were considered based on the network connections (e.g., following relationships),
regardless of whether an interaction will occur. The latter matter significantly im-
pacts how the mitigation incentives could be decided since the mitigation algorithm
highly depends on content exposure calculation and will be learning from unrealistic
estimation if the latter is not appropriately modeled.

G.3.1.4 Dataset Details

Table G.1, Table G.2, and Table G.3 show some statistics of the PEGYPT dataset
and some example criteria keywords for determining propaganda and bias labels,
respectively. According to Table G.2, some keywords were observed in the collected
dataset samples and indicated political manipulation and propaganda. These key-
words could also be related to different bias directions since manipulation on the
network was from both sides. The made-available dataset files provide the complete
details of the associated hashtags and all criteria keywords for both propaganda and
bias labels.

To show how misinformation manifiested in the collected social network, Fig-
ure G.1 shows colored graphs from the two perspectives: political bias and political
propaganda, where nodes colors represent how individual users circulated their con-
tents. Figure G.2 also demonstrates an example of the same perspectives for the
most crowded societal circles, where some circles were more harmful than others.
The complete details of all societal circles and their ideological concepts can be
viewed in Table G.4. Hence, we can observe how the societal circle F was the most
harmful to the top population.

According to Amnesty’s reports on Egypt’s human rights situation and witnesses
about how fake the election process was6, we evaluated our mitigation model for the
scenario of breaking circle F by incentivizing its members to join other unharmed
circles, such as circle B, which was a non-propaganda circle that opposed the elec-
tion. Thus, in our experiments, we considered the mitigation campaign to oppose
the election itself. Further, the mitigation campaign must do that without spread-
ing propaganda to manipulate the public. Hence, a circle with same bias as our
mitigation campaign such as circle E was also considered harmful because it is a
propaganda circle.

6https://www.amnesty.org/en/latest/news/2018/01/egypt-authorities-must-cease-interference-
in-upcoming-election-and-set-guarantees-for-free-candidacy/
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Table G.1: PEGYPT dataset statistics

Metric Value
Total population 10,534
Number of events 36,390
Number of societal circles 6
Number of graph edges 22,058
Graph modularity 0.596
propaganda users(%) 0.336
Non-propaganda users (%) 0.471
Variant propagation users (%) 0.193
Only biased to-users (%) 0.435
Only biased against-users (%) 0.513
Only neutrally biased-users (%) 0.009
Variant bias users (%) 0.043
Propaganda events (%) 0.536
Non-propaganda events (%) 0.463
Biased to-events (%) 0.515
Biased against-events (%) 0.478
Neutral bias-events (%) 0.006
Biased to + propaganda events (%) 0.429
Biased to + non-propaganda events(%) 0.087
Biased against + propaganda events (%) 0.107
Biased against + non-propaganda events (%) 0.371

Table G.2: Example keyword(s) for the "Is-Propaganda=1" label

Keyword(s) Translation
Z @YîD

�
�Ë @

�
�k For the sake of maryters

�
éJ
Êë@ H. Qk Civilian war

AK
Pñ�Ë Èñj
�
J
�
K To become like Syria

AJ

	
KYË@ X@ ù




�
®J.
�
K To become superior over all the world

�
é
	
Kñ

	
k Betrayals

A¾K
QÓ

B ÉJ
Ô

« American agent

Èñ
�
®K
 úÍAª

�
K é<Ë @ God says

ÉJ
Ô
« ¡

�
�A

	
K A betrayal political activist

é<Ë @ ÐC¿ Words of god
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Table G.3: Example keyword(s) for the bias label

Keyword(s) Translation Label
	á�
K
Qå�Ó AK
 @ñË 	Q

	
K @ We Egyptians must go and vote 1

A
	
J
�
JkQ

	
¯�

�
KAK. A

	
j
�
J
	
KB@ This election is our joy 1

½��


KP PA

�
J
	
k@ Choose your president 1

P@ñ
�
�ÖÏ @ ÉÒº

	
K

	á�
Ë
	PA
	
K We will vote to continue the way 1

½
�
J�
K. �Ó

	QË @ Stay home -1
�
éjÊK. Sarcastic nickname of the presidential only candidate -1

Table G.4: Societal circles concepts and population

Circle Concept Population
A neutral bias + non-propaganda 86
B bias against + non-propaganda 1,581
C bias towards + non-propaganda 992
D neutral bias + propaganda 2
E bias against + propaganda 775
F bias towards + propaganda 2,084

G.3.2 Information Diffusion Models

To facilitate an intervention environment for the RL agents to learn about users’
activity, an information diffusion model is required to simulate the dynamics of social
networks. We simulated the latter using a Multivariate Hawkes Process (MHP). A
MHP is a multivariate point process [34] that models the occurrence of temporal or
spatiotemporal asynchronous events by capturing the self-and/or mutual excitation
(dependencies) between these events. In our context, the MHP is multivariate over
the network users.

Through users’ activity across the temporal information collected from the PE-
GYPT dataset, each user was represented by a multiplex HP [20] to predict her
future activity on different diffusion groups. In that manner, the diffusion groups
represented the temporal patterns of propaganda, non-propaganda, bias towards,
bias against, neutral bias, and, eventually, all societal circles’ engagement events.
Therefore, for each diffusion group, there was a MHP for all users, and the relevant
group events from PEGYPT data were used to train the diffusion group prediction
function over its users.

The associated user HPs are volume-based diffusion models which generated
estimated random counts for all event categories, given some activity observations
in the past. These counts indicated the intensity of the process at a specific time of
realization. Hence, a HP for user i can be defined for any diffusion group with its
conditional intensity function λi. The intensity function has two main components,
base intensity µi, and an exponential decay kernel function g over an adjacency
matrix A. The formal explanation of the conditional intensity function is given by
Equation G.1.
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λi(tr|H tr) := µi +
∑
ts<tr

g(tr − ts). (G.1)

Where µi represents a base intensity that models some external motivation to
propagate some content. g is some kernel function over the observed history H tr

associated with user i from the discrete-time realization ts prior to time tr. g is
concerned with the history of some influence matrix A, where Aij > 0 if there was
an inferred influence between user i and user j, and Aij = 0 if not. We utilized an
exponential decay kernel function g = Ai.e

−wt, where w is the decay factor where
1 > w > 0, and represents the rate for how the influence decays over time. For all
users, the base intensity vector µ and the influence matrix A were estimated using
the maximum likelihood algorithm for the HP [35].

To model the intervention-based mitigation across all diffusion groups, a MCMHP
was created, where different diffusion groups were controlled and predicted by a net-
work of Learning Automata (LAs) [8] and MHPs, respectively. We discuss the details
of the LAs network in subsection G.3.3.

The diffusion groups encapsulated our proposed novel representation of users’ ac-
tivity on SM. They characterized the interdependence between information veracity-
related events, societal bias levels, and societal engagements-related events. Ana-
logically to current approaches of misinformation mitigation [6, 11, 7], Figure G.3
shows our design of diffusion and control models interaction, compared to the typical
existing design as shown in Figure G.4.

To evaluate the MHPs predictions, we compared the predicted counts for a dif-
fusion group for all users with the real counts on a test dataset. Therefore, and as
shown in Equation G.2, an absolute average error ϵ was calculated to measure how
close to reality a MHP prediction was. Where n is the number of users and NH, NR

represents the counts of the arrived events from Hawkes prediction and real data,
respectively. The calculation was made between the time stages ts and ts +∆.

Ets+∆ =
1

n

n∑
i=1

|[NH
i (ts +∆)−NH

i (ts)]− [NR
i (ts +∆)−NR

i (ts)]|. (G.2)

Figure G.5 demonstrates how we organized the temporal diffusion group’s asso-
ciated samples from the PEGYPT dataset — to train (estimate µ and A) the MHP
where the temporal events counts per user were aggregated into ordered discrete
time realizations.

The core idea behind a MHP-based mitigation task is to intensify a particular
event in a diffusion group to produce more occurrences against another harmful event
type(s). Users-associated HPs for the to-be-intensified event category should be
modified to achieve that. Hence, let si be the incentivization amount decided for user
i, and the modified HP for mitigation purposes can be redefined by Equation G.3.

λi(tr|H tr) := si + µi +
∑
ts<tr

g(tr − ts), (G.3)
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Figure G.3: A toy example of a social network with 6 users and the proposed design
of MCMHP interaction, where each LA state is shared between all diffusion groups
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Figure G.5: Feeding the MHP with a diffusion group’s samples from the PEGYPT
dataset
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where si is a parameter to be optimized for user i for the mitigation targeted
event category, the optimal values for s across all users were governed through
a restricted incentivization budget knapsack optimization and a loss function to
dictate the rewarding of a RL agent, associated with each user. In our solution, we
associated a LA for each user as the individual RL agent that learns the optimal
value of si.

G.3.3 Controlling of Multiplex Diffusion Groups

As a control model over the stochastic MHP environment, we utilized the LA [36] for
its easy decentralized implementation and lightweight computation when compared
to traditional RL techniques adopted for the probelm of misinformation mitigation
[6, 7]. The LA learns by interacting with the MCMHP and updates its actions or
state transitions according to the stochastic signal from a MHP counts-based loss
function. In our proposed solution, each LA is attached to each user to learn an
optimum/sub-optimum state s∗, where the latter represents a discrete decision value
for each user’s incentive in the mitigation campaign. As indicated in Figure G.3,
these incentives (LAs states) are shared across all diffusion groups to embrace the
interdependencies between the different aspects of users’ activity. The LA seeks
convergence at such an incentive value by optimizing the latter through the loss
function. The latter dictates the potential reward or penalty of the LAs, and the
LAs updates their states accordingly. The loss function evaluates its gradient when a
LA increases its state and causes new predicted volumes from the different diffusion
groups in the MCMHP. Hence, if the loss slop declined, then the LA should be
rewarded. If inclined, the LA should be penalized.

Figure G.6 demonstrates how challenging optimizing such loss function through
each associated LA state transition, where optimal states could be non-stationary
due to the interdependencies and complexity between all diffusion groups, i.e., some
users’ optimum value s∗ will determine the optimum s∗ for others. The latter prop-
erty persists due to the mutual dependencies between users on the MHP-generated
dynamics. That means how many incentives a user i would need could make it
unnecessary for an engaged user with user i to have many incentives when both
share the same other engaging users. Therefore, for user i, if si is optimum and
consequently, for user j, sj is not. Then, given s′i as another possible incentive value
for user i, s′i could still be optimum while sj is also optimum. This non-stationarity
occurs then because the LAs while consuming the incentivization budget — have to
intervene with their associated users in sequential order, not simultaneously.

When saddle points occur, particular LA state transitions and rewarding tech-
niques are applied as proposed by Abouzeid et al. (2022) [8] since we utilized
the same LAs network-based control model. The complete details of how each LA
learns its incentive value and updates its state transition probabilities are given in
Appendix H of this paper.

We extended the LAs network-based control model with a Monte Carlo sim-
ulation technique [37] over multiple interventions {e1, e2, ..., e∗}. Hence, the con-
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Figure G.6: Non-stationarity of an optimal automaton state in its individual loss
function trajectory over time

trol model could interact with random samples instead of the whole network. We
repeated the latter procedure over hundreds of sampled networks, and then we
calculated the expected values of individual converged s∗ values over all samples.
We believe this approach opens the venue for scaled-up misinformation mitigation
frameworks where the real network size would reach hundreds of thousands of users
and more. Moreover, obtaining a probability distribution for a user’s decided incen-
tive allowed us to measure the level of uncertainty in the solution (see subsubsec-
tion G.4.3.1).

G.3.4 Optimizing Societal Acceptance with Fairness

The criteria for successful mitigation were based on how eventually the sampled
network users would be less exposed to the harmful content since the incentiviza-
tion should boost the amount of authentic content on the network. Therefore, the
optimization task was to reduce a total loss function during the intervention. To
achieve the latter, a LA per user conducted the intervention by suggesting a shared
incentive value to modify the associated HP diffusion group by which the politi-
cal manipulation would be mitigated. Thus, we wanted to incentivize the diffusion
groups’ events of non-propaganda, bias against, and societal circle B with the same
shared incentive value.

During learning, after an intervention step e, a dedicated individual loss function
is responsible for the evaluation of the current incentive of its user. At the same
time, the MCMHP predicted temporal events information was given as the function
domain. Hence, for an individual user i, all other users’ predicted activities (from
all diffusion groups) were passed to the individual loss function i. Ideally, the total
loss function should converge to a steady point after multiple interventions across
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all users.
We extended the fair mitigation loss function introduced by Abouzeid et al.

(2022) [8]. In the latter, the distribution of incentives was conducted according to
user needs. In that manner, we keep maintaining the concept of fair incentiviza-
tion. However, in addition to representing only temporal events for misinformation
and authentic content, we propose additional information on the temporal societal
circles and temporal bias, to model the occurrence of engagement and its nature,
respectively. That means we predict the propagation of authentic content (e.g., non-
propaganda), propaganda, engagement of users with societal circles, and eventually,
the bias directions of users at a specific intervention step e and time realization
tr. We think such a combination gives more close-to-reality dynamics from diffu-
sion modeling and characterizes the societal acceptance concept that governs social
networks [1]. Equation G.4 and Equation G.5 demonstrate our novel loss function.

min F(sU) :=
N∑
i=1

Λ
′

i(si) + F(si), where F(si) :=
n∑

j=0

(2−Rsi
j − Λj(si))

2, (G.4)

subject to
|sU |∑
i=1

si, where si ∈ [0, C]. (G.5)

The term sU represents the set of passed users’ incentives, where the sum of
the latter set cannot exceed the incentivization budget C as demonstrated in Equa-
tion G.5. Further, as indicated in Equation G.4, an individual loss function for a
user i is evaluated first by measuring how the incentive value si affected all other
users with an engagement relationship to i. Hence, the term Rsi

j defines the expo-
sure counts ratios between non-propaganda npg and propaganda pg events for all
engaged users with user i at a particular time realization tr.

A user i exposure to a particular event category (e.g., non-propaganda) at a
particular time realization tr is the count of all events from users engaged with user
i at tr. Equation G.6, Equation G.7, and Equation G.8 show how Rsi

j is calculated,
while a user-associated ratio closer to 1 means a boosted non-propaganda exposure.
A ratio that exceeds 1 means an unnecessarily high incentive value assigned to that
user, which indicates unfairness. In Equation G.6, ξ is a tiny smoothing positive
value close to 0 to avoid division by Zero when propaganda events do not exist for
some users. Also, b is a mitigation balance factor to satisfy a mitigation campaign
threshold. For example, b = 2 if successful mitigation means the exposure to non-
propaganda should be at least twice the exposure to propaganda, and hence the
unfairness happens if the ratio exceeds 2.

Rtr
i (si) :=

ξ + npgtri (si)

(ξ + pgtri ) · b
, (G.6)

pgtri :=
tr∑
s=0

n∑
j=1

Aij · pgtsj , (G.7)
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npgtri (si) :=
tr∑
s=0

n∑
j=1

Aij · npgtsj (si). (G.8)

The term Λj(si) is calculated according to Equation G.9, and it represents a
joint probability of two events. First, cj, which is the probability that an engaged
user j with user i would engage with the societal circle to which the mitigation
campaign tries to attract people to. Second, the probability that j being in the
same bias of the mitigation campaign and is denoted as biasj. It is essential to
highlight that such probabilities are calculated after applying the incentives si and
sj from the associated interventions, which would change the generated counts for
bias and societal engagement HP events. Hence, Λj(si) measured the probability of
the societal engagement with the circle we seek acceptance of its concept, and the
probability of agreeing with that circle during such engagement.

Λj(si) := P (cj) · P (biasj). (G.9)

While interventions cause different incentives and accordingly different diffusion
volumes, given an increased value of Λj(si) will decrease the loss function, and the
associated LAi will be rewarded.

The individual loss for user i could also be increased by Λ
′
i(si), which represents

the probability of user i not being in the same bias direction of the mitigation cam-
paign. That means no matter how engaging users with i would agree and engage
with the circle we seek — the loss will always be high if user i’s bias disagrees with
the mitigation campaign. The latter mechanism means that users will consume in-
centives wisely and according to their probability of accepting the incentives instead
of naively assuming they would. Equation G.10 shows how the latter probability is
calculated.

Λ
′

i(si) := 1− P (biasi). (G.10)

G.3.5 Monte Carlo Simulation

Let us assume the network sample has n users, where n = 3 (see Appendix H of this
paper), and each associated LA has the state depth M (M + 1 possible incentive
values). Then, we can demonstrate the following procedure. Let the users i, j,
and k be the sampled network users at intervention step e. Then, sU = {sei, sej,
sek} is the discrete state values of the associated LAs at e. Hence, the converged
states and final obtained results from the interventions can be assigned to the below-
modified HPs diffusion prediction functions for the three given users. The modified
HPs should suggest an optimum or sub-optimum predicted activity on the network
if the obtained state values were passed as incentives. The latter should satisfy the
minimization of the total loss function F(s∗U) in Equation G.4. Where

∑|s∗U |
i=1 si ≤ C.

λi(tr|H tr) := se
∗
i + µi +

∑
ts<tr

g(tr − ts), (G.11)
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λj(tr|H tr) := se
∗
j + µj +

∑
ts<tr

g(tr − ts), (G.12)

λk(tr|H tr) := se
∗
k + µk +

∑
ts<tr

g(tr − ts). (G.13)

Equation G.11, Equation G.12, and Equation G.13 together construct the incen-
tivized users on the network for a particular event type in a specific diffusion group.
Thus, the MCMHP can be viewed as replicating these incentives for all desired
events in targetted diffusion groups. For instance, the optimal value si is shared
across non-propaganda, bias-against, and circle B engagement events to incentivize
their associated HPs. Same concept applies for all users.

Since multiple samples are taken during the Monte Carlo sampling procedure,
the final determined value for any s is the expected value of the random variable
s on its distribution. Hence, for the user i, given a converged random variable
se

∗
i from w Monte Carlo samples, the vector s∗i = {s∗1, s∗2, ..., s∗w} represents an

example for the possible obtained values from converged automaton LAi state over
w samples, where the user i was sampled w times. Further, the distribution vector
di = {p(s∗1), p(s∗2), ..., p(s∗w)} represents the probabilities for s∗i entries. Therefore,
the final incentive value for a given user i is the expected value for s∗i over its samples.

Equation G.14 shows how the final incentives were determined, where the final
incentivization vector for all users is a vector of all expected values calculated over
all sampled networks, where U is the set of all users.

s∗∗U = {∀s∗i ∈ s∗U : E[s∗i ] =
w∑
l=1

s∗l p(s
∗
l )}. (G.14)

G.4 Empirical Results

G.4.1 Experiment Setup

In our experiments, we considered a subset of the PEGYPT dataset where only
users with high engagement frequencies were selected. The avoiding of sparsity was
necessary for the MHP parameters estimation since the latter requires a sufficient
number of events per user. Furthermore, high engagement was essential to study
typical social network dynamics where extreme political polarization and propa-
ganda govern the network. Hence, we extracted users with at least six temporal
events while keeping similar percentages of propaganda and bias levels as in the
original PEGYPT dataset. The final social network had 940 users and 20, 084 tem-
poral events. Table G.5 shows the complete details of the obtained social network
for the experiments.

We used a sample size of 100 users to construct the sampled networks during the
Monte Carlo simulation. We also ran the sampling 100 times to ensure each user will
have a probability distribution of the obtained incentives to calculate its expected
value. We utilized a time realization period of 180 minutes for the time realization
structure. That means events per user (see Figure G.5) were grouped every three
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hours and passed to the MHP model. The latter structure helped estimate the MHP
parameters as the grouped event counts were enough to infer the influence matrix
A and the base intensity µ. We set the Knapsack budget C = 2 and LA state depth
M = 500.

Table G.5: The social network used in the experiments as a subset of PEGYPT

Metric Value
Number of Users 940
Number of Events 20,084
Only Biased Towards-Users (%) 0.44
Only Biased Against-Users (%) 0.50
Variant Bias Users (%) 0.06
Propaganda Events (%) 0.55
Non-propaganda Events (%) 0.45
Max Number of Events per User 177
Min Number of Events per User 6
Number of Societal Circles 5
Number of Graph Edges 6,619
Graph Modularity 0.519
Graph Density 0.015

From the final 940 users’ network, we established eleven MHPs to model the
different behavioral aspects of the network via a multiplex diffusion. We ran the LA
control model on two different environments setup based on two utilized loss func-
tions for the optimization. The latter setup allowed us to monitor how our proposed
societal acceptance representation constructed another environmental behavior for
the LA control while learning the incentives.

To mitigate the misinformation caused by political propaganda, we incentivized a
group of MHPs through the shared incentive value being learned. For example, when
a user is incentivized to create or retweet non-propaganda content, the same content
declares a particular bias direction. The latter, combined with the non-propaganda
content, belong to a specific societal circle as introduced earlier in Table G.4. Hence,
the non-propaganda event category was not the only modified MHP — but the
relevant events categories for both bias and the particular societal circle were also
intensified with the exact amounts represented by the LA state.

To replicate the results and clarify how each MHP was configured and estab-
lished, we demonstrated the eleven MHPs simulations in Appendix I of this paper,
with their customized configurations and purposes. Further, the experimental net-
work had only five circles, as indicated in Table G.5 since circle D had two members
only, which was challenging to simulate. Nevertheless, that did not influence the
validity of our experiments.

245

G



G.4.2 MHP Simulation Evaluation

We ran the eleven simulations and reported their results in Table G.6. We adopted
two evaluation metrics to measure how each MHP was reliable enough for the pre-
diction. First, we calculated the average absolute difference error E as explained
earlier in Equation G.2. We then applied the Z statistics to compare the predicted
counts with the actual counts.

As indicated in Table G.6, we obtained lower E and Z values. For more detailed
information about the MHPs simulation performance, see Appendix J C of this
paper.

Table G.6: MHP simulations performance evaluation with a flag indicating the
incentivized MHPs

MHP Z E Incentives
Bias-towards 0.59± 0 0.30± 1.31 No
Bias-against 0.55± 0 0.35± 2.32 No
Bias-against-sampled 0.38± 0.25 0.37± 1.44 Yes
Propaganda-sampled 0.30± 0.24 0.52± 1.25 No
Non-propaganda-sampled 0.32± 0.28 0.48± 1.41 Yes
Circle A 0.02± 0 0.02± 0.26 No
Circle B 0.27± 0 0.23± 1.47 No
Circle B-sampled 0.39± 0.25 0.37± 1.50 Yes
Circle C 0.02± 0 0.06± 0.62 No
Circle E 0.09± 0 0.00± 0.07 No
Circle F 0.01± 0 0.03± 0.28 No

G.4.3 Control Model Evaluation

In this section, we evaluated and compared our proposed loss function to the pre-
viously introduced mitigation fairness loss function [8]. We refer to our proposed
loss as Societal Acceptance + Fairness since the latter still holds the fairness con-
cept when distributing the incentives. At the same time, it is essential to highlight
that it was not feasible to evaluate other control models [6, 7] since their structure
depends on an entirely different dataset and representations, where temporal bias
and societal circles were not modeled. Further, this work’s main focus was to as-
sess the novel representation of users’ activities. Hence, we utilized the same control
model proposed in [8] to extend its fairness loss function with the societal acceptance
concept. We employed three evaluation metrics as below.

• Propaganda Mitigation: a traditional mitigation evaluation metric [5, 8]
to calculate the percentage of how much reduction happened on the users’
exposure [6] to propaganda through the engagement relationships with each
other. Equation G.15 illustrates how this metric was calculated, where x

and y are the political propaganda percentages after and before mitigation,
respectively. Hence, the higher this metric, the better.
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Propaganda Mitigation := 1− x

y
, where x ≤ y : y ̸= 0. (G.15)

• Polarization Mitigation: evaluated the percentage of how much harmful
polarization was mitigated on the network. For instance, since the campaign
task was to convince users against the manipulation in the election, that metric
measured how the bias-towards the election among users was lessened after
optimizing the incentives. To measure that, the probability distribution over
the three bias levels of each user was calculated first, and then we calculated an
average percentage of the bias-towards over all users. The latter was calculated
twice: once when using the learned incentives to calculate the distribution from
the MHP predictions and once when there was no intervention at all. Thus,
the polarization mitigation was calculated following the same concept as in
Equation G.15.

• Societal Acceptance Boost: similar to the above metric, but measuring the
percentage of how much the societal acceptance increased on the network. We
defined societal acceptance as the breaking of circle F by letting its users accept
ideas from circle B. That means we measured the joint probabilities of being
engaged with circle B and being biased-against the election (see Table G.4).
Similarly to the above metric, we calculated the probability distributions over
circle F members to measure how far the intervention succeeded in breaking
circle F and allowing its users to accept the societal circle B concept.

Table G.7 shows how our proposed societal acceptance representation outper-
formed the traditional fairness-only when mitigating polarization and boosting soci-
etal acceptance during the misinformation (i.e., propaganda) mitigation. However,
we can observe that the percentage of propaganda exposure mitigation was signifi-
cantly higher than the percentages in both polarization and societal acceptance. We
believe that was due to the traditional less strict definition of propaganda content
exposure and its mitigation metric [6, 8]. The latter usually consider the counts of
events a user is assumed to access through a following/ engaging relationship on the
network [6]. However, we believe that would be a naive assumption since following
relationships or past engagements do not guarantee actual exposure in the future.
Therefore, it was essential to adopt more strict metrics from our proposed represen-
tation, such as the actual dynamics of societal acceptance and polarization, which
estimated how likely an engagement would occur and to what degree it would be
an agreeing engagement inherited from its associated bias. Therefore, our proposed
novel representation allowed for calculating the three metrics together, which gave
a better justification of the performance.

One of this paper’s main motivations and purposes was to analyze the achieved
mitigation efficiency to verify what it represented and how the control model learned
the incentives. That is because a computational social model evaluation is considered
one of the most challenging tasks [38] since the latter lacks a systematic pattern to
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Table G.7: Control model obtained performance on utilizing different optimization
loss functions. The result is an average over 3 independent runs

Metric Fairness Societal Acceptance + Fairness
Propaganda Mitigation 0.89±.05 0.88± .05

Polarization Mitigation 0.23± .10 0.26 ±.09
Societal Acceptance Boost 0.16± .03 0.19±.05

consider as ground truth. Therefore, we propose the below analysis to help apply
some quantitative and qualitative analysis on the model’s performance.

G.4.3.1 Analysis

Figure G.7 and Figure G.8 demonstrate the difference in behavior between the two
mitigation loss functions despite their similar propaganda mitigation performance
captured in Table G.7. For instance, Figure G.7 on the left side explains how
the top 200 incentivized users’ engagement was distributed among the different
societal circles, i.e., the top most users who consumed the incentivization budget
and their societal engagements. We observe that the fairness loss function-based
mitigation consumed most of the incentivization budget on users who contributed
to around 60% of the engagement in circles F and C. Although circle F was the
most harmful circle and circle C also had a different bias than the incentivization
campaign (see Table G.4). On the contrary, after considering the societal acceptance
representation, our proposed loss function consumed most of the budget on less than
30% of these circles’ contributors. The latter behavior indicates how the temporal
bias and societal circles’ information matured the mitigation more and incentivized
users based on the probabilities of accepting the incentive while the fairness loss
function incentives were given irrationally.

Moreover, on the right side of Figure G.7, lesser distribution of incentives was
the other way around for users engaged with the circles F, C. That indicates how
vital these circles were for the incentivization campaign to target and assign more
incentives. However, that was done more wisely by the societal acceptance loss
function.

Further, Figure G.8 gives an example of how we break the other circles to push
users to join circle B by engaging with it and accepting its ideology, not engaging by
disagreeing. Hence, we observe how the probability of being biased-against and being
engaged with circle B increased. The latter represents modeling the engagement
occurrence, while the former models the acceptance of that engagement since circle
B represents a bias-against concept. That also demonstrates how representing the
temporal bias and societal circles’ engagements allowed for tracing and analyzing
the associated users’ activities of these events.

Eventually, on the left side of Figure G.9, we show how the LAs environment,
characterized by our societal acceptance representation, was more strict and gave
fewer rewards. We believe that was due to the more interdependent variables con-
sidered in the societal acceptance-based loss function. However, such rigidity helped
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Figure G.7: Incentivized users’ circles engagement
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Figure G.8: Example of breaking the societal circles by incentivizing some users to
circle B
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achieve higher polarization mitigation and societal acceptance in addition to slightly
more certainty of the learned incentives. The latter can be viewed on the right side
of Figure G.9, where we calculated the Shannon entropy of the individual incentives’
probability distribution which was obtained over the Monte Carlo sampling. We can
observe there were more users with significant zero entropies when the societal ac-
ceptance loss function was applied. The entropies values in Figure G.9 are only for
users with different obtained entropies between the two loss functions.

G.5 Discussion

Unlike the recently proposed work [6, 5, 8, 11, 7], instead of directly modeling
the misinformation volumes and exposures, and learn incentives accordingly, we
first model the relevant network dynamics that derive these exposures. The lat-
ter extended the analytical capacity of the solution as deomnstrated in Figure G.8.
However, the reader might wonder about the reason behind not modeling societal
acceptance directly instead of modeling the bias and engagement separately. That
means defining the temporal societal circles based on acceptance rather than en-
gagement in general. Then, modeling the temporal societal circles’ acceptance by a
HP to predict the acceptance in the next time realization. In the latter scenario, we
will lose the capability to trace and analyze the detailed users’ activity, such as the
interaction with contents, either by agreeing or disagreeing. The latter information
is crucial for any further analysis required on the network.

We extracted user engagements from the direct engagement relationship in the
historical data to evaluate the influence of incentives during the intervention. How-
ever, indirect engagement or influence could also be considered in future attempts.
For instance, if user i engages with user j, and user k engages with user j, then users
k and i could be considered indirectly engaging together. This influence-cascading
technique could also be applied when we consider other influence patterns instead
of engagements, such as the following relationships.

G.6 Conclusion and Future Work

The social sciences are studying the societal acceptance concept on social networks
to extract the key elements that can describe human behavior regarding information
dissemination. Recent efforts revealed the importance of understanding the relation-
ship between fake news, social network platforms, and societal acceptance. There-
fore, this paper considers the interdependencies between the latter in a proposed
computational social model for mitigating online misinformation. Our proposed
model encapsulates novel representations of users’ activity, such as temporal polar-
ization patterns, community engagement, and propaganda dissemination. Derived
from the latter three temporal patterns, we establish a more realistic information
diffusion and mitigation models.

Future work should include a self-supervised detection [39] of the different tempo-
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Figure G.9: Average cumulative rewards during incentive learning with entropy of
the finally decided incentive value
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ral events instead of the manual annotation. Moreover, more verification techniques
should be studied to ensure realistic obtained incentives that would help in the
real world. Eventually, the information Twitter API could provide to researchers is
considered a limitation since the timestamps of likes are not provided.
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Appendix H

Paper G Supplementary

H.1 Control Model

The individual Learning Automaton (LA) system associated with each user and
the whole network system can be viewed as Markov systems through the state
transitions of the LAs and the joint probabilities of the latter. Figure H.1 illustrates
both the individual LAi state transitions probabilities matrix Si and the whole
LAs joint probabilities matrix P . Where state transitions and joint probabilities
change between an intervention step e until convergence to a steady state and joint
probability of being in such states by the intervention step e∗. As indicated in
Figure H.1, each LAi can only perform a state transition by moving one step either
to the left, right, or staying at the current state. Eventually, the state transition
convergence for each LAi means it converged to a transition probability of staying
at its current state with a value close to 1.

Further, the joint probability of being in a particular state for all LAs determines
the final incentive values on a sampled network. These state transitions are governed
by a reward and penalty signal β as shown in Figure H.2. Such a signal comes
from evaluating the gradient of the total loss function. For instance, if the total loss
declined compared to its previous value, the LA which caused that will be rewarded,
and its state transition will be committed. Otherwise, it will be penalized and should
stay in its current state. We adopted the same probability calculations and reward
function of the utilized LAs as proposed in [8].
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Appendix I

Paper G Supplementary

I.1 MHP Simulations Setup

I.1.1 Bias-towards

In such Multivariate Hawkes Process (MHP), we simulated the temporal bias activity
of all the 940 users. That means we trained an MHP with timestamps and event
counts aggregated over the time realizations period of the samples labeled as bias=1.
Hence, for each user and time realization (e.g., 180 minutes), all timestamps within
the time realization window were structured accordingly. For instance, the 1st time
realization had only the timestamps for events where their Twitter creation times
were within the first three hours of the 24th of March 2018. Accordingly, the 2nd time
realization contained the bias-towards samples timestamps that occurred between
3:00 AM to 5:59 AM on the same day. Then, we kept shifting the time realizations
and their associated timestamps the same way until day 27th 8:59 PM, where the
following three hours of the day were not part of the MHP training since they were
left for testing the exact three hours predictions.

We set the decay factor for this MHP to 0.6. The primary purpose of such MHP
was to predict all users’ bias-towards activity to calculate the initial probability of
being biased toward the election. The probabilities for each user were calculated
according to the frequency of having an associated event belonging to the label
bias=1 in training and predicted data. This process was not incentivized and was
only created to calculate such probabilities for the optimization loss function domain
(see Equation G.4, Equation G.9, and Equation G.10).

I.1.2 Bias-against

The same concept of the Bias-towards-MHP training also applies to this process.
Therefore, we established it to predict all the 940 users’ activity for the bias-against
event category to calculate the initial probabilities of users being biased against the
election (see Equation G.4, Equation G.9, and G.10).

We set the decay factor to 0.7. It is essential to highlight that this process was
not incentivized. Alternatively, we established the same MHP event category as
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discussed below but only for a sampled network (100 users), where that process was
incentivized.

I.1.3 Bias-against-sampled

This process had the same training timestamps concept as the above two MHPs.
The difference between a sampled bias-against-MHP and the 940 bias-against-MHP
is that the latter was used to estimate the initial probabilities of being against the
election. At the same time, the former was essential to predict these probabilities
after intervention and assigning the incentives. That means some of these proba-
bilities would change, indicating how good the incentives were for some users for
mitigating the bias towards the manipulating election campaign and optimizing the
loss function (see Equation G.4, Equation G.9, and Equation G.10). Therefore,
this process was incentivized with the amounts of state values from the converged
LAs. It had only 100 users since it was part of the simulated MHPs during the
Monte Carlo simulation. Hence, we intervened with the sampled network and eval-
uated each user inside it for the associated LA state value because our proposed
non-propaganda incentivization also presented a bias-against concept.

We set the decay factor to 0.9 in this process. Since this is a sampled network
of users, this process was repeated with different samples for both training and
prediction.

I.1.4 Propaganda-sampled

In this process, we have followed the same structure for training the timestamps but
only for the sampled 100 users. The process was repeated with a different sample for
training and prediction each time. This MHP was not incentivized since we did not
wish to intensify the propagation of political propaganda and was only simulated to
obtain the predicted counts for users. The obtained counts were used in the ratio
parameter for the optimization loss function (see Equation G.4 and Equation G.6).
We set the decay factor for this process to 0.9.

I.1.5 Non-propaganda-sampled

Similar to the propaganda-sampled MHP, we established a repeated MHP for the
non-propaganda event category where a random sample represented the timestamps
for training and predicting the activity of the sampled users (100 users). This
process was incentivized with the incentive amounts from the current evaluated
user’s associated LA state value.

This process had a decay factor of 0.6. The predictions in this process were
the direct outcome of the intervention procedure and assigning of an incentive for
the current examined user during the Monte Carlo simulation. Therefore, the event
counts were evaluated as part of the ratio parameter in the optimization loss function
(see Equation G.4 and Equation G.6).

G

264



I.1.5.1 Societal Circle A

To predict all users’ activity on the network on how they engaged with the societal
circle A, we established this MHP on all the 940 users to predict their future gener-
ated events for that circle. The same training timestamps structure was adopted for
the MHP with a decay factor of 0.9. Since this is not a sampled network MHP, we
ran it only once to be able to predict the initial probability of engagement with circle
A (see Equation G.4 and Equation G.9) for each user without any incentivization.

I.1.6 Societal Circle B

The exact purpose of the societal circle A-MHP was adopted in this process since
all societal circles on all the 940 users must be predicted to calculate the initial
probabilities of being in a specific societal circle. Since this process was used to
calculate the initial probabilities, we did not apply any incentivization. We assigned
the decay factor for this process with 0.9.

I.1.7 Societal Circle B-sampled

The only main difference between the sampled societal circle-B-MHP and the non-
sampled circle-B-MHP is the repetition and incentivization in the former. This
MHP was incentivized since we wanted to break other circles by intensifying the
engagement with it in addition to agreeing. If the latter had occurred, we would
increase the probability of engaging with circle B and agreeing with what it repre-
sents, which optimizes our loss function (see Equation G.4 and Equation G.9). This
process followed the exact configurations in the non-sampled societal circle-B-MHP.

I.1.8 Societal Circles C, E, F

These three MHPs are identical to the non-sampled circle-A and non-sampled circle-
B MHPs. Since we had to consider, all circles predicted counts to calculate the initial
probabilities of engaging with a circle. The only difference was the decay factors
used as we assigned them with 0.75, 0.9, and 0.9, respectively.

Eventually, we ignored simulating circle D since it had only two users in the
original PEGYPT dataset, which was not enough to train a MHP. However, our
results were reliable since they had only two users.
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Appendix J

Paper G Supplementary

J.1 Simulation Results

Figure J.1 gives an example of some simulations with 100 users’ real versus predicted
event counts.
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Figure J.1: An example of some simulations with 100 users’ real versus predicted
event counts
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