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Abstract: Video anomaly event detection (VAED) is one of the key technologies in computer vision
for smart surveillance systems. With the advent of deep learning, contemporary advances in VAED
have achieved substantial success. Recently, weakly supervised VAED (WVAED) has become a
popular VAED technical route of research. WVAED methods do not depend on a supplementary
self-supervised substitute task, yet they can assess anomaly scores straightway. However, the
performance of WVAED methods depends on pretrained feature extractors. In this paper, we first
address taking advantage of two pretrained feature extractors for CNN (e.g., C3D and I3D) and ViT
(e.g., CLIP), for effectively extracting discerning representations. We then consider long-range and
short-range temporal dependencies and put forward video snippets of interest by leveraging our
proposed temporal self-attention network (TSAN). We design a multiple instance learning (MIL)-
based generalized architecture named CNN-ViT-TSAN, by using CNN- and/or ViT-extracted features
and TSAN to specify a series of models for the WVAED problem. Experimental results on publicly
available popular crowd datasets demonstrated the effectiveness of our CNN-ViT-TSAN.

Keywords: attention; convolutional neural network (CNN); Mahalanobis distance; multiple instance
learning (MIL); vision transformer (ViT); weakly supervised video anomaly event detection

1. Introduction

Fully supervised, unsupervised, and weakly supervised are the three dominant
paradigms in video anomaly event detection (VAED). The fully supervised paradigm
mostly gives a high performance [1]. Nevertheless, frame-level normal or abnormal anno-
tations in the training data are essential, which requires the video annotators to localize
and label abnormalities in videos. As abnormalities can take place at any time, nearly all
frames need to be spotted by the annotators. Unfortunately, it can be a non-automated and
time-consuming process to accumulate a fully annotated large-scale dataset for supervised
VAED.In the unsupervised paradigm, the models are trained on samples of normal events
solely, along with a common assumption that the unseen anomaly videos will have high re-
construction errors [2–4]. Unluckily, the performance of unsupervised VAED is commonly
inferior, due to its lack of advance understanding of anomalies, as well as its inability to
capture all kinds of normality variants [5]. The weakly supervised approaches are thus
considered to be the most practical paradigm, over both unsupervised and supervised
paradigms, due to their competitive performance as well as annotation cost-effectiveness,
by applying video-level labels to lower the cost of laborious fine-grained annotations [6,7].

Nowadays, WVAED has become an established VAED technical route of research [6–16].
The WVAED problem is mainly regarded as an MIL (multiple instance learning) prob-
lem [8]. In general, WVAED models directly output anomaly scores by comparing the
spatiotemporal features of normal and abnormal events through the MIL. The MIL pertains
to training data organized in sets, called positive and negative bags. A video in MIL is re-
garded as a bag holding multiple instances, where each instance belongs to a video snippet.
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A negative bag contains all normal snippets, whereas a positive one contains both normal
and abnormal snippets, without any temporal information about the beginning and end
of abnormal events. The standard MIL assumes that all negative bags accommodate only
negative snippets, and that positive bags carry no less than one positive snippet. Supervi-
sion is provided solely for complete sets, and the isolated label of the snippets contained in
the bags is not provided [17]. As WVAED can understand the essential variability between
normal and abnormal, its outputs are fundamentally more reliable than those of unsu-
pervised VAED [18]. However, in WVAED, abnormal-labeled frames of the positive bag
tend to be influenced by normal-labeled frames in the negative bag, while the abnormality
will not certainly stand out in opposition to the normality. Subsequently, sometimes it
becomes difficult to detect anomalous snippets. Many researchers (e.g., [8–10,19,20]) have
made efforts to take this problem forward using MIL frameworks. Many of the existing
approaches encode the extracted visual content by applying a backbone (e.g., C3D [21],
I3D [22]), which are pretrained on action recognition tasks. However, VAD depends on
discriminative representations that clearly represent the events in a scene. Thus, these
existing backbones are not suitable for VAD, due to the domain gap [1]. To address this
limitation, and inspired by the success of the recent vision-language works of [23–25],
which proved the potency of feature representation learned via contrastive language-image
pretraining (CLIP) [26], Joo et al. [20] employed the vision transformer (ViT) encoded visual
features from CLIP [26]. However, the performance of MIL-based WVAED methods heavily
depends on the pretrained feature extractors.

In this paper, we first propose utilizing pretrained feature extractors using backbones
of both CNN (e.g., C3D [21], I3D [22]) and ViT (e.g., CLIP [26]) for extracting discerning
representations effectively. We propose a temporal self-attention network (TSAN) to gener-
ate the reweighed attention feature by modeling the continuity between snippets of a video
and selecting the top-k most relevant snippets. Later, the reweighed attention features are
used to produce anomaly scores using a multi-layer perceptron (MLP) based score allocator.
In the TSAN pipeline, we utilize the statistically most significant features as probabilities
by employing a temporal scoring technique considering Mahalanobis distances instead
of the mean feature magnitudes of snippets. The motivations behind the usage of the
Mahalanobis metric over the mean are as follows: (i) It can correct the correlations between
the different features; (ii) It automatically accounts for the scaling of the coordinate axes;
(iii) It can provide curved as well as linear decision boundaries. Our ablation study showed
that maximum mean of 5.34% better performance can be achieved empirically by employ-
ing the Mahalanobis metric. In addition, the TSAN also deals with an arbitrary number
of abnormal snippets in an abnormal video. The top-k selector in the TSAN addresses
k-snippets of interest in the video. We model long-range and short-range temporal depen-
dencies and put forward the snippets of interest by supporting TSAN. In brief, we design a
MIL-based generalized architecture of CNN-ViT-TSAN, as portrayed in Figure 1, to special-
ize five different models, namely C3D-TSAN, I3D-TSAN, CLIP-TSAN, C3D-CLIP-TSAN,
and I3D-CLIP-TSAN, for WVAED problems. Each model consists of three main modules
responsible for (i) Feature encoding by the CNN and/or ViT; (ii) Patterning snippet con-
sistency in the temporal dimension using TSAN; and (iii) Identifying abnormal snippets
in connection with the separation maximization supervisor (SMS), where the SMS trains
the abnormal snippets to have a high value and the normal snippets to have a low value.
The C3D-TSAN and I3D-TSAN models do not require ViT-based feature extraction, while
the CLIP-TSAN model does not need CNN-based feature extraction. Information fusion
takes place in the TSAN for C3D-CLIP-TSAN and I3D-CLIP-TSAN models only, whereas
the models for C3D-TSAN, I3D-TSAN, and CLIP-TSAN skip it. Each of our proposed
models is based on a distinct degree of feature extraction and usability capabilities required
for crowd video anomaly detection. Consequently, in experimental setups considering
UMN, UCSD-Ped1, UCSD-Ped2, ShanghaiTech, and UCF-Crime datasets, some of these
models demonstrated inferior results, while others showed superior results. For example,
the model I3D-CLIP-TSAN demonstrated the best results and outperformed its alterna-
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tives by extracting and using high-quality features from the available videos, as well as
confirming a better normal—abnormal snippet separability.

Figure 1. Generalized architecture of our proposed CNN-ViT-TSAN framework.
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The unique contributions and advancements that our proposed CNN-ViT-TSAN
framework brings to the field of WVAED problems are recapitulated as follows:

• We propose five deep models for WVAED problems by designing a MIL-based gener-
alized framework CNN-ViT-TSAN. The information fusion between CNN and ViT is
a unique contribution;

• We propose a TSAN that helps to provide anomaly scores for video snippets in
WVAED problems;

• We uniquely introduce the usage of the Mahalanobis metric for calculating probability
scores in the TSAN;

• Experiments on several benchmark datasets demonstrated the superiority of our
models compared with the state-of-the-art approaches.

The rest of this paper is organized as follows; Section 2 addresses the most relevant
previous studies. Section 3 discusses our proposed generalized framework. Section 4
explains the experimental setup; the results obtained on public datasets; as well as a
comparison, reasons for superiority, best network analysis, ablation study, and limitations
of our models. Section 5 concludes the paper with a few clues for further study.

2. Related Work

Methods of WVAED are based on video-level labels, which always follow the MIL
ranking framework [8]. Based on MIL, a method of WVAED trains a regression model to
assign scores for video snippets, assuming that the maximum score of the positive bag
is higher than that of the negative bag. The existing methods of WVAED can be roughly
categorized into two broad kinds on the basis of the pretrained models used, namely:
CNN-based and ViT-based WVAED methods, as summarized below.

2.1. CNN-Based WVAED Methods

Sultani et al. [8], Tian et al. [19], Zhang et al. [9], Zhong et al. [6], and Zhu et al. [11]
employed CNN-based pretrained models in their experimental setups. Sultani et al. [8]
also pre-collected annotated normal and abnormal video events at video-level to build their
popular UCF-Crime dataset and applied it with their weakly supervised framework for
detecting anomalies. In their framework, after extracting C3D features [27] for video seg-
ments, they trained a fully connected neural network by applying a ranking loss function,
which computed the ranking loss between the highest scored instances in the positive bag
and the negative bag. Tian et al. [19] treated C3D [27] and I3D [22] as feature extractors for
their WVAED model. They claimed that the selection of the top-3 features based on their
magnitude can introduce a greater partition between normal and anomalous videos, where
if more than one abnormal snippet exists per anomalous video, the mean snippet feature
magnitude of the anomalous videos is larger than that of normal videos.

Zhang et al. [9] trained a temporal convolution network between the preceding ad-
jacent segment and current segment for extracting positive and negative video segment
C3D features [27]. Afterwards, they trained two branches of a fully connected neural
network using an inner and outer bag ranking loss, considering the highest and lowest
scored segments in the positive and the negative bags. Zhong et al. [6] and Zhu et al. [11]
trained both a feature encoder and classifier together. Zhong et al. [6] addressed WVAED
as a supervised learning task under noise labels. However, to verify the widespread appli-
cability of their model, they carried out extensive experiments considering a C3D [27] and
a temporal segment network [28]. Zhu et al. [11] included the temporal context into their
MIL ranking model by applying an attention block. They claimed that features containing
motion information extracted by C3D [27] and I3D [22] performed better than features
extracted from separate images using VGG16 [29] and Inception [30], regardless of the
network depth and feature dimension.
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2.2. ViT-Based WVAED Methods

ViT-based pretrained models can be categorized into single-stream or dual-stream
types. The single-stream model applies a single transformer to model both image (or video)
and text representations in a combined framework, whereas the dual-stream model indepen-
dently encodes image (or video) and text with a decoupled encoder. Examples of ViT feature
extractors include VisualBERT [31], ViLBERT [32], CLIP [26], and data efficient CLIP [33].
Recently, Joo et al. [20] proposed a CLIP-assisted [26] temporal self-attention framework
for the WVAED problem. They conducted experiments on publicly available datasets to
verify their end-to-end WVAED framework. Li et al. [34] suggested a transformer-based
multi-instance learning network to learn video-level anomaly probability and snippet-level
anomaly scores. In the inference stage, they employed the video-level anomaly probability
to suppress the fluctuation of snippet-level anomaly scores. Lv et al. [35] presented an unbi-
ased MIL scheme that learned an unbiased anomaly classifier and a tailored representation
for WVAED.

In view of the existing solutions, we found that, generally, a CNN and ViT are em-
ployed separately. To take advantage of both CNN- and ViT-based pretrained models, we
designed an MIL-supported generalized architecture named CNN-ViT-TSAN to specify a
series of models for the WVAED problem.

3. Proposed Generalized Framework

Our generalized framework follows the MIL model, in which the positive bag repre-
sents an anomaly and the negative bag denotes normality. Its constituent components are
discussed in the following subsections.

3.1. Feature Extraction

Videos in the training set are only labeled at video-level in WVAED. Assume that a
set of weakly labeled training videos W = {Vv, yv}|W|v=1 are available, where each video
Vv = {Framei}Nv

i=1 ∈ RNv×W×H hints at a sequence of Nv frames with W pixels for width
and H pixels for height. Here, yv = {0, 1} indicates the video-level label of video Vv with
respect to anomaly, i.e., it is 1 for an anomaly video that holds at least one abnormal event,

otherwise 0. For a video Vv = {Framei}Nv
i=1, we divide it into a set of {γi}

b Nv
∆ c

i=1 equal number
of non-overlapping temporal snippets each with a length of ∆-frame.

3.1.1. Feature Extraction Using a Pretrained CNN

Convolutional neural networks (CNN), as one of the most representative deep learn-
ing models, exhibit great potential in the field of image classification. CNN-based C3D
(Convolutional 3D) [21] and I3D [22] are two common feature extractors. As a feature
extractor, the C3D is generic, compact, simple, and efficient. Tran et al. [27] showed that
C3D can model appearance and motion information simultaneously and outperformed
the 2D CNN features in various video-analysis tasks. Carreira et al. [22] introduced a
two-stream (i.e., RGB and Flow) Inflated 3D CNN (I3D). Ideally, feature extraction can be
efficiently performed by either C3D or I3D. We considered the C3D feature of Ji et al. [21]
and I3D feature of Carreira-Zisserman [22]. We computed features of T snippets with
feature dimension ℵ′ using both C3D and I3D separately. Let Φ′vcnn = {φi}Tv

i=1 ∈ RTv×ℵ′ be
the extracted features of Vv, where Tv belongs to the number of snippets for Vv.

For the dimensionality reduction technique, the principal component analysis (PCA)
works under the assumption that the data follow a normal distribution. For this reason,
they may be very sensitive to the variance of the variables. In addition, as the extracted
data are not normalized, the reduced dimensions using PCA or other similar techniques
would give erroneous results. However, the low-variance-filter is an advantageous dimen-
sionality reduction algorithm often used in machine learning on numerical data. Instead
of using PCA, we apply the low-variance-filter algorithm to reduce the dimensionality of
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the extracted data. Upon dimensionality reduction, Φ′vcnn ∈ RTv×ℵ′ can obtain the shape of
Φvcnn ∈ RT×ℵ, i.e., ℵ-dimensional feature of the T snippets.

3.1.2. Feature Extraction Using a Pretrained ViT

Vision-language pretrained models extract the relationships between objects/actions
in a video and objects/actions in text using vision transformers (ViTs). Based on the
suitability of applications, various kinds of ViTs exist, e.g., VisualBERT [31], ViLBERT [32],
CLIP [26], and data efficient CLIP [33]. In general, CLIP [26] is a multi-modal vision and
language model, which utilizes a ViT as a backbone for visual features. We assume that
the middle frame dj = d∆

2 e represents the snippet γj, instead of considering all frames in
a snippet γj. Following Joo et al. [20], we apply CLIP [26] to the dj of the snippet γj to
represent its feature as φj ∈ Rℵ with feature dimensions ℵ, and then Vv can be constituted
as a set of video feature vectors Φvvit = {φj}Tv

j=1 ∈ RT×ℵ.

3.2. Temporal Self-Attention Network (TSAN)

Figure 1 visualizes our proposed TSAN mechanism, which models the snippet co-
herency and selects the top-k most significant snippets. It maximizes the attention on a
subset of features, while it minimizes attention on noise. The pipeline of TSAN consists
of four components namely: (i) a temporal scoring module, (ii) top-k selecting module,
(iii) multiplying-averaging module, and (iv) information fusion module.

3.2.1. Temporal Scoring Module

The temporal scoring technique utilizes the statistically most significant features as
probabilities, considering Mahalanobis distances instead of the mean feature magnitudes
of the snippets. The mathematical exposition is given in Algorithm 1. The scores of
Pscore ∈ RT×1 are employed to estimate anomaly attention features, upon extracting
the k most significant snippets from the video using Algorithm 2. Concisely, each of
Φvcnn ∈ RT×ℵ and Φvvit ∈ RT×ℵ can be converted into a probability score vector
Pscore ∈ RT×1 using Algorithm 1, where each score represents a snippet. The scores
of Pscore ∈ RT×1 are fed to the top-k selector module for further processing. The model
CLIP-TSAN does not expect the Φvcnn ∈ RT×ℵ to be processed using Algorithm 1 to obtain
Pscore ∈ RT×1. In this case, the final output Φvcnn ∈ RT×ℵ of the multiplying-averaging
module has no active function in the information fusion module. Thus, solely Φvvit ∈ RT×ℵ

is processed using Algorithm 1 to obtain Pscore ∈ RT×1 for feeding to the top-k selecting
module. Conversely, the model of C3D-TSAN does not look for the Φvvit ∈ RT×ℵ to be
processed using Algorithm 1 to obtain Pscore ∈ RT×1. In this instance, the final output
Φvvit ∈ RT×ℵ of the multiplying-averaging module has no operational function in the
information fusion module. Consequently, only Φvcnn ∈ RT×ℵ is processed considering
Algorithm 1 to obtain Pscore ∈ RT×1. Likewise, the model I3D-TSAN does not expect
the scores of Pscore ∈ RT×1 obtained from Φvvit ∈ RT×ℵ. However, the models of C3D-
CLIP-TSAN and I3D-CLIP-TSAN need the scores of Pscore ∈ RT×1 obtained from both
Φvcnn ∈ RT×ℵ and Φvvit ∈ RT×ℵ. They use Algorithm 1 to obtain Pscore ∈ RT×1 in a sequen-
tial manner, such as in CLIP-TSAN, C3D-TSAN, and/or I3D-TSAN. In the case of either
C3D-CLIP-TSAN or I3D-CLIP-TSAN, the final outputs of Φvcnn ∈ RT×ℵ and Φvvit ∈ RT×ℵ

from the multiplying-averaging module are stored in the information fusion module for
element-wise addition.
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Algorithm 1: Calculation of the probability scores Pscore considering Maha-
lanobis distances

Input: ⇒ Data matrix: D ∈ Rm×n

Output: ⇒ Probability scores: Pscore ∈ Rm×1

Description: ⇒ D(m, n): two-dimensional (2D) real valued data matrix; m: total
number of rows; n: total number of columns; i: column counter
variable; j: rows counter variable; c: a counter variable; Dmean(n): a
1D array of mean values; Dstd(n): a 1D array of standard deviations;
Z(m, n): normalized matrix of D(m, n); Zq(m, n): squared values of
Z(m, n); ss(n): a 1D array with length of n; s(n, n): a 2D square
matrix, CorMat(n, n): a square matrix for correlation,
GaussErrMat(n, n): a 2D square Gaussian error matrix with values
ranging from 0.000001 to 0.0000000001, det:
determinant of CorMat(n, n); InvCorMat(n, n): inverse of
CorMat(n, n); δ: degrees of freedom, Γ(.): Gamma function.

Define: ⇒ set δ, i = 1, j = 1, c = 1.
1 for i ≤ n do
2 Dmean(i) = 1

rows ∑rows
j=1 D(j, i)

3 Dstd(i) =

√
∑rows

j=1 (D(j,i)−Dm(i))2

rows−1

4 for j ≤ m do
5 for i ≤ n do
6 Z(j, i) = D(j,i)−Dmean(i)

Dstd(i)
7 Zq(j, i) = (Z(j, i))(Z(j, i))

8 for i ≤ n do

9 ss(i) =

√
∑m

j=1 Zq(j,i)
m−1

10 for i ≤ n do
11 for c ≤ n do

12 s(i, c) =
∑m

j=1 Z(j,i)Z(j,c)
m−1

13 CorMat(i, c) = s(i,c)
(ss(i))(ss(c))

14 Calculate det
15 if det = 0 then
16 Generate a GaussErrMat
17 CorMat = CorMat + GaussErrMat

18 Calculate InvCorMat
19 for j ≤ m do

/* Calculation of Mahalanobis distance MahalDist. */

20 MahalDist(j) =

√√√√√√√√√√
[

Z(j,1) Z(j,2) Z(j,3) ... Z(j,n)
n

]
[InvCorMat]


Z(j, 1)
Z(j, 2)
Z(j, 3)

...
Z(j, n)


/* Calculation of the probability using the cumulative distribution function of

the chi-square distribution, each value of MahalDist, and δ. */

21 Pscore(j) = 1−
[∫

MahalDist(j)

0
t(

δ−2
2 )e

−t
2

2
δ
2 Γ( δ

2 )
dt

]
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Algorithm 2: Processing of the probability scores Pscore in the TSAN
Input: ⇒ Probability scores: Pscore ∈ Rm×1.
Output: ⇒ Attention feature matrix: D ∈ Rm×n.
Description: ⇒ D(m, n): matrix used in Algorithm 1; c1 and c2: two counter variables; Gnoise(m): a 1D

array of m random values from a Gaussian distribution with zero mean and any specified
value of standard deviation ranging from 2/n to 6/n; Mix(m): an array with length of m;
Top(k): an array containing the best k values considering k < m; Index(k, m): a 2D
integer matrix; Stack(k, m, n): a tensor; En f eat(k, m, n): a tensor of encoded feature
values; SE(k, m, n): a resulting tensor from element-wise multiplication of Stack(k, m, n)
and En f eat(k, m, n); D(m, n): reweighed and normalized attention feature matrix.

Define: ⇒ set c1 = 1, c2 = 1.
/* Top-k selecting module : ℵ times looping. */

1 for c1 ≤ n do
2 Generate the c1-th Gnoise(m)
3 for c2 ≤ m do
4 Mix(c2) = Pscore(c2) + Gnoise(c2)

5 Sort the values of Mix(m) along with indices in descending order.
6 Clone top-k values from Mix(m) into Top(k).
7 Replace the values of Top(k) with their respective indices.
8 Fill Index(k,m) with 1 and 0 as hinted in Figure 1
9 Create Stack(k, m, c1) by stacking or concatenating each Index(k,m) in sequence depth-wise along a third axis.

/* Multiplying-Averaging module. */
10 Create Enfeat(m,n,k) by stacking or concatenating each D(m,n) in sequence depth-wise along a third axis.
11 Rearrange Enfeat(k,m,n) by swaping axis of Enfeat(m,n,k).
12 Element-wise multiplication of Stack(k,m,n) and Enfeat(k,m,n) to get SE(k,m,n).
13 Get reweighted attention feature Element-wise multiplication of Stack(k,m,n) and Enfeat(k,m,n) to get SE(k,m,n).
14 Get D(m, n) by averaging of SE(k,m,n) across k dimension.

3.2.2. Top-k Selecting Module

This module extracts the k < T most interesting snippets from a video. The value of k
is determined using Equations (1) and (2) as

k =

⌊
µ log2(T)

loge(2)
sin
(

H
W

)⌋
, (1)

µ =

⌈
1√
2
+

log2(T)
2

⌉
. (2)

A specific Gaussian noise score vector G ∈ RT×1 is generated to apply to the scores of
Pscore ∈RT×1 for producing Gaussian-perturbed scores of Gper ∈ RT×1 using Equation (3) as

Gper ∈ RT×1 = Pscore ∈ RT×1
⊕

G ∈ RT×1, (3)

where
⊕

belongs to an element-wise addition. The values of Gper ∈ RT×1 are sorted along
with the indices in descending order. Replacement of the k-best values with their respective
indices is achieved as shown in Figure 1. For example, if the 1st k-best value has the index
of T − 2, then this 1st k-best value will be replaced by T − 2. Afterwards, the value of its
corresponding 2D matrix’s (T − 2)th column of the 0th row will be filled with 1, but all
other columns of the 0th row will be filled with 0. Similarly, if the 2nd k-best value has an
index of 0, then this 2nd k-best value will be replaced by 0. The value of its corresponding
2D matrix’s 0th column for the 1st row will be filled with 1 but all other columns of the 1st
row will be filled with 0, and so on. However, the aforementioned procedure is repeated
ℵ times and the results are stacked or concatenated to obtain a 3D tensor, which is fed to
the multiplying-averaging module. Line 1 to Line 9 of Algorithm 2 represent the top-k
selecting module.

3.2.3. Multiplying-Averaging Module

Taking into account Φvcnn ∈ RT×ℵ or Φvvit ∈ RT×ℵ, a 3D tensor is created by cloning k
times of T× ℵ. The tensor is reshaped to perform an element-wise multiplication with the
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output of the 3D tensor of the top-k selecting module. The final product is converted from
a 3D tensor to 2D matrix using an averaging technique. Line 10 to Line 14 of Algorithm 2
illustrate the multiplying-averaging module. The output of Algorithm 2 is a reweighed
and normalized anomaly attention feature matrix.

3.2.4. Information Fusion Module

This module holds any output of the multiplying-averaging module (i.e., Algorithm 2)
for a video Vv. Explicitly, the reweighed and normalized anomaly attention feature matrices
of Φvcnn ∈ RT×ℵ and Φvvit ∈ RT×ℵ are stored in two memory locations. Based on our five
different modeling options, the information of Φvcnn ∈ RT×ℵ and Φvvit ∈ RT×ℵ either can
or cannot be fused. In the case of the C3D-TSAN, I3D-TSAN, and CLIP-TSAN models,
the information fusion of Φvcnn ∈ RT×ℵ and Φvvit ∈ RT×ℵ is not required.Conversely,
in the case of the C3D-CLIP-TSAN and I3D-CLIP-TSAN models, the information fusion
of Φvcnn ∈ RT×ℵ and Φvvit ∈ RT×ℵ takes place by considering the mode of element-
wise addition.

3.3. Training Phase

In the MIL framework, accurate temporal locations of abnormal events in videos are
unspecified. Instead, only video-level labels specifying the existence of an abnormal event
in the whole video is needed. A video is called a bag. It is labeled as a positive bag if it
holds a minimum of one snippet of an abnormal event, otherwise it is labeled as a negative
bag. In the negative bag, none of the snippets contain an abnormal event. The concept is
that the anomalous snippets have higher anomaly scores than the normal snippets.

We normalized the video feature length for training. The training of a mini-batch
may face problems due to the difference in video embedding feature length T between
samples in the mini-batch. Suppose that the video feature vectors of videos Vv−2 and Vv−1

are Φv−2 = {φi}
Tk−2
i=1 and Φk−1 = {φj}

Tk−1
j=1 , respectively, where Tv−2 6= Tv−1. It is difficult

to train the features in the batches due to Tv−2 6= Tv−1, i.e., the lack of a uniform shape in
temporal dimension. Explicitly, it is important to reshape Tv−2 and Tv−1 into the same size
of T. To handle an arbitrary length of videos in the training phase only, we follow the same
normalization technique as Sultani et al. [8] and Joo et al. [20]. As the testing videos are
assessed individually, we assume that it is not required to send the features through the
normalization process in the testing phase.

Assume that an input mini-batch of 2Ψ videos {Vv}2Ψ
v=1 is available, as shown in

Figure 1, where none of the first half {Vv}Ψ
v=1 contains an anomaly snippet and at least one

(or more) of the snippets contains an anomaly in the second half {Vv}2Ψ
v=Ψ. Let Υ ∈ R2Ψ×T×ℵ

indicate the extracting features upon using pretrained feature extractors in Section 3.1.
During training, the first half of the mini-batch Υn ∈ RΨ×T×ℵ, which has none of the
snippets containing an anomaly feature, is loaded with a set of negative bags, while the
second half Υa ∈ RΨ×T×ℵ, which has at least one of the snippets containing an anomaly
feature, is loaded with a set of positive bags in order within the mini-batch. Subsequently,
both Υn ∈ RΨ×T×ℵ and Υa ∈ RΨ×T×ℵ go through the stage of TSAN. The output of
TSAN is a set of reweighed normal attention features Φn, as well as a set of reweighed
anomaly attention features Φa. Then the reweighed attention features undergo the snippet
association network, which consists of a pyramid of dilated convolutions [36] and non-
local block [37], to determine the long-term and short-term association between snippets,
in accordance with the reweighed magnitudes of Φn and Φa. The output of the snippet
association network is the final attention features Φ f ∈ R2Ψ×T×ℵ, which are then passed
to a layered MLP-based score converter that converts the feature vectors into a set of
2ΨT anomaly scores. This set of scores is used for computing the score-based binary
cross-entropy loss.
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Let pi be the anomaly score of the ith snippet. Given the snippet-wise anomaly
scores {z̃i}2ΨT

i=1 , the cross-entropy loss over the top-k snippets can be calculated using
Equation (4) as

Cross entropy loss = − 1
|v| ∑

i∈v

[z̃i log(pi) + (1− z̃i) log(1− pi)], (4)

where v belongs to the set of top-k snippets.

3.4. Separation Maximization Supervisor (SMS) Learning

We employ a SMS, denoted by ξτ,µ, to maximize the separation between the top
snippets of the positive and negative bags. Each attention feature of Φ f ∈ R2Ψ×T×ℵ, irre-
spective of normal and abnormal bags, undergoes SMS. First, Φ f ∈ R2Ψ×T×ℵ is rearranged
to make it suitable for SMS processing by specifying Φ f+ ∈ RΨ×T×ℵ and Φ f− ∈ RΨ×T×ℵ

as anomaly and normal attention features, respectively. Then, we select the top-µ snip-
pets from Φ f+ ∈ RΨ×T×ℵ and Φ f− ∈ RΨ×T×ℵ using feature magnitude. This produces
Φ f+µ

∈ RΨ×µ×ℵ and Φ f−µ
∈ RΨ×µ×ℵ as subsets of Φ f+ ∈ RΨ×T×ℵ and Φ f− ∈ RΨ×T×ℵ,

respectively. Then, both Φ f+µ
∈ RΨ×µ×ℵ and Φ f−µ

∈ RΨ×µ×ℵ are averaged out across
the top-µ snippets to produce βτ,µ(Φ f+) ∈ RΨ×ℵ and βτ,µ(Φ f−) ∈ RΨ×ℵ to represent the
Ψ-anomaly and Ψ-normal bags, each with a feature vector of length ℵ, respectively. Both
βτ,µ(Φ f+) and βτ,µ(Φ f−) depend on the parameters of τ, as well as µ. The τ indicates the
dependency on the snippet association network, whereas µ points to the selection of the
top-µ snippets with the largest temporal feature magnitude. The separability is computed
using Equation (5) as

ξτ,µ(Φ f+, Φ f−) = ‖βτ,µ(Φ f+)‖ − ‖βτ,µ(Φ f−)‖. (5)

Equation (5) maximizes the separability of the top-µ feature snippets from each positive
and negative bag by leveraging the theorem of Tian et al. [19].

3.5. Loss Optimization

The feature vectors of ξτ,µ(Φ f+, Φ f−) can be averaged across ℵ dimensions to obtain Ψ
numerical values of separability for the mini-batch of 2Ψ training videos. These numerical
values are averaged out and then used as a portion of the optimized loss. Basically,
this portion of loss, as well as the score-based binary cross-entropy loss computed using
Equation (4) for 2ΨT anomaly scores are applied to optimize the total loss of the model.

3.6. Testing Phase

During testing, we assumed that the extracted video feature vectors need not move
through the feature length normalization process to be reshaped to the common size of T,
as the testing videos were assessed independently. The extracted video feature vectors went
through TSAN processing to generate the reweighed attention features. They were then
passed into the snippet association network, followed by the MLP-based feature vector to
anomaly score converter, to obtain a set of scores. Each of these scores portrays the anomaly
probability of the snippet at the associated index and conveys a numerical value between
0 and 1. Each score is repeated ∆ times to replicate a vector with the usual frame length
of the video. It also preserves the original order of the video and utilizes an evaluation
against the ground truth labels.

4. Experimental Setup and Results
4.1. Used Datasets

We evaluated our models on the following benchmark datasets:
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4.1.1. UMN Dataset

This dataset [38] comprises five dissimilar staged videos, where people walk around
and eventually start running in distinct directions. The abnormal events are characterized
by running episodes.

4.1.2. UCSD-Peds Dataset

This is a small-scale dataset, which consists of two sub-datasets; namely, UCSD-
Ped1 with 70 videos and UCSD-Ped2 with 28 videos. These videos were captured at
one location. The anomalies in the videos are straightforward, including people walking
across a walkway, non-pedestrian entities (e.g., a skater, biker, and wheelchair) in the
walkways. The default training set of UCSD-Peds does not contain anomaly videos.
Preceding works [6,19,39] reorganized and utilized the dataset for weakly supervised
anomaly detection by randomly selecting six anomaly videos and four normal videos for
the training set, with the remainder as a testing set.

4.1.3. ShanghaiTech Dataset

This is a medium-scale dataset, which contains 317,398 frames of video clips, encom-
passing scenes of multiple areas of the ShanghaiTech Campus. It has 13 different back-
ground scenes, with 307 normal videos and 130 anomaly videos. The earliest dataset [40] is
a common benchmark used to detect video anomaly events. The training set contains only
normal videos. The testing set contains both normal and anomalous videos. Zhong et al. [6]
rearranged the dataset by choosing a subset of anomalous testing videos as training data,
to build a weakly supervised training set, such that both the training and testing sets
covered all 13 background scenes. We used exactly the same procedure as Zhong et al. [6]
to convert the ShanghaiTech dataset to the weakly supervised setting.

4.1.4. UCF-Crime Dataset

This is a large-scale anomaly detection dataset [8], which contains 1900 untrimmed
videos with a total duration of 128 h from real-world street and indoor surveillance cameras.
It covers 13 real-world anomalies including abuse, arrest, arson, assault, accident, burglary,
explosion, fighting, robbery, shooting, stealing, shoplifting, and vandalism. Unlike the
static background in ShanghaiTech [40], UCF-Crime [8] consists of complicated and diverse
backgrounds. The dataset contains 1610 (i.e., 800/810:normal/anomalous) training videos
with video-level labels and 290 (i.e., 150/140: normal/anomalous) testing videos with
frame-level labels.

4.2. Implementation Details

Following Sultani et al. [8], Tian et al. [19], and Joo et al. [20], each video was divided
into 32 snippets (i.e., T = 32) with the snippet length set to ∆ = 16 frames and µ = 4 by
following Equation (2). Referring to Equation (1), the values of k were 19, 17, 24, and 19
for UMN, Peds, ShanghaiTech, and UCF-Crime, respectively. Each mini-batch consisted of
samples from 32 randomly selected normal and abnormal videos. We employed C3D [21],
I3D [22], and CLIP [26] for feature extraction. The ℵ was set as 512 for all experiments
with ℵ′ > ℵ. The thresholds of the low-variance-filter were 0.00723, 0.00835, 0.00875,
and 0.00911 for the datasets of UMN, Peds, ShanghaiTech, and UCF-Crime, respectively.
The three-layered MLP of 512, 256, and 1 units with its hidden layer was followed by a
ReLU activation function, and its final layer was followed by a sigmoid function, to produce
a value between 0 and 1. Our model was trained in an end-to-end manner and implemented
using PyTorch [41]. We used the Adam optimizer [42] with a weight decay of 0.0005 and
a batch size of 32 for 50 epochs. The learning rate was set to 0.001 for all datasets. We
employed an Intelr CoreTM i7-7800X CPU @3.50 GHz, along with an NVIDIA graphics
card GeForce GTX 1080 for both training and evaluation of the model. We also adopted
OpenAI, Google Colab, and Google Drive for feature extraction. We used the area under
the receiver operating characteristic (ROC) curve (AUC) to evaluate the overall model
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performance. The 0 ≤ AUC ≤ 1 is one of the most frequently used metrics for evaluating
various flows and events in crowd videos [8,43,44]. The predictions of a model were 100%
wrong or correct if AUC = 0 or AUC = 1, respectively. Intuitively, a larger AUC implies a
larger margin between the normal and abnormal snippet predictions, thus resulting in a
better anomaly classifier. The sensitivity, recall, hit rate, and true positive rate (TPR) can be
formulated using Equation (6) as

TPR =
tp

tp + fn
, (6)

where tp and fn specify the number of true positive frames and the number of false
negative frames, respectively. The fall-out or false positive rate (FPR) can be formulated
using Equation (7) as

FPR = 1− tn

tn + fp
=

fp

fp + tn
, (7)

where fp and tn indicate the number of false positive frames and the number of true
negative frames, respectively. The ROC curve is a two-dimensional graphical visualization,
in which the FPR is plotted on the X-axis and the TPR is plotted on the Y-axis (e.g., right
side subgraphs of Figure 2). The values of AUC are calculated as the areas below the ROC
curves (e.g., the yellow colored regions of Figure 2). Mathematically, the value of AUC can
be calculated using the trapezoidal numerical integration method [45].

Figure 2. Cont.
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Figure 2. Visualization of sample testing results with various datasets. Pink regions show the
manually labeled abnormal events, while the yellow regions indicate the areas below the ROC curves.

4.3. Results on Various Datasets

As real-world abnormal events are miscellaneous and hard to predict, to demonstrate
the applicability of our generalized framework to multiple environments, we ran experi-
ments on frequently used VAED evaluation datasets, e.g., UMN, UCSD-Ped1, UCSD-Ped2,
ShanghaiTech, and UCF-Crime. Figure 2 visualizes the sample testing results of I3D-
CLIP-TSAN (Ours) with videos from the UMN, UCSD-Ped1, UCSD-Ped2, ShanghaiTech,
and UCF-Crime datasets, including abnormal events with sudden running of people, ve-
hicles passing between bidirectional flows of people, bicycle riders in a pedestrian zone,
bicycles crossing, and the action of taking something from a person forcefully as well
as unlawfully, respectively. The obtained frame-level AUC scores of the sample testing
videos in Figure 2 were 0.991, 0.943, 0.986, 0.989, and 0.912, consecutively. Although UMN,
UCSD-Ped1, and UCSD-Ped2 are popular benchmarks for video anomaly detection, they
are small in terms of number of videos and the duration of the video. Alterations in the
anomalies are also very narrow. Furthermore, some abnormalities are not practical or
sometimes the spatial annotation is not very clear. For these reasons, few authors have
conducted experiments with these datasets explicitly. However, we considered all these
datasets, to show the generalizability of our models. From Figure 2, it is noticeable that
I3D-CLIP-TSAN (ours) was suitable for detecting various anomaly events, ranging from
simple datasets (e.g., UMN, UCSD-Ped1, and UCSD-Ped2) to large-scale datasets (e.g.,
ShanghaiTech and UCF-Crime).

4.4. Performance Comparison

Assume that AUCo denotes the AUC computed on the overall testing videos in a
dataset. Table 1 compares the frame-level AUCo performance scores of our models for the
UCSD-Ped2, ShanghaiTech, and UCF-Crime datasets, along with state-of-the-art methods.
It seems that our proposed models could be generalized for detecting various abnormal
events from those datasets. In general, both ShanghaiTech and UCF-Crime would be called
wide-scale anomaly detection datasets. All authors in Table 1 considered the ShanghaiTech
and UCF-Crime datasets for conducting their experiments.
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Table 1. Frame-level AUCo score comparison of the various weakly-supervised methods and datasets.
Column-wise the best score is bolded and the second best score is underlined.

Year

Weakly

Feature

Frame-Level Performance Scores from Different Datasets

Supervised UCSD-Ped2 ShanghaiTech UCF-Crime

Model AUCo 1 − AUCo AUCo 1 − AUCo AUCo 1 − AUCo

20
18 Sultani et al. [8] C3D — — 0.8317 0.1683 0.7541 0.2459

Sultani et al. [8] I3D — — 0.8533 0.1467 0.7792 0.2208

20
19

Zhong et al. [6] C3D — — 0.7644 0.2356 0.8108 0.1892
Zhong et al. [6] TSN 0.9320 0.0680 0.8444 0.1556 0.8212 0.1788
Zhang et al. [9] C3D — — 0.8250 0.1750 0.7870 0.2130

20
20

Zaheer et al. [46] C3D-self 0.9447 0.0553 0.8416 0.1584 0.7954 0.2046
Zaheer et al. [7] C3D — — 0.8967 0.1033 0.8303 0.1697
Wan et al. [47] I3D — — 0.8538 0.1462 0.7896 0.2104

20
21

Purwanto et al. [13] TRN — — 0.9685 0.0315 0.8500 0.1500
Tian et al. [19] C3D — — 0.9151 0.0849 0.8328 0.1672

Majhi et al. [48] I3D — — 0.8822 0.1178 0.8267 0.1733
Tian et al. [19] I3D 0.9860 0.0140 0.9721 0.0279 0.8430 0.1570
Wu et al. [49] I3D — — 0.9748 0.0252 0.8489 0.1511
Yu et al. [50] I3D — — 0.8783 0.1217 0.8215 0.1785
Lv et al. [12] I3D — — 0.8530 0.1470 0.8538 0.1462

Feng et al. [51] C3D — — 0.9313 0.0687 0.8140 0.1860
Feng et al. [51] I3D — — 0.9483 0.0517 0.8230 0.1770

20
22

Zaheer et al. [3] ResNext — — 0.8621 0.1379 0.7984 0.7984
Zaheer et al. [52] C3D 0.9491 0.0509 0.9012 0.0988 0.8337 0.1663
Zaheer et al. [52] 3DResNext 0.9579 0.0421 0.9146 0.0854 0.8416 0.1584

Joo et al. [20] C3D — — 0.9719 0.0281 0.8394 0.1606
Joo et al. [20] I3D — — 0.9798 0.0202 0.8466 0.1534
Joo et al. [20] CLIP — — 0.9832 0.0168 0.8758 0.1242
Cao et al. [53] I3D — — 0.9645 0.0355 0.8587 0.1413
Li et al. [34] I3D — — 0.9608 0.0392 0.8530 0.1470

Cao et al. [54] I3D-graph — — 0.9605 0.0395 0.8467 0.1533
Tan et al. [55] I3D — — 0.9754 0.0246 0.8671 0.1329
Li et al. [34] VideoSwin — — 0.9732 0.0268 0.8562 0.1438
Yi et al. [56] I3D — — 0.9765 0.0235 0.8429 0.1571
Yu et al. [57] C3D — — 0.8835 0.1165 0.8208 0.1792
Yu et al. [57] I3D — — 0.8991 0.1009 0.8375 0.1625

Gong et al. [58] I3D — — 0.9010 0.0990 0.8100 0.1900

20
23

Majhi et al. [59] 13D-Res — — 0.9622 0.0378 0.8530 0.1470
Park et al. [60] C3D — — 0.9602 0.0398 0.8343 0.1657
Park et al. [60] I3D — — 0.9743 0.0257 0.8563 0.1437
Pu et al. [61] I3D — — 0.9814 0.0186 0.8676 0.1324
Lv et al. [35] X-CLIP — — 0.9678 0.0322 0.8675 0.1325

Sun et al. [62] C3D — — 0.9656 0.0344 0.8347 0.1653
Sun et al. [62] I3D — — 0.9792 0.0208 0.8588 0.1412

Wang et al. [63] C3D — — 0.9401 0.0599 0.8148 0.1852
C3D-TSAN (Ours) C3D 0.9675 0.0325 0.9608 0.0392 0.8578 0.1422
I3D-TSAN (Ours) I3D 0.9758 0.0242 0.9743 0.0257 0.8650 0.1350

CLIP-TSAN (Ours) CLIP 0.9811 0.0189 0.9806 0.0194 0.8763 0.1237
C3D-CLIP-TSAN (Ours) C3D+CLIP 0.9824 0.0176 0.9813 0.0187 0.8802 0.1198
I3D-CLIP-TSAN (Ours) I3D+CLIP 0.9839 0.0161 0.9866 0.0134 0.8897 0.1103
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The reported results in Table 1 indicate that the improvements in performance by our
proposed methods on the ShanghaiTech and UCF-Crime datasets were more remarkable
than those for the UCSD-Ped2 dataset. However, for a coherent and intelligible comparaison
of the performance of the various methods, we performed a non-parametric statistical
investigation based on the results presented in Table 1, considering two categories: the
first category consisted of ShanghaiTech and UCF-Crime datasets only, while the second
category consideredthe UCSD-Ped2, ShanghaiTech, and UCF-Crime datasets.

Figure 3 depicts the Nemenyi [64] post hoc critical distance diagram at a level of
significance of α = 0.05, considering 1− AUCo scores in Table 1 for the first category with
the existing models of Sultani et al. (2018) [8], Zhong et al. (2019) [6], Zhang et al. (2019) [9],
Zaheer et al. (2020) [46], Zaheer et al. (2020) [7], Wan et al. (2020) [47], Purwanto et al.
(2021) [13], Tian et al. (2021) [19], Majhi et al. (2021) [48], Wu et al. (2021) [49], Yu et al.
(2021) [50], Lv et al. (2021) [12], Feng et al. (2021) [51], Zaheer et al. (2022) [3], Zaheer et al.
(2022) [52], Joo et al. (2022) [20], Cao et al. (2022) [53], Li et al. (2022) [34], Cao et al.
(2022) [54], Tan et al. (2022) [55], Li et al. (2022) [34], Yi et al. (2022) [56], Yu et al. (2022) [57],
Gong et al. (2022) [58], Majhi et al. (2023) [59], Park et al. (2023) [60], Pu et al. (2023) [61],
Lv et al. (2023) [35], Sun et al. (2023) [62], and Wang et al. (2023) [63]. If the distance
between the two models is less than the Nemenyi [64] post hoc critical distance at a certain
p-value (e.g., 0.05), there is no statistically significant difference between them. Explicitly,
two models are considered significantly different if their performance variation is greater
than the Nemenyi [64] post hoc critical distance. To this end, from Figure 3, it is noticeable
that at α = 0.05, none of the model pairs are statistically significant, as the heavy red line
of length 51.7871 (which is called the Nemenyi [64] post hoc critical distance) is greater
than the heavy pink line. For example, the distance between the hypothesis of I3D-CLIP-
TSAN (ours) vs. Sultani et al. 2018 (C3D) [8] is |44− 1| = 43 (heavy pink line), which is
less than 51.7871 at α = 0.05 (i.e., 95% confidence limit). In other words, their distance
difference was lacking by a numerical value of |51.7871− 43| = 8.7871. Consequently,
I3D-CLIP-TSAN (ours) and Sultani et al. 2018 (C3D) [8] were not statistically significant.
Similarly, the hypothesis on the difference by Joo et al. 2022 (CLIP) [20] vs. Sultani et al.
2018 (C3D) [8] was not statistically significant, as their distance difference was lacking by
a numerical value of |51.7871 + 3− 44| = 10.7871. However, the model I3D-CLIP-TSAN
(ours) was 1− 8.7871/10.7871 = 18.54%, more statistically significant than that of Joo et al.
2022 (CLIP) [20].This implies that I3D-CLIP-TSAN (ours) was slightly better generalized
for divergent anomaly event detection from videos from the ShanghaiTech and UCF-Crime
datasets than any other model in Table 1.

Figure 4 shows a Nemenyi [64] post hoc critical distance diagram at the level of
significance α = 0.10 considering the 1− AUCo scores in Table 1 for the second category
with the existing models of Zhong et al. (2019) [6], Zaheer et al. (2020) [46], Tian et al.
(2021) [19], and Zaheer et al. (2022) [3]. Few models fell into this category, due to the
avoidance of the UCSD-Ped2 dataset by many authors. However, from Figure 4, it is
noticeable that the result of the difference of I3D-CLIP-TSAN (Ours) vs. Zaheer et al. 2022
(C3D) is statistically significant, as their distance difference (i.e., |9.6667− 1.3333| = 8.3334)
was greater than 7.2184 at a 90% confidence limit. Similarly, the results for the differences
of I3D-CLIP-TSAN (Ours) vs. Zhong et al. 2019 (TSN) and C3D-CLIP-TSAN (Ours) vs.
Zaheer et al. 2022 (C3D) were statistically significant. However, other results for the
differences of this category were not statistically significant, as their distance differences
were less than 7.2184.

In summery, some of our proposed methods demonstrated their superiority among
many existing state-of-the-art methods, as indicated in Table 1. Notably, the aforementioned
statistical analysis shows that the method I3D-CLIP-TSAN (ours) took the top place in the
rankings of each category. This implies that I3D-CLIP-TSAN (ours) has the ability to utilize
good features from the pretrained CNN-ViT feature extractors considering the available
videos and confirmed the high disconnectedness between the standard and abnormal
snippets for VAED.
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Figure 3. Nemenyi [64] post hoc critical distance diagram with α = 0.05 using 1− AUCo scores in
Table 1 for the ShanghaiTech and UCF-Crime datasets.

Figure 4. Nemenyi [64] post hoc critical distance diagram with α = 0.10 using the 1− AUCo scores
in Table 1 for the UCSD-Ped2, ShanghaiTech, and UCF-Crime datasets.

4.5. Reasons for Superiority
4.5.1. Advantage of Information Fusion

In TSAN, both CNN- and ViT-related processing can produce their own reweighed
attention features (e.g., Φvcnn ∈ RT×ℵ and Φvvit ∈ RT×ℵ), which can be directly used by
C3D-TSAN, I3D-TSAN, and CLIP-TSAN models, as the features can individually provide
necessary (but possibly not sufficient) information for producing the anomaly scores used
for anomaly detection. However, the information fusion (e.g., Φv f usion ∈ RT×ℵ =Φvcnn ∈
RT×ℵ + Φvvit ∈ RT×ℵ) of these two atypical backbones can augment the quality of fea-
ture representation. Both the C3D-CLIP-TSAN and I3D-CLIP-TSAN models applied
Φv f usion ∈ RT×ℵ and achieved superior performance, as compared to the other models.
For example, from Table 1, using the UCF-Crime dataset, the model I3D-CLIP-TSAN (ours)
achieved a 1− 0.8897/0.8650 ≈ 3% and 1− 0.8897/0.8763 ≈ 2% better performance with
respect to I3D-TSAN (ours) and CLIP-TSAN (ours), respectively. Clearly, the performance
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gains of 3% and 2% for I3D-CLIP-TSAN (ours) were the contribution of the information
fusion in the TSAN.

4.5.2. Better Information Gains with the Mahalanobis Metric

Tian et al. [19] assumed that the mean feature magnitude of abnormal snippets is
larger than that of the normal snippets. However, we applied the measure of Mahalanobis
distances, which is much larger and more accurate than that of the mean feature magnitudes.
We provide a simple example using the UMN dataset [38].

Usually, any video from the UMN dataset [38] starts with a normal event and ends
with an abnormal event. Assume that we obtained the spatiotemporal information of each
frame f (where f ∈ {1, 2, . . . , 900}) in a video (e.g., third video) from the UMN dataset [38]
using an existing optical-flow method. For any f , irrespective of normal or abnormal
events, we consider the spatiotemporal information of five features that are observed in
time and put in the form of a matrix M ∈ Rn×5, as follows:

M(u)(v) =


x(1)(1) x(1)(2) x(1)(3) x(1)(4) x(1)(5)

. . . . .
x(i)(1) x(i)(2) x(i)(3) x(i)(4) x(i)(5)

. . . . .
x(n)(1) x(n)(2) x(n)(3) x(n)(4) x(n)(5)

, (8)

where u ∈ {1, 2, . . . , n}; i ∈ u; v ∈ {1, 2, 3, 4, 5}; x(i)(1) 7→ x-coordinate of i; x(i)(2) 7→ y-
coordinate of i; x(i)(3) 7→ x-velocity of i; x(i)(4) 7→ y-velocity of i; and x(i)(5) 7→ resulting
motion direction of i.

We calculate the sum of the mean feature magnitudes of f denoted as Smean( f ) and
the sum of Mahalanobis distances (considering Algorithm 1) denoted as SMahal( f ) using
Equations (9) and (10), respectively:

Smean( f ) =
5

∑
i=1

(
1
n

n

∑
i=1

M(i)(j)

)
, (9)

SMahal( f ) =
n

∑
i=1

MahalDist(i). (10)

Figure 5 shows a numerical comparison of the sum of mean feature magnitudes and the
sum of Mahalanobis distances for a video from the UMN dataset [38]. It is noticeable that the
normal and abnormal frames cannot be marked using mean feature magnitudes, whereas
the Mahalanobis distances can somewhat find them.Thus, the Mahalanobis distance is
more accurate for the ground truth than the mean feature magnitudes. We estimated the
probabilities of Smean( f ) and SMahal( f ) using Equations (11) and (12), respectively, as

Pmean( f ) = 4 e
−
√(

Smean( f )
65

)
, (11)

PMahal( f ) = 4 e
−
√( SMahal ( f )

65

)
. (12)

In machine learning, the information gain is defined as the amount of information
gained for a random variable or a signal from observing another random variable. For such
a measure, Kullback—Leibler divergence DKL(PMahal(:) ‖ Pmean(:)) [65] can be applied,
where the distributions of PMahal(:) and Pmean(:) include probability values of 900 frames.
Equation (13) can be called the information gain achieved, if PMahal(:) is employed as
an alternative to Pmean(:). If PMahal(:) and Pmean(:) perfectly match, then DKL(PMahal(:) ‖
Pmean(:)) = 0, or else it can take values between 0 and ∞.
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DKL(PMahal(:) ‖ Pmean(:)) =
900

∑
f=1

(
(PMahal( f ))

(
log
(

PMahal( f )
Pmean( f )

))
− PMahal( f ) + Pmean( f )

)
. (13)
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Figure 5. Numerical comparison of mean feature magnitudes and Mahalanobis distances. (a) Normal
and abnormal frames cannot be distinguished using mean feature magnitudes. (b) Mahalanobis
Distances can somewhat make difference between normal and abnormal frames.

The calculated score of 118.41 in Equation (13) quantifies how much the probability
distribution of PMahal(:) differs from the Pmean(:) probability distribution on identical
grounds. Explicitly, the information gain achieved by PMahal(:) with respect to Pmean(:) was
about 118. To keep pace with ground truth, the sum of the mean feature magnitudes for an
abnormal event should be either greater or lesser than that of a normal event, but Figure 5a
does not reflect this. On the other hand, to keep pace with the ground truth, the sum
of Mahalanobis distances for an abnormal event should be either greater or lesser than
that of a normal event, and Figure 5b reflects this. As Figure 5 shows that the measure of
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Mahalanobis distance is closer to the ground truth, the measure of Mahalanobis distance is
more accurate than that of the mean feature magnitudes. The practical results for different
datasets on identical grounds also reflected this proposition.

4.6. Analysis of the Best Network

From the input videos, the spatial features of the independent frames conveyed
information about the depicted scenes and objects, whereas the temporal features of the
frame sequences deal with the information of motion and movement of the objects. A 2D-
CNN can learn various spatial features (e.g., edges, corners, and textures) by combining the
input frame with a number of filters. The 2D-CNN is highly effective in extracting spatial
features from individual frames of a video, but it is not well-suited for capturing temporal
information. To accurately capture the temporal dynamics of objects in a video, a different
type of neural network must be utilized. A long short-term memory (LSTM) network is
a better choice for capturing temporal information. A LSTM network is a deep learning
architecture based on an artificial recurrent neural network (RNN). It was specifically
designed to handle sequential data, including videos, when modeling the short-range and
long-range relationships of sequence features [66]. It also resolves the gradient vanishing
problem of the RNN. It is usually used for time series predictions [67]. However, to apply
an LSTM network for temporal feature extraction, the output of the 2D-CNN spatial feature
extractor can be fed to the LSTM network as input [66]. This can be performed by utilizing
the output of the last fully connected layer of the 2D-CNN as the input for the LSTM.
In this fashion, the LSTM network can utilize the spatial information extracted by the CNN,
together with its capacity to recall past inputs to make predictions regarding the temporal
relationships in the video.

Both RNNs and LSTMs are laborious to train because they need memory-bandwidth-
bound computation, which is laborious for hardware designers and eventually limits
the applicability of neural networks solutions. By combining 2D-CNN and LSTM, it is
possible to extract both spatial and temporal features from a videos. One of the reasons
why researchers are more partial to using 2D-CNN over LSTM is the amount of training
time required. The contemporary generation of well-known deep learning hardware
applications mostly use Nvidia graphics cards, and they are optimized for processing 2D
data with the greatest possible parallelism and speed, which 2D-CNN brings into service.
Nevertheless, one of the main disadvantages of LSTM is its inability to handle temporal
dependencies that are longer than a few steps. For example, when an LSTM was trained on
a dataset with long-term dependencies (e.g., 100 steps), the network struggled to learn the
task and generalize to new examples [68]. Furthermore, on the whole, when data are scarce
or noisy, an LSTM tends to overfit the training data and suffers the loss of generalization
ability [69]. As a result, it is discouraged to use an LSTM for extracting temporal features.
A better solution for extracting temporal features is to employ a C3D network. For example,
to take advantage of a 2D-CNN architecture, all filters and pooling kernels of 2D-CNN
models can be inflated to a 3D-CNN, by equipping them with an additional temporal
dimension, i.e., η × η filters become η × η × η filters. Afterwards, the weights of 2D filters
can be repeated η times along the temporal dimension, to bootstrap parameters from
pretrained 2D-CNN models to the 3D-CNN models [70].

We propose TSAN, which generates reweighed attention features by measuring the
degree of abnormality of snippets. Explicitly, the mechanism of TSAN maximizes attention
on a subset of features, while minimizing the attention on noise. To a large extent, our
exceptional performance comes from the utilization of the TSAN along with the fusion of
the features of I3D and the rich contextual vision-language features of CLIP.

Most of the existing approaches in Table 1 encode visual content by applying a CNN-
based backbone of either C3D or I3D. Like the existing C3D or I3D based models in
Table 1, our proposed C3D-TSAN and I3D-TSAN models demonstrated a performance of a
comparable nature. Nevertheless, the I3D-TSAN model showed superior performance to
the C3D-TSAN model on identical setups. The C3D was more suitable for spatiotemporal
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feature learning compared to the 2D CNN [27]. Fundamentally, the operation of 2D
convolution tries to convolve an image and the 2D convolution kernel to extract the spatial
features from an image, whereas the function of 3D convolution is to convolve the cube
constructed by stacking several successive video frames and the 3D convolution kernel for
extracting video features in the spatiotemporal dimension. More specifically, the C3D is an
excellent model for applying 3D convolution kernels, which is natural for processing signals
with spatiotemporal features, such as videos. Even so, its complicated structure stops it
becoming deeper [71]. The I3D is an improved model based on C3D. Basically, I3D puts
into practice an inflated version of the inception module architecture [30]. The fundamental
features of the inception module are the employment of the incorporated effects of filters
with various sizes and pooling kernels, all in one layer; as well as the manipulation of
1× 1 convolutional filters, which not only assist in lessening the number of parameters but
also put in place updated combinations of features to the next layers. This reveals the fact
that the performance of the I3D-TSAN network is better than that of the C3D-TSAN, due
to the improved architecture and more generalized features of the I3D.

On the other hand, the ViT based CLIP-TSAN model showed the best performance
among the three proposed models of C3D-TSAN, I3D-TSAN, and CLIP-TSAN. Both C3D
and I3D have a traditional method of convolution, where some channels may be less useful
information and consume computational power [72]. Basically, both C3D and I3D were
pretrained on action recognition tasks. Differently from the action recognition problem,
video anomaly detection depends on discriminative representations that clearly present
the events in a scene. Thus, the existing C3D and I3D backbones are not suitable due to the
issue of domain gap [1]. To explain this impediment, recently, ViT-based pretrained models
(e.g., CLIP, X-CLIP, VideoSwin) were leveraged [20,34,35], which proved the effectiveness
of feature representation learning. For example, the ViT-based method of Joo et al. [20]
outperformed all existing CNN-based methods in Table 1. Similarly, our proposed CLIP-
TSAN model showed almost the same performance as the model of Joo et al. [20]. Our
proposed model C3D-CLIP-TSAN demonstrated a better performance than CLIP-TSAN,
due to the information fusion [4] from CNN and ViT. Nevertheless, the C3D-CLIP-TSAN
model showed slightly inferior performance to I3D-CLIP-TSAN on identical grounds.
This was largely due to the I3D simply having a better architecture than the C3D [22].
For instance, the I3D operates on two 3D stream inputs, whereas the C3D operates on
single 3D stream input [73].

4.7. Ablation Study

We conducted an ablation study to investigate the effectiveness of the Mahalanobis
metric for our generalized framework of CNN-ViT-TSAN. We conducted the experiments
in two cases: (i) with the Mahalanobis metric and (ii) without the Mahalanobis metric but
with a mean feature magnitude of snippets for identical configuration settings. Table 2
reports their performance. From Table 2, it can be observed that the maximum 5.01%,
5.18%, 4.99%, 5.25%, and 5.56% performance gains were obtained for the UMN, UCSD-
Ped1, UCSD-Ped2, ShanghaiTech, and UCF-Crime datasets by applying the Mahalanobis
metric. In summery, for these datasets, on average, a maximum 5% better performance
could obtained empirically by employing the Mahalanobis metric (ı.e., without using the
mean snippet feature magnitude).

4.8. Limitation of Our Model

Our WVAED models utilize extracted feature representations using CNN- and/or
ViT-based pretrained feature extractors as input. As a result, the performance of our models
partially depends on the pretrained feature extractors, making the calculation costly. In
the testing phase, if the length of a snippet is ∆ frames, then less than ∆ frames video clips
can be discarded or padded with the final label of the video. In this paper, we chose the
former case with ∆ = 16 frames. Thus, less than 16 frames of video clips were ignored,
which might contain useful information for performance evaluation.
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Table 2. Ablation study of Mahalanobis metric on various datasets. Column-wise the best score is
bolded and the second best score is underlined.

Feature

Mahalanobis Frame-Level Performance Scores from Different Datasets

Metric UMN UCSD-Ped1 UCSD-Ped2 ShanghaiTech UCF-Crime

Included? AUCo Gain AUCo Gain AUCo Gain AUCo Gain AUCo Gain

C3D
No 0.9136 1.00 0.8553 1.00 0.9214 1.00 0.9129 1.00 0.8262 1.00

Yes 0.9517 4.17% 0.8996 5.18% 0.9675 4.99% 0.9608 5.25% 0.8578 3.82%

I3D
No 0.9362 1.00 0.8903 1.00 0.9489 1.00 0.9359 1.00 0.8401 1.00

Yes 0.9644 3.01% 0.9085 2.04% 0.9758 2.83% 0.9743 4.09% 0.8650 2.96%

CLIP
No 0.9417 1.00 0.9063 1.00 0.9597 1.00 0.9391 1.00 0.8346 1.00

Yes 0.9731 3.33% 0.9274 2.33% 0.9811 2.23% 0.9806 4.42% 0.8763 4.99%

C3D+CLIP
No 0.9405 1.00 0.8871 1.00 0.9396 1.00 0.9422 1.00 0.8348 1.00

Yes 0.9876 5.01% 0.9315 5.01% 0.9824 4.56% 0.9813 4.15% 0.8812 5.56%

I3D+CLIP
No 0.9461 1.00 0.8943 1.00 0.9448 1.00 0.9400 1.00 0.8462 1.00

Yes 0.9903 4.67% 0.9402 5.13% 0.9839 4.14% 0.9866 4.96% 0.8897 5.14%

5. Conclusions

We proposed an MIL-based generalized architecture named CNN-ViT-TSAN by ap-
plying CNN- and/or ViT-extracted features and the use of TSAN, to design a series of
deep models for the WVAED problem. Our proposed TSAN mechanism minimized the
attention on noise but maximized attention on a subset of features. Instead of using the
mean feature magnitude, we uniquely introduced the usage of the Mahalanobis distance
for the WVAED problem. At least a 5% performance gain was empirically recorded by
employing the Mahalanobis distance with an identical setup as for the mean snippet feature
magnitude. The information fusion between CNN and ViT was a unique contribution of
this paper. Our deep models possessed a distinct degree of feature extraction ability and
usability. One of our models (I3D-CLIP-TSAN) was capable of utilizing a better quality
of features and confirmed a high separability between normal and abnormal snippets
for VAED. The empirical results from several publicly available crowd datasets demon-
strated the generalization ability and applicability of our models against the state-of-the-art
approaches to the WVAED problem.

Fundamentally, our model is a natural extension of video classification based on
pretrained feature extractors from CNN and ViT. ViT technology has been gaining great
interest and its utilization has spread broadly in computer vision. It is assumed that ViT
can better capture long-range contextual relationships in videos. We employed CLIP [26]
as a ViT feature extractor, and other options including VisualBERT [31], ViLBERT [32],
and data efficient CLIP [33] could be employed. Recently, the XD-Violence [10] dataset
has become a common benchmark for WVAED [10,19,20]. However, we could not use the
XD-Violence [10] dataset due to some nontechnical reason regarding its accessibility (e.g.,
not being approved by the Norwegian Data Protection Authority); however, in future, we
wish to test our models with it.
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