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Preface

In 2015 I was hired as an engineering consultant to design an energy concept for a new food
distribution warehouse. Many years later, the foundation of this research was established
after a meeting with Professor Morten Goodwin regarding possibilities for intelligent
control of a smart warehouse using artificial intelligence. The meeting was initiated in
response to our effort to design a rule-based algorithm for the warehouse. This algorithm
was intended to control and optimize the operational costs associated with the battery
storage system and thermal storage system. These systems were part of a technologically
advanced food distribution warehouse that we have been developing since its inception
in 2015. The task turned out to be overly complicated and would require extensive
human expert maintenance during operation. Our attempts to find a robust, adaptive, and
sophisticated commercially available system also proved to be fruitless. We therefore
decided to undertake this industrial Ph.D. study to explore the emerging possibilities within
artificial intelligence.

This dissertation is the result of a collaboration between the property development
company Relog AS and The University of Agder and their Centre for Artificial Intelligence
Research (CAIR). The research is also partially funded by the Norwegian Research Council.
My main supervisor has been Professor Mohan Lal Kolhe, with co-supervisors Professor
Morten Goodwin, Associate Professor Lei Jiao, and Professor Henrik Kofoed Nielsen.

Production note: LATEX has been adopted as the tool for writing this dissertation, as
well as the papers produced during my Ph.D. study. The mathematical calculations and
simulation results are obtained by using PYTHON and supporting AI libraries.
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Abstract

The world is undergoing a shift from fossil fuels to renewable energy sources due to the
threat of global warming, which has led to a substantial increase in complex building-
integrated energy systems. These systems increasingly feature local renewable energy
production and energy storage systems that require intelligent control algorithms.

Traditional approaches, such as rule-based algorithms, are dependent upon time-
consuming human expert design and maintenance to control the energy systems efficiently.
Although machine learning has gained increasing amounts of research attention in recent
years, its application to energy cost optimization in warehouses still remains in a relatively
early stage. Suggested newer approaches are often too complex to implement efficiently,
very computationally expensive, or lacking in performance.

This Ph.D. thesis explores, designs, and verifies the use of deep learning and reinforce-
ment learning approaches to solve the bottleneck of human expert resource dependency
with respect to efficient control of complex building-integrated energy systems. A tech-
nologically advanced smart warehouse for food storage and distribution is utilized as a
case study. The warehouse has a commercially available Intelligent Energy Management
System (IEMS).

This thesis has two main parts. The first part is a data-driven modelling approach of
a smart warehouse to build a simulated training environment for reinforcement learning
agents. We use Artificial Neural Networks (ANN) to model the compressors of an indus-
trial cooling system in the warehouse. We create an ensemble of compressor models to
model the whole cooling system and generate data related to the system’s performance.
The developed model has MAPE in the range of 5 % to 12 % in the operational case-study
cooling system. The presented results also show that the accuracy can be drastically im-
proved with increased quality of data collection frequency in the operational measurements,
supported by a MAPE of around 1.8 % compared to measurements from a laboratory
cooling system. We also use various machine learning techniques, such as linear and
polynomial regression, to generate data-driven models of sub-systems and dynamics of the
warehouse energy system.

The second part of the thesis describes a robust, data-efficient reinforcement learning
algorithm based on Augmented Random Search (ARS). We introduce ANNs to replace the
linear policy of the ARS to allow the agent to learn more abstract behavior to achieve higher
performance in a complex environment. We show that the ARS-ANN algorithm achieves
impressive performance by reducing energy cost through Battery Energy Storage System
(BESS) control in the simulated warehouse environment. We extend the ARS algorithm
with COST-WINNERS, allowing the algorithm to control multiple energy storage systems.
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More specifically, we reduce energy cost through simultaneous BESS and Thermal Energy
Storage (TES) control with the COST-WINNERS reinforcement learning algorithm in the
simulated warehouse environment. The TES is supplied by reclaimed heating energy from
the warehouse cooling system mentioned in the previous paragraph. The ANN model of
the cooling system has been used to generate data related to available heat and cooling
system efficiency in the simulated environment developed to train the COST-WINNERS
reinforcement learning agent. We show that the COST-WINNERS algorithm achieves
comparable or better performance than an optimization solver given perfect information in
9 out of 10 seeded trials. However, an important note is that the optimization algorithm
only controls the BESS.

In conclusion, we show impressive performance in ANN modelling of cooling system
efficiency through comparisons to theoretical and laboratory experiment data, as well
as metered energy consumption from the warehouse cooling system. We show that the
COST-WINNERS algorithm establishes a new state-of-the-art of simultaneous control of
multiple energy storage systems in the simulated technologically advanced warehouse. The
ANN cooling system model has been implemented in the warehouse and generates live data
on cooling system performance. We plan to implement and test the developed algorithms
in the warehouse in the future, subject to satisfactory quality assurance measurements.
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Chapter 1

Introduction

The world is undergoing a shift from fossil fuels to renewable energy sources due to the
threat of global warming. A significant part of this transition is the necessary increase
in building-integrated intermittent renewable energy production, including local energy
storage and microgrid solutions. This leads to new challenges in achieving energy efficiency
during the operation of these more complex building-integrated energy systems.

Electrical power production companies and grid owners are influencing consumers
through variable pricing strategies and peak effect tariffs that also need to be taken into
account. The energy systems are affected by variables such as weather, ambient temperature
and building user interaction. Considering how all these variables simultaneously affect the
energy system and how this could be optimised through prediction, planning, and real-time
management of energy production, load shifting, and electrical and thermal energy storage
is a very complex problem. Solving this problem is a necessary step to realize the full
potential of positive environmental impact from building-integrated renewable energy
production.

In this Ph.D. thesis, a technologically advanced smart warehouse for food storage and
distribution is utilized as a case study of an energy system that features all the aforemen-
tioned characteristics. The smart warehouse has been completed and has a commercially
available Intelligent Energy Management System (IEMS) that utilizes various machine
learning techniques for predictions of essential parameters and an optimization algorithm
to generate an hourly 48-hour schedule for the electrical and thermal energy storage
systems. The IEMS predicts electrical and thermal energy demand to come up with an
optimal scheduling strategy that also considers future energy price, weather forecasts and
predicted thermal energy production efficiency. The limitations of the current system
include simplified modeling of the energy system to make it solvable for the optimization
algorithm, inability to react to discrepancies between predictions and real-time measure-
ments, reliance on the continual human expert tuning of various algorithm dependencies
and the relatively short planning horizon in relation to the energy storage capacity of the
Thermal Energy Storage (TES).

Although rule-based and optimizer-based systems are both relevant approaches to IEMS
design, they are quite human expert resource dependant in both design and maintenance.
As building-integrated energy system complexity increases through the addition of local
renewable energy production and storage systems, such as in our featured technologically
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advanced warehouse, human expert maintenance can reach unmanageable levels in terms
of cost and time constraints. A possible solution to this problem is the application of
Artificial Intelligence (AI) to enable systems that require less human attention in both
implementation and operation due to its ability to learn from historical data and adapt to
new data. Within AI, Reinforcement Learning (RL) is a very promising research area that
allows an agent to learn from interactions with its environment through reward signals,
whereas deep RL is the application of Deep Learning (DL) techniques to RL algorithms.
More specifically, making the various neural network architectures able to deal with higher
degrees of complexity and abstraction by increasing the amount of neurons is essential for
learning the complex energy system dynamics necessary for IEMS application.

Although deep RL has gained increasing amounts of research attention in recent years,
its application to energy cost optimization in advanced warehouses still remains in an early
stage. This thesis will explore a deep RL approach to energy cost optimization with energy
storage systems. This requires a sophisticated simulated environment that enables the
algorithm to train in an offline manner until the decisions made are intelligent enough to
be implemented and tested in the case-study warehouses. The simulation environment
initially consisted of traditional mathematical models of the various building components
and systems. As data from the building operation increases, we have replaced component
models by more accurate models based on neural networks or other data-driven algorithms.
This process can be automated and thus hopefully makes the complete algorithm robust
and scalable.

The overall goal with the research in this Ph.D. thesis is to explore the use of deep RL
to solve the bottle-neck of human expert resource dependency in relation to design and
maintenance of intelligent control systems of complex building-integrated energy systems.

In this chapter, a description of the motivation of this Ph.D. dissertation and an overview
of the research questions are presented. Furthermore, the research approaches and the
dissertation structure are also outlined.

1.1 Motivation and research questions

Initial attempts to design a deterministic program tasked to control the electrical and thermal
Energy Storage Systems (ESSs) in the case-study smart warehouse made it apparent that
such an approach would be impractical for multiple reasons. Firstly, we discovered that
there would need to be a magnitude of adjustable parameters to ensure the expected
energy cost reduction related to the use of the ESSs. Secondly, adjusting the parameters
over time to adapt to the changes in end-user energy consumption patterns and market
pricing signals would be very time consuming. Therefore, we decided that a more robust
and dynamic approach would be necessary. This led to the development and acquisition
of a commercially available IEMS that employs stale machine learning techniques and
optimization algorithms to generate a 48 hour schedule of ESSs charging and discharging
based on predicted energy demand and local power production. However, this system still
adheres to multiple adjustable parameters that have to be manually altered by the end-user
and it also suffers an inability to react to unforeseeable events within each scheduled hour.





There is a research gap in the application of the state-of-the-art AI to efficient control of
complex building-integrated energy systems featuring multiple energy storage solutions.

AI is an extensive field of research with a plethora of possible applications. In the
domain of energy consumption it has been successfully applied to prediction (Gassar, Cha,
2020), design (Abdalla et al., 2021) and control problems (Ammari et al., 2022).

The main objective of this thesis is to examine a combination of DL and RL to model
and control ESSs in a simulated environment of a smart warehouse. By doing so, we aim
to improve the practical applicability and robustness of the state-of-the-art IEMSs through
the application of AI.

Research Question 1: Can human and computational resource expenditure be re-
duced while accuracy is improved for coefficient of performance (COP) estimation of
a smart warehouse’s cooling system for IEMS application, considering the challenges
of energy metering related to CO2 refrigerant cooling plants?

Motivation: In order to enable intelligent energy and power management for ware-
houses that feature large-scale cooling installations with TES capabilities, such as food
distribution warehouses, accurate estimations of the time-varying performance of indi-
vidual components of the energy system are necessary. Considering the difficulties of
energy metering associated with CO2 refrigerant cooling plants, it is crucial to find a viable
approach for accurate estimation of compressor efficiency and cooling system COP as
input parameters for IEMS decision-making related to cost-efficient TES control.

Approach: An ensemble of fully connected Artificial Neural Networks (ANNs) with
nonlinear activation functions is developed to predict compressor power consumption,
internal working medium mass flow, and cooling system COP. Separate models for sub-
critical and transcritical operational modes are created for each transcritical compressor
in the cooling system. Model input consists of cooling medium evaporation temperature,
condensing temperature, suction gas temperature, and compressor frequency. Results are
verified using metered laboratory data and comparisons to total cooling system power
consumption. Please refer to Paper A and Paper B for more details.

Research Question 2: Can deep RL algorithms be designed, developed and applied
for efficient and adaptable direct control of BESS in a smart warehouse, addressing
the constraints of commercially available IEMSs and minimizing the requirement for
extensive hyperparameter optimization?

Motivation: The commercially available IEMS installed in our smart warehouse has
clear limitations, such as dependence on manual tuning by human experts and operation
on an hourly basis, which may not adequately react to unforeseen events. To address these
issues, we explore RL algorithms that can adapt to changing patterns through automated
off-line training processes, interact with the warehouse energy system in an online manner,
and minimize the time and effort required for hyperparameter tuning.





Approach: Deep RL agents are trained in a simulated environment featuring a battery
control problem with the objective of energy cost reduction. The agents are tasked with
controlling the battery in a continuous manner with full control over the charging and
discharging setpoints. A new data-driven simulated training environment is built using
operational data from the smart warehouse, and multiple RL agent algorithms are trained
and compared with a benchmark established using an optimization algorithm given perfect
information. Please refer to Paper C and Paper D for more details.

Research Question 3: To what extent can a deep RL-based approach be employed
for the concurrent management and control of the BESS and TES within the smart
warehouse environment, allowing for expeditious, scalable and robust implementation
in an operational setting?

Motivation: Our ultimate research goal is to take important steps towards designing
the backbone AI of an IEMS system that can adapt to a changing environment, handle
complex dynamics and effectively control multiple components with different charac-
teristics and overall impact on energy cost. The BESS and the TES in our case-study
warehouse together inhabit the necessary characteristics for this endeavour. Simultaneously
controlling these ESSs is the crucial last step in this Ph.D. thesis.

Approach: We examine the applicability of the COST-WINNERS Augmented Ran-
dom Search (ARS)-ANN RL algorithm to a complex energy cost reduction problem
through direct control of BESS and TES charging and discharging setpoints. The agent is
trained in a simulated environment of the smart warehouse, which we mainly designed
through the use of data-driven techniques. We have emphasized the use of data-driven
techniques as a way to reduce the need for human expertise to design the simulated envi-
ronment in order to increase the practical utility of our approach. We refer to Paper E for
more details.

Limitations: In this thesis, the main aim is to explore the state-of-the-art AI tech-
niques to reduce energy costs in a case-study smart warehouse. We have attempted to
design a simulated environment using mainly data-driven machine learning, and we have
trained deep RL algorithms to control BESS and TES with excellent performance. Our
simulated environment is not fully data-driven, and the COST-WINNERS (introduced in
paper E) algorithm has not yet been implemented and tested in our smart warehouse. The
COST-WINNERS algorithm needs to be tested at a higher time step frequency to ensure
that it has the ability to react in a close to on-line manner. Our approach requires high
operational data quality both for training purposes and in operation. Practical implementa-
tion should also include an appropriate mechanism for live verification of data integrity to
ensure appropriate and expected decision-making.

Overall, our approach to IEMS has shown very promising results in terms of high
performance using deep RL in a data-driven simulated environment. This enables practical
implementations of an IEMS that can be automatically retrained in an off-line simulated
environment that will be continuously evolving along with its physical counterpart. Hence,





we propose and employ a novel deep RL solution to energy cost reduction that should be
robust, scalable, and self-improving. The heart of our solution is several versions of the
COST-WINNERS algorithm combined with data-driven simulated training environments.
In this thesis, for practical purposes the COST-WINNERS algorithm is interchangeably
also called ARS-ANN, all though COST-WINNERS refers specifically to the ARS-ANN
algorithm adapted to multiple simultaneous ESS control.

1.2 Publications

We solve each task of the thesis mainly using machine learning and deep RL. ANNs
are employed to model cooling system performance, regression is employed to model
dynamics in the thermal energy domain, and advanced RL algorithms are tested to control
BESS and TES in our case-study smart warehouse. We list the contributions of this thesis
below, each of which are described in detail in Chapter III, and the associated papers
published are presented in their entirety in Part II of the thesis. Here, we present a summary
of our papers:

Paper A Lacking important metrics such as thermal energy measurements and power con-
sumption at the individual compression stages of our case-study warehouse cooling
system, we attempt to develop theoretical models of the compressors by generating
a data set through the use of compressor manufacturer software and available mathe-
matical equations. An ANN is trained to model the compressors using operational
data. The models are trained with cooling medium evaporation and condensation
temperature, suction gas temperature, gas cooler outlet temperature and pressure,
and compressor operating frequency. The output is the aggregated electrical power
load and mass flow for the freezing stage compressors. The resulting average MSE of
0.08% conclusively shows that using an ANN to model the compressors in a cooling
system is a valid approach that allows quick and accurate theoretical calculations of
cooling load and compressor power. This paper mainly addresses Research Question
1.

Paper B In this paper, we expand our approach from paper A to the full ensemble of com-
pressors featured in all the compression stages of the warehouse cooling system.
Individual ANN compressor models are combined so that power input and thermal
mass flow of the compression stages can be calculated. Furthermore, cooling system
COP can be calculated as a whole or for each compression stage. To examine the
practical applicability of the approach, we use laboratory data from the CO2 cooling
system at the Norwegian University of Science and Technology, as well as total
power input measurements for the cooling system at our smart warehouse. The
results show that the presented approach is relatively precise with a Mean Average
Percentage Error (MAPE) as low as 5%, when constrained by low resolution and
asynchronous data from the case-study cooling system. When tested in a laboratory
setting, we achieve a MAPE as low as 1.8%. This paper mainly addresses Research
Question 1.





Paper C In this paper, we examine deep Reinforcement Learning (RL) algorithms developed
for game play applied to a battery control task with an energy cost optimization
objective. We explore how agent behavior and hyperparameters can be analyzed
in a simplified environment with the goal of modifying algorithm exploration of
the action space for increased stability. Our modified Deep Deterministic Policy
Gradient (DDPG) agent is able to perform consistently close to the optimum over
multiple training sessions with a maximum cost reduction of 25% and an average
cost reduction of 99% of the maximum in a simplified BESS environment. When
environment complexity is increased by increasing the time frame of each episode,
a modified Twin Delayed DDPG (TD3) agent is utilized to achieve an average
of 99.9% of the optimal result compared to a GLPK optimization solver given
perfect information. However, the amount of time required for algorithm tuning and
enhancement was unsatisfactory in relation to our overall research goals. This paper
mainly addresses Research Question 2.

Paper D In this work, the focus is on the application of the deep RL algorithm to the spe-
cific energy optimization problem of controlling a BESS in our smart warehouse.
This paper adopts data from the real and operational BESS installed in the smart
warehouse. We develop a simulated environment of the smart warehouse using data
from the integrated photovoltaic power plant, local energy demand, historical ToU
energy prices and more. We present the combination of the ARS reinforcement
algorithm with ANNs as a potential backbone to the design of an IEMS tasked to
control the energy flow of the BESS with the goal of energy cost minimization. An
ANN replaces the simple input-output matrix used to parameterize the agent policy
in the original ARS algorithm, allowing for more complex and abstract policies. The
suggested algorithm shows very promising results, achieving an average of 99.2%
accuracy across 10 seeded trials when compared with a GLPK optimization solver
given perfect information. This paper mainly addresses Research Question 2.

Paper E In this paper we examine the applicability of the ARS-ANN RL algorithm to a
complex energy cost reduction problem through direct control of BESS and TES
charging and discharging setpoints in a simulated case-study smart warehouse. Our
main research goal is to examine if the ARS-ANN algorithm can efficiently control
multiple ESSs with different dynamics and substantially varying degrees of impact
on energy cost. We hereby refer to this adaptation of the algorithm as COST-
WINNERS. The agent is trained in a simulated environment of the smart warehouse,
which we mainly designed through the use of data-driven techniques. We have
emphasized the use of data-driven techniques as a way to reduce the need for human
expertise to design the simulated environment to increase the practical utility of our
approach. We continue development of the simulated smart warehouse by including
a mathematical model of the TES. The various dynamical interfaces between the
TES and the hydronic heating distribution system are modelled by simple machine
learning techniques such as linear and polynomial regression. The COST-WINNERS
algorithm is tasked to simultaneously control multiple ESSs, namely the BESS and
TES. This paper mainly addresses Research Question 3.
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Each of the articles listed above represents individual components of a practical methodol-
ogy to the design of a robust and scalable IEMS. The main characteristics of our IEMS
design methodology is the use of deep RL trained in an offline environment consisting of
an ensemble of mainly data-driven machine learning models of individual energy system
components and dynamics. Mathematical models of individual components can be in-
cluded for practical purposes, but can also easily be replaced once available data increases
to an amount that makes machine learning techniques more viable. Our design philosophy
is modular in the sense that both individual component models and the deep RL algorithms
can be replaced as the research field advances further. An illustration of the research
articles by contribution to main research area is presented in Fig. 1.1, whereas Fig. 1.2
visualizes the hierarchy of the articles.

1.3 Thesis outline

The dissertation is organized into two parts. Part I contains an overview of the work carried
out throughout this Ph.D. study and Part II includes a collection of five published, accepted
or submitted papers, which are mentioned in the list of publications. In addition to the
introduction chapter presented above, the following chapters are included.





• Chapter II presents the theoretical background within the various research fields
related to this thesis, such as machine learning, reinforcement learning, and energy
system modeling and control.

• Chapter III describes the components of the operational smart warehouse energy
system we use as the basis for data-driven modeling and energy control.

• Chapter IV details the contributions of this thesis. The two main sections are
dedicated to data-driven energy system modeling and reinforcement learning for
intelligent energy management systems. The methodologies, experiments and results
for each contribution are explained extensively.

• Chapter V concludes Part I of the thesis and discusses the implications of the
outcomes of the thesis. It also contains potential future research directions that can
further improve the work presented in the thesis.

• In Part II of the thesis, all publications associated with the thesis are presented in
their entirety. There are five publications labeled as Paper A to E. The papers are
listed in chronological order according to their time of publication.





Chapter 2

Background

In this Ph.D. study we propose the state-of-the-art machine learning techniques to solve a
complex energy cost optimization problem to form the backbone of a robust and scalable
IEMS.

In this chapter, we briefly describe the background and preliminary information needed
to understand the thesis. First, we introduce the various AI research areas associated with
this thesis, starting with ANNs and other machine learning techniques that have been
used to model components in a simulated warehouse environment we developed for RL
agent training. The second section introduces RL and the algorithms we have adopted in
experiments throughout this Ph.D, where deep ANNs play a crucial role.

2.1 Control systems for energy cost reduction

Many approaches to energy cost reduction in an operational setting can be found in the
scientific literature. For optimizing energy cost and power flow in a Direct Current (DC)
microgrid Sechilariu et al. (2014) proposed Mixed Integer Linear Programming (MILP).
The approach is similar to the Intelligent Energy Management System (IEMS) already
implemented in our previously described case-study smart warehouse. It includes load and
Photovoltaic (PV) prediction, a human-machine interface, and energy management. Huang
et al. (2015) proposed a hybrid (MPC) for energy cost optimization in a case-study airport
terminal building. The authors introduce Neural Networks as a way to handle non-linearity.
Another MPC approach was suggested in Lešić et al. (2017) using hierarchies of multiple
MPCs for energy cost optimization and thermal comfort control. A data-driven MPC,
i.e., Data Predictive Control (DPC), was proposed in Smarra et al. (2018). The authors
suggested using random forests for predictions and argued that intelligent control systems
that require physical models of buildings are not practical due to high complexity and
variance in building design. Wang et al. (2020) propose MPC for control of a dual BESS
connected to a wind power farm. Based on simulations, the authors claim improved wind
farm dispatchability, and extended battery life as their results. Barbato, Capone (2014)
conducted a survey to describe various optimization techniques designed to solve Demand
Side Management (DSM) problems for end-users in smart grid scenarios. They conclude
that although researchers had undergone extensive work in this field of research, many
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research questions remained unanswered. Mariano-Hernández et al. (2021) conducted a
review of various strategies for Building Energy Management Systems (BEMS), including
MPC, DSM, and optimization. The authors found MPC to be the most used management
strategy in non-residential buildings and conclude that the building model will be critical to
ensure intelligent control in future research. Rätz et al. (2019) describe a methodology for
automated data-driven modeling of energy systems in buildings that could be applicable to
MPC and RL.

Battery Energy Storage Systems (BESS) built with lithium-ion technology are increas-
ingly deployed in both macro and micro scale projects (Stroe et al., 2017). For optimal
utilization of the BESS for multiple purposes such as energy cost reduction, reducing peak
power demand and frequency regulation, intelligent control systems that balance the need
for longer-term planning with immediate response are required. For such systems, many
approaches have been suggested, including constrained non-linear programming (CNLP)
optimization for aggregated two-stage control in a micro-grid in Long et al. (2018) achiev-
ing a 30% energy cost reduction when combined with peer-to-peer energy sharing, a
rule-based approach for many distributed batteries in a data center with a focus on accurate
battery health modeling in Aksanli et al. (2013) and a rule-based scheme for PV and wind
application in Teleke et al. (2010). When considering the dynamic and ever-changing
nature of building-integrated energy systems, it seems unlikely that a rule-based approach
can be implemented without extensive follow-up and revision. In related research, Siqueira
de, Peng (2021) conducted a review of control strategies for smoothing wind power output,
finding Model Predictive Control MPC to be the most common for multi-objective opti-
mization. Lipu et al. (2021) discussed various approaches to intelligently control battery
management in electric vehicles.

2.1.1 Rule-based

We observe a decrease in rule-based approaches with an increase in energy system com-
plexity. Nevertheless, a rule-based approach is a simple and understandable solution to
many control tasks in a buildings energy system. A rule-based system is characterized
by control algorithms that follow a set of rules, often decided by using human expert
knowledge. Examples of rule-based control algorithms for energy cost reduction are
ventilation temperature set points proportionally adjusted to ambient temperature or Heat-
ing, Ventilation, Air-Conditioning (HVAC) operational calendar scheduling. In simple,
unchanging systems, this is often the most transparent and robust solution. However, for
dynamic and evolving systems the challenge is to design rules that are relevant for all
operational scenarios. Maintaining the ruleset and updating values manually is another
dimension that requires human expert knowledge.

2.1.2 Mixed integer linear programming

MILP relates to optimization problems with both continuous and integer variables. The
simplest, but least effective way to solve such problems is to use exhaustive search. The
most common, featured in the open-source GLPK solver, is the branch and bound method.





Essentially, the branch and bound method works by calculating candidate branch solutions
within an upper and lower bound. When applied to energy cost optimization problems
in the temporal domain, a MILP approach could be a component of MPC. An important
prerequisite for MILP in this instance is accurate predictions and/or models of input
variables, which can be challenging. In cases where a large component of the energy
costs come from peak power tarriffs, making decisions based on inaccurate predictions
or models can lead to overall increased energy costs. Since prediction and optimization
algorithms can be computer resource intensive, combining these systems with rule-based
algorithms to avoid peak power costs can be prudent. The overall design of a robust IEMS
solution based on MILP requires expert knowledge of the energy system and can be quite
time-consuming.

2.1.3 Model predictive control

MPC is an established theoretical approach to complex HVAC control, although not
many examples of practical application exist. According to Afram, Janabi-Sharifi (2014),
advantages of MPC control include the use of a model to enable proactive rather than
reactive control, the ability to handle temporally variable dynamics, and the use of a variety
of optimization algorithms to achieve multiple objectives through a well-defined cost
function. The model can essentially be designed in three different ways:

1. A transparent physical model.

2. A so-called “Grey-box” with a physical model where unknown parameters are tuned
with operational data.

3. Black-box with a purely data-driven approach.

In an operational setting a hybrid between these designs where data availability and
component complexity would be used to determine the most practical modeling approach
is perhaps the most realistic scenario.

As an example, Goldsworthy et al. (2022) has successfully implemented a cloud-based
Model Predictive Control (MPC) battery control algorithm for energy cost reduction at an
office building. The system has been operational for a year and achieved an energy cost
reduction of 5.5%.

2.2 Supervised machine learning

In this section, we describe the areas of supervised machine learning that are fundamental
to the topics investigated and adopted in this study. Supervised machine learning is a broad
field of study of computer algorithms that learn or improve from data (Jordan, Mitchell,
2015). We focus on some of the main techniques applied to our research, namely ANNs,
whereas RL, another large research field within machine learning, is described in the next
section.





Input layer Hidden layer(s) Output layer

Figure 2.1: Fully connected artificial neural network with a single hidden layer.

2.2.1 Artificial neural networks

ANNs have the ability to approximate both simple and complex unknown functions that
fit the underlying data. ANNs come in many forms, but the most common kinds feature
an input layer, one or more hidden layers, and an output layer (see Fig. 2.1). Each layer
consists of so-called neurons, named after the neurons in the human brain. The neurons in
the input layer represent the chosen input parameters, passing these directly to the neurons
in the first hidden layer. Usually, the hidden layers are fully connected, meaning each
neuron in the hidden layers is connected to each neuron in the previous layer. The values
are passed along the connections and summed before an activation function is applied to
determine the output value of each neuron. The ANN is trained or updated by propagating
the measured error of the output backwards through the same layers. At each node in
the ANN, its numerical activation value consists of the activation function applied to the
sum of the weighted input values. Backpropagation facilitates learning by updating the
input weights according to the gradient of the error. Two of the most common activation
functions are the hyperbolic Tangent (Tanh, Eq. 2.1) and the Rectified Linear Unit (ReLU,
Eq. 2.3). Finally, the output layer neurons process the values according to the desired
application by applying the output layer activation function to each output neuron. The
number of neurons in the output layer corresponds to the desired number of outputs.

Activation functions: There are many available activation functions, chosen depend-
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Figure 2.2: Markov decision process interaction between agent and environment.

ing on the nature of the neural net and the desired application. The most common activation
functions include Sigmoid (Eq. 2.4), Tanh (Eq. 2.1), ReLU (Eq. 2.3) and softmax.

Tanh(x) =
expx− exp−x

expx +exp−x
. [W m−2] (2.1)

Tansig(x) =
2

(1 + e−2x)− 1
. (2.2)

ReLU(x) = max(0, x). (2.3)

Sigmoid(x) =
ex

1 + ex
. (2.4)

2.2.2 Deep learning

Deep learning is a field within AI and machine learning that focuses on extracting patterns
from data through a hierarchy of increasingly complex abstractions (Goodfellow et al.,
2016). The most common implementation of deep learning is characterized by passing
data through the multiple hidden layers of a deep ANN.

2.3 Reinforcement Learning

According to Sutton, Barto (2018), RL is learning by discovering what actions to take
to maximize a reward. Experiments with simulated environments are often designed for
agents to learn, by trial and error, how to maximize a numerical reward signal, often binary
in nature. It is common for researchers to design a reward function to reward desired
behavior and, in some cases, to penalize unwanted behavior. The reward function may be





updated if the desired behavior changes over time in an operational scenario, even if the
overall goal is unchanged.

RL researchers commonly model the problem as a finite Markov Decision Process
(MDP). The iterative process is illustrated in Figure 2.2. An agent interacting with an
environment through actions receives numerical feedback from the environment in the
form of a reward or penalty. The agents’ actions may affect the environments’ internal state
as a direct or partial consequence. The environment determines which actions are available
to the agent, and the action space is usually either a constant set of discrete numbers, a
continuous range of floats, or decided for each new state as would be the case in a game of
chess. The agent determines what actions to take by following its internal policy π. The
policy usually includes a mechanism that allows the agent to explore alternative actions
outside the most strict interpretation of its policy to be able to discover new states and
actions that have the potential to generate higher rewards. Upon such discoveries, various
methods exist to update the policy according to the newfound knowledge. Finally, a crucial
element in RL is the valuefunction that defines the value of a state through probabilities
related to actions, rewards, and future states. Sutton, Barto (2018) referred to the Bellman
equation as the definition of the value of a state while following the policy π:

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′r|s, a) [r + γVπ(s
′)] ,∀s ∈ S. (2.5)

The Bellman equation describes the value of the state s while following the policy π as
the sum of the probability of taking action a in the state s, multiplied by the sum of the
probability of arriving in each state s′ and receiving reward r, multiplied by the sum of
r and the discounted (γ) expected value of the future state s′. The Bellman equation is a
central part of RL theory and research.

Wang, Hong (2020) conducted a survey of RL application to control of technical
systems in buildings. The authors argued that established techniques such as MPC require
extensive expert human knowledge to properly design and implement, making it less
applicable in the building control domain compared to mass production domains such as
the automobile industry. Furthermore, Wang, Hong (2020) stated that RL combined with
transfer learning should be further explored for building control.

Importantly, there are also examples of more advanced state-of-the-art algorithms in
the literature. Mocanu et al. (2019) use Deep Policy Gradient (DPG), similar to DQN,
for binary scheduling of flexible residential consumer loads. Wan et al. (2018) propose
a variant of Deep Deterministic Policy Gradient (DDPG), from Lillicrap et al. (2015),
for residential BESS control. An improved DQN is suggested in Cao et al. (2020) for
BESS arbitrage. This algorithm includes a lithium-ion battery degradation model, with
discretized action space for full or 50% capacity charging and discharging in addition to
stand-by. Shang et al. (2020) propose a DQN with bootstrapping combined with Monte
Carlo tree search to control a BESS in a microgrid. The authors in Xu et al. (2021) propose
a combination of RL (Q-learning) with differential evolution to reduce energy cost for
industrial users with combined solar power and thermal energy production, as well as
BESS and TES, while satisfying local energy demand and trading energy in an energy
trading platform.





However, in all the aforementioned cases except Wan et al. (2018), the algorithms
work in discrete domains and therefore have limited action space. In addition, in many
cases, the reward functions are quite sophisticated and tailored to a specific experiment.
The above-mentioned approaches are not ideal for enabling large-scale adoption and quick
implementation of IEMS using RL due to complicated algorithms and reward functions, or
simplified action spaces that reduce the cost savings potential of the systems.

2.3.1 Q-learning

At the foundation of many RL algorithms is Q-learning (Watkins, 1989). The original
Q-learning algorithm is a table-based mapping of states to the Q-values of all possible
actions. The Q-value is a mathematical estimate of the expected discounted future value
of the action. The state space and the action space have to be discrete and finite. The
agents’ policy is encoded in the Q-table, where each state has a corresponding Q-value for
each possible action, and the deterministic version of the policy consists of choosing the
action with the highest Q-value. The mechanism for exploring actions outside the policy
in Q-learning consists of adding a random component to a fraction of the actions taken.
As stated in Perera, Kamalaruban (2021), most of the RL employed in the energy domain
uses Q-learning, even if simpler algorithms are still deployed. Q-learning is essentially a
table-based approach, mapping an environment state to Q-values for each possible action.
The Q-table is updated according to

Q(St, At)←Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−

Q(St, At)], (2.6)

where S is the state and A is the action selected. The learning rate α is applied to the sum
of the reward R at time t+ 1 and the discounted (γ) estimated max future Q-value at state
St+1, minus the existing Q-value.

The following researchers have applied variations of Q-learning to many problems
and challenges within renewable energy, energy storage, and complex energy systems.
Kuznetsova et al. (2013) simulated a microgrid consisting of a wind turbine and a BESS
connected to a power grid. The author’s approach uses Q-learning taking as inputs energy
price, battery State Of Charge (SOC), wind energy predictions, and energy demand. The
agent can choose between three discrete actions: Battery charging, battery discharging,
or stand-by. Kuznetsova et al. (2013) claim that their approach is a framework for under-
standing and exploring stochastic energy systems. Wen et al. (2015b) also propose using
Q-learning and end-user device utilization for controlling the temporal shift of flexible
loads in small offices and residential buildings. Mbuwir et al. (2017) suggest Fitted Q-
iteration as the basis for transfer learning of battery control to and from BESS with similar
characteristics. Henze, Schoenmann (2003) examine Q-learning for control of a Thermal
Energy Storage (TES) in a simulated environment.

In recent years, several significant breakthroughs have been made in applying a com-
bination of deep learning and RL to various games. Simulated environments that allow





numerous swift learning iterations with clearly defined numerical reward signals have
proven to be fertile ground for the exploration of these algorithms. The starting point for
much of this development was when Mnih et al. (2013) introduced a deep ANN adaptation
of basic table based Q-Learning called deep Q-learning (also known as Deep Q-Networks,
DQN), demonstrating state-of-the-art results in six out of seven Atari 2600 games. DQNs
replace the Q-table with an ANN such that the output of the neural network is the Q-values
of all possible discrete actions in a given state. The objective in Mnih et al. (2013) and
further in Mnih et al. (2015) is to explore the effects of advances in computing power and
deep learning on the common RL bench-marking task of Atari 2600 gameplay performance.
The Q-table is encoded into the weight parameters of a deep ANN, specifically a deep
convolutional neural network, and the weights, θ, are updated according to

θt+1 =θt + α[Rt+1 + γmax
a

Q̂(St+1, a, θt)−

Q̂(St, At, θt)]∇Q̂θ(St, At, θt), (2.7)

where θt+1 are the weights at time t+ 1, θt are the weights at time t and ∇Q̂θ(St, At, θt)

are the partial derivatives of the state-action pair value approximations with respect to
the weight vector θt. Instead of updating the weights after every action according to the
current sequence of actions, the algorithm draws random mini-batch samples from an
experience replay memory database to update the DQN weights through stochastic gradient
descent. In paper C, we demonstrate the applicability of DQN to control a BESS following
a time-of-use energy pricing profile as a benchmark.

2.3.2 Deep reinforcement learning

Many breakthroughs in RL in recent years come from algorithms developed for gameplay
in various benchmarking tasks. Adapting and applying the most promising algorithms
to energy optimization tasks has been an avenue of research we have explored in this
thesis. Below, we present some of the important developments in deep RL in recent
years. AlphaGo mastered the extremely complex, but highly intuitive turn-based game
of Go through a combination of supervised learning (pre-training with human-generated
example data) and deep RL Silver et al. (2016), resulting in a 4-1 defeat of 18-time
World Champion Lee Sedol. The achievements of AlphaGo have since been surpassed
by AlphaGo Zero through tabula rasa deep RL without any human knowledge in Silver
et al. (2017), where AlphaGo Zero defeated AlphaGo 100-0. Central to these algorithms
is the concept of self-play to generate an experience replay database from which random
samples are utilized for training. This was further explored in Silver et al. (2018b) for
the games of Shogi and Chess, leading to similarly impressive results. The AlphaZero
algorithm uses neural networks to estimate action probabilities and a Monte-Carlo tree
search algorithm for future move-sequence analysis. A more recent development is the
MuZero algorithm introduced in Schrittwieser et al. (2019). Where AlphaZero is informed
of the environment dynamics, i.e., the rules of the game, MuZero differs by having to learn
a model of the environment starting from scratch. This constitutes a significant step toward
the real-world application of deep RL with stochastic and partially unknown environment





dynamics. More recently, Badia et al. (2020) achieved state-of-the-art performance in the
popular Atari games benchmark. The Agent57 algorithm is the first to outperform the
standard human benchmark in all 57 games. The algorithm includes training an artificial
neural network encoding multiple policies with varying degrees of exploratory behavior.
Addressing the challenge of increasing data and training sample efficiency, Schrittwieser
et al. (2021) introduced MuZero Unplugged as a more sample efficient version of the
MuZero algorithm adapted to off-line RL, and Fan, Xiao (2022) introduced Generalized
Data Distribution Iteration (GDI) which according to the authors reduced data consumption
by 500 times compared to Agent57.

Efforts to explore the state-of-the-art deep RL for energy optimization have also been
made. Deep RL for online dynamic binary consumer load scheduling in households is
described in Mocanu et al. (2019). Availability of locally produced solar electricity, energy
price, and peak shaving are all considered. Data is extracted from the PecanStreet database
and used to model households on individual and aggregated levels. The proposed algorithm,
Deep Policy Gradient (DPG), replaces the output Q-values in a DQN with an estimated
probability of taking action a in state st, thus allowing for multiple simultaneous discrete
actions to be selected. DPG is found to outperform a DQN modified for simultaneous
action selection through action grouping. Wei et al. (2015) proposed dual iterative Q-
learning neural networks to reduce energy cost with optimal battery control. The dual
iteration relates to an internal iteration j to reduce energy cost for each episode of 24 hours,
and an external iteration i −→∞ to update a defined performance index function towards its
optimum. The overall claim is that the dual iteration is necessary due to the time dependent
nature of the optimal Q-function, Q∗(St, At, t). The neural networks are used in an actor-
critic setup, denoted action and critic networks by the authors. Numerical results show
improved performance over particle swarm optimization and time-based DQN. Residential
battery control with deep RL is explored in Wan et al. (2018). The algorithm can be
characterized as Deep Deterministic Policy Gradient (DDPG), first proposed in Lillicrap
et al. (2015), and consists of actor-critic deep neural networks, specifically recurrent neural
networks using gated recurrent units (Cho et al., 2014). The actor network utilizes policy
gradient for parameter updates while the critic network utilizes a squared Q-value loss
function. Results are compared with the theoretically lowest energy cost calculated by
an optimization algorithm and a do-nothing scenario with a clearly favorable, but not
optimal outcome. Zhang et al. (2021) proposed Soft Actor-Critic SAC to optimize BESS
control with multiple energy production facilities. However, the authors have not clarified
if the experiment is based on more than a single 24 hour episode and results are only
compared with other simpler RL algorithms. We expand on the details of the DDPG and
SAC algorithms later in Subsection 2.3.3. DQN and DDPG are both explored in paper C,
whereas SAC is featured in papers D and E.

2.3.3 Actor-critic policy gradient algorithms

Actor-critic RL algorithms are characterized by the agent having separate policy and value
functions. For instance, deep RL actor-critic algorithms separately train ANNs for value
estimation (critic) and action selection (actor). One such algorithm is the DDPG algorithm,





first proposed in Lillicrap et al. (2015) and adopted by Wan et al. (2018). DDPG is an
actor-critic RL algorithm with four ANNs – the actor policy network µ, the critic network
Q and their respective target networks. The target networks weights, θ′, trail the main
networks weight parameter updates, θ, through

θ′ ← τθ + (1− τ)θ′, (2.8)

where the target networks function as a mechanism for improving stability by using them
to estimate the value of the following state while the main networks are used for current
state value estimation. Training the main networks is carried out through the use of
an experience replay database R that holds transitions (si, ai, ri, si+1) for each step in
every training episode. The algorithm samples a random mini-batch N of non-sequential
transitions from R and uses the target actor µ′(s|θµ′

) to predict actions a′i+1 for every new
state si+1 in the mini-batch. A temporary state-action value is then calculated using the
target critic network as

yi = ri + γQ′(si+1, a
′
i+1), (2.9)

and the main critic network updated by minimizing the mean squared error between yi
and Q(si, ai) for every transition in the mini-batch. Finally, the main actor network can be
updated from the same mini-batch by first calculating new actions ai from current states si
with the main actor µ. The gradients for the main Q network weights θQ with respect to ai,
and the gradients for the main policy network µ with respect to its parameters θµ are then
used to approximate the gradient of the policy network cost function J with respect to θµ,
by sampling as shown in Silver et al. (2014):

∇θµJ ≈
1

N

∑
i

∇aiQ(si, ai|θQ)∇θµµ(si|θµ). (2.10)

The approximated gradients are then applied to θµ using an optimizer, such as Adam
Kingma, Ba (2014), with an adjustable learning rate α that determines the step size of each
update.

Recent improvements suggested in Fujimoto et al. (2018) with Twin Delayed DDPG
(TD3) include the adoption of clipped dual Q-networks to avoid Q-value overestimation
by only considering the most conservative output, delayed updates of the actor networks
compared to the critic networks and adding noise to the target network predictions during
training. Another development of DDPG is the SAC proposed in Haarnoja et al. (2018),
introducing entropy regularization for exploration combined with clipped dual Q-networks.
Actor network output layers are configured with a hyperbolic tangent (tanh) activation
function, whereas critic network outputs are linear. DDPG and TD3 are both explored in
paper C, whereas SAC and TD3 are featured in papers D and E.

2.3.4 Augmented random search

ARS is a more efficient version of what the authors (Mania et al., 2018) term basic random
search due to the various mechanisms in the algorithm that targets the search towards higher
rewards. The authors designed ARS to work with a simple linear policy, unlike the direction





that many other RL researchers are taking, and it also operates in continuous action space.
Additionally and in contrast to most other RL algorithms, exploration with the ARS is done
directly in the parameters of the policy function by randomly making minute changes to the
parameter weights. In other words, the algorithm directly manipulates the parameters of
the linear policy function to search for a policy that generates higher rewards. In contrast,
well-known algorithms for continuous action space such as DDPG (Lillicrap et al., 2015),
SAC (Haarnoja et al., 2018), Trust-Region Policy Optimization (TRPO) (Schulman et al.,
2015) and TD3 (Fujimoto et al., 2018) all add a random component to the agent output
action to encourage exploration. For ARS, the parameter space is explored by generating a
table of random noise and adding the noise to the policy parameters in both positive and
negative directions. The new parameters are tested by running an episode and collecting the
reward. N such tests, termed rollouts, are performed and sorted by reward in descending
order (Mania et al., 2018). The top b directions are then chosen and used to update the
policy according to

θj+1 = θj +
α

bσR

b∑
k=1

[
r
(
πj,(k),+

)
− r

(
πj,(k),−

)]
δ(k), (2.11)

where θ represents the parameters of the policy, α is the learning rate, σR is the standard
deviation of the rewards, r(πj,(k),+) and r(πj,(k),−) are the sorted rewards from positive and
negative rollouts and δ(k) is the randomly generated noise of the same size as θ. The mean
and standard deviation of input variables are continuously updated and used to normalize
input values. The authors demonstrate impressive performance across a wide range of
known RL benchmark problems while also vastly decreasing computational resources
required for training.

2.4 Summary

In this chapter, we have introduced and explained the most important background concepts
and research areas underlining this thesis. Our research touches upon a broad area of
subjects, such as control of complex renewable energy systems, machine learning, rein-
forcement learning, and energy system modeling. Specifically, in a substantial part of
our research, we use ANNs in various settings to enable complex and abstract pattern
recognition. This thesis combines techniques from the aforementioned areas to design a
RL backbone to an IEMS capable of reducing the energy cost of complex energy systems
with multiple ESS’ in a robust and self-improving manner. We have employed ANNs in all
parts of the thesis (Papers A, B, C, D, and E) and reinforcement learning for ESS control
in a significant portion of the research (Papers C, D, and E).
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Chapter 3

Smart warehouse energy system

This chapter details the smart warehouse energy system that is part of this Ph.D. research.
The research in this study is based on existing infrastructure and data from a 27,000 m2

technologically advanced warehouse for food storage and distribution, located in Sandnes,
Norway. We use data and component specifications from this warehouse energy system
in all of the research in this thesis. The warehouse was completed in 2017 and features
a commercially developed IEMS based on hourly scheduling that uses various machine
learning techniques to generate an optimized schedule for the utilization of a locally
installed Battery Energy Storage System (BESS) and an insulated firewater tank is also
used as a Thermal Energy Storage (TES) for storage of heated or chilled water. The
IEMS has to predict future electrical and thermal energy demand and uses external energy
pricing information to create an optimal scheduling strategy. The main components of the
warehouse energy system are a 1 MWp solar PV power plant, a 460 kWh storage capacity
electrochemical li-ion BESS with two 100 kW inverters, a 300 m3 TES, a CO2-based large
scale cooling system consisting of three two-stage cooling plants and a back-up cooling
machine for ventilation air and IT-server cooling, an electric boiler, and accompanying
technical infrastructure (HVAC, Lighting, etc.). The heat from the Cooling System (CS)
is reclaimed and used to heat the building. An overview of the warehouse temperature
zones with their respective operating temperatures is listed in Table 3.1, whereas the main
components of the energy system and their interdependencies are visualized in Fig. 3.1
and listed in Table 3.2.

Table 3.1: Warehouse cooling floor area and operating temperatures.

Area Size Operating temperature
Warehouse 27 000 m2 -20°C to +20°C
Frozen storage area 3 000 m2 -20°C
Cold storage area 3 600 m2 +2°C
Cooled shipping area 3 600 m2 +2°C

In the following sections, the components of the warehouse energy system and their in-
tersections are explained in more detail. We also highlight some of the technical challenges
that need to be solved when designing an IEMS to control the systems.
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Figure 3.1: The smart warehouse energy system with BESS, TES, cooling system and PV
power plant (Opalic et al., 2022). Arrows indicate the direction of energy flow.

Table 3.2: Main components of the smart warehouse energy system.

Component Capacity Unit of measurement
Photovoltaic solar panels 1,018 [kWp]
Lithium-ion battery energy storage system 460/200 [kWh/kW]
Cooling system 1,140 [kWthermal]
Thermal energy storage system 300/300 [m3/kWthermal]

3.1 Photovoltaic solar panels and battery energy storage
system

The warehouse energy system features the combination of a PV solar plant and a BESS.
The PV power plant has an installed power production capacity of 1 MWp and produces
around 830 MWh of energy annually. It features 1000 V modules in a southwest by
northeast configuration at an incline of 10o.

Being able to plan for future PV production and react to changes in current PV
production, implicitly or explicitly, are important requirements of an IEMS to extract
maximum value out of the locally produced electrical energy. For instance, maximizing
local consumption of PV production through the use of ESSs will reduce total energy
costs by reducing grid tariff costs related to energy purchase, given that the total energy
consumption remains the same.

BESSs built with lithium-ion technology are increasingly deployed in both macro and
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Figure 3.2: On-site cooling plant architecture showing both compression stages and actual
compressor types (Opalic et al., 2020).

micro scale projects (Stroe et al., 2017). The case-study warehouse energy system uses a
BESS to both enable peak power demand shaving and increase the self-consumption of
locally produced energy from the PV power plant. AC current is converted to DC current
through two 100 kW inverters for energy storage, and the opposite occurs during discharge.
The BESS is currently configured to be remotely controlled by the selection of battery
operating mode and a setpoint value for charging or discharging magnitude. During the
design phase, the BESS’s total energy storage capacity of 460 kWh was calculated so that
as much of the PV energy as possible could be used locally.

A BESS configuration with 200 kW total inverter capacity and 460 kWh electrical
energy storage was used in all research papers in the thesis involving BESS control (Papers
C, D, and E).

3.2 Cooling system

The warehouse’s main cooling system is an industrial CO2-refrigerant cooling system
consisting of three separate cooling plants. The cooling process operates by circulating
liquid CO2 to evaporators in the frozen and chilled food storages where it evaporates after
valve injection. The cooling system also produces chilled water for cooling the remaining
building areas, including food storage, office space, and support areas. The architecture
of the main cooling system is shown in Fig. 3.2. An additional backup and peak-load
cooling machine provides chilled water for ventilation and server cooling at peak demand.
Surplus heat is recovered and utilized to heat tap water, to keep the ground beneath the
frozen storage frost-free, and to supply the non-cooled areas of the building with heating
energy when needed. If there is insufficient excess heat available, the operating pressure
can be increased to satisfy the heating demand, up to a predefined maximum pressure level.





Recovered heat can also be stored in the TES for future use, mainly to reduce the need for
the electrical boiler at peak heating demand.

The compressors are semi-hermetic reciprocating compressors manufactured by Bitzer
GmbH, with one frequency-controlled compressor at each stage. Fig. 3.2 shows the
placement of all the compressors in a simplified cooling system architecture. There are
two pressure stages of compression as well as parallel compressors to handle flash gas in
the receiver and chilled water production. The compressors for the frozen storage areas
are displayed in the bottom left, with the cold storage compressors in the top left and the
parallel compressors in the top right. Fig. 3.2 also displays mass flow direction and the
most crucial CS components. It can be noted that the CO2 based cooling system is a highly
complex part of the energy system in the considered technologically advanced warehouse.

Data from the cooling system is used in papers A, B and E. In papers A and B we
model the compressor efficiency and cooling system performance using ANNs, whereas in
paper E we use data generated with the ANN models to build a data-driven RL training
environment.

3.3 Thermal energy storage

Table 3.3: Thermal energy storage system characteristics.

Attribute Values Unit of measurement
Measurements in LxWxH 12x10x2,5 [m]
Volume 300 [m3]
Average U-value 0.20 [ W

m2K
]

Storage medium Water N/A
Heat exchanger max flow 25 [m

3

h
]

Heat exchanger temperature loss 2 [oK]

The TES is employed to hydronically store both heating and cooling energy by switch-
ing between two separate seasonal modes of operation, hereby denoted Heat Energy
Storage (HES) and Cold Energy Storage (CES). Switching between heating and cooling
storage incurs significant cost due to the difference in the operational temperature levels of
the heating and cooling distribution systems at 50°C / 25°C and 9°C / 15°C supply/return
temperature respectively. Therefore, the TES is used only as HES in the winter and as CES
during the summer half of the year. It currently operates in CES mode from around March
to November, and HES for the remainder of the year. Natural reduction of the cooling
demand occurs as outside temperature decreases towards the winter season. As a result,
surplus heat available for recovery is no longer able to sustain the warehouse’s overall
demand for heating. However, by storing heating energy reclaimed from the cooling
system in advance, the load on the electric boiler can be severely reduced, which in turn
reduces the consumption of energy and the cost of peak power.

In CES mode, the TES can be adopted to maximize self-consumption of solar power
and reduce energy cost through two main objectives:





Figure 3.3: Thermal energy storage with valves for reversing direction of water flow.

1. Storing surplus electricity generated by the PV installation in the CES through
energy conversion.

2. Producing and storing chilled water at high COP conditions and low energy prices.

To achieve the first objective, the cooling system can be used to convert surplus
electricity that would otherwise be exported to the grid into chilled water for storage in
the CES. In the evening, when the natural reduction of power output from the PV-plant
occurs the CES can be discharged, thereby reducing energy consumption for the cooling
system. The second objective involves decoupling the production of cooling energy from
the cooling energy demand through the use of CES. Decisions regarding when to charge,
discharge or stand-by can be made by an IEMS on the basis of current and future energy
prices as well as the cooling system COP to maximize cost reduction related to chilling
water.

In HES mode, excess heat recovered from the cooling system after the warehouse
heating demand is fulfilled can be stored in the HES. Available excess heat depends on the
cooling demand in the refrigerated areas of the warehouse and will thus vary proportionally
to the cooling work done by the cooling system. If available heat is not sufficient to cover
the heating demand, the remaining demand can either be covered by discharging stored
energy from the HES or by producing heat with an electrical boiler. The boiler can produce
heat at an efficiency of around 0.9, whereas using excess heat from the cooling plant
only incurs a small cost based on various operating conditions such as internal operating
pressure, operational temperature, external cooling demand and ambient temperature.
When the HES is charged, the cooling system pressure can be automatically increased to
make more heat transferable across the gas cooling heat exchanger, although this leads to a
reduction in the cooling system COP.

A schematic of the TES is included in Fig. 3.3. The schematic shows perforated water





Figure 3.4: IEMS dashboard view for the smart warehouse.

pipes in the TES (1, 2), placed diagonally along opposite walls within. This allows for
an even distribution of water flowing into and out of the thermal storage, consistent with
a strategy of maintaining water temperature layering inside the tank. The direction of
water flowing through the tank can be reversed using an arrangement of four two-way
valves (3-6). The TES is physically separated from the main hydronic energy distribution
systems by a heat exchanger (8). The flow volume on the TES side of the heat exchanger
is automatically balanced with the main hydronic energy distribution system using flow
measurements and a frequency-controlled pump (7).

We introduce the TES in paper E as the second ESS to be simultaneously controlled
with the BESS by an RL agent to reduce energy cost. In this research, the TES is simulated
as a hybrid of data-driven and physical models.

3.4 Existing smart warehouse intelligent energy manage-
ment system

The warehouse has a commercially installed IEMS that currently controls the BESS and
TES. It features an online user interface with analytic tools and a dashboard view, as shown
in Fig. 3.4. The IEMS can facilitate energy management and reduction of the operational
demands in an intelligent way to reduce energy cost and environmental impact. The system
is based on machine learning predictions of electrical and thermal energy demand, and PV
production, and an optimization algorithm that generates a 48 -hour schedule for BESS
and TES charging and discharging Marton, others (2019). The schedule is automatically
implemented through the local Building Management System (BMS). The existing system
does not react to live operational data and instead follows the schedule precisely for the
following hour. The whole process is repeated on an hourly basis, i.e., the system generates
a 48-hour schedule and implements the first hour suggested actions. As such, the system





relies very heavily on accurate predictions to be able to harness the ESSs for maximum
energy and cost reduction.

To optimize the interaction between thermal energy production and the TES, the
time-varying performance of the cooling system is required. The IEMS estimates this
through the utilization of cooling demand predictions, weather predictions, and a table
of COP values. The table of COP values is provided by the cooling system manufacturer
and constitutes a simplified approach to performance evaluation at any given ambient
temperature. Future COP values can then be estimated using weather predictions.
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Chapter 4

Contributions

In this chapter, we outline and describe the primary contributions of this thesis. The
thesis is multidisciplinary and touches many established research fields, such as renewable
energy, control systems and artificial intelligence. More specifically, we utilize ANNs to
model cooling system performance, the ARS-ANN RL algorithm to control ESSs, and
machine learning techniques to build data-driven models of a technologically advanced
food distribution warehouse energy system. This thesis’s contributions align with our goal
of advancing the research on state-of-the-art AI applied to IEMS. Our contributions are
focused on two main research fields:

• Data-driven building energy system modeling.

• Reinforcement learning for intelligent energy management systems.

The main contribution of this thesis is to investigate the potential of the state-of-the-art
advances in RL, trained in simulated training environments based on operational data and
machine learning models, to optimize the use of electrical and thermal energy storage
in advanced building integrated energy systems featuring local power production and
ESSs. For RL agent training, a simulated environment of a smart warehouse energy
system is introduced, designed as an ensemble of individual models of components and
system dynamics. First, we demonstrate the theoretical and practical applicability of ANN
modeling of industrial-scale cooling plants for performance estimation. Next, we examine
the state-of-the-art RL algorithms’ applicability to a simplified BESS control problem.
We then introduce the ARS-ANN algorithm for BESS control in the simulated smart
warehouse. Finally, we apply the ARS-ANN algorithm to simultaneous BESS and TES
control in the simulated smart warehouse and demonstrate highly promising results.

Most importantly, by combining the use of RL with data-driven energy system model-
ing, our approach will enable an IEMS system to automatically adapt to changes in the
energy system by first retraining data-driven energy system component models with new
operational data before the RL agent is retrained without risk to the operational system in
an off-line manner. This allows the system to adjust to physical changes in the components,
as well as changes in energy usage patterns, in a way that other suggested approaches
cannot.
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4.1 Data-driven building energy system modeling

This section describes the various essential component models that together compose the
simulated smart warehouse RL training environment. The main contribution is the use
of ANNs to model the smart warehouse cooling system, which is described in subsection
4.1.2 after an overview of the relevant literature is presented in the first subsection. We
describe the methodology and results in detail. The last subsection, 4.1.3, is dedicated
to brief descriptions of data-driven components and dynamics models developed for the
simulated warehouse.

The contributions outlined in this section address research questions 1 and 3 and
include:

• The investigation into data-driven modeling of CO2 refrigerant cooling system COP
using ANNs. This groundbreaking work has facilitated precise estimations of time-
varying performance under dynamic operational conditions, signifying a substantial
advancement in the field.

• A study of the data-driven modeling of thermal energy system components using
machine learning. This inquiry has made possible a more realistic TES response
to control signals within simulated warehouse environments, contributing to the
evolution of more accurate and efficient control systems.

4.1.1 Literature review

This subsection briefly reviews the related articles to our main contribution of cooling
system performance modeling when ANN is applied.

In food distribution warehouses, comprehensive cooling systems (CSs) account for a
significant portion of the building’s energy consumption and are affected by changes in the
operational environment, such as weather conditions, logistical operations, and workforce
behavior (Chua et al., 2010; Sarkar et al., 2004). The impact of these factors is greater
when using environmentally friendly refrigerants like CO2 (Schmidt et al., 2019; Neksa,
2002; Neksa et al., 1998; Sarkar et al., 2004). Energy-efficient operation is a cost-effective
way to reduce environmental impact in existing CSs, which can be enhanced through
optimized interaction with a Thermal Energy Storage (TES) (Širokỳ et al., 2011; Arteconi
et al., 2013; Pardo et al., 2010), surplus heat recovery (Chua et al., 2010), and optimized
time-of-use with access to local renewable energy resources (Wu, Wang, 2018; Kow et al.,
2018).

An IEMS enables building operators to automate the process of selecting cost-reducing
or energy-saving actions, leveraging the shift from Human-to-Machine to Machine-to-
Machine communication, and potentially incorporating the latest AI developments for
prediction and control purposes (T et al., 2018; Venayagamoorthy et al., 2016; Wen et al.,
2015a; Zhao et al., 2013; Chen et al., 2011; Hakimi, Hasankhani, 2020; Wu, Wang, 2018;
Manic et al., 2016). An IEMS can handle various tasks, such as optimized utilization of a
TES to reduce overall CS energy consumption (Širokỳ et al., 2011). However, accurate
energy measurements and individual system performance data, including cooling load





and working fluid flow measurement, are required for informed decision-making. CO2

flow measurements are difficult to obtain, and theoretical calculations of the Coefficient of
Performance (COP) are often necessary to determine system performance.

Industrially sized CSs are often unique and built with IP-protected components, limiting
owners’ and operators’ options for continuous performance evaluation. Suppliers may
calculate system performance using proprietary models, which are not shared. Thus,
openly available alternatives are needed to model the system for performance evaluation,
providing reliable input to the IEMS.

Installing flow measuring equipment in existing CO2 refrigerant, direct expansion
CSs is a costly and complicated operation. The complexity and risk increase when the
CS operates on multiple temperature levels with separate distribution systems. The most
logical option for performance evaluation then becomes a theoretical calculation based on
available operational data. In Zou, Xie (2017), a simplified model for COP modeling of
a water source heat pump is suggested. Sun et al. (2017) proposes a general simulation
model based on graph theory that utilizes accurate mathematical models of individual
components, such as Li (2013) suggested approach to variable speed compressors to model
refrigerant flow. Kim et al. (2018) conducted a case study of variable refrigerant flow
simulation tailored for building energy modeling, where the focus was the calibration of a
CS model to the U.S. DOE’s EnergyPlus software. Zhu et al. (2013) proposed a generic
model for variable refrigerant flow in air conditioning systems with multiple evaporators
intended for simulation of performance and control analysis. None of the aforementioned
studies proposed models for multi-stage compression CS. Adaptation and implementation
of the proposed methods would also require quite extensive knowledge of refrigeration
technology and specific system design. Future IEMS systems might be dependent upon a
realistic simulated environment to enable the training of advanced RL agents (Schrittwieser
et al., 2019; Silver et al., 2018a) that can adapt to and learn from operational data. A robust
method for cost-effective, real-world implementation in complex, industrial scale, CO2

direct expansion CS is needed.
Other related work includes Dong et al. (2021) examining global greenhouse gas

emissions related to servicing in the cooling industry, and Zhang et al. (2022) explor-
ing CO2-based combined cooling and power with an established prototype that shows
promising results.

4.1.2 Modeling of compressors in an industrial cooling system using
ANNs

In this subsection, we address Research Question 1 and describe our approach to using
ANNs to model the compressors of an industrial and operational two-stage CO2-based
CS, as shown in Fig. 3.2. For more details, please refer to Paper A and Paper B. ANNs
have already shown promising results in performance prediction modeling of heat pump
technology (Esena et al., 2008), but in Esena et al. (2008) the training data set consists of
a very limited amount of measurements in an experimental setting, where only thermal
energy and electrical energy input could be measured.

To examine the usefulness and real-world application of this approach, we compare





electrical power measurements of a case study CS to the summed calculations of an
ensemble of ANNs that each models a compressor type featured in the CS. We also
verify our method by comparing our calculations to measurements from a comparable
laboratory CS. We train the ANNs using available data collected from the compressor
manufacturer’s web-based software. The ANN training algorithm adjusts the weighting of
the input parameters, as well as the weighted connections between neurons, to expertly fit
the labeled training data. After we define the appropriate input and output parameters, our
approach only requires limited knowledge of refrigeration technology and system design
to be implemented in an operational setting.

In CSs with access to a limited amount of desired performance measures, our approach
can be used to supplement and enhance the value of the existing data. In such installations,
the overlap between measurements and calculations can also be used to discover incon-
sistencies between theoretical and actual performance. To the best of our knowledge, our
approach to linking theory and practice in multi-stage, CO2 refrigeration technology using
ANNs has not been attempted before. The proposed method is both practically feasible
and useful in evaluating the energy performance of CO2-based cooling installations. Own-
ers and operators can use our ANN model ensemble approach for quality assurance of
CO2-based CSs.

We have designed our approach to:

• independently model the parts of the CS that interact with the TES at any given
time, such that we can use the efficiency of this isolated part of the CS as input to an
algorithm that optimizes the use of the TES;

• have a more accurate performance measure than what is currently available;

• create a data set that enables the development of CS future performance prediction
models by applying our method to historical CS data;

• be able to calculate historical values of available excess heat, whereas what is
currently known is only the amount of heat that was reclaimed and used;

• investigate to what extent ANNs can model complex scenarios consisting of several
cooling compressors in a multi-stage CS – specifically including transcritical pressure
conditions for CO2.

4.1.2.1 ANN compressor modeling - System structure and configuration

This section summarizes the system structure and configuration of our work in compressor
modeling using ANNs. For more details please refer to papers A and B.

We suggest an ANN approach to calculate compressor mass flow and electricity
consumption. The compressors are semi-hermetic reciprocating compressors manufactured
by Bitzer GmbH, with one frequency-controlled compressor at each stage. Fig. 3.2 shows
the placement of all the compressors in a simplified cooling system architecture.

The website of the manufacturer was used to collect data (Bitzer-GmbH, 2019). Theo-
retical values for cooling capacity (Q), electrical power (P ), electrical current (I) or mass





flow (ṁ), which can all be substituted for the parameter y in Eqs. 4.1 and 4.2, can then be
separately calculated by using the appropriate constants ci,∀i ∈ 1, 2, ..10 in the following
polynomials, for subcritical pressure conditions

ysc = c1 + c2to + c3tc + c4t
2
o + c5totc + c6t

2
c + c7t

3
o+

c8tct
2
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2
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3
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and, for transcritical pressure

ytc = c1 + c2to + c3pHP + c4t
2
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3
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In Eqs. (4.1) and (4.2), to (°C) represents the temperature of evaporation and tc (°C)
is the condensation temperature, whereas pHP [bar] is the discharge pressure of the com-
pressors at transcritical operating conditions defined by pHP > 73.77[bar]. The constants
c1 through c10 depend on suction gas temperature (SGT, °C) and compressor operating
frequency (CF, Hz) for subcritical operating conditions, while gas cooler outlet temperature
(GOT, °C) must also be given for transcritical operation. Separate and independent sets of
constants can be used to calculate Q (kWthermal), P (kW), I (A) or ṁ (kg/h) when used
with Eqs. (4.1) and (4.2).

Finally, we can determine cooling production, available excess heat, and the COP of
any part of the system through calculations. For example, ṁ can be used to calculate
cooling load with the enthalpy difference equation

Qc =
ṁ∆hc

3600
, [kW] (4.3)

where ∆hc (kJ/kg) is the specific enthalpy difference of the refrigerant between the outlet
and inlet of a specific evaporation stage. We can then calculate the COPc of a single, or
multiple, compressor(s).

4.1.2.2 ANN compressor modeling - Methodology

Clearly, in Eqs. (4.1) and (4.2), we can observe the characteristics of a polynomial function.
Even though the relationship between the input variables and the constants ci, ∀i ∈ 1, 2, ..10

are unknown, Eqs. (4.1) and (4.2) provide important information that we consider an indi-
cation of the hidden function we are attempting to approximate with ANNs. To approach
a function that has polynomial features as the overall trend, we believe that a simple
ANN with sigmoidal activation functions in the hidden layer is most probably sufficient
(Cybenko, 1989). Therefore, instead of applying modern deep learning techniques, we
start with a neural network structure with one hidden layer and gradually increase the
number of layers and neurons to observe the learning behavior and efficiency.

Fully connected ANNs are configured to calculate P and ṁ by feed-forwarding input
data through the neurons in the hidden layer.

Further, we assembled the individually trained models in accordance with the design of
the smart warehouse CS shown in Fig. 3.2. Operational data from the cooling system was
gathered in order to compare the aggregated output of the ANN models with the metered
power input.





In addition to to, tc, PHP , SGT, CF, and GOT, compressor operating status for each
compressor was collected. For every timestep, our algorithm utilizes the operational
data to determine which compressors are operational, the CF of the frequency-controlled
compressors, and whether the CS pressure level exceeds the transcritical threshold. The
data for the active compressors, in the appropriate operational mode, is then selected and
sorted into the appropriate format, and fed into the input layers of the selected models.
The resulting model output is finally summed for each separate stage of compression and
compared with the metered power input to the CS.

4.1.2.3 ANN compressor modeling - Results and discussion

A single hidden layer model with 45 neurons in the hidden layer (Tanh-MSE-45) out-
performed all multiple hidden layer models in all tested configurations for the freezing
stage compressors in subcritical conditions. This result is logical based on the expected
polynomial shape of the hidden ground-truth function. The system complexity is limited
and therefore does not require too many neurons in the hidden layer.

For the one hidden layer models, there was little difference between training and
validation errors. In contrast, multiple hidden layer models tended towards a higher
validation error as well as bigger differences between training and validation, which is a
sign of overfitting the training data. The multiple layer models also tended towards larger
variations in loss between every update of the trainable parameters, which is expected
since there are more parameters being updated after every training batch.

Table 4.1: Training and validation MSE for all models. Separate models for frequency-
controlled (FC) compressors and transcritical (TC) operation.

Compressor model Training MSE Validation MSE
Bitzer 4CSL12K 2,97E-05 2,48E-05
Bitzer 4CSL12K FC 2,37E-05 1,60E-05
Bitzer 4CTC30K 3,90E-05 3,17E-05
Bitzer 4CTC30K TC 7,79E-06 4,57E-06
Bitzer 4DTC25K 1,84E-05 2,01E-05
Bitzer 4DTC25K TC 6,20E-06 2,89E-06
Bitzer 4FTC30K 6,76E-05 6,50E-05
Bitzer 4FTC30K FC 2,68E-05 1,74E-05
Bitzer 4FTC30K FC TC 1,28E-05 7,85E-06
Bitzer 4FTC30K TC 1,54E-05 1,09E-05
Bitzer 4JTC15K 1,87E-05 1,34E-05
Bitzer 4JTC15K FC 2,34E-05 1,82E-05
Bitzer 4JTC15K FC TC 2,19E-05 1,54E-05
Bitzer 4JTC15K TC 7,26E-06 6,91E-06

We also trained ANNs for all the compressors in both subcritical and transcritical
pressure conditions. The difference between training and validation error, as shown in
Table 4.1, is minimal in all cases. Therefore, we could likely have used a more significant





part of the data sets for training without the risk of overfitting. The results show that the
models are highly accurate when compared to training and validation data sets generated
with Eq. (4.1) and (4.2) and can therefore be expected to give very similar results to the
hidden ground-truth theoretical models.

We also use data, collected through sensor networks, from an ongoing NTNU CS
experiment to validate our approach in a laboratory setting. Measurements of power
and flow in the ongoing experiment are compared to the outputs of an aggregated ANN
model specifically designed to match the laboratory CS. The NTNU experiment was
conducted in transcritical operating conditions, with pressure ranging from 74.9 bar to
98.3 bar. We obtain a MAPE of 3.13% when comparing the output from the ANNs with
measurements from the power meters, whereas using measurements from the inverter for
the frequency-controlled compressor reduces MAPE to 1.87%. Measurements from the
power meters include the power consumption of the inverter as well as power conversion
losses. The increased accuracy, when using measurements in the inverter, suggests that
the aforementioned losses are not included in the Bitzer software (Bitzer-GmbH, 2019)
calculations. The result for the ANN flow output compared to NTNU CS measurements
is 1.76% MAPE. These results show that the presented method is accurate when given
synchronized data with a low sampling time period.

4.1.3 Modeling of warehouse energy system component dynamics

To be able to create a simulated environment of the smart warehouse for RL agent training,
we need models of all the important components and how they interact. In this subsection,
we describe the ways we have used various machine learning techniques to make data-
driven models of energy system components and dynamics. This is a necessary precursor
to answering Research Question 3, and creating a simulated training environment of the
smart warehouse for RL agents.

In addition to the previously described ANN modeling of the cooling system, we
have built other parts of the simulated environment on operational data using linear and
polynomial regression in order to make the simulated environment accessible for result
analysis. As this simplified approach potentially decreases the accuracy of the system
model, one could consider building a more accurate model of the environment using
deep learning neural networks in an operational scenario. The methodology described
in (Rätz et al., 2019) or similar approaches would then be considered. The simulated
environment features an ensemble of models of energy system components and dynamics
such that individual component models could be easily replaced to enhance the simulated
environment’s level of precision.

The following historical data sources were examined and used as input for the simulated
warehouse model:

• Total power consumption and local power production.

• Cooling plant power consumption.

• Cooling plant mass flow (Opalic et al., 2020).





• Heating demand.

• TES charging and discharging.

• Energy price for electrical energy bought from and sold to the grid.

We refer to Paper E for more details.

4.1.3.1 Modeling of energy system - Thermal energy storage

In the smart warehouse, intelligently managing the interaction between the CS and the
TES is an important way to reduce energy consumption and peak power load. Charging
and discharging the TES at appropriate times can reduce electrical energy consumption
by taking advantage of operational conditions that increase the CS COP value during heat
reclaim, reduce energy cost by taking advantage of temporarily lower energy price, and
reduce the energy demand for the electrical boiler through the use of stored heating energy.

Important components and dynamics of the models for the TES, production, and
distribution are the following:

• Operational data of TES charging and discharging compared to the setpoint.

• TES storage loss and internal temperature levels.

• Cooling plant electrical power consumption and recoverable excess heat.

The dynamics of the hydronic heating system are complicated. We have therefore
examined TES operational data in response to charging and discharging set points. The
examination shows a high degree of variation between the actual delivered and the re-
quested charge, as well as a non-linear relationship between charging and discharging
dynamics. Therefore, we chose to model charging and discharging dynamics with two
different functions, using more recent operational data. The R2 score for the charging
and discharging functions are 0.83 and 0.53, respectively. A qualitative analysis of the
results highlights a larger spread in the data point for the discharge function. Importantly,
although the R2 for the discharge function is rather low, the goal of this function is to
have a simple and explainable model of the TES while discharging. The variation in TES
discharging, related to the setpoint, is known to depend on a multitude of other variables
when considering a priori and empirical knowledge of the hydronic heating system and is
beyond the scope of this work. A more practical way to model the TES dynamic, with a
higher degree of accuracy, is likely through the use of ANN and multiple input variables.
However, this would reduce model explainability, and it is not desirable at the current
stage.

4.1.3.2 Modeling of cooling system dynamics - Cooling system and various compo-
nent dynamics

Various less complicated models have been used to model the cooling system and other
component dynamics. These are briefly described in this subsection.





We have implemented the cooling system model described in (Opalic et al., 2020) and
subsection 4.1.2, and configured it to continuously calculate the refrigerant mass flow in
the cooling plants. We have fitted a linear regression model, using the pressure and mass
flow of the refrigerant as inputs and recoverable heat as output. Consequently, this model
can be used to find the recoverable heat upper bound at the maximum pressure of 80 bar
and at any given refrigerant mass flow.

Moreover, we also model the electric consumption of the cooling plant as a second-
order polynomial, using refrigerant mass flow and heat recovered as inputs, and the electric
consumption as output. The R2 score of the electric consumption function is 0.87, while
the RMSE is 11.17.

The cooling work, expressed as the refrigerant mass flow, represents the limiting factor
for the maximum heat that can be recovered. We model this dynamic with a simple linear
function, using as input the refrigerant mass flow and returning as an output the maximum
recoverable heat.

Finally, there is a lower limit to the amount of electrical energy required by the cooling
plant to fulfill its primary function of keeping the storage areas refrigerated. Also in this
case we chose a linear model using the refrigerant mass flow as input and outputting
the expected least required energy consumption. The R2 score of the minimum electric
consumption function is 0.61.

4.2 Deep reinforcement learning for intelligent energy
management systems

In this section, we describe our contributions toward the application of RL for IEMS
with ESS control. Our main contribution is the pioneering development and successful
implementation of ARS-ANN for BESS and TES control, showcasing significant progress
in the field. First, we describe our exploration to apply state-of-the-art RL algorithms to a
simplified BESS control problem. Secondly, we introduce ARS-ANN for BESS control,
and we finally describe simultaneous BESS and TES control with the COST-WINNERS
ARS-ANN algorithm.

The contributions outlined in this section address research questions 2 and 3 and
include:

• The exploration and research into deep RL control algorithms with a focus on
simplicity and generalizability. This was applied to optimize the energy of a BESS in
a simulated warehouse environment, with the efficacy of the system verified through
multiple seeded trials requiring minimal hyperparameter tuning.

• A pioneering study into the simultaneous intelligent control of multiple ESSs, specif-
ically the BESS and TES, within a simulated smart warehouse. We introduced the
COST-WINNERS algorithm to manage and optimize energy storage systems.

• The exploration and development of an approach to IEMS that promotes standard-
ization in design, implementation, and maintenance. Our research has demonstrated





a potential for a significant reduction in dependence on human expertise in energy
systems control, marking a shift towards more autonomous and efficient energy
management systems.

4.2.1 Literature review

The developments in RL in recent years, with the introduction of deep learning tech-
niques (Lillicrap et al., 2015; Silver et al., 2017, 2018b), show the potential for RL to play
a major role in real-world energy optimization. BESSs built with lithium-ion technology
are increasingly deployed in both macro and micro scale projects (Stroe et al., 2017).
For optimal utilization of the BESS for multiple purposes such as energy cost reduction,
reducing peak power demand and frequency regulation, intelligent control systems that
balance the need for longer-term planning with immediate response are required. For
such systems, many approaches have been suggested including constrained non-linear pro-
gramming (CNLP) optimization for aggregated two-stage control in a micro-grid in Long
et al. (2018), achieving a 30% energy cost reduction when combined with peer-to-peer
energy sharing, a rule-based approach for many distributed batteries in a data center with a
focus on accurate battery health modeling in Aksanli et al. (2013) and a rule-based scheme
for PV and wind application in Teleke et al. (2010). When considering the dynamic
and ever-changing nature of building-integrated energy systems, it seems unlikely that a
rule-based approach can be implemented without extensive follow-up and revision. In
related research, Siqueira de, Peng (2021) conducted a review of control strategies for
smoothing wind power output, finding Model Predictive Control MPC to be the most
common for multi-objective optimization. Lipu et al. (2021) discussed various approaches
to intelligent control for battery management in electric vehicles.

As shown in Perera, Kamalaruban (2021), many researchers turn to RL as a potentially
self-improving and robust approach to intelligent control of building energy systems.
RL algorithms can reduce costs by reducing necessary human resource expenditure, and
risks associated with their behavior can be managed through offline, data-driven training.
However, most of the studies regarding RL application to energy systems do not attempt
to implement state-of-the-art RL algorithms, instead, they rely on basic Q-learning. This
could limit the application to well-defined and uncomplicated systems and solutions, or lead
to sub-optimization through compartmentalization of complex problems into simpler tasks
that disregard the intricacies of the energy system. Also, many of the more complicated
state-of-the-art algorithms are primarily developed to teach agents to solve benchmark
gameplay tasks from the OpenAI Gym (Brockman et al., 2016), or prediction of load
forecasting Johannesen et al. (2018).

Energy Storage Systems (ESS) can consist of various technologies and be applied in
a multitude of ways (Palizban, Kauhaniemi, 2016). From the perspective of the main
electrical distribution grid, an important distinction exists between centralized and de-
centralized ESS. As opposed to decentralized ESS, centralized systems can be directly
controlled by the grid operator. However, decentralized ESSs are seen as an important
component of a more environmentally friendly energy system, but they come with a new
set of challenges (Bögel et al., 2021). The decentralized systems should monitor the energy





market, integrate it with market dynamics, and use it to reduce the peak load of the system
while also minimizing costs. In the case of multiple ESSs with different dynamics, such as
a combination of a BESS and TES, the complexity of the optimization problem further
increases. Research on control systems for multiple ESSs with different dynamics is
lacking.

Other related work includes Chung (2021) conducting a review of smart technology
applied in the logistics and transport sector, and Nguyen et al. (2022) examining AI for
smart warehouses in Vietnam.

4.2.2 Deep reinforcement learning for energy optimization with bat-
tery control

In this subsection, we first compare the performance of modified versions of well-known
deep RL algorithms applied to a simplified battery control cost optimization task, mainly
operating in continuous action space. The aim is to analyze algorithm learning and behavior
from a practical standpoint as grounds for further modification of the most promising
algorithms for real-world application.

Progressing further, we introduce a novel adaptation of an RL algorithm applied to
energy cost optimization through direct BESS control in the smart warehouse illustrated in
Fig. 3.1. The proposed ARS-ANN algorithm is a less complicated RL algorithm, compared
with the state-of-the-art, which both has superior performance and significantly reduces the
need for hyperparameter tuning and computational resource expenditure during training.

For more details, see Papers C and D.

4.2.2.1 Deep RL BESS control - Motivation and research goals

We aim to design the backbone of an IEMS that can be easily implemented and is able to
adapt automatically to its environment. We therefore focus on data-driven energy system
component modeling, which can extract patterns from operational data over time, and RL,
which can be automatically trained and retrained in a simulated offline environment.

Our approach features the Augmented Random Search (ARS) (Mania et al., 2018),
adapted for policy parameterization with Artificial Neural Networks (ANN) instead of the
suggested linear function employed in Mania et al. (2018). The method is benchmarked to
the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm (Fujimoto et al.,
2018), found to be the most promising and able to find an optimal solution to a simpler
BESS control problem Opalic et al. (2020). We also compare results with the vanilla
ARS. A new simulated environment is introduced and developed for training the agents on
historical operational data from an examined smart warehouse.

In summary, the contributions outlined in this section include:

• Introducing a robust RL algorithm that can handle complex energy optimization
problems.

• Combining ARS with ANN for energy optimization of BESS.

• Creating a data-driven simulation environment of a smart warehouse for RL training.





4.2.2.2 Deep RL BESS control - Methodology

To examine how the state-of-the-art RL algorithms perform in a battery control cost
optimization task we first create a simulated environment consisting of a simple ideal
battery, without any losses related to power conversion or storage. The baseline energy
demand for the energy system is set to 300 kWh per hour for every hour.

The battery storage capacity and inverter power output is set to 460 kWh and 200 kW
respectively, in accordance with the specifications of the battery from the smart warehouse
in Opalic et al. (2019, 2020), illustrated in Fig. 3.1. Consequently, our agent is allowed to
charge or discharge the battery by BkW ∈ [−200.0, 200.0]. We initialize the environment
by inputting vectors for hourly energy price P and demand D. A baseline energy cost is
then calculated as

Cbase =
T∑
t=0

PtDt, (4.4)

where T is the terminal time step of each episode. For every non-terminal time step the
agent is awarded a numerical reward of 0 by the environment. A reward system where the
agent receives the energy cost as a reward signal after each action was also examined. The
cost incurred at each time step, where λ is the adjustable time step length in minutes, is
calculated by

Cagent
t = Pt

(
Dt +

BkW
t λ

60

)
, (4.5)

and accumulated in

Cagent =
T∑
t=0

Ct. (4.6)

Finally, the normalized reward for the agent at timestep T is given as

rT =
Cbase − Cagent

Cbase
. (4.7)

For continuous action space, we utilize modified versions of the DDPG and TD3
algorithms. For further details on these algorithms see Subsection 2.3.3.

Exploration with the TD3 algorithm was modified to also include completely random
actions. As a benchmark, we also train a Deep Q-Network using a discretized action
space of {0, 1, 2} to either standby, charge or discharge at full capacity. A grid search was
conducted to find the optimal network architecture.

In the second part of our deep RL BESS control research, our goal is to train an agent
to learn intelligent control of a BESS in a simulated environment of the smart warehouse.
We have designed a simulated environment consisting of the previously mentioned simple
battery model and historical operational data from the smart warehouse. We emphasize
that our suggested modeling approach is data-driven, which allows for lower demand
on human resources in initial design when compared to purely physical models, as well
as potentially automated adaptation to changes in building occupant behavior and other
operational parameters. In combination with RL algorithms able to continually adapt to a
changing environment, we argue that these characteristics are crucial for the successful
adoption of IEMS in smart warehouses. Historical energy consumption and PV power





production for the smart warehouse are included in the simulated environment. We define
our goal as a problem of energy cost optimization.

Our suggested approach features a simple modification of the work on the ARS
algorithm introduced in Mania et al. (2018). We adopt ANNs instead of the suggested
linear function to parameterize the policy, see Algorithm 1 in subsection 4.2.3. The
original ARS algorithm suggested the use of a simple linear policy, namely a matrix
directly mapping input to output. The strength and simplicity of this algorithm are self-
evident when examining the results presented in Mania et al. (2018). However, a linear
policy is not always sufficient when dealing with highly complex environments such as
building-integrated energy systems featuring local energy production and energy storage.

The state St, shown in Fig. 2.2, is composed of historical operational data as well as
parameters calculated by the simulated training environment. Operational data given as
current temporal values include time, energy demand, PV production, energy buy price,
and energy sell price. Battery SOC and peak power limit are calculated by the simulated
training environment for each timestep and included in the state.

We decided that a practical way to reduce the need for human maintenance of the
agent in operation is to engineer a simple reward system that is closely coupled with the
actual financial benefit. We suggest that this also potentially enables the use of the same
reward function regardless of the system dynamics or degree of complexity, which in turn
simplifies implementation and thereby increases scalability. The function for the reward
system calculates baseline energy cost Cb for each episode where no actions are taken and
compares this to the actual calculated cost Ca after the agent has selected an action,

R = Cb − Ca. (4.8)

The energy cost calculated by the training environment is structured according to the
energy pricing scheme utilized by the grid operator, consisting of the following parts:

• spot price per kWh,

• a fixed annual fee,

• a fixed rate per kWh consumed (summer/winter),

• monthly peak power,

4.2.2.3 Deep RL BESS control - Results and discussion

The first experiment environment consists of 50 timesteps with an unchanging energy
demand of 300 kWh every hour. For this experiment, utilizing energy cost as a reward
signal on every timestep yielded reduced agent performance and resulted in slowed learning
due to an observed natural preference towards battery discharging.

The experiment mainly features the DQN, DDPG and TD3 algorithms. It is noted that
the algorithms’ performances are volatile, and they are not able to converge toward the
optimal behavior in every training session without hyper-parameter tuning. The maximum
achievable cost reduction in this environment was found to be 14000, and our average
TD3 result was 13999. Achieving stable results across multiple seeded training sessions





required an extensive hyperparameter grid search and tuning of the algorithm. It also
required us to continuously save the top-performing version of the agent as the performance
frequently and rapidly declined after achieving the highest score of each training session.

Secondly, we explore RL algorithms applied to cost optimization of energy storage in
BESS, based on operational data from the smart warehouse. Thus, we conducted an exper-
iment of 48-hour episodes that features comparisons between ARS-ANN, original ARS,
and the GLPK solver. As stated in Mania et al. (2018), too few experiments in RL verify
results across multiple seeds, thus shedding doubt on whether the reported performance is
a result of algorithm ingenuity and generalizability or extensive hyperparameter tuning
to a single instance of the given RL problem. To verify our results across multiple trials,
we conducted an experiment with 10 randomly seeded 48-hour episodes pulled from our
data set. Results from this experiment can be observed in Table 4.2.We observe that both
the ARS and ARS-ANN algorithms are achieving results that are very close to the GLPK
solver. When comparing numerical results in Table 4.2, we observe that the ARS-ANN
has a slight increase in performance when compared with the original ARS. In addition to
peak shaving, the ARS-ANN can extract some values from energy price differentiation
even though the reward increase from this behavior is almost inconsequential due to an
exceptionally low energy cost at around 0.3 NOK/kWh. We note that the performances of
the ARS algorithms are very high, with the original ARS achieving an average of 98.5%
and the ARS-ANN achieving 99.2% of the GLPK solver solution. The same ARS-ANN
architecture and hyperparameters are used for all the seeded trials, indicating that the
performance is the result of a well-designed algorithm.

Table 4.2: Results for experiment two - 48 h trials with 50% SOC reward incentive. ARS-
ANN architecture “24 tanh”.

Episode GLPK ARS-ANN ARS-Original
Reduction Reward Reduction Penalty Reward Reduction Penalty

1 2609 2547 2556 8.9 2555 2556 1.2
2 206 185 187 2.7 193 193 0.6
3 4247 4211 4223 10.9 4204 4216 11.8
4 5497 5455 5481 26.6 5464 5474 10.7
5 3581 3576 3576 0.1 3573 3573 0.5
6 2611 2568 2605 36.2 2566 2601 35.4
7 6777 6728 6757 29.6 6727 6744 17.1
8 2613 2600 2605 5.0 2602 2606 4.5
9 1970 1933 1953 19.8 1955 1965 9.3
10 7247 7242 7241 0.1 6965 7020 56.0

Average 3736 3705 3718 14.0 3680 3695 14.7

We also ran an experiment where we expanded a single episode to nearly include the
entire dataset and compared our ARS-ANN agent performance with the original ARS
and a GLPK solver solution. To find the best configuration of the network, we conducted
hyperparameter searches. After observing a destabilizing effect when increasing the





amount of ANN weight parameters during hyperparameter tuning, we also conducted a
grid search with different learning rates α and noise standard deviations v in an ANN
architecture featuring 4 hidden layers with 64 neurons each. Results show that learning
and validation performance for deeper neural network architectures can be stabilized by
decreasing the learning rate. Reducing the learning rate from 0.01 to 0.001 significantly
increases algorithm stability and performance.

4.2.3 Simultaneous BESS and TES control with COST-WINNERS

In this subsection, we introduce the COST-WINNERS RL algorithm. The algorithm is
an iteration of the previously introduced ARS-ANN adapted to control multiple energy
storage systems simultaneously and builds upon all the research previously introduced
in this chapter. The simulated training environment is based on operational data from
the warehouse energy system shown in Fig. 3.1. For more details, see Papers D, E, and
subsection 4.1.3.

4.2.3.1 COST-WINNERS - Outline of research

Newer RL algorithms often include training ANNs to output desired actions or action
values, showing improved performance (Lillicrap et al., 2015; Cao et al., 2020; Shang
et al., 2020). In contrast, Mania et al. (2018) showed that the Augmented Random Search
(ARS) algorithm could achieve high performance with very little computational resource
expenditure by training a simple linear function for action selection with their proposed
policy search algorithm.

In the previous sections of this chapter, we have described our approach to data-driven
modeling of a smart warehouse to enable offline training of RL algorithms in a simulated
environment. We have emphasized the use of data-driven techniques as a way to reduce the
need for human expertise to design the simulated environment and increase the practical
utility of our approach. We have also shown how RL can be used to control a BESS for
energy cost optimization. In this subsection, we present a novel approach to control, for
the first time, both the BESS and TES of a smart warehouse. Specifically:

• We implement the Augmented Random Search (ARS) (Mania et al., 2018) RL
algorithm, modified with ANNs to encode the agent policy, to simultaneously control
TES and BESS energy storage systems.

• We train the RL agents in a data-driven simulated training environment, also model-
ing the dynamics of the TES.

• Overall, we introduce a novel approach to control both the BESS and TES of a
smart warehouse simultaneously to reduce total energy cost. This is an important
detail because combining different ESSs can lead to improved performance and cost
savings but also introduces new challenges due to each system’s different dynam-
ics and control requirements. We argue that simultaneous control disincentivizes
suboptimization.





4.2.3.2 COST-WINNERS - Methodology

Algorithm 1 Augmented Random Search with ANN.
1: Set hyperparameters:

• α - learning rate

• n - number of directions sampled per iteration

• v - exploration noise standard deviation

• b - number of top-performing directions to use

2: Run algorithm 2 to initialize policy parameters θj , i.e. ANN weights
3: Initialize:

• Mean - µ0 = 0 ∈ Rinputs

• Covariance - Σ0 = In ∈ Rinputsxinputs

4: while ending condition not satisfied do
5: Sample δ1, δ2, ..., δN of the same size as θj , with i.i.d. standard normal entries.
6: Normalize input values x with xnormalized = diag(Σj)

− 1
2 (x − µj). Collect 2N

rollouts of horizon H and their corresponding rewards using noise modified ANN
policies πj,k,+ and πj,k,−, where the vδk exploration noise is added to the weight
parameters θj of the ANN for πj,k,+ and subtracted from θj for πj,k,− with k ∈
{1, 2, ..., N}.

7: Sort the directions δk by max{r(πj,k,+), r(πj,k,−)}, denote by δ(k) the k-th largest
direction, and by πj,(k),+ and πj,(k),− the corresponding policies.

8: Make the update step for the ANN weights:
θj+1 = θj +

α
bσR

∑b
k=1[r(πj,k,+)− r(πj,k,−)]δk, where the standard deviation of the

2b rewards for the policy update is σR.
9: Set the mean and covariance, µj+1,Σj+1, of the 2NH(j + 1) training states

encountered.
10: j ← j + 1.
11: end while

We examine the applicability of the ARS-ANN RL algorithm to a complex energy
cost reduction problem through direct control of BESS and TES charging and discharging
setpoints. Our main research goal is to examine if the ARS-ANN algorithm can efficiently
control multiple ESSs with different dynamics and substantially varying degrees of impact
on energy cost. The agent is trained in a simulated environment of a technologically
advanced warehouse, which we mainly designed through the use of data-driven techniques.
We refer to subsection 4.1.3 for further description of the data-driven component models.

We use a physical model for the thermal energy storage featuring:

• Temperature loss through the heat conduction to surroundings.

• 4 internal vertical temperature levels.





Algorithm 2 ANN for ARS in RLLIB.
1: Set hyperparameters:

• θhl - ANN hidden layers.

• θnu - number of neurons in each hidden layer.

• θaf - list of activation function for each layer.

2: Initialize: j = 0, policy parameters θj of shape defined by θhl and θnu and random
values X from N(µθ, σ

2
θ) normal distribution of mean µθ = 0 and variance σ2

θ = 1,
multiplied by standard deviation σ = 1.0 for the hidden layers and σ = 0.1 for the
output, divided by the square root of the random value Xhl,nu, θhl,nuj = Xhl,nu σ√

X
.

Our model of the TES includes the ability to reverse the direction of the flow of water
such that hotter water is always added to or extracted from the top of the tank and vice
versa for colder water. We have not included a model of the heat exchanger due to the
physical system automatically balancing volume flow on both sides of the heat exchanger
and the observed temperature loss in the heat exchanger is minimal. Modeling the heat
exchanger could possibly be considered for future work.

As described in subsection 4.2.2, we implement a modified version of the ARS algo-
rithm (Mania et al., 2018). We deploy an ANN for policy parameterization in place of the
linear function proposed by Mania et al. (2018), see Algorithm 1. We take advantage of the
functionality for neural networks already implemented in the RLLIB programming library.

We use Pyomo (Hart et al., 2011; Bynum et al., 2021) with a GNU Linear Programming
Kit (GLPK) solver to calculate near-optimal solutions for performance comparisons and
benchmarking. However, due to the complex nature of our energy system, we do not
attempt to implement the TES in the GLPK solver solution.

We examined the operational data and found that the electrical boiler had contributed
very little to satisfy the heating demand in the selected time period due to the fact that
available excess heat from the cooling system seemed to be sufficient. Reducing energy
consumption on the boiler is the main way that the TES can contribute to lower electrical
energy consumption during winter operations. We argue that the impact of the TES on
the energy cost in the time period we pulled our operational data from is very limited.
Adopting the performance of the GLPK solvers BESS control as a benchmark is therefore
still valid and useful.

4.2.3.3 COST-WINNERS - Results and discussions

We investigate the application of the ARS-ANN algorithm in a simulated warehouse
energy system, featuring both electrical (BESS) and thermal (TES) energy storage systems.
Therefore, we have the opportunity of analyzing algorithm performance on a complex
temporal energy optimization problem. The objective of the algorithm is to reduce energy
costs by controlling charging and discharging setpoints of both energy storage systems.

First, we apply the ARS-ANN agent to control both BESS and TES for a random
48-hour episode. Our results clearly indicate that the agent is able to find a near-optimal





Table 4.3: Results for 10 seeded trials for ARS-ANN vs GLPK - battery only.

Trial GLPK - Battery only ARS-ANN Result Percent of GLPK

1 4910 5046 103%
2 7115 7106 100%
3 7540 7498 99%
4 298 361 121%
5 643 639 100%
6 7117 7109 100%
7 5861 5864 100%
8 3771 3780 100%
9 640 641 100%
10 6652 3233 49%

Table 4.4: Results for 10 seeded trials with state-of-the-art RL algorithms.

Trial SAC TD3
Reward Percentage ARS-ANN Reward Percentage ARS-ANN

1 13 0.3 % 346 7 %
2 7083 99.7 % 290 4 %
3 7147 95.3 % 43 1 %
4 141 39.1 % -62 -1 7%
5 86 13.4 % 76 12 %
6 1246 17.5 % 305 4 %
7 133 2.3 % 55 1 %
8 3772 99.8 % 21 1 %
9 728 113.5 % 232 36 %
10 691 21.4 % -338 -10 %

value for BESS charging such that the peak energy cost is reduced to a minimum. The
agent took advantage of the TES, when heating was required, to reduce the electrical
energy required by the cooling plant. It is relevant to mention that the heating demand was
very low during the random episode used for experiment one. However, the ARS-ANN
agent was still able to find and store excess heat when there was no cost induced, and then
in turn used this to slightly reduce electrical consumption by discharging when necessary.
By doing this, the agent was able to minimize cooling system energy demand during
periods of higher heating demand.

Secondly, to better quantify the performance of the ARS-ANN agent, we compare it
with a GLPK optimization solver in multiple seeded trials, as well as benchmark it with
other state-of-the-art RL algorithms. The GLPK will be solely controlling the BESS, with
perfect information, and the comparison will be done for 10 seeded trials. Opposed to the
GLPK, the ARS-ANN agent will have control of both BESS and TES. We have decided
that comparing performance to an optimization algorithm with simultaneous BESS and





TES control is out of the scope of this research due to modeling complexity. Additionally,
the operational data used to pull randomly seeded trials is from early winter, where the
potential cost reduction of optimal TES control is minor compared with BESS control.
There are two main reasons behind this choice. Firstly, this was the time period with the
most available data requiring minimal amounts of data cleaning. Secondly, we decided that
observing how the algorithm performs in controlling multiple systems with vastly different
impacts on the result would be of interest.

The results of the multiple seeded trials are displayed in Table 4.3. We observe that for
the majority of the trials, the energy cost reduction of the ARS-ANN with both BESS and
TES control either equals or exceeds the cost reduction of the GLPK with BESS control
only. For trial 10, the algorithm seems to get stuck in a local optimum where it charges the
battery too aggressively on the first timestep. Additional research is required to explore
why this happens and how it can be avoided in the future. In the 4th seeded trial, we
observe that the ARS-ANN outperforms GLPK by 21%. In this trial, the potential for
cost reduction using the BESS is quite low due to a relatively low baseline peak power
cost. Finally, we compare results for the SAC and TD3 RL algorithms with the ARS-ANN
algorithm solution, shown in Table 4.4. There, we can observe that TD3 results seem to
stagnate around origo while SAC actually performs reasonably well and even exceeds
ARS-ANN in a single trial achieving an average performance of 50% compared with
ARS-ANN. However, it was only after training SAC for more than three weeks that these
results could be achieved. On a more reasonable time frame of running the algorithm
for about a week of training time on 6 GPUs and 96 CPUs, both SAC and TD3 achieved
similarly poor results. Also, the SAC algorithm results were not the actual end results
because the performance did not stabilize. In fact, SAC performance drops off entirely in
most cases. The results in Table 4.4 include the maximum award achieved during each
training session.

4.3 Summary of contributions

In this chapter, we have presented our main contributions to energy cost reduction by
building a simulated warehouse energy system environment with machine learning data-
driven techniques to train RL agents. We have described our main contributions to RL
research, which includes replacing a linear policy matrix with ANNs for ARS to control
multiple energy storage systems simultaneously. The first part of this chapter, section 4.1,
relates to data-driven modeling of the warehouse energy system and its industrial CO2

refrigerant cooling system. We showed that the accuracy of this modeling approach is
practically on par with results from the compressor manufacturers’ software tool. We
also verified results in a laboratory setting and compared an ensemble ANN cooling
system model with metered energy consumption, achieving very promising results despite
unsatisfactory data quality. Based on this approach, an ensemble model of the cooling
system in the smart warehouse has been developed and implemented in the warehouse.
The values calculated by our cooling system model are stored in the BMS and can be used
in various ways by the BMS, IEMS, and for research purposes.





Our contribution to data-driven modeling of cooling systems is an important part of
our RL-based IEMS concept, enabling accurate COP estimation in a simulated smart
warehouse environment. Combined with other data-driven techniques, the simulated
environment can use the values generated by the cooling system model to estimate how
TES charging or discharging affects the electrical power consumption of the cooling
system. Cost reduction due to higher thermal power production efficiency or shifting
thermal production to periods with lower energy prices can then be estimated.

Further, ANNs to model cooling systems and heat pump COP could be designed and
applied in a multitude of ways. For instance, the data source could be as elementary as
measured heating or cooling output and electrical power input, as well as any known time-
varying operational parameters that commonly affect these values. We also expect to be
able to model any important energy-consuming component of a building-integrated energy
system with ANNs or even simpler data-driven machine learning techniques. Further,
we expect that the process of coupling relevant available data to each component for
modeling purposes, choosing the appropriate modeling technique, and training each model
for integration in a simulated environment, can be automated and solved with applied
machine learning. As more operational data is made available over time, it will also
be possible to update individual models with more accurate and sophisticated methods
automatically.

In the second section of this chapter, section 4.2, we have detailed our exploration of
various reinforcement learning algorithms for energy storage control. We start with policy
gradient algorithms, including DDPG and TD3, obtaining good results with extensive
algorithm hyperparameter tuning in a simple BESS control problem. We increase the
control problem complexity by building a simulated environment using operational data
from the smart warehouse and modifying the robust ARS algorithm using ANNs to
parameterize the policy. We show that ARS-ANN achieves near-optimal performance on a
simulated battery control problem based on operational data from the smart warehouse. We
then expand our simulated control problem to include the smart warehouse TES. We model
the TES in the simulated environment using a combination of various machine learning
and physical modeling techniques. We then show that the COST-WINNERS version of
the ARS-ANN agent vastly outperforms other state-of-the-art RL algorithms in multiple
seeded trials of simultaneous BESS and TES control for energy cost reduction.

Although we are satisfied with the COST-WINNERS algorithm in its current state, we
expect that further development of the algorithm will be necessary for its applicability to
be extended from ESSs to flexible loads, from the smart warehouse to other warehouse
buildings, and hopefully to any building category. However, with our data-driven modeling
approach and modular simulated environment, it will also be possible to effortlessly
implement new and superior RL algorithms in the future. We propose that adhering to
principles of flexibility and modularity is essential for IEMS scalability. Therefore, we
maintain that a data-driven modular approach to a simulated RL training environment for
IEMSs, where any single component model can be easily replaced and any RL algorithm
can be applied, is a very promising avenue of research that should be further explored.

The contributions described in this chapter are proposed solutions to the research
questions described earlier in the thesis, and in line with our overall goal of developing a





scalable and robust approach to IEMS. The summarized total contribution is an approach
to building-integrated energy system optimization that enables an IEMS to evolve with
changes in the building energy system and energy usage patterns. This can be achieved by
relying on a data-driven simulated environment designed for training RL agents through
trial-and-error interactions between the agent and the environment. The RL agents are
allowed to control a predefined number of subsystems in the environment, in this instance
a TES and BESS, and can adjust their behavior according to a reward signal. One of the
main advantages of this approach is that the simulated environment can be automatically
updated using more recent operational data, potentially without the need for any human
intervention. This could allow the simulated environment to continually represent an
accurate model of the current state of the operational environment. Combined with the
presented COST-WINNERS algorithm, we have proposed an approach to IEMS that
outperforms the state-of-the-art RL algorithms in simultaneous TES and BESS control
in smart warehouses, while also potentially drastically reducing human expert resource
dependence both in the design and operation of the system.
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Chapter 5

Conclusions and Future Work

In this thesis, we propose deep RL with a data-driven environment modeling approach for
IEMS application. We make contributions in both research areas, and we structure this
thesis accordingly. In this chapter, we first detail to what degree our contributions answer
our research questions. Secondly, we make concluding remarks on our contributions in
two parts - data-driven modeling, and reinforcement learning, respectively.

5.1 Conclusions to the Research Questions

In this section, we conclude the findings of our proposed methods in accordance to the
research questions in Chapter 1.

Research question 1: We introduce feed-forward Artificial Neural Networks (ANNs)
to model all the compressors in all the compression stages of the smart warehouse CO2

refrigerant cooling system. Using compressor manufacturer data, we train models for both
subcritical and transcritical operational pressure for the high-pressure compression stages,
nearly perfectly replicating the proprietary compressor manufacturer software calculation
results. Single hidden layer ANNs are found to be sufficient for this task, and deeper
architectures do not achieve higher performance.

These ANNs are combined into an ensemble for modeling the entire smart warehouse
cooling system refrigerant flow and power consumption. The COP is then calculated
using known thermodynamic equations. We find that power consumption accuracy, when
compared with meter data from the smart warehouse, exceeds other available methods.
Furthermore, the method is highly accurate for refrigerant flow estimation when compared
with flow meter data in a laboratory setting. We also observe that deeper architectures for
single compressor models appear to be redundant, as they require additional computational
resources without increasing performance or accuracy.

Our research demonstrates the possibility of using a data-driven approach to COP
estimation in CO2 refrigerant cooling systems, presenting a solution to the challenges asso-
ciated with accurate and cost-prohibitive CO2 flow measurement. This enables accurate
performance modeling of such cooling systems in a simulated training environment, which
in turn can be used to train RL agents for energy cost optimization. We argue that this is
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an important prerequisite to scalable smart warehouse IEMS implementation.

Research Question 2: We first explore the use of game-play oriented policy gradient
RL algorithms for a simplified BESS control task. To encourage exploration, we modify the
policy gradient RL algorithms to increase the randomness of their actions, achieving stellar
performance with the TD3 algorithm in particular. However, the amount of hyperparameter
tuning and modification necessary could be a potential barrier to the introduction of these
algorithms in an operational setting.

Addressing the challenges with policy gradient algorithms, we examine the use of the
ARS algorithm using reward-guided random searches in policy space, substituting the
original linear policy with an ANN for more complex and abstract policies. The ARS-ANN
algorithm scores very high on our performance metric, maintaining a steady upward trajec-
tory of reward achieved over elapsed time in training, as well as stabilizing performance
if learning continues for an extended amount of time after peak performance has been
achieved. Time spent on hyperparameter tuning was significantly reduced compared with
our previous work, and no alterations were made to the exploration mechanics of ARS,
showcasing the algorithm’s apparent potential for practical application in an operational
setting.

Research Question 3: We propose a novel approach to intelligent ESS control of a
technologically advanced warehouse. We examine the applicability of the ARS-ANN RL
algorithm to simultaneously control the TES and BESS ESSs. We develop a data-driven
simulated training environment, also modeling the dynamics of the TES and building upon
our previous work on cooling system modeling. Specifically, the ARS-ANN RL algorithm
is tasked to solve a complex energy cost reduction problem through direct control of
BESS and TES charging and discharging setpoints. The algorithm compares favorably to
benchmark state-of-the-art algorithms on performance, training time, and computational
resource expenditure.

We show that our RL-based approach to IEMS is capable of energy cost optimization
at a high level of precision, even when controlling multiple ESSs with diverging dynamics
and levels of impact on total energy cost. The RL approach to IEMS potentially reduces
the need for human expertise in design, implementation, and maintenance, thus making
the solution more scalable and robust for practical application.

5.2 Data-driven building energy system modeling

5.2.1 Modeling of compressors in an industrial cooling system using
ANNs

We show that using an ANN to model the compressors in a cooling system is a valid
approach that allows quick and quite accurate calculations of cooling load and compressor
power consumption. The compressor COP at the given operating conditions can then be
calculated. The best result was achieved using a single hidden layer ANN with a hyperbolic





tangent activation function. The model was trained with an MSE loss function using the
Adam optimizer. For this approach to be valuable to an IEMS, the transcritical compressors
that interact directly with TES must be modeled so that the full system performance can be
calculated. For the best use of the TES as a HES during winter, the maximal available and
reclaimable heat must also be determined.

We further present a performance estimation model of an operational CO2-based in-
dustrial cooling sub-system of a complex warehouse energy system using an ensemble of
ANN compressor models. The operating temperature and pressure measurements, as well
as the operating frequency of frequency-controlled compressors, are used in developing the
operational model. The output of the model ensemble is electrical consumption and refrig-
erant mass flow for the compression process. The presented technique is relatively superior
to a general theoretical model both in terms of accuracy, flexibility, cost-effectiveness, and
implementability in real-world applications.

The developed model has MAPE in the range of 5% to 12% in the operational case-
study cooling system. However, the presented results also indicate that the accuracy can be
drastically improved with increased quality of data collection frequency in the operational
measurement, supported by a MAPE of 1.87% and 1.76% in a comparable laboratory CS,
for power and flow respectively. The accuracy of the presented ANN flow calculations
is promising from a practical standpoint and can be implemented through Machine-to-
Machine communication using IoT-related devices. The developed model of the cooling
system has been implemented in the case study energy system (Fig. 3.1).

5.3 Reinforcement learning for intelligent energy manage-
ment systems

5.3.1 Deep reinforcement learning for energy optimization with bat-
tery control

We designed modifications to the DDPG and TD3 algorithms for enhancing exploration
to enable cost-efficient control of the charging and discharging of an ideal BESS. Our
experiments reveal that the algorithms are quite sensitive to changes in hyperparameter
and exploration settings and need to be configured appropriately to deliver consistent
performance. This could pose a serious challenge in complex environments where ideal
agent behavior is less transparent. However, our appropriately configured DDPG agent was
able to reduce the energy cost by 25% while maintaining an average of 99% of maximum
over multiple training sessions in the basic environment. In the advanced experiment
setting, our TD3 agent was able to achieve optimal results when future energy price for
5-time steps was included as state input variables. Stabilizing results over multiple seeded
training sessions required hyperparameter tuning and an additional hidden layer, leading to
virtually optimal average performance.

Important conclusions we drew from these initial experiments are that algorithm
performance stability in multiple training sessions should be further explored to reduce
the need for hyperparameter tuning. The environment complexity needs to be enhanced





to approach real-world operational settings, introducing constraints for battery health
preservation as well as more realistic battery charge cycles. The training environment
will be expanded to include a realistic dynamic load and locally produced solar power.
Real energy pricing schemes need to be introduced, including peak power tariffs and price
differentiation between import and export energy.

Further, we present the application of reinforcement learning-based techniques to the
specific energy optimization problem of controlling the BESS in a smart warehouse to
minimize the energy cost. We have adopted data from a real operational smart warehouse
for food distribution on the west coast of Norway, integrated with a PV power plant and
BESS. Multiple experiments have been conducted within a simulated training environment
built with operational data the smart warehouse featuring a 460kWh lithium-ion BESS. RL
agents, and specifically the proposed ARS-ANN agent, are trained to control the BESS
charging and discharging to minimize energy costs. Obtained results show that both the
ARS and ARS-ANN algorithms perform very well on 48-hour episodes, achieving an
average of 98.5 and 99.2% accuracy, respectively, across 10 seeded trials. Also, ARS-ANN
shows promising results on a longer time horizon, outperforming original ARS by 21%.
As seen in the initial experiment on ARS-ANN with reduced learning rates, learning for
deeper neural network architectures can be stabilized by lowering the learning rate α. The
developed algorithm finds very promising solutions in the considered case study of a smart
house for energy cost minimization through BESS control. The presented methodology
can likely be implemented in a wider range of smart energy-efficient buildings (e.g., smart
warehouses) with less engineering detail for a reduction in energy costs.

5.3.2 Simultaneous BESS and TES control with COST-WINNERS

We examine the applicability of the COST-WINNERS RL algorithm for a complex energy
cost reduction problem by direct control of BESS and TES charging and discharging
setpoints in a simulated environment of an operational smart warehouse. We successfully
demonstrate that we are able to model the dynamics of the TES and to use it in combination
with BESS and controlled by the COST-WINNERS agent to minimize energy consumption.
It is important to mention that, due to time constraints and a lack of additional data, we
only tested this approach in a scenario in which the heating demand was limited.

Overall, by combining BESS and TES direct control with the presented COST-
WINNERS agent, we demonstrate that the agent was able to stabilize maximum energy
consumption, thereby reducing the network peak energy demand. Additionally, the agent
exploited the TES, when the heat was in demand to reduce the required electrical energy
demand by the cooling plant.

We show that for 9 out of 10 of our seeded trials, the algorithm meets or exceeds the
performance of a GLPK optimization solver controlling the BESS only while given perfect
information. For the single trial where it only performs at around 50% of the GLPK, the
algorithm seems to become stuck in a local optimum. Why this happens and how it can be
avoided should be explored in future work. To conclude, we also compare our solution
to the state-of-the-art RL algorithms, showing an average of 100% performance increase
compared with the SAC algorithm. However, the SAC algorithm was able to match or





slightly exceed the performance of COST-WINNERS in a few seeded trials when SAC
training time was increased by nearly a factor of 3.

5.4 Future Work

The work developed through this thesis represents a new approach to IEMS based on RL,
including building a data-driven simulated environment of a technologically advanced
warehouse with various machine learning techniques and proposing the COST-WINNERS
RL agent. However, exploring the generalizability of our approach to other building
categories and building-integrated energy systems is a natural next step.

Data-driven modeling of cooling systems could potentially be fine-tuned using op-
erational data. This could include additional training of the developed compressor and
cooling system models, based on increasing amounts of operational data, for increased
operational accuracy. With regard to the other energy system components and dynamics
modeled in this thesis, we are sure that these could be enhanced in a multitude of ways
to both reduce time expenditure and improve accuracy. Developing such models using a
data-driven approach is necessary to enable scalability, and constitutes an important step
towards establishing best-practice solutions to modeling the various component categories
necessary to enable RL-based IEMS to be applicable to an increasingly growing number
of smart buildings.

Specifically related to the smart warehouse described in this thesis, it would be of
interest to explore a broader landscape of scenarios with higher heating demand, and during
the summer season to evaluate the general efficacy of the method. If simulated performance
is adequately promising, after further development and hyperparameter tuning, and if the
costs are not prohibitive, our chosen algorithm will be tested in an operational setting in a
technologically advanced warehouse.

With regard to the COST-WINNERS algorithm, there is an occurrence of a single trial
where it only performs at around 50% of the GLPK solver solution. The algorithm seems
to converge to a local optimum. Why this happens and how it can be avoided should be
explored in future work.

Finally, although generally outperformed by COST-WINNERS, the SAC algorithm
showed promising results in certain instances. It would be interesting to investigate possible
solutions combining COST-WINNERS/ARS-ANN and SAC to fully explore the action
space in an efficient manner. Our suggested approach allows for continual adaptation to
new state-of-the-art deep RL algorithms, either that are designed for or that have not been
previously tested for ESS control. This should be further explored in the future. Overall,
combining existing RL algorithms or developing new algorithms for simultaneous ESS and
flexible load control are interesting avenues of research that build upon the groundwork
laid out in this thesis.
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Abstract — Large scale cooling installations usually have high energy consumption
and fluctuating power demands. There are several ways to control energy consump-
tion and power requirements through intelligent energy and power management,
such as utilizing excess heat, thermal energy storage and local renewable energy
sources. Intelligent energy and power management in an operational setting is only
possible if the time-varying performance of the individual components of the energy
system is known. This paper presents an approach to model an industrial, operational
two-stage cooling system, with CO2 as the working fluid, located in an advanced food
distribution warehouse in Norway. An artificial neural network is adopted to model
the compressors using the operational data. The models are trained with cooling
medium evaporation and condensation temperature, suction gas temperature, gas
cooler outlet temperature and pressure, and compressor operating frequency. The
output is the aggregated electrical power load and mass flow for each stage. The
model ensemble will be part of a system implemented in a real-world setting to de-
termine the coefficient of performance of the cooling system. An intelligent energy
management system will utilize the model for energy and power optimization of the
cooling system by storing energy in a thermal energy storage, using predictions of
energy demand and cooling system performance.





A
A.1 Introduction

It is complex to design and operate an efficient building energy system that incorporates
multiple elements of new and emerging technologies Manic et al. (2016). The increase in
building-integrated intermittent renewable energy production, local energy storage, and
micro-grid solutions provides the building operator with a multitude of options in choosing
the optimal operational mode of all the components at any given time. Implementation of
an Intelligent Energy Management System (IEMS) is one way to automate this decision-
making process in order to reduce the total energy cost for a building Chen et al. (2011);
T et al. (2018); Venayagamoorthy et al. (2016); Wen et al. (2015); Zhao et al. (2013).
An IEMS can be tasked to predict short- and long-term energy demand and local energy
production in order to continuously design an optimal schedule for all energy storage
options, while also considering energy price fluctuations and thermal energy production
efficiency.

For the heating and cooling demands, heat pumps and Cooling Systems (CS) are widely
accepted as an efficient way to produce thermal energy, with continual improvements
being made to maximize efficiency Chua et al. (2010). In technologically advanced food
distribution warehouses, large scale CS represent a large part of the buildings total energy
demand. Changing operating conditions, such as weather (including ambient temperature),
flow of goods and building occupant behaviour, will continuously impact CS performance
Chua et al. (2010); Sarkar et al. (2004). This is especially true for more environmentally
friendly working fluids, such as CO2, that have made their relatively recent re-entry into
the field of refrigeration technology Neksa (2002); Neksa et al. (1998); Sarkar et al. (2004).
CO2-based large scale multi-stage cooling systems are becoming common as natural
refrigerants with low global warming potential and ozone depletion potential replace
synthetic refrigerants. One way to increase the efficiency of these systems during operation
is to produce thermal energy (heating or cooling) at the most ideal operating conditions
and store the energy in a thermal energy storage (TES) for later use Arteconi et al. (2013);
Pardo et al. (2010). This requires an IEMS that is given accurate energy measurements and
individual system performance data. For the CS, this includes cooling load which requires
working fluid flow measurement. However, because accurate CO2 flow measurements are
difficult, energy measurement of cooling demand supplied with CO2 as the working fluid
of energy distribution, typically in warehouses with large cooling and freezing storage
areas, is usually unavailable. Theoretical calculation of system efficiency, or Coefficient of
Performance (COP), is therefore necessary to determine system performance. However,
industrially sized CS’s are usually unique and built by intellectual property (IP) protected
components that limit the system owner and operators options for continual performance
evaluation. In many cases, system performance at given operating conditions can only be
calculated by the supplier using a proprietary model, but the details of the model itself are
not shared. Therefore, openly available alternatives are necessary in order to model the
system for performance evaluation purposes to provide reliable input to an IEMS.

In this work, we use Artificial Neural Networks (ANNs) to model the compressors
of an industrial and operational two-stage CO2-based CS. ANNs have already shown
promising results in performance prediction modelling of heat pump technology Esena





A
et al. (2008), but in Esena et al. (2008) the training data set consisted of a very limited
amount of measurements in an experimental setting, where thermal energy and electrical
energy input could be measured.

ANNs have the ability to approximate both simple and complex unknown functions that
fit the underlying data. Therefore, we apply ANNs on data generated by an openly available
online compressor calculation model. The aim is for the ANN to learn the underlying
patterns within the data. With ANNs trained on compressor calculation data, the need
for extensive knowledge and understanding of refrigeration technology is less critical in
development of the model. This is key when it comes to ease of implementation and
scalability in real world applications where every system has its own unique aspects that
must be taken into account. Since the ANN model is built on freely available information,
there is no need to access IP protected empirical data or algorithms, allowing the model
to be designed independently of the compressor manufacturer. Lastly, since machine
learning models, such as ANNs, can be further trained with new training examples, the
parts of the system that are measurable and observable can be used to modify the model to
adjust for observable deviations between theory and practice. This fact can also be used to
reveal large discrepancies between expected and real performance that should be further
investigated.

The remaining sections of this article are organized as follows. Section A.2 presents
the case-study energy system and cooling system where the ANN CS performance model
will be applied. The research setup, various ANN designs and configurations are presented
in Section A.3. Section A.4 contains the results and discussion from the various models
that were trained. Finally, the article conclusions and suggested future work are presented
in Section A.5.

A.2 System Structure and Configuration

The research in this study is based on existing infrastructure and data from a 27,000
m2 technologically advanced warehouse for food storage and distribution, located in
Sandnes, Norway. The warehouse was completed in 2017 and is currently implementing
a commercially available IEMS based on hourly scheduling that uses various machine
learning techniques to optimize energy storage, both electrochemical in batteries and
thermal utilizing an isolated fire sprinkler basin, for storage of hot or cold water. The IEMS
has to predict future electrical and thermal energy demand in order to come up with an
optimal scheduling strategy. The main components of the warehouse energy system is a 1
MWp solar Photovoltaic power plant (PV), a 460 kWh storage capacity electrochemical
li-ion battery storage system with two 100 kW inverters, a 300 m3 water tank for thermal
storage, a CO2-based large scale CS consisting of two identical two-stage cooling plants
and a back-up cooling machine for ventilation air and IT-server cooling, an electrical boiler
and accompanying technical infrastructure (HVAC, Lighting etc.). Excess heat from the
CS is reclaimed and used to supply the building with heating energy. An overview of the
warehouse temperature zones with their respective operating temperatures are listed in
Table A.1, whereas the main components of the energy system and their inter-dependencies
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Figure A.1: The case-study warehouse energy system.

are visualized in Fig. A.1 and listed in Table A.2.

Table A.1: Warehouse cooling floor area and operating temperatures

Area Size Operating temperature
Warehouse 27,000 m2 -20°C to +20°C
Frozen storage area 3,000 m2 -20°C
Cold storage area 3,600 m2 +2°C
Cooled shipping area 3,600 m2 +2°C

Table A.2: Energy system components, capacity in [kWp], [kW], [kWh], [m3] and
[kWthermal]

Component Capacity Unit of measurement
PV - solar power plant 1,000 [kWp]
EB - battery bank 460/200 [kWh/kW]
TES - water tank 300 [m3]
CS - cooling system 1,140 [kWth]
Electrical boiler 495 [kW]

The TES is operated as a Cooling Energy Storage (CES) during spring, summer and
fall, and as a Heating Energy Storage (HES) during winter. When ambient air temperature
decreases, cooling demand and thereby available excess heat is reduced to the point where
excess heat is insufficient to meet the heating energy demand. Therefore, the HES can
reduce required heat supply and power load on the electrical boiler by storing available
excess heat from the CS.
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Figure A.2: The case-study cooling system as visualized in the building management
system, courtesy of IWMAC. Freezing compressors and CO2 distribution to evaporators
roughly outlined in the red dashed box, ANN model input values marked in bold (CF in
%).

For the remainder of the year, the CES is used in one of two ways – to store excess
energy from the PV-plant when production exceeds demand, or to store cooling energy
produced during optimal operating conditions for the CS. In order to store excess energy
from the PV-plant, the electrical energy is converted to thermal energy by the CS and
stored in the CES as chilled water in a temperature range between 7°C and 15°C. In the
evening, when production from the PV-plant is naturally reduced, the CES is discharged
by directly supplying cooling energy for ventilation air and IT-servers. Alternatively, the
CES can be used to optimize cooling energy production by charging and discharging based
on varying operating conditions, such as current and predicted cooling load, and current
and predicted ambient air temperature.

For the IEMS to make the optimal choice of operating mode for the TES, the per-
formance of the CS must be evaluated both at current and future operating conditions.
In this work, ANN models for theoretical calculation of cooling load and compressor
power consumption based on available compressor data is explored. The models have been
developed for the three identical semi-hermetic reciprocating sub-critical compressors,
denoted FM1, FM2 and FM3 within the red dashed box in Fig. A.2, but the whole CS will
be modelled in future work.

Compressor performance calculation data for the 4CSL-12K compressors was collected
from the website of the manufacturer, Bitzer™. Theoretical values were calculated using
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the following given equation (according to EN12900):

y = c1 + c2to + c3tc + c4t
2
o + c5totc + c6t

2
c + c7t

3
o + c8tct

2
o + c9tot

2
c + c10t

3
c (A.1)

In Eq. (A.1), to is the evaporating temperature and tc is the condensing temperature. c1
to c10 are constants that are given based on the selected suction gas temperature (SGT),
compressor frequency (CF) and subcooling temperature. Four different sets of constants
are given that are used to calculate either cooling capacity Q, power input P, current I
or mass flow, represented as y in Eq. (A.1), for the compressor within its defined and
given operating range. Constants for Q and P only were collected in 5 degree steps, from
-30°C to -5°C for suction gas temperature, and for 5 Hz steps from 70 Hz to 30 Hz for
compressor frequency. Since the subcooling temperature was unknown at the time of data
extraction, it was set to 2°K as a reasonable average value provided by the cooling system
supplier. A total number of 96 rows of 10 constants were collected and labeled with suction
gas temperature and compressor frequency, as well as the compressor evaporation and
condensation range at the given operating conditions. Finally, P [kW] and Q [kWth] were
calculated using integers for the compressor evaporation and condensation range, resulting
in a data set of approximately 30 000 example values. The COP of the compressor can
then calculated by Eq. (A.2).

COP =
Q

P
(A.2)

A.3 ANN Approach Design and Configurations

Clearly, from Eq. (A.1), we understand that the function of the output is in a polynomial
form. Although the functions between the inputs and the parameters ci, ∀i ∈ 1, 2, ..10

are unknown, Eq. (A.1) provides important information which can be considered as an
indicator of the overall hidden function that our ANN model is approximating. To approach
a function that has polynomial features as the overall trend, we believe that a simple ANN
with sigmoidal activition functions in the hidden layer is most probably sufficient Cybenko
(1989). Therefore, instead of applying modern deep learning techniques, we start with a
neural network structure with one hidden layer (HL) and gradually increase the number of
layers and neurons to observe the learning behavior and efficiency. Fully connected ANNs,
as shown in Fig. A.3 with single and multiple HLs with nonlinear activation functions
were trained to predict P and Q by forward propagating data from the input neurons To,
Tc, SGT and CF through the HLs as shown in Fig. A.3. Hyperbolic tangent Eq. (A.3)
(Tanh), tangent sigmoid Eq. (A.4) (Tansig) from Esena et al. (2008), rectified linear unit
Eq. (A.5) (ReLU) and sigmoid Eq. (A.6) activation functions were tried. Since the Tansig
function used in Esena et al. (2008) is exponential, the ReLU function was also attempted.
An Adam optimizer Kingma, Ba (2014) was used to train the networks until convergence
using the Keras early-stop function. During training, the training data set was divided into
batches of 100 examples so that the trainable model parameters could be updated after
each batch. Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) for a
single model, were used as loss functions and model accuracy metrics.

Tanh =
ez − e−z

ez + e−z
(A.3)
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Figure A.3: Fully connected ANN with four neurons in the input layer and two neurons in
the output layer.

Tansig =
2

(1 + e−2z)− 1
(A.4)

ReLU = max(0, z) (A.5)

Sigmoid =
ez

1 + ez
(A.6)

The models were programmed in Python 3.6 and the Keras library. Several network
configurations were tested by changing the amount of HLs, the amount of neurons and the
corresponding activation functions in each HL. Input values were normalized by subtracting
the mean and normalizing the variance using Eqs. (A.7)-(A.10). The calculated values of
µ and σ2 for the training data set {Xi} were also applied to the validation data set using
Eq. (A.8) and Eq. (A.10).

µ =
1

m

m∑
i=1

Xi (A.7)

X
(µ)
i = Xi − µ (A.8)

σ2 =
1

m

m∑
i=1

(
X

(µ)
i

)2

(A.9)

X
(σ2)
i =

X
(µ)
i

σ2
(A.10)

A.4 Results and discussion

The data set consists of 29,408 values, divided randomly into a training and validation data
set using a 90 / 10 split. The results for single HL models with a hyperbolic tangent (Eq.
(A.3)) activation function are listed in Table A.3.

A single HL model with 45 neurons in the HL (Tanh-MSE-45) outperformed all
multiple hidden layer models in all tested configurations. This includes models with
multiple hidden layers, with both different and identical activation functions across the
hidden layers. This result is logical based on the expected polynomial shape of the hidden
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Table A.3: Results - One hidden layer ANN.

Activation-loss-neurons Training epochs Training loss Validation loss
Tanh-MSE-7 6,184 0.008790 0.008639
Tanh-MSE-10 5,202 0.002355 0.002236
Tanh-MSE-15 4,029 0.001065 0.001047
Tanh-MSE-20 3,242 0.000644 0.000708
Tanh-MSE-25 2,398 0.000558 0.000554
Tanh-MSE-30 2,271 0.000530 0.000518
Tanh-MSE-35 2,620 0.000411 0.000379
Tanh-MSE-40 3,404 0.000367 0.000361
Tanh-MSE-45 2,868 0.000291 0.000273
Tanh-MSE-50 2,987 0.000319 0.000456
Tanh-MSE-55 2,742 0.000297 0.000294
Tanh-MSE-60 3,616 0.000326 0.000309

Table A.4: Results - Two hidden layers ANN.

Activation-loss-neurons-HL Training epochs Training loss Validation loss
Tanh-MSE-5-2 2,010 0.008039 0.008952
Tanh-MSE-7-2 1,602 0.002343 0.002125
Tanh-MSE-10-2 1,641 0.001450 0.001293
Tanh-MSE-15-2 1,076 0.000880 0.000721
Tanh-MSE-20-2 1,127 0.000762 0.000945
Tanh-MSE-25-2 1,561 0.000483 0.000730
Tanh-MSE-30-2 712 0.000809 0.000797
Tanh-MSE-35-2 683 0.000675 0.000480
Tanh-MSE-40-2 828 0.000632 0.000415
Tanh-MSE-45-2 1,074 0.000541 0.0030
Tanh-MSE-50-2 879 0.000639 0.0013

ground-truth function. The system complexity is limited, and therefore does not require
too many neurons in the hidden layer, as shown in Fig. A.4.

Table A.5: Results - One seven neuron hidden layer ANN with different activation and
loss functions, and the best performing SVR model.

Model Training epochs Training loss (as MSE) Validation loss
Tanh-MSE-7 6,184 0.0088 0.0086
Tansig-RMSE-7 1,763 0.0110 0.0106
Sig-MSE-7 21,043 0.0083 0.0079
ReLU-MSE-7 606 1.1444 1.1697
SVR-C1e10-RBF - 0.0095 0.0094

For the single layer models, there was little difference between training and validation
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error. In contrast, multiple layer models tended towards a higher validation error as well
as bigger differences between training and validation, as exemplified in Fig. A.5, which
is a sign of overfitting the training data. The multiple layer models also tended towards
larger variations in loss between every update of the trainable parameters, which is to be
expected since there are more parameters being updated after every training batch. This
can be clearly observed in Fig. A.4 and in Fig. A.5 where the fluctuations increase with the
amount of trainable parameters. This effect could perhaps be mitigated by tuning training
parameters, but because the expected complexity of the hidden function is limited we do
not believe that accuracy can be improved by adding more hidden layers. This assumption
is supported by the results.

An ANN close to the best performing ANN in Esena et al. (2008)(Tansig-RMSE-7 in
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Table A.5) was also trained in order to compare result accuracy with the most similar study
found. The architecture of this network consists of a single HL with seven neurons and
input values normalized to values between zero and one, using a tangent sigmoid activation
function (Eq. (A.4)) and an RMSE loss function. One HL, seven hidden neuron models
were also trained using sigmoid (Eq.(A.6)) and ReLU (Eq. (A.5)) activation functions. The
tangent sigmoid model converges most quickly among the tested activations, but fluctuates
significantly between every batch update. The sigmoid activation is the slowest to converge,
but achieves the lowest MSE by a very small margin. This could be explained by the
random initiation of parameters and we were not able to duplicate this result multiple
times. Several Support Vector Regression (SVR) models were also trained with Sci Kit,
using linear, polynomial and gaussian kernels. The best performing SVR, using a very
large value for C and the gaussian kernel function is also included in Table A.5. Finally, a
single HL 7 neuron model using the hyperbolic tangent activation function (Eq. (A.3)) was
trained and yielded the best results, within a reasonable amount of training time, as shown
in Table A.5 and Fig. A.6 which show the comparison of different activation functions.
The best performing SVR model result is included in Table A.5. The result for the Tanh
activation was achievable on multiple training sessions, indicating that the Tanh activation
function is a reasonable fit for the training and validation data.

For models with two HL using the hyperbolic tangent (Eq. (A.3)) activation function,
results are displayed in Table A.4. None of these models outperformed the Tanh-MSE-45
ANN, but the comparison of training error in Fig. A.7 show that the more complex two
HL models converge and improve more quickly than the single layer models. This is
expected since the amount of trainable parameters increases drastically once extra layers
are added, but the fast learning rate quickly abates and results in fluctuating, indicating
that the models are too complex for the underlying data.

Table A.6: Results - Tanh-MSE-45 model output compared with calculations done with
software from Bitzer™.

to / tc SGT CF P Bitzer™ P Tanh-MSE-45 Q Bitzer™ Q Tanh-MSE-45 % SE
-35 / -5 -12.5 67 13.24 13.25 52.7 52.6 0.03
-35 / -5 -12.5 63 12.30 12.30 49.5 49.4 0.04
-35 / -5 -17.5 47 8.95 8.96 36.7 36.6 0.03
-35 / -5 -17.5 43 8.21 8.22 33.4 33.3 0.08
-35 / -5 -22.5 37 7.18 7.18 28.6 28.6 0.01
-35 / -5 -22.5 33 6.54 6.54 25.2 25.2 0.01

Finally, to examine how the Tanh-MSE-45 model performs on completely new data,
some example calculations with Bitzer™ software were done using input data that fall
in between the values that were used to generate the training and validation data sets.
Specifically, instead of 5°C steps for SGT ∈ −30,−25, ..− 5, the values -12.5, -17.5 and
-22.5 were used. Similarly, values for CF were set to 67, 63, 47, 43, 37 and 33. Table A.6
show these results as well as % Squared Error (SE).
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A.5 Conclusions

With a resulting MSE of 0.08%, we conclusively show that using an ANN to model the
compressors in a cooling system is a valid approach that allows quick and quite accurate
calculations of cooling load and compressor power. The compressor COP at the given
operating conditions can then be calculated. The best result was achieved using a single
HL ANN with a hyperbolic tangent activation function. The model was trained with a
MSE loss function using the Adam optimizer. For this approach to be valuable to an IEMS,
the transcritical compressors that interact directly with TES must also be modelled so that
the full system performance can be calculated. For best use of the TES as a HES during
winter, the maximal available and reclaimable heat must also be determined. The trained
model will be part of a full CS model adopted in a real-world setting and used to determine
the cooling load, compressor power load and COP as input to an IEMS for optimization
purposes.
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Ángel Álvarez Pardiñas, Armin Hafner, and Mohan Lal Kolhe

Department of Engineering Sciences
Faculty of Engineering and Science, University of Agder

4879, Grimstad, Norway
E-mails: {sven.opalic, morten.goodwin, lei.jiao, henrik.kofoed.nielsen,

mohan.l.kolhe}@uia.no
Department of Energy and Process Engineering

Norwegian University of Science and Technology
7034, Trondheim, Norway

E-mails: {armin.hafner, angel.a.pardinas}@ntnu.no

Abstract — Industrial cooling systems consume large quantities of energy with highly
variable power demand. To reduce environmental impact and overall energy con-
sumption, and to stabilize the power requirements, it is recommended to recover
surplus heat, store energy, and integrate renewable energy production. To control
these operations continuously in a complex energy system, an intelligent energy man-
agement system can be employed using operational data and machine learning. In
this work, we have developed an artificial neural network based technique for mod-
elling operational CO2 refrigerant based industrial cooling systems for embedding
in an overall energy management system. The operating temperature and pressure
measurements, as well as the operating frequency of compressors, are used in devel-
oping operational model of the cooling system, which outputs electrical consumption
and refrigerant mass flow without the need for additional physical measurements.
The presented model is superior to a generalized theoretical model, as it learns from
data that includes individual compressor type characteristics. The results show that
the presented approach is relatively precise with a Mean Average Percentage Error
(MAPE) as low as 5 %, using low resolution and asynchronous data from a case study
system. The developed model is also tested in a laboratory setting, where MAPE is
shown to be as low as 1.8 %.
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B.1 Introduction

The building and construction sector, including energy intensive food distribution ware-
houses, is responsible for almost 40 % of total emissions related to energy and process
(IEA, 2019a). Within the built environment, cooling demand is continually increasing
as the weather grows warmer and a larger part of the worlds population and industrial
enterprises gain access to air conditioning equipment and cooled building space (IEA,
2019b). The environmental impact of this trend can mainly be alleviated through a two-fold
focus on energy efficient operation (Li et al., 2020; Zhu et al., 2019) and use of increasingly
viable environmentally friendly refrigerants, such as carbon dioxide (CO2), in the Cooling
Systems (CS) (Mohammadi, McGowan, 2019; Sarkar et al., 2004; Neksa, 2002; Neksa
et al., 1998).

Typically, in warehouses and distribution centers, comprehensive CSs are responsible
for a big portion of the building’s energy use. CS performance will also be affected by
changes in the operational environment, including weather conditions, logistical operations,
and workforce behavior (Chua et al., 2010; Sarkar et al., 2004). These effects are enhanced
when dealing with environmentally friendly refrigerants, such as CO2, that recently have
seen an increase in utility due to environmental concerns (Schmidt et al., 2019). A
cost efficient way to reduce environmental impact in the existing CSs is through energy
efficient operation. This can be achieved in several ways, depending on the existing
energy system design, such as optimized interaction with a Thermal Energy Storage (TES)
(Širokỳ et al., 2011), surplus heat recovery (Chua et al., 2010) and optimized time-of-use
with simultaneous access to local renewable energy resources (Wu, Wang, 2018; Kow
et al., 2018). Implementing an Intelligent Energy Management System (IEMS) allows
the building operator to automate the process of continuously choosing actions with the
highest cost-reduction or energy-savings potential (T et al., 2018; Venayagamoorthy et al.,
2016; Wen et al., 2015; Zhao et al., 2013; Chen et al., 2011). The IEMS takes advantage of
the shift from Human-to-Machine to Machine-to-Machine communication, with access to
large quantities of data through Internet/Intelligence of Things (IoT) components, and can
incorporate the latest developments within Artificial Intelligence (AI) for prediction and
control purposes (Hakimi, Hasankhani, 2020; Wu, Wang, 2018; Manic et al., 2016). The
IEMS can handle various tasks, such as optimized utilization of energy storage options
to reduce overall CS energy consumption (Širokỳ et al., 2011). TES systems can be used
to enhance the CS performance by exploiting available heating and cooling capacity for
optimum operation of energy storage during high-performance operating conditions. In a
CS, the most important energy efficiency measure is the Coefficient of Performance (COP).
The COP is a ratio of the useful thermal energy provided compared to the electrical work
required. To determine the thermal component of this ratio in direct expansion systems
that use the refrigerant for cooling energy distribution, we need an accurate measure of
refrigerant flow.

Installing flow measuring equipment in existing CO2 refrigerant, direct expansion
CSs is a costly and complicated operation. The complexity and risk increases when the
CS operates on multiple temperature levels with separate distribution systems. The most
logical option for performance evaluation then becomes a theoretical calculation based on
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available operational data. In Zou, Xie (2017), a simplified model for COP modelling of
a water source heat pump is suggested. Sun et al. (2017) proposes a general simulation
model based on graph theory that utilizes accurate mathematical models of individual
components, such as the Li (2013) suggested approach to variable speed compressors, to
model refrigerant flow. Kim et al. (2018) conducted a case study of variable refrigerant
flow simulation, tailored for building energy modelling, where the focus was calibration of
a CS model to the U.S. DOE’s EnergyPlus software. Zhu et al. (2013) proposes a generic
model for variable refrigerant flow in air conditioning systems with multiple evaporators
intended for simulation of performance and control analysis. None of the aforementioned
studies propose models for multi-stage compression CS. Adaptation and implementation
of the proposed methods would also require quite extensive knowledge of refrigeration
technology and specific system design. Future IEMS systems might be dependant upon a
realistic simulated environment to enable training of sophisticated Reinforcement Learning
agents (Schrittwieser et al., 2019; Silver et al., 2018) that can adapt to and learn from
operational data. A robust method that allows for cost effective, real-world implementation
in complex, industrial scale, CO2 direct expansion CS is needed. Since industrial scale CSs
have to be specifically designed and built for each use case, a general calculation will be
quite inaccurate. Intellectual Property (IP) rights tied to the individual components in the
CS can also restrict options for full access to precise performance data. Some industrial CS
suppliers provide access to web-based software designed for product selection and simple,
static performance calculation, but the details necessary to build a more robust theoretical
calculation model are not shared. An open, accurate, scalable, and reliable method for
theoretical COP calculation is therefore needed.

Within the field of AI, an Artificial Neural Network (ANN) is a particularly powerful
tool for hidden function approximation. ANNs trained on limited experimental data were
successfully used for COP calculation in Esena et al. (2008). In Opalic et al. (2019)
we showed that ANNs trained to model the electrical power utilized by Bitzer, a widely
utilized compressor manufacturer, 4CSL12K compressors give highly accurate results,
with an MSE of 0.08%, when compared to results attained from Bitzer software.

In this paper, we expand our scope by using ANNs to model all Bitzer compressors in a
large and fully operational CO2-based CS. To further examine the usefulness and real-world
application of this approach, we compare electrical power measurements of a case study
CS to the summed calculations of an ensemble of ANNs that each model a compressor
type featured in the CS. We also verify our method by comparing our calculations to
measurements from a comparable laboratory CS. We train the ANNs using available data
collected from the compressor manufacturer’s web-based software. The ANN training
algorithm adjusts the weighting of the input parameters, as well as the weighted connections
between neurons, to expertly fit the labeled training data. After we define the appropriate
input and output parameters, our approach only requires limited knowledge of refrigeration
technology and system design to be implemented in an operational setting. In CSs with
access to a limited amount of desired performance measures, our approach can be used to
supplement and enhance the value of the existing data. In such installations, the overlap
between measurements and calculations can also be used to discover inconsistencies
between theoretical and actual performance. To the best of our knowledge, our approach to
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linking theory and practice in multi-stage, CO2 refrigeration technology using ANNs has
not been attempted before. The proposed method is both practically feasible and useful
in evaluating the energy performance of CO2-based cooling installations. Owners and
operators can use our ANN model ensemble approach for quality assurance of CO2-based
CSs.

We have designed our approach to:

• independently model the parts of the CS that interact with the TES at any given
time, such that we can use the efficiency of this isolated part of the CS as input to an
algorithm that optimizes the use of the TES;

• have a more accurate performance measure than what is currently available;

• create a data set that enables the development of CS future performance prediction
models by applying our method to historical CS data;

• be able to calculate historical values of available excess heat, whereas what is
currently known is only the amount of heat that was reclaimed and used;

• investigate to what extent ANNs can model complex scenarios consisting of sev-
eral cooling compressors in a multi-stage CS – especially including transcritical
conditions for CO2.

We organize this article in the following manner. Section B.2 describes the components
of a real-world advanced warehouse and logistical center that includes a case study cooling
system, as well as the data collection process for model development. We present our
CS model ANN architecture in Section B.3. Section B.4 is our discussion of results and
implementation. Lastly, we present our conclusions and suggest future research efforts in
Section B.5.

B.2 System structure and configuration

We based our work on information and data collected from a warehouse and food distribu-
tion center near Stavanger in Norway, completed in the fall of 2017. The main component
of the warehouse energy system is an industrial CO2 refrigerant CS consisting of three
separate cooling plants circulating liquid CO2 to evaporators in the frozen and chilled food
storages. The CS also produces chilled water for cooling of the remaining building areas,
including food storage, office space, and support areas. The architecture of the case-study
cooling plant examined in this study is shown in Fig. B.2. An additional back-up and
peak-load cooling machine also provides chilled water for ventilation and server cooling.
CS surplus heat is recovered and utilized to heat tap water, to keep the ground beneath the
frozen storage frost-free and to supply the non-cooled areas of the building with heating
energy when needed. If there is insufficient excess heat available, the operating pressure of
the CS is increased to satisfy the heating demand, up to a predefined maximum pressure
level. Recovered heat can also be stored in a TES for future use, mainly to reduce the need
for the electrical boiler at peak heating demand.
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Figure B.1: The warehouse energy system.

The warehouse also exhibits a considerable photovoltaic (PV) power generation plant,
a lithium-ion battery system (LBS), and a buried and insulated 300 m3 firewater tank
connected to a heat exchanger that is utilized as a TES. An electrical boiler is employed for
back-up and peak demand heating. Table B.1 contains a list of the operational temperature
range in the various warehouse areas, whereas Fig. B.1 and Table B.2 visualizes and lists
the main components of the warehouse energy system. The PV plant supplies A/C power
directly to the main switchboard. If demand is sufficient, all the PV energy is utilized in the
building. Otherwise, energy is stored in the LBS, converted to thermal energy and stored in
the TES or exported to the main grid. In addition to storing surplus solar energy, the LBS
is used for power peak reduction. Thermal energy in the form of chilled or heated water
can be stored in the TES, represented by the purple arrow in Fig. B.1. The IEMS tasked to
control the energy storage systems applies proven machine learning algorithms to predict
PV power generation, as well as the future demand for thermal and electrical energy. An
optimization algorithm then employs the predictions to calculate the most cost-effective
hourly schedule for charging and discharging.

The IEMS controls the TES in two separate seasonal modes of operation, Heat Energy
Storage (HES) and Cold Energy Storage (CES). It employs CES mode from around
March to November, and HES for the remainder of the year. Natural reduction of the
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Table B.1: Warehouse dimensions and temperatures.

Area Size Operating temperature
Dry storage, office space, etc. 19,000 m2 18-22°C
Frozen 3,000 m2 -20°C
Chilled 3,500 m2 0-4 °C
Chilled distribution 3,500 m2 0-4 °C

Table B.2: Components’ specifications.

Component Capacity Unit of measurement
PV - photovoltaic power generation 1,000 [kWp]
LBS - lithium-ion battery system 460/200 [kWh/kW]
TES - thermal energy storage 300/300 [m3/kWthermal]
CS - cooling system 1,140 [kWthermal]

cooling demand occurs as outside temperature decreases towards the winter season. As
a result, surplus heat available for recovery is no longer able to sustain the warehouse’s
overall demand for heating. However, by storing heating energy reclaimed from the CS in
advance, the load on the electric boiler can be severely reduced, which in turn reduces the
consumption of energy and the cost of peak power.

In CES mode, the IEMS attempts to balance two main strategies:

1. Storing surplus electricity generated by the PV installation in the CES through
energy conversion.

2. Producing and storing chilled water at high COP conditions.

When the IEMS applies strategy number one, the CS converts surplus electricity to
chilled water for storage in the CES at a temperature range between 7°C and 15°C. In the
evening, when the natural reduction of power output from the PV-plant occurs, the IEMS
may choose to discharge the CES and thereby reducing power requirements for the CS.
The second strategy involves optimizing the production of cooling energy by decoupling it
from the consumption through the CES. The IEMS optimization algorithm accomplishes
this through the utilization of cooling demand predictions, weather predictions, and table
base COP values.

The IEMS currently uses a simplified approach with a provided table of COP values to
evaluate performance at given ambient temperature and operating conditions. Future COP
values can then be estimated using weather predictions. The COP table is a rough metric
that does not supply the optimization algorithm with quantitative input, such as expected
cooling production at the separate CS stages and total available excess heat. Also, the
Building Management System (BMS) provides a general CO2 CS model that calculates all
the necessary parameters, but with unsatisfactory accuracy.

We, therefore, suggest an ANN approach to calculate compressor mass flow and
electricity consumption. Calculating cooling capacity instead of mass flow would be
preferable. However, due to unavailability of cooling capacity data for all the compressors,
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Figure B.2: On-site cooling plant architecture.

we use mass flow as an alternative approach. We have developed models for all the
compressors in the cooling system. Two models have been developed for each transcritical
compressor so that we use separate models of the same compressor for calculations in
the subcritical and transcritical operational modes. The compressors are semi-hermetic
reciprocating compressors manufactured by Bitzer GmbH, with one frequency-controlled
compressor at each stage. Fig. B.2 shows the placement of all the compressors in a
simplified cooling system architecture. There are two pressure stages of compression as
well as parallel compressors to handle flash gas in the receiver and chilled water production.
The compressors for the frozen storage areas are displayed in the bottom left, with the cold
storage compressors in the top left and the parallel compressors in the top right. Fig. B.2
also displays mass flow direction and the most crucial CS components. It can be noted
that the CO2 based cooling system is a highly complex part of the energy system in the
considered technologically advanced warehouse. Fig. B.2 is an element of Fig. B.1.

The website of the manufacturer was used to collect data (Bitzer-GmbH, 2019). Theo-
retical values for cooling capacity (Q), electrical power (P), electrical current (I) or mass
flow (ṁ), which can all be substituted for the parameter y in Eqs. B.1 and B.2, can then be
separately calculated by using the appropriate constants ci,∀i ∈ 1, 2, ..10 in the following
polynomials (according to EN (2013)), for subcritical pressure conditions

ysc = c1 + c2to + c3tc + c4t
2
o + c5totc + c6t

2
c + c7t

3
o+

c8tct
2
o + c9tot

2
c + c10t

3
c ,

(B.1)

and, for transcritical pressure

ytc = c1 + c2to + c3pHP + c4t
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(B.2)

In Eqs. (B.1) and (B.2), to (°C) is representing temperature of evaporation and tc
(°C) is the condensation temperature, whereas pHP [bar] is the discharge pressure of the
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compressors at transcritical operating conditions where pHP > 73.77[bar]. The constants
c1 through c10 depend on suction gas temperature (SGT, °C) and compressor operating
frequency (CF, Hz) for subcritical operating conditions, while gas cooler outlet temperature
(GOT, °C) must also be selected for transcritical operation. Separate and independent sets
of constants are used to calculate Q (kWthermal), P (kW), I (A) or ṁ (kg/h) when used with
Eqs. (B.1) and (B.2). Constants for P and ṁ were collected in 5 degree steps for SGT and
GOT within each compressors defined operational range, and 5 Hz steps for CF between
70 and 30 Hz. P and ṁ example values were then calculated and labelled appropriately
using integers for to, tc and pHP , resulting in data sets ranging from approximately 10 000
to 100 000 training examples for each compressor model.

Finally, we can determine cooling production, available excess heat, and the COP of
any part of the system through calculations. For example, ṁ can be used to calculate
cooling load with the enthalpy difference equation

Qc =
ṁ∆hc

3600
, (B.3)

where ∆hc (kJ/kg) is the specific enthalpy difference of the refrigerant between the outlet
and inlet of a specific evaporation stage. Pressure and temperature of the subcooled
liquid refrigerant before the expansion device (evaporator inlet conditions), along with
the pressure and temperature of the superheated gas (evaporator outlet conditions), are
measured. Specific enthalpy at the inlet and outlet of the evaporation stage is therefore
known and can be used to calculate the specific enthalpy difference. We can then calculate
the COPc of a single, or multiple, compressor(s) using Eq. (B.4)

COPc =
Qc

P
. (B.4)

B.3 ANN approach design and configuration

We chose the appropriate ANN design for compressor modelling by analyzing the Bitzer
software and the available data. Clearly, in Eqs. (B.1) and (B.2), we can observe the
characteristics of a polynomial function. Even though the relationship between the input
variables and the constants ci, ∀i ∈ 1, 2, ..10 are unknown, Eqs. (B.1) and (B.2) provide
important information which we consider an indication of the hidden function we are
attempting to approximate with ANNs.

In the considered ANN approach design and configuration, the patterns are discovered
by such a function via training the ANN employing a hyperbolic tangent (tanh) activation
function (Opalic et al., 2019; Cybenko, 1989). We, therefore, use the most suited neural
network architecture found in (Opalic et al., 2019), namely using one hidden layer (HL)
containing 45 neurons. Fully connected ANNs are configured to calculate P and ṁ by
feed-forwarding input data through the neurons in the HL as shown in Fig. B.3. We have
trained compressor models for subcritical operating conditions with data sets generated
with Eq. (B.1), while Eq. (B.2) was utilized to generate the data sets for the transcritical
operation model training. The Adam optimizer (Kingma, Ba, 2014) has been applied to
update the weights of the neural networks during training. The training continued until
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Figure B.3: ANN model architectures: a) Subcritical operation, b) Transcritical operation,
c) Subcritical and frequency controlled, d) Transcritical and frequency controlled.

model learning converged by using the early-stop method in the Keras (Chollet, others,
2015) programming library, with the ”patience” parameter set to 150 epochs.

We set the training optimizer to update the trainable parameters after each training
batch, consisting of 100 training examples. We have used Mean Squared Error (MSE) as
the loss function while MSE and Mean Average Percentage Error (MAPE) were used as
model accuracy metrics.

The models are programmed using Python 3.6 and Keras (Chollet, others, 2015). We
divided the data sets into training and validation data through randomization and a factor
of 0.9 to 0.1, respectively. We normalized the input values by mean (µ) subtraction and
adjusting for variance (σ2). The resulting values of µ and σ2 calculated on the training
data set {Xi} were then employed to also adjust the validation data set.

We finally assembled the individually trained models in accordance with the design
of the case-study CS shown in Fig. B.2. Operational data from the cooling system was
gathered in order to compare the aggregated output of the ANN models for running
compressors to the metered power input. In addition to to, tc, PHP , SGT, CF and GOT,
compressor operating status for each compressor was collected. For every timestep, our
algorithm utilizes the operational data to determine which compressors are operational, the
CF of the frequency controlled compressors, and whether the CS pressure level exceeds the
transcritical threshold. The data for the active compressors, in the appropriate operational
mode, is then selected and sorted into the format shown in Fig. B.3, and fed into the input
layers of the selected models. The resulting model output is finally summed for each
separate stage of compression and compared to the metered power input to the CS.

However, none of the data is temporally synchronized. Accordingly, the raw data had
to be processed and aligned in order for comparisons to be made. The data processing
introduces an error source that has to be taken into account when observing the results. Also,
a third-party BMS, utilizing serial bus communication for data gathering, is responsible
for collecting the power measurements and operational data from the cooling system.





B

The BMS only timestamps the data when it is received. There is no timestamp for when
the data was requested or when the cooling system controller received the request (the
actual time of measurement). This lack of clarity adds another layer of uncertainty to the
temporal accuracy and integrity of the raw data. By request, the BMS operator increased
the frequency of data collection in June 2019 in order to increase input data quality.

An analysis of the raw data also shows that even when measured power input drops to
zero, the BMS will still show active compressors, and accordingly, the models will predict
the individual compressor power usage. Therefore, we have removed all data points with a
power measurement of zero in the data cleaning process.

An alternative research approach would have been to structure the training data so that
a single model could be used to predict the aggregated output. We only briefly considered
this alternative as such an approach would have included removing known information
and system boundaries from the training process only to have the information, hopefully,
relearned by the single model. Also, we would have removed the advantage in our chosen
approach of being able to model separate stages in the cooling system, while transfer
learning by reusing already trained compressor models in other cooling systems would
have been more difficult.

There is no flow measuring equipment in the case-study CS that can be used to verify
the accuracy of the aggregated model. Therefore, we also tested our method with data
from an ongoing experiment at the Norwegian University of Science and Technology
(NTNU) laboratory CS. The NTNU CS has a very similar design to the case-study CS,
while also measuring the flow of CO2 through each compressor stage and the individual
electrical power input of each compressor. The compressors in the NTNU CS parallel
stage, consisting of a Bitzer 2KTE-7K-40S (Inverter driven), Bitzer 2KTE-7K-40S (set to
fixed speed) and Bitzer 4JTC-15K-40S (fixed speed), were modeled using our previously
described ANN configuration approach. Part of the pressure and temperature sensors in
the NTNU CS are connected to Danfoss controllers which sample and log the data in
5-second intervals. Mass flow meters, temperature sensors, and active power consumption
meters for the compressors are connected to National Instruments Hardware, and the data
is logged by LabVIEW software with a sampling time of 1 second. LabVIEW software
also handles information coming from the inverters (frequency, power, etc.), connected by
Modbus, with a 5 second sampling time. NTNU researchers finally synchronize all the
data in MATLAB with in-house software.

B.4 Results and implementation plan

B.4.1 Results analysis

In this paper, we attempt to model the compressors in an operational, industrial CS using
ANNs. We trained the ANNs with data generated by calculating power input and mass flow
of Bitzer CO2 CS compressors using polynomials, subject to openly available constants,
for subcritical and transcritical conditions. The difference between training and validation
error, as shown in Table B.3, is minimal in all cases. Therefore, we could likely have used
a more significant part of the data sets for training without risk of overfitting. Table B.3
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Table B.3: Training and validation MSE for all models. Separate models for frequency
controlled (FC) compressors and transcritical (TC) operation.

Compressor model Training MSE Validation MSE
Bitzer 4CSL12K 2,97E-05 2,48E-05
Bitzer 4CSL12K FC 2,37E-05 1,60E-05
Bitzer 4CTC30K 3,90E-05 3,17E-05
Bitzer 4CTC30K TC 7,79E-06 4,57E-06
Bitzer 4DTC25K 1,84E-05 2,01E-05
Bitzer 4DTC25K TC 6,20E-06 2,89E-06
Bitzer 4FTC30K 6,76E-05 6,50E-05
Bitzer 4FTC30K FC 2,68E-05 1,74E-05
Bitzer 4FTC30K FC TC 1,28E-05 7,85E-06
Bitzer 4FTC30K TC 1,54E-05 1,09E-05
Bitzer 4JTC15K 1,87E-05 1,34E-05
Bitzer 4JTC15K FC 2,34E-05 1,82E-05
Bitzer 4JTC15K FC TC 2,19E-05 1,54E-05
Bitzer 4JTC15K TC 7,26E-06 6,91E-06

Table B.4: Monthly MSE and MAPE comparison from January 2019 to July 2019. Separate
columns for subcritical (SC) and transcritical (TC) operating conditions.

Month MSE MSE TC MSE SC MAPE MAPE TC MAPE SC
January 112.3 120.7 104.1 15.8 % 14.9 % 16.7 %
February 102.8 106.9 101.7 15.4 % 12.4 % 16.2 %
March 90.7 112.0 85.4 14.7 % 13.8 % 14.9 %
April 145.7 187.9 136.3 18.3 % 18.7 % 18.2%
May 88.0 130.9 79.7 16.3 % 18.3 % 15.9 %
June 44.2 34.6 45.5 12.0 % 6.1 % 12.8 %
July 38.8 31.1 42.6 10.1 % 5.8 % 12.3 %

lists the training and validation MSE results for each compressor model. Table B.3 shows
that the models are highly accurate when compared to training and validation data sets
generated with Eq. (B.1) and (B.2) and can therefore be expected to give very similar
results to the hidden ground-truth theoretical models.

Table B.4 shows results for aggregated model output compared to metered power input
to the case study CS every month from January 2019 to July 2019. We observe an increase
in aggregated model predictive accuracy compared to power measurements in June and
July, which is likely due to the increased data collection frequency implemented in the
BMS. Fig. B.4 and B.5 show monthly plots for the worst (April) and best (July) months.
Making any visual distinction between these months is difficult, but an apparent trend in
both months is that the largest discrepancies between predicted and actual power input
exists in the lower spectrum of power usage. Sudden drops in measured power input, not
reflected in the CS BMS data, is a probable cause of this trend. It is therefore likely that
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Figure B.4: April 2019 - Aggregated model output compared with metered power input to
CS.
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Figure B.5: July 2019 - Aggregated model output compared with metered power input to
CS.
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Figure B.6: 2019-04-10, 24 hours - Aggregated model output compared with metered
power input to CS.
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Figure B.7: 2019-07-16, 24 hours - Aggregated model output compared with metered
power input to CS.

there is an error in the raw CS data connected to sudden drops in power input, perhaps
due to sudden switches between compressors or a rapid decrease in cooling demand when
local evaporator set-point temperature conditions are met. We find further evidence of
this when examining the differences between MSE and MAPE in TC or SC operation
during warmer or colder months. Table B.4 shows that the MSE and MAPE in transcritical
operating conditions are higher than in subcritical operation for January through May,
while the opposite is true in June and July. Since heat is reclaimed from the CS and used for
heating purposes, pressure is increased in the winter months when the heating distribution
system requests more energy concurrently with or caused by drops in cooling demand.
Inversely, during the summer months, pressure increases are usually caused by an increase
in ambient temperature and cooling demand. Therefore, the conditions likely to cause the
most significant discrepancies occur most often in TC operation in the colder parts of the
year and SC operation during the summer, possibly leading to the observable differences
in TC and SC MSE and MAPE in Table B.4.

Since the monthly plots are quite hard to read due to a large number of data points, we
include plots of a single random day in April and July in Fig. B.6 and B.7. These plots
show the importance of the increased quality of the aggregated model input data. Fig.B.6
indicates a temporal displacement between the aggregated model output and the power
measurements when compared to Fig. B.7.
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Figure B.8: 2019-04-10, 24 hours - Aggregated model output compared with metered
power input to CS, adjusted for τ = −2.
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Figure B.9: 2019-08-22 to 2019-08-26 - Aggregated model output compared with metered
power input to CS and BMS calculated values.
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Figure B.10: 2019-08-25 - Aggregated model power calculation compared with metered
power input (inverter) at the NTNU laboratory CS.
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Figure B.11: 2019-08-25 - Aggregated model flow output compared with measured flow at
the NTNU laboratory CS.

Due to the jitters in time for the input data, the model output and the power mea-
surements are not precisely temporally aligned. To illustrate and compare the results
accordingly, we introduced an offset τ in the time domain to align the two data se-
ries. In more detail, we shift P (t) by τ ∈ [−10, 10] to find the maximum output of
maxτ

∑
tM(t)P (t + τ). In this way, we can probably achieve a more appropriate time

alignment. The maximum was found at τ = −2. Adjusting accordingly reduces the MSE
in April from 145.7 to 50.5 and the MAPE from 18.3 % to 10.1 %. For 2019-04-10 in Fig.
B.6 the MSE was reduced from 133.3 to 29.4 and MAPE from 12.8 % to 5.5 %, results
shown in Fig. B.8.

We also compare our aggregated model to BMS calculations. BMS calculation param-
eters were first adjusted to maximize accuracy on 2019-08-22. Results for 2019-08-22 to
2019-08-26 are plotted in Fig. B.9. Aggregated model calculation MSE on this sample is
41.7, while the MSE for the BMS calculation is 206.2. Similarly, our model calculation
MAPE is 8.5 % compared to 20.1 % for the BMS calculation.

Finally, we use data, collected through sensor networks, from an ongoing NTNU CS
experiment to validate our approach in a laboratory setting. Measurements of power and
flow in the ongoing experiment are compared to the outputs of our aggregated ANN model.
The NTNU experiment was conducted in transcritical operating conditions, with pressure
ranging from 74.9 bar to 98.3 bar. Results are plotted in Fig. B.10 and B.11. We obtain a
MAPE of 3.13 % when comparing the output from the ANNs with measurements from the
power meters, whereas using measurements from the inverter for the frequency controlled
compressor reduces MAPE to 1.87 %. Measurements from the power meters includes
the power consumption of the inverter as well as power conversion losses. The increased
accuracy, when using measurements in the inverter, suggests that the aforementioned
losses are not included in the Bitzer software (Bitzer-GmbH, 2019) calculations. The
result for the ANN flow output compared to NTNU CS measurements is 1.76 % MAPE.
These results show that the presented method is accurate, when given synchronized data
with a low sampling time period. Our results also suggest that the underlying ground
truth mathematical function for each compressor type could possibly be unknown to the
compressor manufacturer. The form that the available data is given in, combined our highly
accurate results in a laboratory setting, suggest that the values for the constants could be
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based on empirical testing of each compressor. If this is the case, our approach could also
be a useful way for the compressor manufacturer to easily encode all their laboratory data
in neural networks that can be employed in their own calculation software.

B.4.2 Implementation in the operational setting

Industrial CSs are very power intensive and produce large amounts of surplus heat that is
often discarded. In the case study warehouse, excess heat from the CS can be effectively
used or stored in the TES to reduce the need for additional heating supplied by the electrical
boiler, as described in Fig. B.1. Chilled water can be produced and stored in the TES
during periods of favorable CS operating conditions and low energy prices, or access
to surplus solar energy that would otherwise be exported to the main grid at a severely
reduced energy price. The IEMS can facilitate energy management and reduction of the
operational demands in an intelligent way to reduce energy cost and environmental impact.
To optimize CS and TES interaction, the time-varying performance of the CS is required.
The presented ANN model is currently being implemented and configured to supply the
IEMS with compressor power consumption and refrigerant mass flow. Our software has
been installed at a dedicated local server and communicates directly with the BMS through
an Application Programming Interface (API) developed by the BMS provider, utilizing
the JSON-RPC 2.0 protocol. The IEMS then collects live data as needed from the BMS
through a local gateway setup.

Historical data generated with our ANN ensemble has also been supplied to the IEMS
provider to allow development of predictive models of CS performance. The performance
prediction model is developed with machine learning tools and will be utilized as input to
the IEMS optimization algorithm. The output of the presented aggregated ANN model
will improve the performance of the smart warehouse IEMS by increasing the quality
of its necessary input data. The energy management system operator will also use these
measures for quality assurance and performance evaluation through visualization in the
Building Energy Management System.

B.5 Conclusions

Industrial cooling systems are responsible for a considerable amount of the buildings total
energy use and environmental impact. To reduce energy consumption and conserve the
environment, it is recommended to recover and store surplus heat, and optimize system
operation for utilizing it in coordination with intermittent renewable energy production.
These tasks have to be managed intelligently in a complex energy system with dynamic
operation of various sub-systems / components. In this work, we have presented ANN
model of an operational CO2-based industrial cooling sub-system of a complex warehouse
energy system. The operating temperature and pressure measurements, as well as the
operating frequency of frequency-controlled compressors, are used in developing the
operational model. The output of the model is electrical consumption and refrigerant
mass flow for the compression process. The presented technique is relatively superior to
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a general theoretical model, both in terms of accuracy, flexibility, cost effectiveness, and
implementability in the real-world application.

The developed model has MAPE in the range of 5 % to 12 % in the operational
case-study cooling system. The presented results also indicate that the accuracy can be
drastically improved with increased quality of data collection frequency in the operational
measurement, supported by a MAPE of 1.87 % and 1.76 % in a comparable laboratory
CS, for power and flow respectively. The accuracy of the presented ANN flow calculations
is promising from a practical standpoint, and can be implemented through Machine-to-
Machine communication using IoT related devices.

The developed modelling of the cooling system is currently being implemented in the
case study energy system (Fig. B.1). The energy system operator has already noticed
improvement in the performance calculation accuracy. The energy system operator will
also use these embedded measures for quality assurance and performance evaluation of
the building energy management system. Implementation of our approach in current,
and future RL, IEMS solutions should be explored. Additional training of the developed
models, based on increasing amounts of operational data, could also be further examined.
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Širokỳ Jan, Oldewurtel Frauke, Cigler Jiřı́, Prı́vara Samuel. Experimental analysis of
model predictive control for an energy efficient building heating system // Applied
Energy. 2011. 88, 9. 3079 – 3087.

Sun Haoran, Ding Guoliang, Hu Haitao, Ren Tao, Xia Guanghui, Wu Guoming. A general
simulation model for variable refrigerant flow multi-split air conditioning system based
on graph theory // International Journal of Refrigeration. 2017. 82. 22 – 35.

T R., Jasmin E. A., Ahamed T. P. I. Residential Load Scheduling With Renewable Genera-
tion in the Smart Grid: A Reinforcement Learning Approach // IEEE Systems Journal.
2018. 1–12.





Venayagamoorthy G. K., Sharma R. K., Gautam P. K., Ahmadi A. Dynamic Energy
Management System for a Smart Microgrid // IEEE Transactions on Neural Networks
and Learning Systems. 2016. 27, 8. 1643–1656.

Wen Z., O’Neill D., Maei H. Optimal Demand Response Using Device-Based Reinforce-
ment Learning // IEEE Transactions on Smart Grid. 2015. 6, 5. 2312–2324.

Wu Nan, Wang Honglei. Deep learning adaptive dynamic programming for real time
energy management and control strategy of micro-grid // Journal of Cleaner Production.
2018. 204. 1169 – 1177.

Zhao Z., Lee W. C., Shin Y., Song K.-B. An Optimal Power Scheduling Method for Demand
Response in Home Energy Management System // IEEE Transactions on Smart Grid.
2013. 4, 3. 1391–1400.

Zhu Xiaochen, Wang Fuli, Niu Dapeng, Guo Yuming, Jia Mingxing. An energy-saving
bottleneck diagnosis method for industrial system applied to circulating cooling water
system // Journal of Cleaner Production. 2019. 232. 224 – 234.

Zhu Yonghua, Jin Xinqiao, Du Zhimin, Fan Bo, Fu Sijie. Generic simulation model of
multi-evaporator variable refrigerant flow air conditioning system for control analysis //
International Journal of Refrigeration. 2013. 36, 6. 1602 – 1615.

Zou Shenghua, Xie Xiaokai. Simplified model for coefficient of performance calculation of
surface water source heat pump // Applied Thermal Engineering. 2017. 112. 201 – 207.





108



C

Appendix C

Paper C

Title: A Deep Reinforcement Learning scheme for Battery Energy Man-
agement

Authors: Sven Myrdahl Opalic, Morten Goodwin, Lei Jiao, Henrik Kofoed
Nielsen, and Mohan Lal Kolhe

Affiliation: University of Agder, Faculty of Engineering and Science, 4879,
Grimstad, Norway

Conference: 5th International Conference on Smart and Sustainable Technolo-
gies (SpliTech), Sept., 2020.

DOI: 10.23919/SpliTech49282.2020.9243797.

109

https://doi.org/10.23919/SpliTech49282.2020.9243797


C

110



C

A Deep Reinforcement Learning scheme for Battery
Energy Management

Sven Myrdahl Opalic, Morten Goodwin, Lei Jiao, Henrik Kofoed Nielsen,
and Mohan Lal Kolhe

Department of Engineering Sciences
Faculty of Engineering and Science, University of Agder

4879, Grimstad, Norway
E-mails: {sven.opalic, morten.goodwin, lei.jiao, henrik.kofoed.nielsen,

mohan.l.kolhe}@uia.no

Abstract — Deep reinforcement learning is considered promising for many energy
cost optimization tasks in smart buildings. However, agent learning, in this context, is
sometimes unstable and unpredictable, especially when the environments are complex.
In this paper, we examine deep Reinforcement Learning (RL) algorithms developed
for game play applied to a battery control task with an energy cost optimization
objective. We explore how agent behavior and hyperparameters can be analyzed
in a simplified environment with the goal of modifying the algorithms for increased
stability. Our modified Deep Deterministic Policy Gradient (DDPG) agent is able
to perform consistently close to the optimum over multiple training sessions with
a maximum cost reduction of 25 % and an average cost reduction of 99 % of the
maximum in the simplified environment. DDPG is an actor-critic RL algorithm
consisting of four neural networks - the actor and critic, main and target, networks.
When environment complexity is increased, the DDPG agent performance decreases
and a modified Twin Delayed DDPG (TD3) agent is utilized to achieve an average of
99.9 % of the optimal result. The TD3 algorithm uses two main critic networks to
avoid known value overestimation bias.
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C.1 Introduction

Smart buildings, featuring local energy production, and energy storage, are expected to
play an increasingly important role in the strife against global warming through efficient
and reduced energy consumption IEA (2019); Manic et al. (2016). Building energy systems
and energy price tariffs are, therefore, rapidly evolving, introducing new complexity to
building energy use optimization.

Within Artificial Intelligence (AI) research, Reinforcement Learning (RL) is the process
of learning through taking actions in an environment and receiving a numerical reward
signal Sutton, Barto (2018). This approach of trial-and-error can be compared to the way a
human toddler learns by interacting with the world. However, many iterations are usually
required before the actions start to seem coherent to a more knowledgeable observer. RL
is applied to many energy related problems. In Kuznetsova et al. (2013), RL is applied to a
simulated microgrid featuring a wind turbine, battery storage, the main grid and an energy
consumer. Electricity price, battery charge and predictions of wind power output and
consumer load are input to a Q-learning RL agent that is tasked to choose actions for the
battery. The action space is limited to three actions: charge, discharge, and standby. Charge
and discharge power is a fixed value. Demand-response using Q-learning is proposed in
Wen et al. (2015) to reschedule user initiated operation of devices in residential and small
office buildings.

The developments in RL in recent years, with the introduction of Deep Learning (DL)
techniques Lillicrap et al. (2015); Silver et al. (2017, 2018), show the potential for RL to
play a major role in real-world energy optimization. Mocanu et al. (2019) explores deep RL
for on-line dynamic binary consumer load scheduling in households. Residential battery
control with deep RL is explored in Wan et al. (2018). In Wei et al. (2015), the authors
propose dual iterative Q-learning neural networks to reduce energy cost with optimal
battery control. However, none of the algorithms have been verified in an operational
setting.

In this paper, we compare the performance of modified versions of well-known deep RL
algorithms applied to a simplified battery control cost optimization task, mainly operating in
continuous action space. The aim is to analyze algorithm learning and behaviour as grounds
for further modification of the most promising algorithms for real-world application from
a practical standpoint.

C.2 Background

Deep learning is a field within AI and machine learning that focuses on extracting patterns
from data through a hierarchy of increasingly complex abstractions Goodfellow et al.
(2016). The most common implementation of deep learning is practiced by passing data
through the hidden layers of an Artificial Neural Network (ANN) and propagating the
measured error of the output backwards through the same layers. At each node in the
ANN, its numerical activation value consists of an activation function applied to the
sum of the weighted input values. Backpropagation facilitates learning by updating the
input weights according to the gradient of the error. In recent years, several significant
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breakthroughs have been made in applying a combination of deep learning and RL to
various games. Simulated environments that allow numerous swift learning iterations
with clearly defined numerical reward signals have proven to be fertile ground for the
exploration of these algorithms. Mnih et al. (2013) introduced a deep ANN adaptation of
basic table based Q-Learning called deep Q-learning (also known as Deep Q-Networks,
DQN), demonstrating state-of-the-art results in six out of seven Atari 2600 games. The
objective was to explore the effects of advances in computing power and deep learning
on the common RL benchmarking task of Atari 2600 game play performance. Q-learning
is essentially a table-based approach, mapping an environment state to Q-values for each
possible action. The Q-table is updated according to

Q(St, At)←Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−

Q(St, At)], (C.1)

where S is the state and A is the action selected. The learning rate α is applied to the
sum of the reward R at time t+1 and the discounted (γ) estimated max future Q-value
at state St+1, minus the existing Q-value. In Mnih et al. (2015), introducing DQN, the
Q-table is instead encoded into the weight parameters of a deep ANN, specifically a deep
Convolutional neural network (CNN), and the weights are updated according to

θt+1 =θt + α[Rt+1 + γmax
a

Q̂(St+1, a, θt)−

Q̂(St, At, θt)]∇Q̂θ(St, At, θt), (C.2)

where θt+1 are the weights at time t+1, θt are the weights at time t and ∇Q̂θ(St, At, θt)

are the partial derivatives of the state-action pair value approximations with respect to the
weight vector θt. Instead of updating the weights after every action according to the current
sequence of actions, the algorithm draws random mini-batch samples from an experience
replay memory to update the DQN weights using stochastic gradient descent.

The extremely complex and highly intuitive turn-based game of Go was mastered by
AlphaGo through a combination of supervised learning (pre-training with human generated
example data) and deep RL Silver et al. (2016), resulting in a 4-1 defeat of 18 time World
Champion Lee Sedol. The achievements of AlphaGo has since been surpassed by AlphaGo
Zero through tabula rasa deep RL without any human knowledge in Silver et al. (2017),
where AlphaGo Zero defeated AlphaGo 100-0. Central to these algorithms is the concept
of self-play to generate an experience replay database from which random samples are
utilized for training. This was further explored in Silver et al. (2018) for the games of
Shogi and Chess, leading to similarly impressive results. The AlphaZero algorithm uses
neural networks to estimate action probabilities and a monte-carlo tree search algorithm
for future move-sequence analysis. The most recent development is the MuZero algorithm
introduced in Schrittwieser et al. (2019). Where AlphaZero is informed of the environment
dynamics, ie. the rules of the game, MuZero differs by having to learn a model of the
environment starting from scratch. This constitutes a significant step toward real-world
application of deep RL with stochastic and partially unknown environment dynamics.
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Figure C.1: DDPG agent typical behaviour, ϵ-greedy exploration with ϵd = 0.99995.

0 2 4 6 8 10 12 14
Timestep

100

50

0

50

100

Pe
rc

en
ta

ge
 %

Agent behaviour - DDPG

2

4

6

8

10

Pr
ice

Charge state
Action
Energy price

Figure C.2: DDPG agent typical behaviour, Ornstein-Uhlenbeck exploration.

Some efforts to apply state-of-the-art, at the time, deep RL to energy optimization
have also been made. Deep RL for on-line dynamic binary consumer load scheduling in
households is described in Mocanu et al. (2019). Availability of locally produced solar
electricity, energy price and peak shaving are all considered. Data is extracted from the
PecanStreet database and used to model households on individual and aggregated levels.
The proposed algorithm, Deep Policy Gradient (DPG), replaces the output Q-values in a
DQN with an estimated probability of taking action a in state st, thus allowing for multiple
simultaneous discrete actions to be selected. DPG is found to outperform a DQN modified
for simultaneous action selection through action grouping. Wei et al. (2015) proposes dual
iterative Q-learning neural networks to reduce energy cost with optimal battery control.
The dual iteration relates to an internal iteration j to reduce energy cost for each episode of
24 hours, and an external iteration i −→∞ to update a defined performance index function
towards its optimum. The overall claim is that the dual iteration is necessary due to the
time dependant nature of the optimal Q-function, Q∗(St, At, t). Neural networks are used
in an actor-critic setup, denoted action and critic networks by the authors. Numerical
results show improved performance over particle swarm optimization and time-based ANN
Q-learning. Residential battery control with deep RL is explored in Wan et al. (2018).
The algorithm can be characterized as Deep Deterministic Policy Gradient (DDPG), first
proposed in Lillicrap et al. (2015), and consists of actor-critic deep neural networks,
specifically recurrent neural networks using gated recurrent units Cho et al. (2014). The
actor network utilizes policy gradient for parameter updates while the critic network utilizes
a squared Q-value loss function. Results are compared to the theoretically lowest energy
cost calculated by an optimization algorithm and a do-nothing scenario with a clearly
favorable, but not optimal outcome.
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Figure C.3: DQN agent typical behaviour.

C.3 Proposed Deep Reinforcement Learning Approach

To observe what our chosen RL agents are able to learn, we first create a simulated
environment consisting of a simple ideal battery, without any losses related to power
conversion or storage. Actionable time steps in each episode is set to either 15 or 50
to explore both a basic and a more advanced experiment setting. Allowing the agent
to see energy price 6 time steps ahead is also examined in the advanced experiment.
The battery storage capacity and inverter power output is set to 460 kWh and 200 kW
respectively, in accordance with the battery from our case-study warehouse in Opalic et al.
(2019, 2020). Consequently, our agent is allowed to charge or discharge the battery by
BkW ∈ [−200.0, 200.0]. We initialize the environment by inputting vectors for hourly
energy price P and demand D. Demand load is set to a constant value of 300 kW for all
time steps. A baseline energy cost is then calculated as

Cbase =
T∑
t=0

PtDt, (C.3)

where T is the terminal time step of each episode. For every non-terminal time step the
agent is awarded a numerical reward of 0 by the environment. A reward system where the
agent receives the energy cost as a reward signal after each action was also examined. The
cost incurred at each time step, where λ is the adjustable time step length in minutes, is
calculated by

Cagent
t = Pt

(
Dt +

BkW
t λ

60

)
, (C.4)

and accumulated in

Cagent =
T∑
t=0

Ct. (C.5)

Finally, the normalized reward for the agent at timestep T is given as

rT =
Cbase − Cagent

Cbase
. (C.6)

In all the experiments mentioned in this paper, λ was set to 60 minutes. For continuous
action space we utilize modified versions of the Deep Deterministic Policy Gradient
(DDPG) algorithm, first proposed in Lillicrap et al. (2015) and adopted by Wan et al.
(2018). DDPG is an actor-critic RL algorithm with four ANNs – the actor policy network µ,
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Figure C.4: Random Ornstein-Uhlenbeck and ϵ-greedy plot, 1,000 time steps.

the critic Q network and their respective target networks. Recent improvements suggested
in Fujimoto et al. (2018), Twin Delayed DDPG (TD3), include the adoption of clipped dual
Q-networks to avoid Q-value overestimation by only considering the most conservative
output, delayed updates of the actor networks compared to the critic networks and adding
noise to the target network predictions during training. Another development of DDPG
is the Soft Actor-Critic (SAC) proposed in Haarnoja et al. (2018), introducing entropy
regularization for exploration combined with clipped dual Q-networks. Actor network
output layers are configured with a hyperbolic tangent (tanh) activation function, whereas
critic network outputs are linear. We use fully connected ANNs for all networks. The
target networks weights, θ′, trail the main networks weight parameter updates, θ, through

θ′ ← τθ + (1− τ)θ′, (C.7)

with τ set to 0.1, as a mechanism for improving stability. Training the main networks is
done through the use of an experience replay database R that holds transitions (si, ai, ri, si+1)

for each step in every training episode. The algorithm samples a random mini-batch N

of non-sequential transitions from R and uses the target actor µ′(s|θµ′
) to predict actions

a′i+1 for every new state si+1 in the mini-batch. A temporary state-action value is then
calculated using the target critic as

yi = ri + γQ′(si+1, a
′
i+1) (C.8)

and the main critic network updated by minimizing mean squared error between yi and
Q(si, ai) for every transition in the mini-batch. Finally, the main actor network can be
updated from the same mini-batch by first calculating new actions ai from current states si
with the main actor µ. The gradients for the main Q network weights θQ with respect to ai,
and the gradients for the main policy network µ with respect to its parameters θµ are then
used to approximate the gradient of the policy network cost function J with respect to θµ,
by sampling as shown in Silver et al. (2014):

∇θµJ ≈
1

N

∑
i

∇aiQ(si, ai|θQ)∇θµµ(si|θµ). (C.9)

The approximated gradients are then applied to θµ using an Adam Kingma, Ba (2014)
optimizer with a learning rate α = 0.0001. We implement an ϵ-greedy strategy for explo-
ration, for comparison with the Ornstein-Uhlenbeck (OU) process Uhlenbeck, Ornstein
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(1930) used in Lillicrap et al. (2015); Wan et al. (2018). Fig. C.4 is a comparison of
ϵ-greedy and OU for a random 1,000 time step plot. ϵ is initially set to 0.9 (90 % chance
of exploration) and then degraded by a factor of 0.99995 (ϵd) for every step taken in the
environment. If exploration is triggered, a random number is pulled from a mean of 0.0
and a standard deviation of 1 and added to the agent output. The action is multiplied by
the action bound of BkW

m ax = 200 and clipped to be within the battery inverter range
of [−200.0, 200.0]. This enables significant exploration, as the agent will still be doing
more than 50 % exploratory moves towards the end of each training session. Training
sessions with an epsilon decay factor of 0.9995 and 0.9999 were also conducted using
identical random seeding settings. Within each training session, we verify each seeming
improvement with a test run of the deterministic version of the agent (without any explo-
ration). Exploration with the TD3 algorithm for the advanced environment was conducted
with a combination of a clipped epsilon exploration, random action noise of +/- 10 %,
and completely random actions. For reference, we also train a Deep Q-Network using a
discretized action space of 0,1,2 to either standby, charge or discharge at full capacity.

The algorithms are trained for 10,000 episodes for every epoch with a fixed random
seed. For our 15 time step environment, all ANNs have the same hidden layer architecture,
with three hidden layers of 64 neurons each using DQN and DDPG.

For the 50 time step experiment, a grid search was conducted to find the optimal
network architecture. The grid search resulted in a fourth hidden layer added to the TD3
agent and double hidden layers of 128 neurons for the DDPG agent.

The optimal solutions were found using the GNU Linear Programming Kit (GLPK)
through the Pyomo Hart et al. (2017, 2011) programming library in Python.

C.4 Numerical Results

The basic environment consists of 15 time steps, where the state of the environment
provided to the agents is limited to the battery charge state and current energy price, and
the reward is provided on the conclusion of each 15 time step episode. The advanced
environment consists of 50 time steps. In addition to charge state and energy price,
the environment can also provide additional information about future energy price (in
accordance with common practice in the Norwegian electrical energy market). Utilizing
energy cost as a reward signal on every time step yields reduced agent performance
and results in slowed learning due to an observed natural preference towards battery
discharging.

C.4.1 Basic environment results

Results for the 15 time step experiments are summarized in Table C.1, where the optimal
result was found to be a cost reduction of 5,280. Fig. C.1 and C.2 show that the modified
DDPG agents are able to learn to charge when the price is low, and discharge when the
price is high, achieving a maximum of 25 % cost reduction, which is very close to the
optimal result found with GLPK. They are also able to learn to discharge moderately at an
intermediary price point so as to make sure that the battery is fully discharged at the last
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Table C.1: Basic environment - 15 time step episodes

Algorithm Exploration Max. Result∗ Avg. Result
DDPG-ϵ ϵ = 0.9, ϵd = 0.99995 5,275 5,246
DDPG-OU θ = 0.15, σ = 0.2 5,275 4,830
DQN ϵ = 1, ϵd = 0.99975 4,920 4,920
∗Cost reduction calculated with optimization algorithm: 5,280.

Table C.2: Results for 50 time step episodes

Algorithm Exploration Max. Result∗ Avg. Result
TD3 noise = 0.1 13,999.99 13,998.83
DDPG-ϵ ϵ = 0.9, ϵd = 0.99995 12,997.18 6,979.93
DQN ϵ = 1, ϵd = 0.99975 10,020 9,553.33
∗Cost reduction calculated with optimization algorithm: 14,000.

and the most profitable time step. The critical moment for maximum cost reduction is time
step 12, as shown in Fig. C.1. Noticeably, the ϵ-greedy agent behaviour tends towards the
limits of the action space for the non-critical time steps. The OU agent is more moderate,
as expected when analyzing the pattern in C.4. It is likely that changing the parameters
of the OU action noise would erase most of the differences between the DDPG agents,
although the OU agent would then continue exploration with a similar frequency and range
indefinitely. A combination of the two approaches might make an interesting compromise.

The DQN agent is also able to learn to charge when the price is low, and discharge
when the price is high (Fig. C.3). Although the discretization of the action space for the
DQN agent naturally limits the possible cost reduction to 4,920, it was able to achieve
70 % of the training sessions when trained only once per episode. If the DQN agent was
allowed to train after every time step, it converged to maximum performance every time.
Naturally, the DQN agent discrete action space could have been increased by introducing
actions that give the agent more room to maneuver when charging or discharing.

For the agents operating in continuous action space, it is noted that the algorithms’
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Figure C.5: TD3 agent behaviour in the advanced environment.
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performances are volatile, and they are not able to converge towards the optimal behaviour
on every training session without hyper-parameter tuning. The DDPG agents require an
adjustment to the frequency of network updates. Foregoing network updates after each
time step (instead of waiting until the conclusion of each episode) seems to improve
average performance over multiple training sessions as well as speeding up the algorithm
considerably. For the DDPG agent, delayed training leads to an average cost reduction
of 5,246 over multiple training session, with little deviation, using an epsilon decay
factor of 0.99995. The maximum cost reduction of 5,275 is also achieved with this
setting. Increasing the exploration degradation factor to 0.9995 immediately reduces the
performance of the agent to an extent that further training beyond 1,500 episodes appear
meaningless. The agent is only occasionally able to approach optimal performance, with
numerous training sessions yielding results in the 3,000 range.

C.4.2 Advanced environment results

Results for the 50 time step experiments are summarized in Table C.2. These include
the following environment modifications that allowed the TD3 agent to achieve optimal
results:

• Reward received at every time step.

• Expanded state - where the agent also receives the energy price of the next 5 time
steps.

The rationale behind the expanded state for future energy price is that future energy
price is often known as far ahead as 24 hours. This is true for energy tariffs in Norway,
where day-ahead spot prices are given at the start of each day. Including future energy
price as part of the current state is therefore quite reasonable. However, the environment
modifications had an inverse effect on the DDPG and DQN agents, causing a decline in
performance. Results for DDPG and DQN in the advanced experiment in Table C.2 are
therefore excluding environment modifications. Fig. C.5 displays the behaviour of the
choicest deterministic version of the TD3 agent. The maximum achievable cost reduction
in this environment was found to be 14,000. Achieving stable results across multiple
seeded training sessions required an extensive hyperparameter grid search and tuning of
the algorithm.

C.5 Conclusions and Future Work

In this paper, we designed a deep Q-learning based algorithm for optimal scheduling
of charging and discharging of battery based on the DDPG and TD3 algorithms. Our
experiments reveal that the algorithms are quite sensitive to changes in hyperparameter
and exploration settings and need to be configured appropriately to deliver consistent
performance. This could pose a serious challenge in complex environments where ideal
agent behaviour is less transparent. However, our appropriately configured DDPG agent
was able to reduce the energy cost by 25 % while maintaining an average of 99 % of





C

maximum over multiple training sessions in the basic environment. In the advanced
experiment setting, our TD3 agent was able to achieve optimal results when future energy
price for 5 time steps was included as state input variables. Stabilizing results over multiple
seeded training sessions required hyperparameter tuning and an additional hidden layer,
leading to a virtually optimal average performance.

Algorithm performance stability in multiple training sessions should be further explored
in future work, to reduce the need for hyperparameter tuning. The environment complexity
needs to be enhanced to approach real world operational settings, introducing constraints for
battery health preservation as well as more realistic battery charge cycles. Our environment
should also be expanded to include a realistic dynamic load and locally produced solar
power. Real energy pricing schemes need to be introduced, including peak power tariffs
and price differentiation between import and export energy.

More advanced state-of-the-art deep RL algorithms previously untested for battery
control tasks should be explored. If simulated performance is adequately promising, after
further development and hyperparameter tuning, our chosen algorithm will be tested in an
operational setting in the smart warehouse described in Opalic et al. (2019, 2020).
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Abstract — Intermittent renewable energy production and dynamic load must be
balanced through appropriate control of integrated energy storage to account for
the temporal discrepancy among power supply and demand. Intelligent control
systems are required to anticipate and optimize the charging and discharging of
energy storage. In recent years, reinforcement learning based techniques have been
applied to a multitude of problems, including building integrated energy storage
solutions. In this work, the focus is on the application of reinforcement learning
based techniques to the specific energy optimization problem of controlling a battery
energy storage system in a smart warehouse. This paper adopts data from a real
operational battery energy storage system installed in a smart warehouse, integrated
with photovoltaic, for food distribution on the west coast of Norway. In the smart
warehouse, an intelligent energy management system controls the on-site battery
energy storage using machine learning predictions of load and photovoltaic produc-
tion, and an optimization algorithm is presented to generate a schedule for effective
utilization of battery energy storage in coordination with a thermal storage system.
This paper presents the combination of the augmented random search reinforcement
algorithm with artificial neural networks as a basis to design an intelligent energy
management system for controlling energy flows of battery energy storage systems to
minimize the energy cost. The developed algorithm finds very promising solutions
in the considered case-study of a smart house for energy cost minimization through
a battery energy storage system, achieving an average of 99.2% accuracy across 10
seeded trials.
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D.1 Introduction

The world faces an ongoing increase in energy demand and environmental problems as-
sociated with a majority of the existing energy sources, which has forced a shift towards
renewable energy sources. Furthermore, with our growing reliance on intermittent energy
sources such as solar and wind, we require a critical tool to balance the temporal discrep-
ancy between instant power demand and available production capacity. As fossil-fueled
power plants are gradually phased out, wind and solar will increasingly have to rely on
energy storage technology with intelligent control systems for such purposes (Hannan et al.,
2021; Yang et al., 2009). Integrating renewable energy into smart city solutions is a crucial
aspect of sustainable development (Hoang et al., 2021). Buildings, responsible for nearly
40% of global CO2 emissions (IEA, 2020), are a natural target for deploying distributed
renewable energy production and storage systems with intelligent control. Battery Energy
Storage Systems (BESS) built with lithium-ion technology are increasingly deployed in
both macro and micro scale projects (Stroe et al., 2017). For optimal utilization of the
BESS for multiple purposes such as energy cost reduction, reducing peak power demand
and frequency regulation, intelligent control systems that balance the need for longer-term
planning with immediate response are required. For such systems, many approaches have
been suggested, including constrained non-linear programming (CNLP) optimization for
aggregated two-stage control in a micro-grid in Long et al. (2018) achieving a 30 % energy
cost reduction when combined with peer-to-peer energy sharing, a rule-based approach
for many distributed batteries in a data center with a focus on accurate battery health
modeling in Aksanli et al. (2013) and a rule-based scheme for Photovoltaic (PV) and wind
application in Teleke et al. (2010). When considering the dynamic and ever-changing
nature of building-integrated energy systems, it seems unlikely that a rule-based approach
can be implemented without extensive follow-up and revision. In related research, Siqueira
de, Peng (2021) conducted a review of control strategies for smoothing wind power output,
finding Model Predictive Control MPC to be the most common for multi-objective opti-
mization. Lipu et al. (2021) discuss various approaches to intelligent control for battery
management in electric vehicles.

As shown in Perera, Kamalaruban (2021), many researchers turn to Reinforcement
Learning (RL) as a potentially self-improving and robust approach to intelligent control of
building energy systems.

The research gap can be described in two parts. Firstly, according to Perera, Ka-
malaruban (2021), most of the studies regarding RL application to energy systems are
not attempting to implement the state-of-the-art RL algorithms, instead they rely on basic
Q-learning. This could limit the application to well-defined and uncomplicated systems and
solutions, or lead to sub-optimization through compartmentalization of complex problems
into simpler tasks that disregard the intricacies of the energy system.

Secondly, many of the more complicated state-of-the-art algorithms are primarily devel-
oped to teach agents to solve benchmark gameplay tasks from the OpenAI Gym (Brockman
et al., 2016), or prediction of load forecasting Johannesen et al. (2018). We spent a con-
siderable effort on hyperparameter- and algorithm tuning of well-known RL algorithms
in Opalic et al. (2020) to solve a simplified battery control problem. Although the numeri-
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cal results were satisfying, we concluded that such an approach would not be sufficiently
robust and scalable in commercial applications due to the amount of work that was required.
Buildings, unlike most other areas of smart technology applications, are mostly unique
and different in varying degrees from all other buildings. Each building has a specifically
tailored energy system to suit the needs of the building occupants. Implementing such
algorithms for energy cost optimization and tuning them for each building lead to questions
of applicability, scalability and robustness.

Our approach features the Augmented Random Search (ARS) (Mania et al., 2018),
adapted for policy parameterization with Artificial Neural Networks (ANN) instead of the
suggested linear function employed in Mania et al. (2018). The method is benchmarked to
the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm (Fujimoto et al.,
2018), found to be the most promising and able to find an optimal solution to a simpler
BESS control problem Opalic et al. (2020). We also compare results with the vanilla ARS.
A new simulated environment is introduced, developed for training the agents on historical
operational data from a case-study smart warehouse.

In summary, our contributions include:

• Introducing a robust RL algorithm that can handle complex energy optimization
problems.

• Combining ARS with ANN for energy optimization of BESS.

• Creating a data-driven simulation environment of a smart warehouse for RL training.

The remainder of the paper is organized as follows: Section D.2 features an overview
of related work relevant to our research. Section D.3 briefly introduces the energy system
in our case-study smart warehouse. Section D.4 explains our method, and Section D.5
details the experiments we have conducted. Results are also presented and discussed
in Section D.5 before we conclude in Section D.6. Abbreviations are included in the
appendix.

D.2 Related work

In this paper, we focus on the application of RL to the specific energy optimization problem
of controlling a BESS in a smart warehouse. We believe that RL algorithms have the
potential to reduce the need for human expert attention, and in therefore the cost of initial
investment and maintenance, in real-world implementation due to the self-exploratory
nature of such algorithms. Risk associated with this behaviour can be vastly reduced
by training RL agents in an off-line data-driven simulated environment. We, therefore,
dedicate a section to optimization and RL applications in energy research. In more detail,
the first subsection is dedicated to energy cost optimization in general featuring more
traditional approaches. Thereafter, the second subsection summarizes RL-related work.
The last subsection presents the specific RL algorithm we concentrate on in this paper, i.e.,
ARS.
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D.2.1 Energy optimization in buildings

For optimizing energy cost and power flow in a Direct Current (DC) microgrid Sechilariu
et al. (2014) proposed Mixed Integer Linear Programming (MILP). The approach is
similar to the Intelligent Energy Management System (IEMS) already implemented in
our previously described case-study smart warehouse. It includes load and PV prediction,
a human-machine interface, and energy management. Unlike the case-study IEMS, it
also features instant power balancing. Huang et al. (2015) proposed a hybrid (MPC) for
energy cost optimization in a case-study airport terminal building. The authors introduce
Neural Networks as a way to handle non-linearity. Another MPC approach was suggested
in Lešić et al. (2017) using hierarchies of multiple MPCs for energy cost optimization
and thermal comfort control. A data-driven MPC, i.e., Data Predictive Control (DPC),
was proposed in Smarra et al. (2018). The authors suggested using random forests for
predictions and argued that intelligent control systems that require physical models of
buildings are not practical due to high complexity and variance in building design. Wang
et al. (2020) propose MPC for control of a dual BESS connected to a wind power farm.
Based on simulations, the authors claim improved wind farm dispatchability, and extended
battery life as their results. Barbato, Capone (2014) conducted a survey to describe various
optimization techniques designed to solve Demand Side Management (DSM) problems for
end-users in smart grid scenarios. They conclude that although researchers had undergone
extensive work in this field of research, many research questions remained unanswered.
Mariano-Hernández et al. (2021) conducted a review of various strategies for Building
Energy Management Systems (BEMS), including MPC, DSM, and optimization. The
authors found MPC to be the most used management strategy in non-residential buildings
and conclude that the building model will be critical to ensure intelligent control in future
research. Rätz et al. (2019) describe a methodology for automated data-driven modeling of
energy systems in buildings that could be applicable to MPC and RL.

D.2.2 Reinforcement learning

RL, according to Sutton, Barto (2018), is learning by discovering what actions to take
to maximize a reward. Experiments with simulated environments are often designed for
agents to learn, by trial and error, how to maximize a numerical reward signal, often binary
in nature. It is common for researchers to design a reward function to reward desired
behavior and, in some cases, to penalize unwanted behavior. The reward function may be
updated if the desired behavior changes over time in an operational scenario, even if the
overall goal is unchanged.

RL researchers commonly model the problem as a finite Markov Decision Process
(MDP). We included an illustration of the process in Figure D.1. An agent interacting with
an environment through taking actions receives feedback from the environment as reward
or penalty. The agents’ actions may affect the environments’ internal state as a direct or
partial consequence. The environment also influences which possible actions are available
to the agent, and the action space is usually either a constant set of discrete numbers, a
continuous range of floats, or decided with each new state. The agent determines what
actions to take by following its internal policy π. The policy usually includes a mechanism
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Figure D.1: Markov decision process interaction between agent and environment.

that allows the agent to explore alternative actions outside the most strict interpretation of
its policy to be able to discover new states and actions that can potentially generate higher
rewards. Upon such discoveries, various methods exist to update the policy accordingly.
Finally, a crucial element in RL is the valuefunction that defines the value of a state
through probabilities related to actions, rewards, and future states. Sutton, Barto (2018)
refer to the Bellman equation as the definition of the value of a state while following the
policy π:

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′r|s, a) [r + γVπ(s
′)] ,∀s ∈ S. (A.1)

The Bellman equation describes the value of the state s while following the policy π as
the sum of the probability of taking action a in the state s, multiplied by the sum of the
probability of arriving in each state s′ and receiving reward r, multiplied by the sum of
r and the discounted (γ) expected value of the future state s′. The Bellman equation is a
central part of RL theory and research.

A popular family of RL algorithms is Q-learning (Watkins, 1989) and its younger
sibling Deep Q-Network (DQN (Mnih et al., 2013). The original Q-learning algorithm
is a table-based mapping of states to the Q-values of all possible actions. The Q-value is
a mathematical estimate of the expected discounted future value of the action. The state
space and the action space have to be discrete and finite. The agents’ policy is encoded in
the Q-table, where each state has a corresponding Q-value for each possible action, and
the deterministic version of the policy consists of choosing the action with the highest
Q-value. The mechanism for exploring actions outside the policy in Q-learning consists of
adding a random component to a fraction of the actions taken. DQNs replace the Q-table
with an ANN such that the output of the neural network is the Q-values of all possible
discrete actions in a given state. ANNs come in many forms, but the most common kinds
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feature an input layer, one or more hidden layers, and an output layer. Each layer consists
of so-called neurons, named after the neurons in the human brain. The neurons in the input
layer hold represent the chosen input parameters, passing these directly to the neurons
in the first hidden layer. Usually, the hidden layers are fully connected, meaning each
neuron in the hidden layers is connected to each neuron in the previous layer. The values
are passed along the connections and summed before an activation function is applied to
determine the output value from the neuron. Two of the most common activation functions
are the hyperbolic Tangent (Tanh) and the Rectified Linear Unit (ReLU). Finally, the output
layer neurons process the values according to the desired application, where the number of
neurons corresponds to the chosen output values.

Researchers have applied RL to many problems and challenges within renewable
energy, energy storage, and complex energy systems. Kuznetsova et al. (2013) simulated
a microgrid consisting of a wind turbine and a BESS connected to a power grid. The
authors utilized Q-learning with energy price, battery State Of Charge (SOC), wind energy
predictions, and energy demand as inputs. The agent can choose between three discrete
actions: Battery charging, discharging, or stand-by. Wen et al. (2015) also proposed
Q-learning for controlling the temporal shift of flexible loads based on end-user device
utilization in small offices and residential buildings. Mbuwir et al. (2017) suggested Fitted
Q-iteration as the basis for transfer learning of battery control to and from BESS with
similar characteristics. Henze, Schoenmann (2003) examined Q-learning for control of a
Thermal Energy Storage (TES) in a simulated environment.

As stated in Perera, Kamalaruban (2021), most of the RL employed in the energy
domain uses Q-learning and other simpler algorithms. However, some examples of more
advanced state-of-the-art algorithms being tested also exist. Mocanu et al. (2019) used
Deep Policy Gradient (DPG), similar to DQN, for binary scheduling of flexible residential
consumer loads. Wan et al. (2018) proposed a variant of Deep Deterministic Policy
Gradient (DDPG), from Lillicrap et al. (2015), for residential BESS control. DQN, with
some proposed improvements, was suggested in Cao et al. (2020) for BESS arbitrage. The
algorithm includes a lithium-ion battery degradation model, with discretized action space
for full or 50 % capacity charging and discharging in addition to stand-by. Shang et al.
(2020) proposed a DQN with bootstrapping combined with monte carlo tree search to
control a BESS in a microgrid. In all cases except in Wan et al. (2018), the algorithms
work in discrete domain, and therefore limited action space. In addition, in many cases
the reward functions are quite sophisticated and tailored to the specific experiment. We
hypothesize that most of the above mentioned approaches are not ideal if the goal is to
enable large-scale adoption and quick implementation of IEMS.

D.2.3 Augmented random search

ARS is a more efficient version of what the authors (Mania et al., 2018) term basic
random search due to the various mechanisms in the algorithm that targets the search
towards higher rewards. The authors designed ARS to work with a simple linear policy,
unlike the direction that many other RL researchers are taking, and it also operates in
continuous action space. Additionally, different from many RL algorithms, exploration





D

with the ARS is done directly in the parameters of the policy function by randomly
making minute changes to the parameter weights. In other words, the algorithm directly
manipulates the parameters of the linear policy function to search for a policy that generates
higher rewards. In contrast, well-known algorithms for continuous action space such as
DDPG (Lillicrap et al., 2015), Soft Actor-Critic (SAC) (Haarnoja et al., 2018), Trust-
Region Policy Optimization (TRPO) (Schulman et al., 2015) and TD3 (Fujimoto et al.,
2018) all add a random component to the agent output action to encourage exploration. For
ARS, the parameter space is explored by generating a table of random noise and adding the
noise to the policy parameters in both positive and negative directions. The new parameters
are tested by running an episode and collecting the reward. N such tests, termed rollouts,
are performed and sorted by reward in descending order (Mania et al., 2018). The top b

directions are then chosen and used to update the policy according to

θj+1 = θj +
α

bσR

b∑
k=1

[
r
(
πj,(k),+

)
− r

(
πj,(k),−

)]
δ(k), (A.2)

where θ is the parameters of the policy, α is the learning rate, σR is the standard deviation
of the rewards, r(πj,(k),+) and r(πj,(k),−) are the sorted rewards from positive and negative
rollouts and δ(k) is the randomly generated noise of the same size as θ. Mean and standard
deviation of input variables are continuously updated and used to normalize input values.
The authors demonstrate impressive performance across a wide range of known RL
benchmark problems while also vastly decreasing computational resources required for
training.

D.3 Energy system

This paper adopts data from an operational BESS installed in a smart warehouse for food
distribution on the west coast of Norway. We described the smart warehouse in more
detail in Opalic et al. (2020) and its main components are shown in Fig. D.2. We list
technical details and component specifications in Tab. D.1. An IEMS currently controls
the on-site BESS based on machine learning predictions of load and PV production, and
an optimization algorithm that generates a 48-h schedule for the utilization of the BESS
and a thermal storage system (Marton, others, 2019). The schedule is automatically
implemented through the local Building Management System (BMS) and updated at
hourly intervals. The existing system does not react to live operational data but follows
the schedule precisely for the next hour. Every hour the system generates another 48-hour
schedule and implements the first hour suggested actions. As such, the system relies
very heavily on accurate predictions to be able to harness the energy storage options for
maximum energy and cost reduction. Preventing excessive peak power load costs in this
way is an extremely difficult exercise in practice. The magnitude of the challenge is only
amplified when considering the monthly peak power tariff structure utilized by the local
grid operator where the single highest monthly peak is the basis for the entire monthly
peak power cost. Furthermore, consistently avoiding such peaks relying on predictions
would require perfect predictions of each power surge in the demand load. To fully take
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Figure D.2: The smart warehouse energy system.

advantage of the BESS’ ability to reduce power peaks, the IEMS needs to be able to
combine long-term planning with short-term reactions. This functionality can be achieved
in multiple ways, including the introduction of a separate system for online reactive control.
However, our ambition is to design a system that can react to important events while
maintaining a longer time horizon in an integrated and robust manner. More specifically,
our goals include:

1. Online control of battery systems, proactive and reactive. Both long-term planning
and instant reactions are necessary.

2. Energy cost reduction.

3. Reducing peak power demand.

4. Scalability through ease of commercial implementation and minimizing necessary
human intervention in operation.

D.4 Methodology

In this paper, we suggest an RL-based method for controlling a BESS for energy and
peak power cost reduction in a smart warehouse. Our goal is to train an agent to learn
intelligent control of a BESS in a simulated environment of the smart warehouse, and
thus our research method follows a standard scientific engineering approach where we
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Table D.1: Smart warehouse energy system components.

Component Capacity Unit of measurement
Photovoltaic solar panels 1,000 [kWp]
Lithium-ion battery energy storage system 460/200 [kWh/kW]
Thermal energy storage system 300/300 [m3/kWthermal]
Cooling system 1,140 [kWthermal]

continuously test and verify in simulation. We have designed a simulated environment
consisting of a simple battery model and historical data from the smart warehouse. We
emphasize that our suggested modelling approach is data-driven, which allows for lower
demand on human resources in initial design when compared to purely physical models,
as well as automatic adaptation to changes in building occupant behaviour and other
operational parameters. These characteristics are crucial for successful adoption of IEMS
in smart houses. We define our goal as a problem of energy cost optimization.

min
{ξt}

T∑
t=1

(
E+

t λ
+
t − E−

t λ
−
t

)
+

M∑
m=1

P+
mλp

m (A.3)

s.t. E+
t − E−

t = Lt − St + ξt,∀t ∈ N, (A.4)

min{E−
t , E

+
t } = 0,∀t ∈ N, (A.5)

Ξt = Ξt−1 + ξt−1ηξ (A.6)

Ξ ∈ [32, 445], ξ ∈ [−200, 200], (A.7)

Lt, St ≥ 0,∀t ∈ N,
E+

t ∈ R≥0,∀t ∈ N,
E−

t ∈ R≥0,∀t ∈ N.

We frame our goal in the form of a cost reducing optimization problem in Eq. (A.3), where
we sum over the energy cost for every time step t and sum the cost of the monthly peak
power tariff for each month m. Eq. (A.4) dictates the energy balance of imported energy
and exported energy related to demand load, solar power production and battery charging
or discharging. The variables in Eqs. (A.3) and (A.4 are as follows:

• E+
t is energy imported from the grid at time step t,

• E−
t is energy exported to the grid at t,

• P+
m is the peak power load in the month m,

• λ+
t is purchase price at t,

• λ−
t is selling price at t,

• λp
m is the peak power tariff in the month m,

• Lt is the consumer load at t,
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• St is solar PV power production at t,

• ξt is the inverter charge or discharge rate at t.

Eq. (A.5) states that energy can only be either imported or exported in a single time step.
Eq. (A.6) is related to the BESS SOC, where Ξt is the battery charge state at t and ηξ is the
inverter power conversion efficiency. Eq. (A.7) defines the SOC range for the BESS Ξ,
and the inverter range for charging and discharging ξ.

D.4.1 ARS with ANN

Our approach features a simple modification of the work on the ARS algorithm introduced
in Mania et al. (2018). We adopt ANNs instead of the suggested linear function to
parameterize the policy, see Algorithm 1. In our approach, we have changed the mapping
of input to output from a linear to a nonlinear function using neural networks already
implemented in the RLLIB programming library. The original ARS algorithm suggested
the use of a simple linear policy, namely a matrix directly mapping input to output. The
strength and simplicity of this algorithm are self-evident when examining the results
presented in Mania et al. (2018). However, a linear policy is not always enough when
dealing with highly complex environments such as building energy systems featuring local
energy production and energy storage.

We utilize the RLLIB programming library Liang et al. (2018) as the main framework
for training the agents. In addition, we’ve built a custom simulated training environment
and a custom neural network model using Python 3.7, TensorFlow Abadi et al. (2015),
and Pytorch Paszke et al. (2019). We’ve also utilized the RLLIB Liang et al. (2018)
implementation of ARS with ANN. For reference and benchmarking, we calculate near-
optimal solutions for the sampled episodes using Pyomo (Hart et al., 2011; Bynum et al.,
2021) with a GNU Linear Programming Kit (GLPK) solver. The GLPK solver is given
perfect information of the training scenario and attempts to find an optimal solution. We
also compare our results to another well-known state-of-the-art RL algorithm, namely the
TD3 algorithm utilized in Opalic et al. (2020).

D.4.2 State input

The state St, shown in Fig. D.1, is composed of historical operational data as well as
parameters calculated by the simulated training environment. Operational data given as
current temporal values include time, energy demand load, PV production, energy buy
price, and energy sell price. The energy price is composed of all the factors listed in
Section D.3, except peak power and reactive power. Although an important factor to total
energy cost, peak power cost per kW is a constant and included in the reward signal and
therefore it is deemed unnecessary to include as a constant value in the environment state.
Input time includes the time of day, week, and year given as a two-component sine and
cosine vector decomposition (for a total of 6 values). Future energy buy price is also given
for 6 timesteps ahead. The future energy price is freely available 24 hours ahead in the
Norwegian energy market, and thus price predictions are currently deemed unnecessary
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Algorithm 1 Augmented Random Search with ANN
1: Set hyperparameters:

• α - learning rate

• n - number of directions sampled per iteration

• v - standard deviation of the exploration noise

• b - number of top-performing directions to use

2: Run algorithm 2 to initialize policy parameters θj , i.e. ANN weights
3: Initialize:

• Mean - µ0 = 0 ∈ Rinputs

• Covariance - Σ0 = In ∈ Rinputsxinputs

4: while ending condition not satisfied do
5: Sample δ1, δ2, ..., δN of the same size as θj , with i.i.d. standard normal entries.
6: Normalize input values x with xnormalized = diag(Σj)

− 1
2 (x − µj). Collect 2N

rollouts of horizon H and their corresponding rewards using the ANN policies πj,k,+

and πj,k,−, where the exploration noise vδk is added to the ANN weights θj for πj,k,+

and subtracted from θj for πj,k,− with k ∈ {1, 2, ..., N}.
7: Sort the directions δk by max{r(πj,k,+), r(πj,k,−)}, denote by δ(k) the k-th largest

direction, and by πj,(k),+ and πj,(k),− the corresponding policies.
8: Make the update step for the ANN weights:

θj+1 = θj +
α

bσR

∑b
k=1[r(πj,k,+) − r(πj,k,−)]δk, where σR is the standard deviation

of the 2b rewards used in the update step.
9: Set µj+1,Σj+1 to be the mean and covariance of the 2NH(j+1) states encountered

from the start of training.
10: j ← j + 1.
11: end while

Algorithm 2 ANN for ARS in RLLIB
1: Set hyperparameters:

• θhl - the number of hidden layers in ANN

• θnu - the list of neurons in each hidden layer

• θaf - activation function for neurons

2: Initialize: j = 0, policy parameters θj of shape defined by θhl and θnu and random
values X pulled from a normal distribution N(µθ, σ

2
θ) of mean µθ = 0 and variance

σ2
θ = 1, multiplied by standard deviation σ = 1.0 for the hidden layers and σ = 0.1

for the output layer, divided by the square root of the random value Xhl,nu, θhl,nuj =

Xhl,nu σ√
X
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even though other approaches to intelligent BESS control feature energy price predictions.
Battery SOC and peak power limit are calculated by the simulated training environment
and included in the state.

D.4.3 Reward function

We have attempted to design a reward system following goal number 4, from Section D.3,
focusing on scalability. We decided that one practical way to reduce the need for human
maintenance of the agent in operation is to engineer a simple reward system that is closely
coupled to the actual financial benefit. We suggest that this also potentially enables the use
of the same reward function regardless of the system dynamics or degree of complexity,
which in turn simplifies implementation and thereby increases scalability.

We, therefore, experiment with a reward system that calculates baseline energy cost Cb

for each episode where no actions are taken and compares this to the actual cost Ca after
the agent has selected an action,

R = Cb − Ca. (A.8)

In addition, at the end of each day, the agent is penalized for the fraction that the battery
SOC differs from the ideal, from a battery health perspective, SOC of 50% multiplied with
the absolute value of the accumulated reward,

Rpenalty =
|Ξ50% − Ξendofday|

Ξmax − Ξmin

× |Raccumulated|. (A.9)

We experiment with this mechanism to give the agent incentive to return to 50% charge
state as often as possible to preserve battery health. This incentive is quite simple and we
could potentially replace it with a much more sophisticated mechanic, but we include this
simple version to examine how the agent responds to small changes in the reward signal in
the face of the much larger potential for peak power cost reduction. The reward function
therefore becomes

Rt,h = Cb
t,h − Ca

t,h −Rpenalty
h . (A.10)

where t is the current timestep, h is the hour of day and Rpenalty is non-zero only at h = 0.

D.4.4 Simulated training environment

We have built a simulated training environment that uses the simplified BESS model from
(Opalic et al., 2020) combined with operational data from our case-study warehouse to
create training scenarios where the agent is tasked to reduce the energy cost by controlling
the BESS. We explain environment state values in Subsection D.4.2. A randomly seeded
episode of consecutive timesteps is pulled from the data source period of March and April
2020. We have trained the agents on one or more samples for 100 million timesteps.
The length of the training session was decided through an empirical investigation of a
reasonable time frame to allow the models to arrive at a reasonable solution. Most of
the ARS agents can converge on a stable solution within this time frame. The length of
the episode can be freely chosen but is naturally limited by the size of the available data
set. When initialized, the environment calculates a baseline energy cost for the selected
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data when no action is taken. The energy cost calculated by the training environment is
structured according to the actual energy pricing scheme utilized by the grid operator in
the case-study location, consisting of the following parts:

• spot price per kWh

• a fixed annual fee

• a fixed rate per kWh consumed (summer/winter)

• monthly peak power

• monthly peak reactive power above a certain threshold

The most significant contributor to the total energy cost is the monthly peak power
tariff of 80 NOK/kW (Lnett, 2022) during the winter months. We have implemented an
adjustable target value for peak power tariff inclusion in the simulated training environment
such that the tariff only contributes to the total cost and reward signal when exceeded.
Setting the target value to 0 will reflect how the tariff is calculated at the start of each
month in reality, but will fail to take into account the fact that the tariff is monthly and in
most cases will have incurred a certain cost level before the start of each new episode. For
experiments with shorter temporal horizons than one month, it is more realistic to set the
initial value to an achievable monthly goal. In our case, an examination of the data set
revealed that around 500 kW maximal power consumption would be a realistic goal for the
BESS.

Reactive power is not an issue for the local power grid and our case-study smart
warehouse. We, therefore, disregard it in the simulated training environment.

D.5 Experiments and results

We explore RL algorithms applied to cost optimization of energy storage in BESS, based
on operational data from a case-study warehouse. We initially tested all relevant RL
algorithms included in the RLLIB library, but the vast majority showed little promise and
were discarded from further testing. The ARS and ARS-ANN algorithms showed the most
promising results. The RLLIB version of the TD3 algorithm was also included in our first
experiment for benchmarking purposes.

We conducted multiple experiments to analyze and document the behavior of the
agents in various random scenarios. A total of three experiment setups were defined after
the initial testing, each consisting of multiple training sessions and various agents and
algorithms. The RL agents were trained for 100 million timesteps each in a simulated
environment in our three main experiments. Our first experiment was a randomly seeded
48-hour period, where we compare results with the well-known RL algorithm TD3 and the
near-optimal solution found with the GLPK solver given perfect information. The second
experiment consisted of 10 randomly seeded 48 hour periods and features comparison
between ARS-ANN, original ARS, and the GLPK solver. For our third experiment, we
expanded the episode to nearly include the entire dataset and compared our ARS-ANN





D

0   100M 200M 300M 400M 500M    600M 700M 800M 900M    1G

Architecture Reward

[12] 6547

[24] 6551

[48] 6545

[64] 6539

[64,64] 6523

[64,64,64] 4532

[64,64,64,64] 542

[256,256] 3104

Figure D.3: Hyperparameter search 1: Testing different ANN architectures with a tanh
activation function for a seeded 48 hour episode. Timesteps = 1G.

agent performance to the original ARS and the GLPK solver solution. Unlike experiments
one and three, our second experiment also includes the reward penalty for deviation from
50% SOC at midnight.

D.5.1 Hyperparameter searches

To find the best configuration of the network, we conducted so-called hyperparameter
searches, i.e., exploration of hyperparameters and empirical verification of which of these
parameters yielded the best result. Our chosen method for the hyperparameter search
was a grid search over a table of predefined hyperparameter values. We ran the first grid
search with different neural network architectures and activation functions to observe
agent learning in a seeded 48-hour episode. Tanh activation function showed a tendency
to destabilize as the size of the network increases, shown in Fig. D.3. Relu activation
becomes stuck in zero for multiple architectures but is quicker to train in some cases than
Tanh, although it converges at a level further from a near-optimal solution. The 24 neuron,
a single hidden layer with Tanh activation quickly reaches a performance level very close
to the GLPK solver solution and remains stable and even slightly increased performance
after 1 billion timesteps. When network size increased from a single 64 neuron hidden
layer to double 64 neuron hidden layers a notable decrease in stability occurs, shown in
red in Fig. D.3. As can be observed, this destabilizing effect continues to increase with
increasing in ANN size.

Seeing the destabilizing effect of increasing ANN complexity, and observing the
results from experiment three presented further down, it led to the second 48h episode
hyperparameter search featuring 4 hidden layers with 64 neurons each which consisted of
a grid search with different learning rates α and noise standard deviations v. Results show
that learning and validation performance for deeper neural network architectures can be
stabilized by decreasing the learning rate, shown in Fig. D.4. Reducing the learning rate
from 0.01 to 0.001 significantly increases algorithm stability and performance.

D.5.2 Experiment one - Proof of concept

Our first full experiment was a proof of concept with the simple research goal of finding a
solution for a single instance of our simulated environment. The experiment was conducted
as a single randomly seeded 48-hour episode, initialized with a 450kW initial peak limit.
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Figure D.4: Hyperparameter search 2: Testing impact of reducing learning rate and noise
standard deviation for 4 hidden layer with 64 neuron architectures with a tanh activation
function for a seeded 48 hour episode. Timesteps = 100M.
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Table D.2: Results for experiment one.

Algorithm Architecture Score
Pyomo GLPK Solver 6554
ARS-ANN 24-tanh 6543
ARS Linear 6536
TD3 64x4-relu-torch (grid search) 1488

Table D.3: Results for experiment two - 48 h trials with 50% SOC reward incentive.
ARS-ANN architecture ”24 tanh”.

Episode GLPK ARS-ANN ARS-Original
Reduction Reward Reduction Penalty Reward Reduction Penalty

1 2609 2547 2556 8.9 2555 2556 1.2
2 206 185 187 2.7 193 193 0.6
3 4247 4211 4223 10.9 4204 4216 11.8
4 5497 5455 5481 26.6 5464 5474 10.7
5 3581 3576 3576 0.1 3573 3573 0.5
6 2611 2568 2605 36.2 2566 2601 35.4
7 6777 6728 6757 29.6 6727 6744 17.1
8 2613 2600 2605 5.0 2602 2606 4.5
9 1970 1933 1953 19.8 1955 1965 9.3
10 7247 7242 7241 0.1 6965 7020 56.0
Average 3736 3705 3718 14.0 3680 3695 14.7

The agent is given the energy price 6 timesteps ahead and the initial BESS SOC is set
to 32kWh, which is the lower SOC limit. A grid search of ANN hyperparameters was
conducted to find a fitting architecture. The grid search included the number of hidden
layers and neurons, as well as activation functions ReLU and Tanh. The following
architectures were attempted with both activation functions (the number of neurons in each
hidden layer was always identical):

• One hidden layer: [12, 24, 48, 64]

• Two hidden layers: [24, 64, 256, 512]

• Three hidden layers: [64]

• Four hidden layers: [64]

Results for our ARS-ANN agent compared to benchmark algorithms in a 48-hour episode
(experiment one) are shown in Table D.2. As shown in our initial trial, the ARS-ANN
architecture with 24 neurons in a single hidden layer with a Tanh activation function shows
the best performance behind the near-optimal solution found by the GLPK solver. The
original ARS also performs quite well, scoring slightly below ARS-ANN at 99,7 compared
to 99,8 % of the GLPK solution. We observe that the ARS algorithms seem to be very well
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Figure D.6: Experiment two - Agent behaviour in 10th seeded episode.

suited for our energy cost optimization problem. Although the ARS-ANN algorithm only
slightly improves the results in this experiment, we know that using an ANN means that
we can find nonlinear solutions when problem complexity increases.

D.5.3 Experiment two - Verification through seeded multiple trials

As stated in Mania et al. (2018), too few experiments in RL verify results across multiple
seeds, thus shedding some doubt on whether the reported performance is a result of
algorithm ingenuity or extensive hyperparameter tuning to a single instance of the RL
problem. To verify our results across multiple trials, we conducted an experiment with 10
randomly seeded time periods pulled from our data set. We set the initial peak power limit
to 500kW. Initial battery SOC is set to 50% of available capacity between the operational
capacity limits given in Equation A.7, therefore initiating at 238.5kWh. To incentivize
an average SOC around the healthy 50%, the reward function was tuned to punish the
agent at 00:00 each day by a fraction of the accumulated rewards proportional to the
absolute difference between the SOC and the desired 50%. Results from experiment two
can be observed in Table D.3 and Fig. D.5. We observe in Fig. D.5 that both the ARS
and ARS-ANN algorithms are achieving results that are very close to the GLPK solver.
When comparing numerical results in Table D.3 we observe that the ARS-ANN has a slight
increase in performance when compared to the original ARS. In addition to peak shaving,
the ARS-ANN can extract some values from energy price differentiation even though the
reward increase from this behavior is an almost inconsequential due to an exceptionally
low energy cost at around 0.3 NOK/kWh. The agent behavior in the 10th seeded trial is
shown in Fig. D.6. The agent, actions shown in the blue dotted line, chose to charge when
the energy price, red dashed line, was high. Similarly, it chose to discharge when the price
was low while simultaneously avoiding the 500kW power limit and arriving at around 50%
SOC at midnight. The ANN architecture in this experiment was 24 neurons in the hidden
layer with a Tanh activation function.

We observe that the performance of the ARS algorithms is still very high, with the
original ARS achieving an average of 98.5% and the ARS-ANN achieving 99.2% of
the GLPK solver solution. The gap between the original ARS and ARS-ANN has also
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increased slightly. The same ARS-ANN architecture and hyperparameters were used for all
the seeded trials, indicating that the performance is the result of a well-designed algorithm.

D.5.4 Experiment three - Longer episode

As a basis for future research, we also wanted to examine how our algorithm performs in a
more complex scenario. A simple way to do this is to increase the number of timesteps
taken in a single episode. We therefore finally conducted an experiment that uses almost
the entire dataset as a single training episode. The episode was set to 2000 hours pulled
sequentially from the operational data. The agent now faces a wide range of operational
states, such that the problem can only be solved by learning a general and robust solution.
The initial peak power limit was set to 550kW. Future energy buy price was set to 6
timesteps and the initial SOC was set to 32kWh. The near-optimal solution found with
Pyomo and GLPK was a cost reduction of 7760NOK. The learning rate was not adjusted
for the ARS-ANN agent, but a simple grid-search was performed to select the most
appropriate ANN architecture. The grid search included the following architectures: [12],
[24], [48], [64], [64,64], [64,64,64], [64,64,64,64], [256,256], as well as both Tanh and
Relu activation functions. Results are shown in Table D.4. Although we can observe that
the ARS results were quite far from optimal, Table D.4 shows that the ARS-ANN agent
clearly outperformed the original ARS agent with a 21 % increase in performance. We
interpret this as an indication that the original ARS with its linear policy will be too limited
to handle the full complexity of our case-study warehouse energy system. We also believe
that results for ARS-ANN can be greatly improved in complex scenarios by lowering the
learning rate when ANN architecture is increased, as indicated by our previous discussion
on Fig. D.4, combined with finding the most suitable architecture.

Table D.4: Results for experiment three - 2000 h episode.

Algorithm Architecture Score
Pyomo GLPK 7761
ARS-ANN 64x2 4472
ARS Linear 3689

D.6 Conclusions

This work is presenting the application of reinforcement learning based techniques to the
specific energy optimization problem for controlling the battery energy storage system in a
smart warehouse for minimizing the energy bill. This paper has adopted data from a real
operational smart warehouse, integrated with a photovoltaic and battery energy storage
system, for food distribution on the west coast of Norway. Multiple experiments have
been conducted within a simulated training environment built with operational data from a
case-study of a smart warehouse, featuring a 460kWh lithium-ion battery energy storage
system. In this work, an RL agent and specifically the proposed ARS-ANN agent is trained
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and used for controlling the battery energy storage system’s charging and discharging for
minimizing the energy costs. Obtained results show that both the ARS and ARS-ANN
algorithms have performed very well on 48-hour episodes, achieving an average of 98.5
and 99.2% accuracy respectively across 10 seeded trials. Also, ARS-ANN has shown
promising results on a longer time horizon, outperforming original ARS by 21 %. As
seen in the initial experiment on ARS-ANN with reduced learning rates, learning for
deeper neural network architectures can be stabilized by lowering the learning rate α. We
should therefore further explore if the ARS-ANN algorithm can be used to solve highly
complex and realistic operational scenarios with longer time frames by increasing the
depth of the architecture and reducing the learning rate. Adding multiple controllable
energy storage solutions with different and more realistic dynamics, including thermal
energy production and storage, should also be explored. The developed algorithm finds
very promising solutions in the considered case-study of a smart house for energy cost
minimization through a battery energy storage system. The presented methodology can be
implemented in a wider range of smart energy-efficient buildings (e.g. smart warehouse)
with less engineering detail for a reduction in energy bills.
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Abstract — The combination of local renewable energy production, dynamic loads,
and multiple energy storage systems with different dynamics requires sophisticated
control systems to maximize the energy cost efficiency of the combined energy system.
Battery and thermal energy storage systems can be combined to increase the local
use of on-site renewable energy, reduce peak power demand, and exploit time-of-
use energy pricing. In this paper, we focus on how the augmented random search
algorithm and artificial neural networks can be used together to solve an energy cost
optimization problem involving the control of a battery energy storage system and
a thermal energy storage system at the same time in a smart warehouse. As part
of this work, a simulated training environment made using the data from the smart
warehouse’s operations. In addition to the energy storage systems, the warehouse
energy system has integrated a large roof mounted photovoltaic power plant and an
industrial-scale cooling system.

The developed solution is able to minimize the energy costs by modulating both
energy systems, depending on the situation. Additionally, when it is tested against the
state-of-the-art solutions, our developed solution at worst matches performance when
the alternative algorithm is allowed to increase training time by a factor of nearly
three. On average, our presented solution doubles the performance of the benchmark
algorithm with much less computational resource expenditure.
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E.1 Introduction

The current state of global energy supply and demand highlights the need for controllable
energy production and storage (IEA, 2021). There is an increasing demand for robust and
responsive electrical and thermal Energy Storage Systems (ESS) (Kebede et al., 2022) as
an increasing fraction of the world’s energy demand is met by wind and solar power at
the expense of fossil-fueled and nuclear power (Buongiorno et al., 2019). The building
sector represents a natural candidate to deploy an algorithm controlling renewable energy
production and storage systems, as buildings are responsible for nearly 40% of global CO2

emissions (IEA, 2020).
Energy Storage Systems (ESS) can consist of various technologies and be applied in

a multitude of ways (Palizban, Kauhaniemi, 2016). From the perspective of the main
electrical distribution grid, an important distinction exists between centralized and de-
centralized ESS. As opposed to decentralized ESS, centralized systems can be directly
controlled by the grid operator. However, decentralized ESSs are seen as an important
component of a more environmentally friendly energy system, but they come with a new
set of challenges (Bögel et al., 2021). The decentralized systems should monitor the energy
market, integrate the control algorithm with market dynamics, and use it to reduce the
peak load of the system while also minimizing the costs. In the case of multiple ESSs with
different dynamics, such as a combination of a Battery Energy Storage System (BESS)
and Thermal Energy Storage (TES), the complexity of the optimization problem further
increases.

One approach that is recently gaining a lot of interest in the scientific community as a
robust and self-improving method to control building energy systems is Reinforcement
Learning (RL) algorithms (Perera, Kamalaruban, 2021). RL algorithms can reduce
costs by reducing necessary human resource expenditure, and risks associated with their
behavior can be managed through off-line, data-driven training. Newer RL algorithms
often include training Artificial Neural Networks (ANN) to output desired actions or action
values, showing improved performance (Lillicrap et al., 2015; Cao et al., 2020; Shang
et al., 2020). In contrast, Mania et al. (2018) showed that the Augmented Random Search
(ARS) algorithm could achieve high performance with very little computational resource
expenditure by training a simple linear function for action selection with their proposed
search algorithm.

In this article we build on the work published in Opalic et al. (2022) where we showed
that using ANNs for action selection together with the ARS search algorithm improved the
agent performance on a BESS control problem. We now propose COST-WINNERS - a
novel approach to control, for the first time, both the BESS and TES of a smart warehouse.

Specifically, our contributions in this paper are:

• We implement the ARS (Mania et al., 2018) RL algorithm, modified with ANNs to
encode the agent policy, to simultaneously control TES and BESS energy storage
systems.

• We build a data-driven simulated training environment, also modeling the dynamics
of the TES.
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• Overall, we introduce a novel approach to control both the BESS and TES of a smart
warehouse simultaneously to reduce total energy cost. This is important because
combining different energy storage systems can lead to improved performance
and cost savings but also introduces new challenges due to each system’s different
dynamics and control requirements.

E.2 Related Work

It was suggested in Xu, Shen (2018) an algorithm for optimal control of multiple ESSs
using individual custom defined boundaries for energy price. However, the study only
features Battery Energy Storage Systems (BESSs) and does not specify how to determine
the price boundaries for each system. Zhu et al. (2020) examines decentralized ESSs in
urban railway applications and suggests multiagent deep Reinforcement Learning (RL)
for cooperative control using Q-learning with recurrent ANNs. ANNs are also at the
core of Model Predictive Control (MPC) of TES developed by Cox et al. (2019). Zhang
et al. (2021) propose Soft Actor-Critic (SAC, (Haarnoja et al., 2018)) to optimize BESS
control with multiple energy production facilities. However, the authors have not clarified
if the experiment is based on more than a single 24-hour episode and results are only
compared with other simpler RL algorithms. Goldsworthy et al. (2022) have implemented
a cloud-based Model Predictive Control (MPC) battery control algorithm for energy cost
reduction at an office building. The system has been operational for a year and achieved an
energy cost reduction of 5.5%. Although some of the related work show promising results,
we were unable to find any related work that examines advanced control algorithms for
energy cost optimization with multiple ESSs with different dynamics, such as the BESS
and TES in our smart warehouse.

E.2.1 Energy optimization in buildings

Similar to the Intelligent Energy Management System (IEMS) implemented in the ware-
house and described in our previous work Opalic et al. (2022), Sechilariu et al. (2014)
proposed Mixed Integer Linear Programming (MILP) to optimize energy cost and power
flow in a Direct Current (DC) microgrid. Unlike the implemented smart warehouse IEMS,
it also features instant power balancing. A hybrid Model, suggested by Huang et al. (2015),
uses MPC for energy cost optimization in a case-study of an airport terminal. The authors
suggest ANNs to account for non-linearity. MPC using hierarchical MPCs to provide
thermal comfort and reduce energy cost was suggested in Lešić et al. (2017). Smarra
et al. (2018) propose a data-driven MPC, i.e., Data Predictive Control (DPC), using a
random forest algorithm for predictions, claiming that physical models are impractical
when considering the unique character and complexity of building-related control systems.
On the same line, Rätz et al. (2019) also explore data-driven energy system modeling for
buildings using RL and MPC. For a twin BESS connected to a wind turbine power plant,
Wang et al. (2020) suggest MPC. The authors assert greater production dispatchability and
increased battery life. To conclude, a review study by Mariano-Hernández et al. (2021)
determined that the most popular management technique in non-residential buildings is
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Figure E.1: Interaction between agent and environment.

MPC. They come to the conclusion that enabling intelligent control will depend on the
building modeling methodology.

E.2.2 Reinforcement learning

According to Sutton, Barto (2018), RL is learning through discovering which actions that
increase a reward.

The operational concept of RL is often described as shown in Figure E.1. An agent
interacts with an environment, following its internal policy π, by taking actions and
receiving feedback from it as reward or penalty. The policy typically gives the agent
certain degrees of freedom to choose actions that deviate from the strictest application of
the policy. This allows the agent to discover new states and actions that generate higher
reward, consequently updating its policy.

Well-known RL algorithms include Q-learning (Watkins, 1989) and Deep Q-Networks
(DQN) (Mnih et al., 2013). The Q-learning algorithm maps each state to the expected
discounted future value of all the possible actions (Q-value). In Q-learning, the agents’
policy is encoded in the Q-table, and the deterministic version of it maximizes Q-value.
DQN deploys a deep ANN to compute the Q-values of available discrete actions given an
environment state.

The application of RL has been conducted in many different fields, ranging from
renewable energy to energy storage, and complex energy systems. An example can be
seen in Kuznetsova et al. (2013). The authors developed a simulated microgrid, including
a BESS and a wind turbine. The methodology is based on Q-learning taking as inputs
the BESS State Of Charge (SOC), energy price, predictions of wind power production,
and energy consumption demand. The discrete action space includes three possible BESS
actions: charging, discharging, or none. Mbuwir et al. (2017) proposed fitted Q-iteration
for transfer learning of BESS control to and from systems with comparable properties. Wen
et al. (2015) suggest adopting Q-learning and end-user device utilization for controlling
load shifting in modest office and apartment buildings. Additionally, Henze, Schoenmann
(2003) also used Q-learning for TES control.

Perera, Kamalaruban (2021) found that Q-learning is the most common use of RL
techniques in the energy research area, even if simpler algorithms are still deployed.
Importantly, there are also attempts at exploring state-of-the-art algorithms in the literature.
Mocanu et al. (2019) propose Deep Policy Gradient (DPG), similar to DQN, for on-off





E

load shifting in the residential sector. Focusing on residential BESS control, a variant of
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) is developed by Wan
et al. (2018). Moreover, an improved DQN was implemented also by Cao et al. (2020)
for BESS arbitrage. This algorithm takes into account a lithium-ion battery degradation
model, with discretized action space for full or 50% capacity dynamics together with the
stand-by state. Shang et al. (2020) combines DQN with bootstrapping and a monte carlo
tree search for BESS control in a microgrid. However, in all cases except Wan et al. (2018),
the algorithms work in a discrete domain, having limited action space. In addition, the
reward functions are generally complicated and experiment specific. Therefore, most of the
approaches mentioned are not ideal for large-scale implementation of IEMS in a multitude
of sites using RL.

Brandi et al. (2022) explored control of a TES using online deep RL, MPC and offline
deep RL. For the online RL controller, energy cost was increased by 160% for a four week
period before it converged to comparable behaviour to the top performing MPC and offline
RL controllers. The study is limited to optimizing electricity cost incurred by the chiller
while disregarding overall building energy cost and potential peak power cost.

Wang, Hong (2020) conducted a survey of RL application to control technical systems
in buildings. The authors argue that established techniques such as MPC requires extensive
domain knowledge to properly design and implement, making it less applicable in the
building control domain compared with mass production domains such as the automobile
industry. Furthermore, Wang, Hong (2020) state that RL combined with transfer learning
should be further explored for building control.

The authors in Xu et al. (2021) propose a combination of RL with differential evolution
to reduce energy cost for industrial users with solar power and thermal energy production,
as well as BESS and TES, while satisfying local energy demand and trading energy in an
energy trading platform.

E.2.3 Augmented random search

ARS is an optimization of what was named basic random search by Mania et al. (2018).
ARS is designed for continuous action space and works with a strictly linear policy matrix,
as opposed to other current RL approaches. Moreover, exploration with the ARS is done
directly in the parameters of the policy function. In comparison, algorithms such as
SAC (Haarnoja et al., 2018), DDPG (Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018),
and Trust-Region Policy Optimization (TRPO) (Schulman et al., 2015), also operating in
continuous action space, promote action exploration with random noise added to the agents
selected action. In the ARS algorithm, random noise is generated and added directly to
the policy parameters and tested in the environment. The rewards from N such tests, or
rollouts, are then sorted in descending order (Mania et al., 2018). The top b directions are
used to update the policy according to

θj+1 = θj +
α

bσR

b∑
k=1

[
r
(
πj,(k),+

)
− r

(
πj,(k),−

)]
δ(k), (A.1)
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Figure E.2: The smart warehouse energy system with BESS, TES, cooling system and PV
power plant. Arrows indicate the direction of energy flow.

where θ represents the policy parameters, α represents the learning rate, σR is the reward
standard deviation, r(πj,(k),+) and r(πj,(k),−) are the rewards from rollouts and δ(k) is the
random noise fitted in size to θ. Continuously updated mean and standard deviation of
input variables are used to normalize the inputs. Mania et al. (2018) managed to achieve
outstanding performance while also drastically using less computational resources when
tested in a variety of well-known RL benchmark problems.

E.3 Smart warehouse energy system

Table E.1: Main components of the smart warehouse energy system. * At 10 °K temperature
difference.

System Characteristic value Unit of measurement

Solar power plant 1,000 [kWp]
BESS 460/200 [kWh/kW]
TES 300/300* [m3/kWthermal]
Cooling plant 1,140 [kWthermal]
Electric boiler 500 [kW]

The energy system in the smart warehouse has previously been described in detail in
Opalic et al. (2020), Opalic et al. (2020) and Opalic et al. (2022). Table E.1 lists its main
components and a scheme of it is visualized in Fig. E.2. In this work we focus mainly on
describing the thermal components of the energy system, and specifically the TES.
The main thermal components of the energy system are:

• the cooling plant with cooling energy distribution through evaporators based on
direct expansion of carbon dioxide
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Table E.2: Thermal energy storage system characteristics.

Attribute Values Unit of measurement

Measurements LxWxH - 12x10x2,5 [m]
Volume 300 [m3]
Average U-value 0.20 [ W

m2K
]

Storage medium Water N/A
Heat exchanger max flow 25 [m

3

h
]

Heat exchanger temperature loss 2 [oK]

• heat recovery from the cooling plant with hydronic heating energy distribution

• TES in an insulated firewater tank submerged in the ground.

• cooling for ventilation and server rooms with hydronic cooling energy distribution

The physical characteristics of the tank are listed in Table E.2. TES specifications and
model parameters are listed in Table E.2. Additionally, the energy system also features a
BESS, described in detail in Opalic et al. (2022), that is controlled simultaneously with the
TES.

The TES is used to store both heating and cooling energy. Switching between heating
and cooling storage, on the other hand, incurs a significant cost due to the difference in
operational temperature levels of the heating and cooling distribution systems at 50◦C and
25◦C, and 9◦C and 15◦C, respectively. Therefore, the TES is used only for heat storage in
winter and for cooling storage during summer. For the remainder of this paper, we focus
on the TES in heat storage mode. Since the TES is located underground, the ambient
temperature also remains relatively stable and is modelled as a constant temperature.

Excess heat is recovered from the cooling plant and can either be directly distributed
to cover the warehouse heating demand or stored in the TES, or both. Available excess
heat depends on the cooling demand of the refrigerated areas in the building and will
vary proportionally to the cooling work done by the cooling plant. If available heat is
not sufficient to cover the heating demand, the remaining demand can either be met by
discharging stored energy from the TES or by producing heat with an electrical boiler.
The boiler can produce heat at an efficiency of around 0.9, whereas using excess heat
from the cooling plant only incurs a small cost based on various operating conditions
such as internal operating pressure, operational temperature, external cooling demand, and
ambient temperature. Recovering and storing excess heat for later discharge can therefore
be defined as a time-dependent optimization problem for energy cost reduction.

An IEMS currently controls the on-site ESSs by applying machine learning to predict
load and PV solar panel production (Marton, others, 2019). Additionally, an optimization
algorithm calculates a two-day plan for the the BESS and a TES deployment. The local
Building Management System (BMS) implements the schedule and updates it hourly.
The current IEMS system does not react to live operational data. Every hour the system
calculates another two-day schedule, implementing the first hour’s actions. Therefore, the
system is very dependent on accurate predictions for maximum energy storage and cost
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reduction. Furthermore, in this scenery, it is challenging to prevent excessive peak power
load costs. The magnitude of the challenge is only amplified if we take into account the
structure used for the monthly peak power tariff, by the local grid operator: the entire
monthly peak power cost is dependent on the highest hourly peak of that month. It is
clear then that combining long-term planning with short-term reactions is a key strategy to
benefit from the ESS’ capability for peak power shaving.

E.4 Methodology

In this paper, we examine the applicability of the ARS-ANN RL algorithm to a complex
energy cost reduction problem through direct control of BESS and TES charging and
discharging setpoints in a simulated case-study smart warehouse. Our main research
goal is to examine if the ARS-ANN algorithm can efficiently control multiple ESSs with
different dynamics and substantially varying degrees of impact on energy cost. The agent
is trained in a simulated environment of the smart warehouse, which we mainly designed
through the use of data-driven techniques. We have emphasized the use of data-driven
techniques as a way to reduce the need for human expertise to design the simulated
environment and increase the practical utility of our approach.

E.4.1 Simulated environment

We have built the simulated environment on operational data using linear and polynomial
regression in order to make the simulated environment accessible for result analysis. As this
potentially decreases the accuracy of the system model, one could consider building a more
accurate model of the environment using deep learning neural networks in an operational
scenario. The methodology described in (Rätz et al., 2019) or similar approaches would
then be considered. The current version of the simulated environment features an ensemble
of models of energy system components and dynamics.

We use a model for the thermal energy storage, production and distribution featuring:

• The heat exchanger temperature loss.

• Temperature loss through heat conduction to surroundings.

• 4 vertical internal temperature levels.

Important components and dynamics of the models for the TES, production, and
distribution are the following:

• Operational data of TES charging and discharging compared to setpoint.

• TES storage loss and internal temperature levels.

• Cooling plant electrical power consumption and recoverable excess heat.
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Figure E.3: Thermal energy storage with valves for reversing direction of water flow.

A schematic of the TES is included in Fig. E.3. The schematic shows the TES in the
bottom visualized as a rectangular prism. Physically, the TES is a subterranean concrete
basin, insulated on all sides with perforated water pipes (1, 2) placed diagonally along
opposite walls within. This allows for an even distribution of water flowing into and out of
the thermal storage, consistent with a strategy of maintaining water temperature layering
inside the tank. The direction of water flowing through the tank can be reversed using an
arrangement of four two-way valves (3-6). The TES is physically separated from the main
hydronic energy distribution systems by a heat exchanger (8). The flow volume on the
TES side of the heat exchanger is automatically balanced with the main hydronic energy
distribution system using flow measurements and a frequency controlled pump (7). Our
model of the TES includes the ability to reverse the direction of the flow of water such
that hotter water is always added to or extracted from the top of the tank and vice versa
for colder water. We have not included a model of the heat exchanger due to the physical
system automatically balancing volume flow on both sides of the heat exchanger and the
observed temperature loss in the heat exchanger is minimal. Modelling the heat exchanger
could possibly be considered for future work.

On the secondary side of the heat exchanger, the TES is connected to the hydronic
distribution system in two ways (not shown in the figure). Firstly, the TES is connected
in parallell with all the thermal heat loads with a modulating two-way control valve that
controls the charging according to an external thermal power setpoint. Secondly, the TES
can be discharged by circulating the combined return flow through a modulating three-way
valve that also responds to an external thermal power setpoint.

However, the dynamics of the hydronic heating system is complicated. We have
therefore examined TES operational data in response to charging and discharging set
points. The examination shows a high degree of variation between the actual delivered and
the requested charge, as well as a non-linear relationship between charging and discharging
dynamics. Therefore, we chose to model charging and discharging dynamics with two
different functions, using more recent operational data. Charging dynamic is shown in
Fig. E.4, while the discharging dynamic is illustrated in Fig. E.5. However, we provide a
TES action space balanced around the origin of [-100, +100] to the agent interacting with
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Figure E.4: Requested TES charging vs. actual charging.
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Figure E.5: Requested TES discharging vs. actual discharging.
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the environment. Actions below 0.2 and above -0.2 are regarded as standby, or no-action.
The R2 score for the charging and discharging functions is 0.83 and 0.53, respectively.
A qualitative analysis of the figures highlight a larger spread in the data point for the
discharge function. Importantly, although the R2 for the discharge function is rather low,
the goal of this function is to have a simple and explainable model of the TES while
discharging. The variation in TES discharging, related to the setpoint, is known to depend
on a multitude of other variables when considering a priori and empirical knowledge of
the hydronic heating system and is beyond the scope of this paper. A more practical way
to model the TES dynamic, with a higher degree of accuracy, is likely through the use of
ANN and multiple input variables. However, this would reduce model explainability, and
it is not desirable at the current stage.

Algorithm 3 Augmented Random Search with ANN
1: Set hyperparameters:

• α - learning rate

• n - number of directions sampled per iteration

• v - exploration noise standard deviation

• b - number of top-performing directions to use

2: Run algorithm 4 to initialize policy parameters θj , i.e. ANN weights
3: Initialize:

• Mean - µ0 = 0 ∈ Rinputs

• Covariance - Σ0 = In ∈ Rinputsxinputs

4: while ending condition not satisfied do
5: Sample δ1, δ2, ..., δN of the same size as θj , with i.i.d. standard normal entries.
6: Normalize input values x with xnormalized = diag(Σj)

− 1
2 (x − µj). Collect 2N

rollouts of horizon H and their corresponding rewards using noise modified ANN
policies πj,k,+ and πj,k,−, where the vδk exploration noise is added to the weight
parameters θj of the ANN for πj,k,+ and subtracted from θj for πj,k,− with k ∈
{1, 2, ..., N}.

7: Sort the directions δk by max{r(πj,k,+), r(πj,k,−)}, denote by δ(k) the k-th largest
direction, and by πj,(k),+ and πj,(k),− the corresponding policies.

8: Make the update step for the ANN weights:
θj+1 = θj +

α
bσR

∑b
k=1[r(πj,k,+)− r(πj,k,−)]δk, where the standard deviation of the

2b rewards for the policy update is σR.
9: Set the mean and covariance, µj+1,Σj+1, of the 2NH(j + 1) training states

encountered.
10: j ← j + 1.
11: end while

In this article we have implemented the warehouse model described in (Opalic et al.,
2020), and configured it to continuously calculate the refrigerant mass flow in the cooling
plants. We have fitted a linear regression model, using pressure and mass flow of the
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refrigerant as inputs and recoverable heat as output. Consequently, this model can be used
to find the recoverable heat upper bound at the maximum pressure of 80 bar and at any
given refrigerant mass flow.

Moreover, we also model the electric consumption of the cooling plant as a second
order polynomial, using refrigerant mass flow and heat recovered as inputs, and the electric
consumption as output. The R2 (R-Squared) score of the electric consumption function is
0.87, while the RMSE is 11.17.

The cooling work, expressed as the refrigerant mass flow, represents the limiting factor
for the maximum heat that can be recovered. We model this dynamic with a simple linear
function, using as input the refrigerant mass flow and returning as an output the maximum
recoverable heat.

Finally, there is a minimum amount of electrical energy required by the cooling plant
to keep the storage areas refrigerated. Also in this case we chose a linear model using as
input the refrigerant mass flow and returning as an output the least required energy.

The following historical data sources were examined and used as input for the smart
warehouse model:

• Total power consumption and local power production.

• Cooling plant power consumption.

• Cooling plant mass flow (Opalic et al., 2020).

• Heating demand.

• TES charging and discharging.

• Energy price for electrical energy bought from and sold to the grid.

E.4.2 ARS with ANN

In (Opalic et al., 2022), we implement a modified version of the ARS algorithm (Mania
et al., 2018). We deploy an ANN for policy parametrization in place of the linear function
proposed by Mania et al. (2018), see Algorithm 3. We thereby modify the processing of
inputs to output from a linear to a nonlinear function. More specifically, the ARS algorithm
is used to train an ANN to output actions for the TES and BESS with the input being
the current state of the environment. We take advantage of the functionality for neural
networks already implemented in the RLLIB programming library. Refer to (Opalic et al.,
2022) for a detailed explanation of the implemented solution. The algorithm in this article
is based on the previously suggested approach.

We use Pyomo (Hart et al., 2011; Bynum et al., 2021), an open-source Python tool for
optimization modeling, with a GNU Linear Programming Kit (GLPK) solver to calculate
near-optimal solutions for performance comparisons and benchmarking. We feed the
GLPK solver with all the information about the training scenario and it attempts to find an
optimal solution. However, due to the complex nature of our energy system, we did not
attempt to implement the TES in the GLPK solver solution. We examined the operational
data and found that the electrical boiler had contributed very little to satisfying the heating
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Figure E.6: Change in electrical energy consumption for the cooling system due to ARS-
ANN agent TES control.

demand in the selected time period due to the fact that available excess heat from the
cooling system seemed to be sufficient. Reducing energy consumption on the boiler is the
main way that the TES can contribute to lower electrical energy consumption during winter
operation. We argue that the impact of the TES on the energy cost in the time period we
pulled our operational data from is very limited. Adopting the performance of the GLPK
solver’s control of the BESS as a benchmark is therefore still valid and useful.

Algorithm 4 ANN for ARS in RLLIB
1: Set hyperparameters:

• θhl - ANN hidden layers.

• θnu - number of neurons in each hidden layer.

• θaf - list of activation function for each layer.

2: Initialize: j = 0, policy parameters θj of shape defined by θhl and θnu and random
values X from N(µθ, σ

2
θ) normal distribution of mean µθ = 0 and variance σ2

θ = 1,
multiplied by standard deviation σ = 1.0 for the hidden layers and σ = 0.1 for the
output, divided by the square root of the random value Xhl,nu, θhl,nuj = Xhl,nu σ√

X
.

E.5 Scenarios: Results and discussions

In this section, we investigate the application of the ARS-ANN algorithm in a case-study
smart warehouse, featuring both electrical (BESS) and thermal (TES) energy storage
systems. Therefore, we have the opportunity of analysing algorithm performance on
a complex temporal energy optimization problem. The objective of the algorithm is to
reduce energy cost by controlling charging and discharging setpoints of both energy storage
systems, BESS and TES.
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Figure E.7: Total energy consumption and ARS-ANN agent ESS utilization in experiment
one.

Table E.3: Results for 10 seeded trials for ARS-ANN vs GLPK - battery only.

Trial GLPK - Battery only ARS-ANN Result Percent of GLPK

1 4910 5046 103%
2 7115 7106 100%
3 7540 7498 99%
4 298 361 121%
5 643 639 100%
6 7117 7109 100%
7 5861 5864 100%
8 3771 3780 100%
9 640 641 100%
10 6652 3233 49%

Table E.4: Results for 10 seeded trials with state-of-the-art RL algorithms.

Trial SAC TD3
Reward Percentage ARS-ANN Reward Percentage ARS-ANN

1 13 0.3 % 346 7 %
2 7083 99.7 % 290 4 %
3 7147 95.3 % 43 1 %
4 141 39.1 % -62 -1 7%
5 86 13.4 % 76 12 %
6 1246 17.5 % 305 4 %
7 133 2.3 % 55 1 %
8 3772 99.8 % 21 1 %
9 728 113.5 % 232 36 %
10 691 21.4 % -338 -10 %
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E.5.1 Scenario I - Proof of concept

In scenario I (i.e. first experiment), we apply the ARS-ANN agent to control both BESS
and TES for a random 48-hour episode. Our results clearly indicate that the agent is able
to find a near-optimal value for BESS charging such that the peak power cost is reduced
to a minimum. Change in cooling plant electrical consumption due to control of the TES
is shown in Fig. E.6, whereas total energy consumption and ESS actions performed by
the ARS-ANN agent are shown in Fig. E.7. As we can observe in Fig. E.7 the maximum
hourly energy consumption is flattended, by utilization of the ESS, to around 512 kW,
compensating for the consumption peak at almost 600 kW that would occur in the baseline
consumption and contributing maunly in the reducing peak power tariff cost. The agent
took advantage of the TES, when heating was required, to reduce the electrical energy
required by the cooling plant. It is relevant to mention that the heating demand was very
low during the random episode used for experiment one. However, the ARS-ANN agent
was still able to find and store excess heat when there was no cost induced, and then in
turn used this to partially reduce electrical consumption by discharging when necessary.
Doing this, the agent was able to minimise cooling system energy demand when heat was
in demand.

E.5.2 Scenario II - Seeded trials and benchmarking

To better quantify the performance of the ARS-ANN agent, we compare it with a GLPK
optimization solver in multiple seeded trials, as well as benchmark it with other state-of-the-
art RL algorithms. The GLPK will be controlling solely the BESS, with perfect information,
and the comparison will be done for 10 seeded trials. Opposed to the GLPK, the ARS-
ANN agent will have control of both BESS and TES. We have decided that comparing
performance to an optimization algorithm, with perfect information, of simultaneous BESS
and TES control is out of the scope of this paper due to the complexity. Additionally, the
operational data used to pull random seeded trials is from early winter where the potential
cost reduction of optimal TES control is minor compared with BESS control. There are
two main reasons behind this choice of time period. Firstly, this was the time period with
the most available data requiring minimal amounts of data cleaning. Secondly, we decided
that observing how the algorithm performs in controlling multiple systems with vastly
different impact on the result would be of interest.

The results of the simulation are displayed in Table E.3. We observe that for the
majority of the trials, the energy cost reduction of the ARS-ANN with both BESS and TES
control either meets or exceeds the cost reduction of the GLPK with BESS control only.
For trial 10, the algorithm seems to get stuck in a local optima where it charges the battery
too agressively on the first timestep. Additional research is required to explore why this
happens and how it can be avoided in the future. In the 4th seeded trial we observe that
the ARS-ANN outperforms GLPK by 21%. In this trial, the potential of cost reduction
using the BESS is quite low due to a relatively low baseline peak power cost. Finally, we
compare results for the SAC and TD3 RL algorithms to the ARS-ANN algorithm solution,
shown in Table E.4. In Table E.4 the results for SAC and TD3 are compared to the results
for ARS-ANN from Table E.3. Here, we can observe that TD3 seems to get stuck around
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origo while SAC actually performs reasonably well and even exceeds ARS-ANN in a
single trial, finally achieving an average performance of 50% compared with ARS-ANN.
However, on a reasonable time frame of running the algorithms for about a week of training
time on 6 GPU’s and 96 CPU’s, both SAC and TD3 achieved similar results. It was only
after increasing SAC training, by a factor of 3, to a total of more than 3 weeks that these
results could be achieved. Also, the SAC algorithm results were not stable in the sense that
the performance does not stabilize at a high performance. In fact, it drops off entirely in
most cases. The results in Table E.4 include the maximum award achieved during each
training session.

We also ran the seeded trials for the original ARS algorithm to quantify the improve-
ment represented by ARS-ANN. The results showed that ARS performed at an average of
68 % compared to GLPK over the 10 trials and hence was outperformed by ARS-ANN by
almost 30 percentage points.

E.5.3 Discussion

In this paper, we examine the applicability of the ARS-ANN RL algorithm to a complex
energy cost reduction problem by direct control of BESS and TES charging and discharging
setpoints in a simulated environment of an operational smart warehouse.

To evaluate our solution, we use a GLPK optimization solver, controlling only a BESS,
as a benchmark. We have decided not to include the TES in the GLPK solver for two
main reasons: (i) our initial data analysis demonstrated a marginal impact of the TES,
and (ii) its complex thermal dynamics. We argue that for this work a GLPK solver with
BESS represents a sufficient approximation to a good solution. We show that for nine out
of ten of our seeded trials, the algorithm meets or exceeds the performance of a GLPK
optimization solver controlling the BESS only, while given perfect information. For the
single trial where it only performs at around 50% of the GLPK, the algorithm seems to get
stuck in a local optimum which is to be further explored in future research.

We also compare our solution to state-of-the-art RL algorithms, showing an average of
100% performance increase compared to the SAC algorithm. However, the SAC algorithm
was able to match or slightly exceed the performance of ARS-ANN in a few seeded trials
when SAC training time was increased by a factor of 3. Further, the best results for SAC
were not maintained as the training progressed, meaning that the performance declined
after briefly achieving the highest performance for each training session. These ”sparks
of brilliance” could perhaps be leveraged in some way in future research. It would be of
interest, for future work, to investigate possible solutions combining ARS-ANN and SAC
for managing BESS and TES.

It is essential to mention that, due to time constraints and a lack of additional data, we
only tested our approach in scenarios in which the heating demand was limited. It would
be of interest, in future studies, to explore a broader landscape of scenarios, with higher
heating demand, to evaluate the general efficacy of the method.
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E.6 Conclusions

We demonstrate that we are able to minimize energy cost in the considered warehouse.
We are able to model the dynamics of the TES and to use it in combination with BESS,
controlled simultaneously by the ARS-ANN agent.

We demonstrate that by combining BESS and TES with the presented ARS-ANN
agent, the agent was able to stabilize maximum energy consumption and thereby reducing
the peak power cost. Additionally, the agent was able to exploit the TES when the heat
was in demand to reduce the required electrical energy consumption by the cooling plant
and electrical boiler.

To conclude, we propose a novel approach to control both the BESS and TES of a
smart warehouse simultaneously to reduce total energy cost. This is important because
combining different energy storage systems can lead to improved performance and cost
savings but also introduces new challenges due to each system’s different dynamics
and control requirements. The results conclusively show that ARS-ANN outperforms
comparable RL algorithms, achieving similar performance to an optimization algorithm
controlling the BESS with perfect information.
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