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Abstract

This thesis examines hourly aggregated data from 501 photovoltaic (PV) installations, builds
a better knowledge foundation about the geographical performance of PV systems in Norway,
and provides a groundwork for how PV datasets with limited metadata can be analyzed.
Metadata is supplemented with inferred tilt and azimuth by analyzing the power and irradi-
ance relationship at different orientations, with 1◦ intervals. When tested with a known PV
installation, the result shows a median accuracy of 12.2◦ and 14.1◦ for tilt and azimuth, re-
spectively. To analyze the performance of PV installations, the power output data is filtered
with a linear filter (RANSAC) and a polynomial non-linear filter. The latter shows promising
results, as long as specific requirements regarding the number of available timestamps are
available. Unknown capacity units are inferred by selecting highly probable units (Wp, kWp,
and MWp) and finding highly probable specific yields. Installations, where highly probable
specific yields are not found using these units have been removed from further analysis.
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Sammendrag

Denne oppgaven undersøker timebaserte data fra 501 solcelleanlegg (PV) og bygger et bedre
kunnskapsgrunnlag om den geografiske ytelsen til solcelleanlegg i Norge. Oppgaven gir også
et grunnlag for hvordan solcelledatasett med begrenset metadata kan analyseres. Metadata
er supplert ved å beregne tilt og asimut ved å analysere effekt- og solinnstråling i forskjellige
orienteringer, med 1◦-intervaller. Resultatet er en median nøyaktighet på 12, 2◦ og 14, 1◦

for henholdsvis tilt og azimut. Resultatene er testet med en kjent PV-installasjon. For å
analysere PV-installasjonene filtreres effektdataene med et lineært filter (RANSAC) og et
polynomisk ikke-lineært filter. Sistnevnte viser lovende resultater, så lenge spesifikke krav
til antall tilgjengelige tidsstempler er tilgjengelige. Ukjente kapasitetsenheter utledes ved å
velge svært sannsynlige enheter (Wp, kWp og MWp) og finne svært sannsynlige spesifikke
utbytte. Installasjoner der svært sannsynlig spesifikk utbytte ikke er funnet ved bruk av
disse enhetene, er fjernet fra videre analyse.
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• Eac(t) AC energy over time period ∆t [kWh]

• Pac(t) AC power at time t [kW]

• Edc(t) DC energy over time period ∆t [kWh]

• Pdc(t) DC power at time t [kW]

• Ecum Cumulative energy output over time [kWh]

• t Time [s,h,min,M,Y]

• N Number of time steps [-]

• Yr Reference yield [h]

• HG Measured on-site irradiation [kWh/m2]

• ESTC Reference irradiance at standard test conditions [kW/m2]

• Yf Final yield [h]

• PSTC Power produced under standard test conditions [kWp]

• Ya Array yield [h]

• PR Performance Ratio [-]

• Epoa Irradiance on the plane of array [W/m2]

• NOCT Nominal operating cell temperature [◦C]

• tempcell Cell temperature [◦C]

• tempair Air temperature [◦C]

• ENOCT Irradiance at NOCT condition [W/m2]

• P Power output [W]

• TC(P(MPP )) Temperature coefficient at maximum power point [%/◦C]

• GHI Global Horizontal Irradiance [W/m2]

• BHI Direct (Beam) Horizontal Irradiance [W/m2]

• DHI Diffuse Horizontal Irradiance [W/m2]

• DNI Direct Normal Irradiance [W/m2]

• Kd Daily diffuse fraction [-]

• DHIdaily Daily cumulative diffuse horizontal irradiation [kWh/m2]

• GHIdaily Daily cumulative Global horizontal irradiance [kWh/m2]

• Rb Geometric factor of direct irradiance on the tilted surface to the direct irradiance on
the normal surface [-]

• a variable for incident angle of sunlight on the surface [-]



• b variable for solar zenith [-]

• F1 Circumsolar brightness coefficient [-]

• F2 Horizon brightness coefficient [-]

• α tilt angle [Degrees]

• β Azimuth angle [Degrees]

• θ Incident angle of the sun [Degrees]

• θz sun zenith angle [Degrees]

• δ Brightness sky condition [-]

• f11, f12, f13, f21, f22, f23 Numbers based on empirical data for the specific location [-]

• ρ albedo [-]

• Pnorm(t) Normalized power at time t [-]

• P (t) Power at time t [W]

• P (t)max Maximum power at time t [W]

• Epoa,norm(t) Normalized plane of array irradiance at time t [-]

• Epoa(t) Plane of array irradiance at time t [W/m2]

• Epoa(t)max Maximum plane of array irradiance at time t [W/m2]

• RMSE(α, β) Root mean square error for given tilt (α) and azimuth (β) angles [-]

• i Time step [Variable]

• T Number of time steps [-]

• ACnorm(α, β, i) Normalized AC power for given tilt (α), azimuth (β), and time step (i) [-]

• Nu optimal number of iterations [-]

• p Probability for a successful fit in RANSAC [-]

• ω Probability of inliers in the data for RANSAC [-]

• n Required amount of data points to make an acceptable fit in RANSAC [-]

• Fvalue F-value for ANOVA [-]

• MSSb Mean sum of squares between groups [-]

• MSSw Mean sum of squares within groups [-]

• Q1 Lower quartile [Variable]

• Q3 Upper quartile [Variable]

• IQR Interquartile range [Variable]

• HSD Turkey Honestly Significant Difference [Variable]



• Mi Mean of group i [Variable]

• Mj Mean of group j [Variable]

• MSW Mean square within groups [Variable]

• H Kruskal-Wallis H-value [-]

• U Mann-Whitney U-value [-]

• wg Wilcoxon signed-rank test statistic [-]

• αs Significans level [-]
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Chapter 1

Introduction

1.1 Background

The surplus of energy production is forecasted to diminish up until 2030 in both Norway
and the Nordic region. A deficiency in energy production causes the need for import during
peak periods. There is already a power deficit in tight situations today in the Nordic region.
There are significant uncertainties in the growth of demand up until 2030, but an expectation
made by NVE is 2-6 GW. The forecasted increase in supply is expected to come mainly from
solar and hydropower. However, the increase is only expected to be 0.6 GW in the winter
months by 2030. This leads to an expectation of increased power deficiency in the time to
come [1]. Table 1.1 shows the expected increase in grid-connected solar photovoltaic (PV)
energy in Norway and the Nordic region.

Table 1.1: Expected solar PV capacity increase in Norway and the Nordic region. Source: NVE [1]

Area Year Installed Capacity [GW]

Norway 2021 0.3
2025 0.7
2030 1.8

Nordic region 2021 3.8
2025 9.4
2030 12.6

As the grid-connected installed capacity is forecasted to grow six-fold by 2030, and solar
PV energy mainly depends on available solar irradiance and location, the knowledge of ex-
pected power output is essential for investors, owners, and grid regulators. Much extensive
data analysis has been done on the performance of PV installations in Europe; however, a
gap remains in the literature regarding large-scale PV analysis using real-world data for the
Norwegian climate. Norway is located in the northern parts of Europe. Sunlight is therefore
received at a steeper angle, and fewer sunlight hours and less irradiance are received; as a
cause of this, the snow amount is also higher.

Solcellespesialisten is a large supplier of complete solar systems in Norway and delivers
systems to housing, industry, agriculture, and a solar park. They have provided facilities
with a yearly estimated production of up to 860,000 kWh [2]. Production records from
these facilities have been saved and stored by Solcellespesialisten. Consequently, they have
a vast amount of real-world solar data from the Norwegian climate. This project has been
conducted in collaboration with Solcellespesialisten and The Institute for Energy Technology
(IFE), a leader in solar PV research in Norway. IFE is looking for more information on the
solar industry in Norway and has therefore identified Solcellespesialisten’s database as a
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valuable resource.

1.2 Motivation

Critical challenges face the energy supply network in the near future, with a forecast of a
2-6 GW increase in demand by 2030 and only a 0.6 GW increase in production during the
winter months. Together with the growth of grid-connected PV installations expected to
be six-fold over the next decade, as much information as possible is needed to predict the
demand/supply of the power grid at the end of this timeline. Therefore, understanding the
performance of PV based on geolocation is a critical factor for the demand/supply predic-
tion and economical bankability of projects. With Solcellespesialisten offering its dataset for
further studies, the motivation for this master thesis becomes to analyze a real-world dataset
and develop a practical procedure for data analysis.

1.3 Problem Statement

This thesis aims to provide a method for analyzing real-world datasets. Therefore, this thesis
addresses the following problem: How can a large number of PV installations be analyzed
with limited data? This includes solving challenges regarding missing data information and
analyzing the data. To address the overarching problem, the following sub-questions are
made:

• What are the challenges in working with real-world data containing unspecified or
inconsistent measurement units, and how can they be addressed?

• How can shortcomings in data and metadata be overcome?

• Are there any regional differences in the performance of PV installations across Norway?

1.4 Limitations and Assumptions

The data from Solcellespesialisten lacks information on installation tilt and azimuth, leading
to an investigation into determining tilt and azimuth from production data. The utilized
solution includes curve fitting the power output of a selection of optimal days over the course
of a year and the irradiance for every possible plane in 1◦ increments. However, this method
assumes that all panels in a PV installation have the same orientation, which may lead to
inaccurate results in cases where this assumption does not hold.

The data contains unspecified units of measurement, such as power, timezone, temperature,
and capacity. The timezone has been determined by comparing the sunrise and sunset times
with the power data’s start and end times and other methods. The temperature measurement
appears to be an offset, likely representing inverter temperature versus air temperature. A
non-linear method has been utilized to filter the power data to include decreased efficiency at
higher temperatures. The capacity unit is theorized to be in Wp, kWp, or MWp; the correct
value is determined by calculating the specific yield for the different units and utilizing the
most likely result. Capacity units that are not logged in Wp, kWp, or MWp have not been
adjusted to the correct unit of measurement and will give false results if not detected and
removed from the dataset. Another dataset limitation is that each PV installation is limited
to a maximum duration of one year. This means some PV installations are not included in
the analysis due to lack of time. The geographical distribution is also uneven, with most PV
installations near major cities. Local irradiance measurements are also not included, leading
to satellite data usage.
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The data from Solcellespesialisten was made available on 13.03.2023, which limited the avail-
able time for the analysis. As a result, a majority of the time was spent in the initial research
phase, including testing methods on known datasets, such as data from the installation at
the University of Agder and reading literature. This allowed progress to be faster once the
data was made available. In addition, the knowledge that tilts and azimuth would not be-
come available came on 21.03.2023, with tilt and azimuth being absent from the dataset; an
addition of a procedure to locate the tilt and azimuth was included in the theses, resulting
in less time in other parts of the thesis.

1.5 Thesis Structure

This thesis is structured as follows: Chapter 2 presents the theory used to process the result.
Chapter 3 details the previous research done in this field. Chapter 4 explains the method
used to gather and analyze results. Chapter 5 includes various ways the data has been
manipulated to ensure good quality. Chapter 6 shows the results and discusses some specific
results, and Chapter 7 contains a broader discussion of the methods used, challenges, and
some comparisons to the literature review. Finally, to conclude the thesis, chapter 8 presents
the conclusion.
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Chapter 2

Theory

2.1 PV Energy Output

2.1.1 Energy

Energy is defined as the integral of power over time, as described in equation 2.1 for AC
energy, and 2.2 for DC energy [3, p. 3-5].

Eac(t) = Pac ∗ t =
∫

Pac(t)dt (2.1)

Edc(t) = Pdc ∗ t =
∫

Pdc(t)dt (2.2)

A PV system’s cumulative energy output over time is defined by equation 2.3.

Ecum =
N∑
t=1

E(t) (2.3)

Ecum is the cumulated energy over the given period, it can either be AC or DC power,
depending on if the momentary measurement of energy E is in AC or DC, N is the duration
of the period [4].

2.1.2 Yield

The yield of a PV plant can be measured in multiple ways, quantified in terms of reference
yield, final yield, and array tiled as specified below.

Reference Yield (Yr)

Reference yield compares the measured on-site irradiation with the irradiation at standard
test conditions (STC), as described in equation 2.4. Yr is the reference yield and describes
the theoretical maximum convertible energy available [3, p.278-280], [4], [5].

Yr =
HG

ESTC

(2.4)

In equation 2.4, HG is the measured on-site irradiation (in kWh/m2), and ESTC is the
reference irradiance at standard test condition (1 kW/m2).

4



Final Yield (Yf)

The final yield describes the energy produced at the AC side, divided by installed peak
capacity, as described in equation 2.5. It represents the installation’s hours at STC conditions
to generate the recorded energy. The final yield includes the generator losses(LC). Generator
losses can be caused by factors such as high module temperature, shading, ohmic losses, and
not operating at maximum power point [3, p.278-280], [4]

Yf =
Eac(t)

PSTC

(2.5)

In equation 2.5, Yf is the final yield, Eac(t) [kWh] is the energy produced on the AC side,
and PSTC [kWh] is the power produced under Standard test conditions.

Array Yield (Ya)

Array yield is similar to the final yield, except that it refers to the energy produced at the
DC side of the inverter; therefore, the generator losses(LC) are not included. The array yield
is described in equation 2.6 [3, p.278-280].

Ya =
EDC(t)

PSTC

(2.6)

In equation 2.6, YA is the generator yield, EDC(t) [kWh] is the energy produced on the DC
side, and PSTC [kWh] is the power produced under standard test conditions.

2.1.3 Performance Ratio

Performance ratio (PR) measures how efficiently the PV plant utilizes the available irradia-
tion. Equation 2.7) describes the relationship between equation Yf (from equation 2.5) and
Yr (from equation 2.4) [3, p.279-281].

PR =
Yf

Yr

(2.7)

2.1.4 Solar Irradiance and Power Output Relationship

The module’s temperature correlates with the air temperature and irradiance. Other fac-
tors affecting the temperature include windspeed, available cooling, and construction. This
section demonstrates the nonlinearity of power output with increased cell temperature and
irradiance. Nominal operating cell temperature (NOCT) is a standard to assess PV pan-
els. The conditions are Epoa = 800W/m2, ambient temperature of 20◦, and windspeed of 1
m/s2. The NOCT temperature is described in the datasheet of the PV module and varies
depending on the technology and module. Equation 2.8 is a simplified estimation of the
cell temperature that assumes a linear increase in temperature with irradiance. tempcell in
equation 2.8 is the cell temperature and, tempair is the air temperature [3, p.147-149].

tempcell = tempair + (NOCT − 20◦) · Epoa

ENOCT

(2.8)

With tempcell the actual power can be estimated using equation 2.9, where P is power, PSTC

is power at STC, TC(P(MPP ) is the temperature coeficient (TC) at maximum power point
(MPP ) [3, p.147-149].

P = PSTC · [1 + TC(P(MPP )) · (tempcell − 25◦)] (2.9)
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2.2 Solar Irradiance and Resource Data

Solar irradiance data is needed for the calculation of PR. Irradiance can be measured locally
with equipment such as pyranometers. When such equipment is unavailable, other options,
such as measurements with satellite data, can be used.

2.2.1 Solar Irradiance: GHI, BHI, DHI, and DNI

Multiple factors are influential in how much irradiance reaches the PV panel. As the ir-
radiance hits the atmosphere, some will not enter due to reflection on the atmosphere’s
boundary. Another reason for lower irradiance is the absorption of light by molecules. The
irradiation that enters and does not get reflected or absorbed may change direction due to
scattering effects. Scattering effects occur when the irradiation hits dust particles and other
aerosols. When the irradiance changes direction, it is classified as diffuse irradiation. This
diffuse irradiation can unevenly distribute the irradiance. Due to these factors, there are
multiple classifications of irradiance measurements per surface unit. The difference between
them is the travel path of the irradiance and the impact angle. The most commonly used
classifications are Global Horizontal Irradiance (GHI), Direct (Beam) Horizontal irradiance
(BHI), Diffuse Horizontal Irradiance (DHI), and Direct Normal Irradiance (DNI) [3], [6].

Diffuse horizontal irradiance has interacted with some form of aerosol and changed direction
from a straight path from the sun. In some locations, like Glasgow, the DHI might contribute
more to the total irradiance than direct irradiance for a year [3]. Direct normal irradiance
is irradiance that has traveled in a straight path; It is measured on a normal plane (perpen-
dicular) to the sun. Direct Horizontal Irradiance (BHI) is similar to DNI, except that it is
measured in the perpendicular plane. Global horizontal irradiance is the combined effect of
direct and diffuse irradiance measured on a horizontal surface [3], [6].

2.2.2 Albedo and Ground Reflection

In addition to direct and diffuse irradiation, there is the effect of albedo. Albedo is a reflective
property of materials. As irradiance hits the ground, the material of the ground decides how
much of the irradiance is reflected. Albedo can therefore impact the total irradiance on a
given surface. The tilt of the panel decides how much this affects the total irradiance—a
steeper angle results in more irradiation due to the albedo effect. Typical values for different
surfaces include grass at 0.25, lawn changing between 0.18 to 0.23, forest altering between
0.05 and 0.18, tarmac at 0.15, concrete within the range of 0.2 to 0.3, fresh snow from 0.8
to 0.9, and aged snow at 0.45 [3, p.37-38].
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2.2.3 CAMS Radiation Service

CAMS (Copernicus Atmosphere Monitoring Service) gathers and provides information on at-
mosphere conditions, including but not limited to CO2, CH4, pollen, and irradiance. CAMS
radiation service’s goal is to fulfill the needs of national policy developments and the require-
ments of third-party commercial use [7]. The quality of the data is assured with tests against
independent observations. CAMS radiation services offer two primary services: CAMS all-
sky radiation services and CAMS clear sky radiation service. Only CAMS all-sky radiation
services have been utilized in this thesis. CAMS all-sky radiation service’s newest model is
Heliosat-4. It can generate data from 2004 up until two days ago. The data can be delivered
with a time resolution of one min, 15 min, hourly, one day, and one month. Heliosat-4
generates data for the latitude and longitude between −66◦ and 66◦. The data is interpo-
lated to the chosen location. The data is calculated using aerosol, water vapor, and ozone
data from CAMS global forecasting system and satellite observations, together with ground
elevation and albedo. The calculation process mainly consists of look-up tables, where all
aforementioned data is used. The output data includes two main categories, clear sky, and
horizontal measurements, including GHI, BHI, DHI, and DNI measurements [6]–[10].

Satellite Data

Satellite-derived irradiance data is created differently based on the method used. The basics
are, however, similar. A satellite in orbit takes pictures that are analyzed. The pictures
are often taken at different wavelengths to distinguish different features, such as visible light
(≈ 0.65µm) and infrared (≈ 11.0µm). Infrared images can be used to detect water vapor. A
combination of reactance on visible light images and infrared brightness temperature can be
used to detect clouds; combining these images allows for height and density detection. Photos
taken at different times can also be compared, as a baseline of non-cloudy environments is
beneficial [11], [12]. The equations for calculating the irradiance differ for different methods;
Heliosat-4 mainly uses look-up tables [9].

2.3 Inference of Tilt and Azimuth

2.3.1 Daily Diffuse Fraction

The daily diffuse (Kd) is a fraction defined by the DHI and GHI at a specific location and
time. The DHI and GHI values are integrated values over a day. The daily diffuse fraction is
a factor that ranges from 0 to 1, describing the sky’s clarity, 1 being full cloud cover, while
0 is a no-cloud environment. Equation 2.10 describes the mathematical expression of the
daily diffuse fraction when the DHI and GHI are the integrated sums of the day [13].

Kd =
DHIdaily
GHIdaily

(2.10)

Where Kd is the daily diffuse fraction. DHIdaily is the daily cumulative diffuse horizontal
irradiation [kWh/m2], and GHIdaily is the daily cumulative Global horizontal irradiance
[kWh/m2] [13].

2.3.2 Plane-of-Array Irradiance Calculation

Weather data from satellites or other off-site methods are often recorded in GHI, DHI, and
DNI components. As the performance calculations for PV require the irradiation in the
plane of tilt and orientation, the Perez model transposes the components into the plane of
array irradiance (Epoa), and is implemented in the pvlib library [14]. Equation 2.11 is the
mathematical model used by pvlib.irradiance.get_total_irradiance [14] . The Perez
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anisotropic sky model was developed in 1990 and has been widely used for its accuracy and
efficiency [15], [16].

Epoa = DNI ·Rb +GHI[(1−F1)(
1 + cos β

2
) +F1

a

b
+F2 sin β] +DHI · ρ(1− cos β

2
) (2.11)

In equation 2.11, Rb is a geometric factor of direct irradiance on the tilted surface to the
direct irradiance on the normal surface. a is the incident angle of sunlight on the surface
variable, and b is the solar zenith variable. a is defined in equation 2.12, and b is defined in
equation 2.13. F1 is the circumsolar brightness coefficient, and F2 is the horizon brightness
coefficients; they are defined in equation 2.14 and 2.15 respectively. β is the tilt angle mea-
sured from the horizon [15], [16].

In the equation 2.12, θ is the incident angle of the sun. While in equation 2.13, 2.14, and
2.15, θz is the zenith angle [15], [16].

a = max(0◦, cosθ) (2.12)

b = max(cos 85◦, cos θz) (2.13)
In equation 2.14 and 2.15, f11, f12, f13, f21, f22 and f23 are numbers based on empirical data
for the specific location, δ is the sky brightness condition, The original presentation [15] of
the model has two different datasets for these empirical data [15], [16].

F1 = max[0, (f11 + f12δ +
πθz
180

)f13] (2.14)

F2 = f21 + f22δ +
πθz
180

f23 (2.15)

2.3.3 Normalization

Normalization is a process that adjusts data amplitude by dividing each data point by a
fixed and known variable. This is particularly useful when comparing two datasets with
correlated changes but different amplitudes. Normalizing the data transforms the amplitude
into a value between 0 and 1, allowing for easier comparison between datasets with different
amplitudes. Equation 2.16 shows the power normalization, and Equation 2.17 demonstrates
the plane of irradiance normalization. In both cases, the values are normalized using the
maximum value of the corresponding variable during the respective day [13].

Pnorm(t) =
P (t)

P (t)max
(2.16)

Epoa,norm(t) =
Epoa(t)

Epoa(t)max
(2.17)

2.3.4 Root Mean Square Error (RMSE)

The RMSE is a widely used metric to evaluate differences between two datasets. Equation
2.18 calculates the root of the average difference between the normalized plane of array
irradiance (Epoa,norm) and the normalized AC power (ACnorm) data, for different tilt (α) and
azimuth (β) angles, i being the timestep, and T being the number of timesteps [13].

RMSE(α, β) =

√√√√ 1

N

Nu∑
i=1

(Epoa,norm(α, β, i)− ACnorm(α, β, i))2 (2.18)
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2.4 RANSAC

Random Sample consensus (RANSAC) is a method of finding inliers and outliers in a dataset.
The algorithm selects an arbitrary data point within the dataset and fits the model. It then
determines the number of outliers and repeats for selected iterations. Parameters in the
analysis include the minimum samples needed (n) to make up a fit. This is a minimum of
2-datapoints for a 2D plot and 3 for a 3D plot. The optimal number of iterations (Nu) to
get the correct inliers can be estimated based on the type of data used and its expected
probability that a given datapoint is an inlier (ω) using equation 2.19 [17]–[19].

Nu =
log(1− p)

log(1− ωn)
(2.19)

In equation 2.19, Nu is the number of iterations needed, p is the probability for a successful
fit, ω is the probability of inliers in the data, and n is the required amount of data points to
make an acceptable fit [19].

2.5 Statistical Analysis

To detect statistical differences between two groups, there are two main categories of tests;
parametric and nonparametric. The main difference is the assumption of the underlying
data. The normality of the dataset can be confirmed in two ways: First, if the filesize is
small, multiple sample sets are needed. Alternatively, if there is enough information in one
dataset, a conclusion can be made that the data is normally distributed, and the underlying
data is said to be normally distributed. In these cases, parametric tests are best suited, as
these are made with this data in mind. On the other hand, nonparametric tests do not look
at the mean data, as in parametric tests but consider a magnitude made from the data. This
causes information to be lost and is therefore seen as inferior in the use case if the data is
normally distributed. Still, it is an effective procedure if the normal distribution criteria are
not met. The significance level (αs) describes how certain one should be before disregarding
the null hypothesis. The equation to determine αs is formulated in equation 2.20, where the
confidence level is presented as a decimal [20].

αs = 1− confidence level (2.20)

2.5.1 One-way Analysis of Variance (ANOVA)

One-way Analysis of Variance (ANOVA) is used to compare multiple datasets and is a para-
metric test. The null hypothesis of ANOVA is; The samples in the groups are from the same
population. If the null hypothesis is proven wrong, the data came from different popula-
tions, and the data is considered statistically different. The F-value decides the statistical
difference. The F-value is calculated using equation 2.21. The assumptions that have to be
met for the analysis to be valid are; independent samples, equal variance in the sample pop-
ulation, data measured on an interval or ratio scale, the data must be distributed normally,
independent errors and errors that are normally distributed, and the variance in the different
groups have to be equal. It is important to note that perfect scenarios rarely happen in the
real world and that ANOVA is robust in cases where the normality assumption is somewhat
disobeyed [21, p. 221-234], [22].

Fvalue =
MSSb

MSSw

(2.21)

MSSb is the mean sum of squares between the groups, and MSSw is the mean sum of squares
within groups. F-values being higher indicates differences between the groups. To abandon
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the null hypothesis, the calculated F-value has to be higher than the critical value. The
critical value can be found using lookup tables but is usually automated with software [21,
p.221-234].

2.5.2 Turkey’s Method

Turkey’s Method, also known as Turkey’s fences, is a widely used filtering technique for iden-
tifying and removing outliers. It performs best if the data follows a normal distribution [23].
Outliers can alter results in modeling and statistical analysis; Turkey’s rule addresses this
issue by identifying data that falls outside a multiple of the interquartile range (IQR). IQR
is defined by data between Q1 (25th percentile) and Q2 (75th percentile) and represents 50%
of the data. The upper and lower limits in equation 2.22 describe the point at which outliers
start [23].

Upper limit = Q3 + 1.5 · IQR,

Lower limit = Q1 − 1.5 · IQR,

Inter Quartile Range (IQR) = Q3 −Q1,

Q1 = 25th percentile,
Q3 = 75th percentile

(2.22)

2.5.3 Turkey HSD

Turkey Honestly Significant Difference (Turkey HSD) is a standard posthoc procedure after
a one-way ANOVA test. Thurkey HSD is a pairwise comparison, where the knowledge of
what pairs differ is found. The test’s criteria are the same as for the one-way ANOVA test.
The null hypothesis is that there is no difference between the groups. The method uses
equation 2.23 to determine the HSD [24].

HSD =
Mi −Mj√

MSW

N

(2.23)

where the difference between the tested pairs is Mi−Mj, number of groups is N , and MSW

is the mean square Within. To reject the null hypothesis, the absolute difference between
the means of the two groups must be greater than the calculated HSD value [24].

2.5.4 Kruskal-Wallis H-test

Kruskal-Wallis H-test is often seen as the nonparametric alternative to one-way ANOVA.
Kruskal-Wallis H-test is, therefore, also a statistical test to determine if at least two groups
differ. In cases with more than two groups, the result does not reveal which one is different.
To use Kruskal-Wallis H-test, a couple of parameters must be met. The groups must be
independent and should, therefore, consist of two or more categories. There should be no
relationship between the observation in each group, and one participant can not be present
in another group. The result of the data also needs to be analyzed according to the data
distribution. If the data in the groups are similar, the groups’ median should decide what
groups might deviate. If the groups are not equally distributed, the Kruskal-Wallis H test
should compare the mean. The P-value is then found using look-up tables or software.
If the P-value is less or equal to the chosen α value, the null hypothesis can be proven
wrong [25], [26, p. 216-217].

H =
12N

N(N + 1)

k∑
i=1

R2
i

Ii
− 3(N + 1) (2.24)

10



In equation 2.24, N is the sum of all samples, k is total samples, and Ri is the sum of ranks.
The rank is found by merging all data and ranking by size. Finally, Ii is the sample size in
the i group [26, p. 216-217].

2.5.5 Mann-Whitney U-test

Mann-Whitney U is a nonparametric test; it tests for significant differences between two
groups. Mann-Whitney U-test is computed with Equation 2.25, and 2.26. The lowest U
value of the two equations is used, it is compared to a look-up table to determine if the U
value indicates a significant difference, but software is also often used [27].

U1 = n1n2 +
1

2
n1(n1 + 1)−R1 (2.25)

U2 = n1n2 +
1

2
n2(n2 + 1)−R2 (2.26)

In equation 2.25 and 2.26, n1 and n2 are the sample sizes (ni) of each group. R1 and R2 are
the number of ranks (Ri) in each group.

2.5.6 Dunn’s Test

Dunn’s test is an appropriate procedure following the Kruskal-Wallis H-test. Dunn’s test
allows for checking more than two groups and studying which groups differ. Dunn’s test
utilizes Mann-Whitney U-test to test each pair of groups. Dunn’s procedure allows the
comparison of the results. Equation 2.28 illustrates the equation for Dunn’s method [28].

zi =
yi

σi(1)
(2.27)

In equation 2.27, zi is the z-score; as in earlier tests, this value is used to find the p-value by
a look-up table or software. yi = WA−WB, where WA and WB is calculated by wgi = Ri/ni

for each group. σi is defined in equation 2.28

σi =

√
{N(N + 1)

12
−

∑r
s=1 τ

3
s − τs

12(N − 1)
}( 1
n1

+
1

n1

) (2.28)

Where N is the sum of all samples, τs is the number of tied values for the specific value in
the current rank (s), and r is the number of tied ranks. n1 and n2 is the sample sizes (ni)
for each group [28].

2.5.7 Error Rate Control

Multiple pairwise comparisons increase the probability of a type 1 error (falsely rejecting the
null hypothesis). Multiple procedures have been developed to address this issue; Bonferroni
and Benjamini-Hochberg’s procedures both address this issue. Bonferroni is a conservative
procedure severely limiting the chance of type 1 error. The Bonferroni divides the α by
the number of groups; this dramatically decreases the P-value needed to reject the null-
hypotheis [28, p. 292-299]. Benjamini-Hochberg procedure is less strict and contols the FDR
(false discovery rate). The goal of the ajustment is the make the probability of a type 1
error less than α [29].
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Chapter 3

Literature Review

3.1 Performance

Performance analysis of PV installations is a widely available topic in the research literature,
where different studies have looked at different climates and technology. There are multiple
metrics to compare system performance. Some of the most common methods are energy
output [kWh], final yield (Yf ), performance ratio (PR), specific yield [kWh/kWp], energy
density (Ed), system efficiency (ηsys), and array capture losses (LC) [4], [30]–[34].

3.1.1 Performance in Norway

Norway is located in northern Europe at a primary latitude and longitude of 62°N and 10°E,
respectively. As an effect of this, the radiation has to pass through a relatively thick atmo-
sphere, compared to locations closer to the equator, which is not beneficial. As it is in the
northern hemisphere, the Southern direction of the panels is beneficial. The northern parts
of the county receive the least amount of irradiance, where annual horizontal irradiance is
typically measured from 700 kWh/m2 to 900 kWh/m2. The photovoltaic potential is higher
in the southern parts of the country, where the measurement can reach as high as 1100
kWh/m2 [35], [36]. The variance in seasonality is significant; this goes for both the northern
and southern parts. The best locations in the country during the summer with up to 5500
Wh/m2 each day may not see more than 350 Wh/m2 each day during the winter [35], [37].

A study done in 2015 used a PV installation from the southern parts, specifically Ås, Nor-
way. The authors of [31] found an expected annual specific yield of 931.6 kWh/kWp and
an average daily final annual yield of 2.55 kWh/kWp together with a performance ratio of
0.83. The system’s tilt was 37◦, and orientation was South [31]. Another study published
the same year used a similar technique to find the expected performance of a PV installation
in Agder, Norway. The authors of [38] found a similar annual specific yield of 950 kWh/kWp

and a performance ratio of 0.79 in the year 2014. The systems tilt was 20◦, and azimuth was
200◦ (nearly South) [38].

The author of [39] has also done specific yield analysis on multiple PV installations in Nor-
way. The author found specific yields such as; 800 kWh/kWp (Hordanland; close to Bergen,
azimuth 190◦, tilt 0◦ − 70◦), 937 kWh/kWp (Agder; Kristiansand, azimuth 200◦, tilt 20◦),
895 kWh/kWp (Hedemark; Evenstad, azimuth 161◦, tilt 34◦), 810 kWh/kWp (Akershus;
Vestby, azimuth 90◦/270◦, tilt 10◦), 723 kWh/kWp (Oslo, azimuth 90°/270°, tilt 10°/20°),
710 kWh/kWp (Oslo, azimuth 90◦/270◦, tilt 10◦).

Solargis has simulated maps over the solar potential in Southern Norway; the World Bank
Group has published the data, which can be seen in Figure 3.1 and 3.2. The map shows
the coastal area between Kristiansand to Fredrikstad as one of the most optimal places,
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together with the mountainous middle. On the other hand, the west coast from Sandnesjoen
and upwards appear to be the least optimal area [37]. Overall their simulated results aligned
with what is found from actual PV installations [31], [35], [36], [38], [39].

Figure 3.1: Partial global horizontal irradiation map in Norway: published by the World Bank
Group, and visualized by Solargis. Source [37]

.

Figure 3.2: Partial photovoltaic electricity potential map in Norway: published by the World Bank
Group, and visualized by Solargis. Source [37].
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3.2 Data Filtering and Performance Analysis Methods

Existing outlier detection can roughly be categorized into three groups, rule-based, probabil-
ity statistical theory, and artificial intelligence (AI). Rule-based filtering removes data that
do not meet specific criteria; this could filter downtime, missing time intervals, power output,
current output, voltage output, and faulty metadata [23], [40]. There have also been devel-
oped routines for grading the data, as has been used in [40]. The preliminary data quality
grading was developed by IEA PVPS Task 13 [41], and grades power data depending on the
number of outliers (0 < P < Pnom) and missing values. It defines missing values/data as 0 or
NAN when irradiance is present. For the data to be accepted into the grading process, it has
to contain at least 24 months of data, as this is a lower period for multiple analyzing tools [40].

Statistical probability theory is based on finding highly deviating values from a pattern and
is quantified using different statistical tools. This is a low-cost way of outlier detection,
where one could compare module or inverter output in cases with limited metadata, such
as only current or power output. The authors of [42] used statistical methods, including
the 3-Sigma rule, Hampel identifier, and Turkey’s rule. The best indicator of how good
these simple statistical methods are at detecting faults is their sensitivity to outliers. If too
sensitive, outliers may not be detected as it is considered the norm. Therefore methods
like the 3-Sigma rule are not recommended, as they break down at 10% contamination [42].
Tukey’s rule and Hampel Identifiers are less sensitive to deviations and thus more suitable.
The Hampel rule might give false negatives due to its insensitivity to outliers [42]. The
near-linear power-to-irradiance relationship has also been utilized as a filtering technique. A
study from 2019 [43] has developed a near-linear method for detecting un-normal operating
conditions. Their method has been used with simulated and neighboring solar module data.
The working conditions behind the model are that the compared reference data (simulated
or neighboring PV installations) and the measured data are nearly linear. Therefore, a poly-
nomial fit should allow temperature change with increasing power/irradiance. This method
makes it possible to detect outliers and, thus, a loss in energy due to the surrounding area
(clouds, snow, reflection) and a malfunctioning system. However, separating the different
fault conditions still needs to be implemented and further studied. Data filtering appears
minimal in multiple studies when calculating performance indices like PR and yield [4], [38],
[40].

Also, a commonly used method is clear sky filtering. Clear sky filtering filters out data to
only include data during low cloud cover. Clear sky filtering has the benefit of being con-
sistent over time due to low fluctuations in irradiance. Therefore, this filtering is preferred
when comparing modeled power to recorded data. For these reasons, the clear sky filter
is a common filtering technique when calculating degradation and soiling loss [5], [44]–[47].
Common implementations are the PVlib library [48], and the RdTools library [49].

Typical daily profiles are also a form of statistical probability filtering. This method was
developed to do a performance assessment where the loss in production due to failures and
curtailment periods was not detected or recorded. As the name suggests, it calculates the
production during a typical day, which can be used as a benchmark for comparing PV in-
stalations. This technique also neglects the need for irradiance data, as only the power
production log is needed. The model gives results on a typical day as the 50th percentile of
the data and a clear sky day as the 90th percentile of the data [34].

Another way is to compare neighbors using peer to peers(P2P) analysis. This is an approach
to analyzing the PV performance where either one [43] or multiple [50] peers are compared to
the focus facility. This method can be more stable than the performance ratio without peer
comparison, especially when less metadata is available or faulty [50]. In a perfect scenario,
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one would compare an installation on a neighboring roof with a similar tilt and azimuth, as
these would have the same irradiance conditions. As this is impossible in most scenarios,
some compromises must be made between distance and similarity. Therefore the basic steps
of this method are 1) to quantify the best peers. 2) compare their energy production. 3)
use fault detection on the compared data. One of the most significant benefits of this kind
of model is its flexibility in adding metadata. Some studies have successfully analyzed data
using only power generation data and location, although metadata such as peak capacity
improves the result [50].

Support Vector Machine (SVM) is an AI model used to find anomalies in power data. SVM
is a machine learning technique and, therefore, needs a training dataset clean of errors; Pre-
vious research has shown that a one-diode model for PV behavior is good enough to simulate
this [51]. Machine learning methods like SVM is then used to find deviances between the
prediction model and actual values. SVM is a useful method for detecting short circuit and
shading faults [51], [52]. Autoencoders are another machine learning technique similar to
that of SVM. Autoencoders have previously been used, like SVM, where a clean dataset is
preferred to train the model. The training data could include data such as electrical param-
eters, solar irradiance, and temperature [53]. Isolation Forest is another machine learning
technique, a benefit if this method is that it can handle more unbalanced datasets such as
unbalance between anomaly and normal operation in the dataset [54].

3.3 Detecting Tilt and Azimuth

Big data studies that have examined the most common tilt and azimuth in Europe [55]
found that a significant portion of the studied PV modules pointed south, with outliers in
the range of +/− 100◦ from the south. The authors also found that tilt is most common in
0◦−50◦. The study used datasets in the latitude of 30◦−50◦. Datasets that rely on the user
manually entering the orientation can include false standard values (e.g., 0◦) when the user
has not set any, or the user may set an incorrect value. An Australian dataset included 39%
such values, which are likely wrong [55]. An newer big data analysis in Europe that used
data gathered from private PV installations found that 30% of the installations had at least
10% of the time intervals missing [40]. It is, therefore, highly possible that automatically
logged information might be missing or logged incorrectly.

Detecting the tilt and angle of PV installations is a problem that has been solved in different
ways. One approach is to use digital elevation models (DEM). These models are created
using radar, lidar, or stereoscopic images. However, these methods rely on the knowledge of
the precise location and are often impractical because of time consumption. These methods
can detect the tilt with accuracy down to 3◦ mean absolute error [13], [56], [57].

Other methods can simulate the facility in various orientations and find the best fit. However,
these methods often require accurate metadata about modules and inverters’ technology. The
authors of [58] calculated the orientation as quality control of a dataset. Their method relies
on a nonlinear least squares solver and performs well at ≈ 4◦ error. However, the method
requires module technology to acquire the parameters for the model. PV installation param-
eters for the panel and inverter specifications can also be derived from historical PV power
measurements and meteorological data as done in [59]. They have not calculated individual
parameters, such as DC-loss, efficiency, and characteristics, but the cumulative effect of mul-
tiple. Their method showed to not be sensitive to outliers due to outages; however, shading
is a significant issue. In optimal cases, the orientation can be computed with an error as low
as 2◦ [59]. Curve matching between the power output and irradiance is also a method. The
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most significant benefit of this method is its ability to calculate the orientation without any
metadata. However, these methods also struggle with shadow [13].

In [13], the authors describe the relationship between the Epoa, tilt, and angle. Figure 3.3 how
Epoa is affected by tilt and azimuth. Figure 3.3a shows a module in the northern direction;
this panel has a decreased Epoa at steeper tilt angles. However, a northern installation
azimuth is uncommon in the northern hemisphere due to suboptimal solar patterns. Figure
3.3b, Figure 3.3c, and Figure 3.3d depict the impact of tilt and azimuth on solar panels facing
south, east, and west, respectively. These curves are normalized against the maximum value
for the corresponding day. In the southern direction, the time of peak normalized Epoa is not
affected by tilt, as shown in Figure 3.3b. However, the normalized Epoa before and after peak
hours decreases as the angle of tilt increases, resulting in a narrower curve for the irradiance.
As an effect of the sun’s path from east to west, the panels facing east reach peak normalized
Epoi earlier in the day than panels facing west. An increase in tilt for east and west-facing
panels results in a narrower curve for the normalized Epoa, indicating a shorter duration of
peak irradiance compared to panels with a direct southern orientation [13].

Figure 3.3: Effect of tilt and azimuth on Epoa for solar panels in different orientations: north (a),
south (b), east (c), and west (d). Source: Meng et al., 2020 [13]

.

3.4 Off-site Irradiance Measurement

There is multiple off-site (implying that the recording did not occur at the particular location
of interest) sources of irradiance data. CAMS solar radiation services [60], [61] is a part of
the Copernicus program [62], a component of the European Union’s space program. They
can offer irradiation data in the longitude and latitude of −66◦ and 66◦. National Renewable
Energy Laboratory (NREL) also has a free service that provides high-resolution irradiance
data for the entire globe. The data is in 4 km grid resolution between 1998 to 2017 at
30-minute intervals, with higher resolution of 2 km and 5-minute intervals after 2017 [63].
PVGIS, run by the European Commission, offers typical meteorological year data in hourly
resolution. The data is available in the timeframe 2005 to 2020. As well as satellite-derived
(SARAH, SARAH2, and NSRDB PSM3) and re-examine data (ERA5) [64], [65].
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3.4.1 CAMS Accuracy

Larger inaccuracies at the edge of the satellite view have been registered. The cause of
this is the satellite viewing angle, which causes cloud detection to be less accurate. For the
Heliosat-4 model, this has been registered at latitudes above 60◦. Snow can also cause prob-
lems as it can be mistaken as clouds. The Heliosat-4 model can offer surface solar irradiance
that changes accurately over time. The 15-min interval measurements have a correlation
coefficient of 0.67 − 0.87 when compared against ground measuring stations for DNI and
0.68− 0.87 for DHI, and 0.90− 0.96 for GHI [66].

Quarterly reports are made to ensure the accuracy of the data. The report from March-May
2022 is publicly available [67]. The relative biases for all-sky global irradiance were low at
under 5% for 24 of 32 stations, with an average bias of 16 W/m−2. The biases were primarily
positive, meaning the modeled values were higher than the measured. Mountain tops had
the weakest performance. All-sky diffuse irradiance also mainly overestimated the model
compared to the measurements and had a relative bias at less than 5% for 10 out of 17
stations, with an average of 15 W/m2 (absolute value). All-sky direct normal irradiance had
an average of 5.7% relative bias(27 W/m2), where 10 of 15 measurement stations were under
5%. The results were overall concluded to be satisfactory, even in northern locations [67].
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Chapter 4

Method

This chapter describes the methods used in this study and how they are implemented. The
first section 4.1 describes how irradiance data has been gathered using the Heliosat-4 model
from CAMS. The CAMS service is chosen because of its accessibility and having data for
the necessary dates. Next, reverse geocoding is utilized to find the geographical names of
the PV installation location; this is described in section 4.2. As all files have had some
adjustment/control to their time format, the following section 4.4 describes the method
used during time adjustment/control. As orientation(tilt and azimuth) was not included
in the data from Solcellespesialisten, the method to estimate this is included in section
4.5 After this, the method for finding inliers is described in section 4.6. Finally, the PV
system performance evaluation procedure is described in section 4.7. Figure 4.1 illustrates
a high-level structure of the method.

Figure 4.1: High-level flowchart of the utilized method

18



4.1 Irradiance Data - CAMS

Using the provided longitude and latitude, weather data is downloaded for all installation
sites in their available period with a time resolution of 5-min. The service used to gather
the weather data is CAMS. The data has been accessed using CAMS Radiation Automatic
Access (SoDa) using pvlib’s function pvlib.iotools.get_cams [10]. CAMS API is free; The
only limitation is that a user profile has to be created, and a maximum of 100 requests can
be sent each 24 hours. As the number of PV installations provided by Solcellespesialisten is
501, the corresponding irradiance data must be downloaded in smaller batches over multiple
days. A Python script has been created to allow for this. A short description is shown in
Table 4.1, and the complete code can be seen in Appendix K.

Table 4.1: Process of downloading irradiance data from CAMS

Step Description

1 Manually create a download folder for the weather data

2 Loop over the different PV installations:
a. Check if the plant ID from the PV installation folder

matches the filenames in the weather data folder.
b. If data has been downloaded previously, skip to the

next file.
c. If data has not been downloaded, download the

weather data for that plant ID and save it in the weather
data folder with the name of the ID.

3 Adjust time zone from UTC to CET. Then merge the
weather data with the PV data and save the combined data
in a new folder for further use.

4.2 Geolocation and Reverse Geocoding of PV Installations

The latitude and longitude of each PV installation have been reverse geocoded. The method
of geocoding is the Python library reverse_geocoder [68], which includes cities with above
1000 in population size. The city, county, and municipality are located from this, giving a
more descriptive placement.

4.3 Solar Position Algorithm

In the northern hemisphere, the sun rises in the east and sets in the west. The solar altitude
during the day is linked to the latitude. NREL (The National Renewable Energy Laboratory)
solar position algorithm is capable of calculating the zenith and azimuth between the years
-2000 to 6000 with an accuracy of +/− 0.0003◦ [69], [70]. NREL solar position algorithm is
utilized to calculate the solar zenith and azimuth for the available timestamps.

4.4 Time Zone

CET is used as the standard time format in this study. The PV production dataset and
CAMS irradiance datasets are all adjusted to use this time format. The adjustment has been
made using pytz Python library [71]. pytz cannot automatically detect the time format the
data is given in. Manual detection of time format is therefore conducted. The beginning
and end of the production data have been matched up to the sunrise and sunset given on the
website timeanddate [72]. After that, the adjusted timezone is confirmed using computed
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solar zenith and azimuth angles with pvlib.location.Location.get_solarposition [73],
which are compared to that of timeanddate.

4.5 Inference of Tilt and Azimuth

The tilt and azimuth of the studied PV panels are critical factors in the performance study.
Since metadata and installation information is limited, a method should be found to deter-
mine the orientation using widely available data. Therefore, the method used is a data-driven
inference approach that only uses logged power and irradiance measurements. The method
uses curve-fitting on the most sky-clear days to determine orientation. The method was
first developed and tested in 2020 and showed promising results at a maximum orientation
inference error of 10% or less [13]. There is also an existing code implementation [74] that
has been utilized and modified to this thesis use.

This method has been verified using a PV installation where the tilt and azimuth are known.
The used PV installation is located in Grimstad, Agder, on the roof of UIA. The installation
azimuth is in two directions; ≈ 83.2◦ and ≈ 263.2◦, and the tilt is ≈ 10◦.

4.5.1 Step 1. Data Loading and Preprocessing

The selected PV system and weather data are loaded and preprocessed. This includes
adjusting the timezone of the data and labeling daytime saving as described in section 4.4.
Finally, all data is resampled to hourly left-closed format before being merged.

4.5.2 Step 2. Solar Position and Irradiance Calculation

The latitude and longitude of the selected PV installation are considered by using pvlib
.solarposition.get_solarposition [73] to calculate the solar position for each times-
tamp. Days, where the solar zenith does not have lower values than 70◦ have not been
included. This is due to the low zenith angle increasing the chance for shadow [13]. This
causes some winter months not to be included in the analysis.

Daily Diffuse Fraction

The weather data is used to determine which day has the lowest chance of clouds to occur.
This is done for multiple reasons, the foremost being that small clouds are less likely to
occur, and off-site irradiance measurements might need a higher resolution to capture these.
This also allows for using the same weather data over greater distances. For each day in the
selected year, the DHI and GHI are individually summed up over the day and then used in
equation 2.10. After that, every month’s clearest day (lowest answer for Kd) is filtered out
for further use [13].

Transposing GHI, DHI and DNI

The GHI data is transposed to Epoa for each hour in the clearest days. Since this aims to
find the tilt and azimuth of the PV module, every possible angle is calculated (0− 360◦ for
orientation, 0 − 90◦ for tilt, with 0◦ included for tilt). This is done in 1◦ resolution; Each
hour, the GHI value is transposed 32,760 times.

The method is implemented using pvlib and its various functions. The method used for
transposing is the Perez model [15] and is calculated using the pvlib.irradiance.
get_total_irradiance [14] function. In addition to the GHI, DHI, DNI, and orientation,
the pvlib function takes multiple other variables, which are listed below, together with the
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procedure used to gather them.

1. Solar Zenith and Azimuth: These values are obtained using the respective period
and the pvlib function pvlib.solarposition.get_solarposition [73].

2. Extraterrestrial Direct Normal Irradiance: This value is determined using the
pvlib function pvlib.irradiance.get_extra_radiation [75], along with its default
values and the relevant year.

3. Airmass: The airmass is calculated using the Solar Zenith and Azimuth obtained from
the first point in this list, combined with the pvlib function pvlib.atmosphere.
get_relative_airmass [76] and its default values.

4. Albedo and Surface Type: The albedo is set to 0.2, representing a typical value for
various surface types [3, p. 37].

4.5.3 Step 3. Searching for Optimal Tilt and Azimuth Angles

Normalization and Curve Evaluation

The 12 days selected (one for each month) in chapter Daily Diffuse Fraction is normalized
in this step. As the amplitude of the power and irradiance data differs, both are normalized
with respect to their maximum values, with equation 2.16 and 2.17, for each day.
The normalized power and plane of array irradiance are then compared, using RMSE as the
cost function. Each day has one normalized power curve and 32,760 normalized irradiance
curves. A lower cumulative RMSE value indicates a better fit between the two curves. The
top 15% Epoa curves with the lowest result are selected as the result of tilt and azimuth for
that particular day and, therefore, the month.

Generating and Overlapping Monthly Results

The monthly result consists of 4914 values (32, 760 · 15%) of tilt and azimuth that deviate
from one another. The other months might also get different results due to seasonal effects
like temperature and wind speed. Therefore, each month is compared to one another, and
the number of duplicate tilt and azimuth values is calculated. The tilt and azimuth are
treated as two separate values. There can therefore be a maximum of 12 similar (for a 12-
month dataset) tilts and azimuth angles. Linear interpolating is then performed to calculate
the result, as shown in [13].

4.5.4 Code Implementation and Modification

The code used to perform the computations in this section is based upon the code of "Data-
driven inference of unknown tilt and azimuth of distributed PV systems" by Meng et al. [13].
The source code can be found at [77]. The modifications done to the code are importing PV
data and weather data and data manipulation, such as setting the exact time format and
daylight saving. On an AMD Ryzen 5800H, the code took somewhere between 45 min to 1
hour to execute. This is mainly because of the number of times the Epoa calculation must be
executed. The test data from UIA consists of 120 individually monitored panels (here treated
as separate systems), and the data from Solcellespesialisten has 373 PV installations that
passed filtering processes. Some optimization in runtime was necessary. Altho computing
time of respectively 120 hours and 373 hours would be feasible, this would limit the usability
of the code, especially regarding troubleshooting the result. The code has therefore been
modified with the ProcessPoolExecutor from the concurrent.futures library [78]. This
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allows Python to run the same amount of processes as CPU threads available, 16 in this
case. The code uses approximately 1-hour to run after the modification, and a batch of 16
results is thus calculated each hour, significantly increasing the speed.

4.6 Filtering by Clustering

The filtering process of the data points is mainly inspired by [43]. This procedure was
chosen because of its promise of adjusting for the nonlinearity of the performance due to
temperature change with limited metadata.

4.6.1 Step 1. Data Loading and Preprocessing

The data needed for the filtering process is the data that is being filtered (Yf ) and some
reference data (Yr). The only requirement for the reference and the data being filtered is
that there is a strong relationship between them. Because of this, irradiance-irradiance,
irradiance-power, and power-power are the combinations that can be used. After selecting
the chosen data, a timezone adjustment is performed, as explained in section 4.4. This is
essential to make sure that the correlation between the two data is maintained [43].

4.6.2 Step 2. Normalization and Error Calculation

Both the Yf and Yr datasets are normalized. Equation 2.16 is used to normalize when power
data, and equation 2.17 is used for irradiance data. Datapoints recorded during the same
time instance are then compared, and the deviation is calculated using equation 4.1 [43].

error(Yf ) = Yf − Yr (4.1)

4.6.3 Step 3. Finding Inliers using RANSAC

A regression line is found using RANSAC from sklearn.linear_model.RANSACRegressor [79].
As the RANSAC model fits a regression line from a random sample of inliers, the result may
alter when rerunning the calculation. A grid search is used with sklearn.model_
selection.GridSearchCV [80] to find the most optimal parameters, table 4.2 shows the
combination of parameters tested to get the best result.

Table 4.2: GridSearchCV Parameters

Parameter Values

min_samples Range from 10 to 149

max_trials 100, 200, 300, 500, 700, 1000, 1500

residual_threshold Range from 0.07 to 0.15 with step size of 0.01

loss absolute error
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4.6.4 Step 4. Binning and Polynomial Regression

Figure 4.2: Example of a bin (eg., Yr =
0.4 − 0.5) during the filtering process from
one of Solcellespesialisten’s PV installations.
Green markers: global maximum. Red mark-
ers: local minima. Red line: Best fit polyno-
mial curve.

Only the data categorized as inliers from the
RANSAC result in the last step is used for
further calculations. The range of Yr is
divided into equally sized groups. Within
each group, a histogram is created of the
previously calculated error value from sec-
tion 4.6.2. A polynomial fit in the 1st
to the 10th-degree range is created within
each group with numpy.polyfit [81], and
the polynomial fit with the lowest mean
squared error is selected. The global max-
imum and local minima are found using
scipy.signal.argrelextrema [82]. In cases
where the local minimum is under 0, it has been
set to 0. Figure 4.2 illustrates a sample of a
bin.

The error value where maximum/minima occur
is set as the error value for that group. Figure 4.3
shows the global maxima, left minima, and right
minima for all groups combined into one plot.
A 4th-degree polynomial curve is fitted to each
maximum and minima dashed line. For every
point along the x-axis, the x-axis value of the
polynomial line is added to the y-axis, as shown in equation 4.2 [43] resulting in moving the
curve into a 45-degree angle (see Figure 6.4) in the first quadrant. The resulting position of
the right polynomial line becomes the upper limit, and the left becomes the lower limit of
inliers.

Yf = error(Yr) + Yr (4.2)

Figure 4.3: Global maximum, left and right
minima result from all bins. Example from
the filtering process of one of Solcellespesial-
isten’s PV installations.

Figure 4.4: Filtered data result. Example
from the filtering process of one of Solcelle-
spesialisten’s PV installations.
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4.7 PV System Performance Evaluation

Three datasets are made for the PV system performance evaluation; 1) All data; contains
all data in its original form. 2) inliers from the RANSAC regression, and 3) inliers from
the polynomial fit; have 0 values removed before the RANSAC regression is fitted. This is
due to two reasons; firstly, in some cases, the 0 values influenced the RANSAC regression
line. And secondly, 0 values have been considered downtime and do not represent the PV
installation at operational times. All three datasets only contain PV installations where the
location was found in Norway. The procedure and result regarding this filtering can be seen
in section 5. All datasets are limited to one year (365 days).

4.7.1 PR

Based on earlier research [23], [83] the PR is expected not to be normally distributed be-
cause a semi-natural limit is caused by values above 0.95 being extremely hard to achieve [83].
Therefore a Weibull distribution is expected to match better. With the underlying data be-
ing nonparametric, a Kruskal-Wallis H-test is utilized to test if there are any differences in
the mean of the locations. Finally, the post-hoc analysis is performed with Dunn’s, and
Mann-Whitney U tests in cases with a statistical difference. As the uncertainty of a type 1
error increases as more groups are tested, a correction is made with the Benjamini-Hochberg
procedure. The PR analysis is done with all three datasets, and Tukey’s rule is applied to
identify and remove any outliers in the remaining dataset.

4.7.2 Spesific Yield

Due to the removal of data points lowering the total kWh available, only dataset 1) has been
utilized to calculate the specific yield. The data from Solcellespesialisten has been cleaned
using statistical removal of outliers. The method used is Tukey’s rule and is applied to
identify and remove any outliers in the remaining dataset, improving the overall reliability
and validity of the data analysis. Turkeys rule is represented in equation 2.22. The PR
value is defined by identifying the peak value of a fitted Weibull distribution. Specific yield
is expected to be somewhat normally distributed across the different PV-innstaltions [83];
therefore, a one-way ANOVA test is utilized together with a posthoc Tukey HSD.
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Chapter 5

Data and Data Manipulation

This chapter describes the data given by Solcellespesialisten and the test data from UIA.
The description of the data from Solcellespesialisten is provided in section 5.1. Section 5.1.1
includes information about the metadata and production data, and section 5.1.2 includes
what data manipulation is done to the raw data. The description of the data given by UIA
is in section 5.2.

5.1 Solcellespesialisten

5.1.1 Raw Data

The data has been provided by IFE, who obtained it from Solcellespesialisten. It consists
of 501 distributed PV facilities, mainly small in the southern half of Norway. For each
installation the data is separated into 2 files, metadata, and PV data.

Metadata

Metadata for each installation has been given in an Excel file. An example of a metadata
file and its included information is shown in table 5.1. The location is given as longitude
and latitude, with two decimal places. However, no information is given about the unit of
measurement of the "Capacity" column. The capacity is most likely given in Wp, kWp, or
MWp. As a starting point, the capacity unit is set to kWp and adjusted afterward. This
is further discussed in section 5.1.2. The plant’s creation date is also given; however, this
seems to match the start date of the data more than the actual creation date. Finally, the
number of errors is given as "error" and "no error," where no error has been detected for
any data.

Table 5.1: Metadata information

Longitude Latitude Capacity Plant Created Error Count No Error Count

10.56 59.92 5,000,000 2022-01-01T00:00:00 0 366

Solcellespesialisten was, unfortunately, unable to provide metadata about the installation tilt
and azimuth. The tilt and azimuth, therefore, have been gathered by other means. IFE has
access to a database of all rooftops in Norway, with information such as tilt and azimuth.
However, as the accuracy of the data coordinates is in the range of two to five decimals,
the correct roof might not be selected. For example, during IFE‘s testing of this procedure,
some rooftops were selected, and offsets of approximately 50 meters were discovered by visual
inspection using Finn Kart aerial photo between the actual installation and the selected roof.
An alternative to this method would be using paid services; however, this does not remove
the problem of varying degrees of coordinate accuracy. Another challenge is that roofs often

25



consist of multiple parts with different angles. IFE has used the database solution on 380 of
the PV installations to find a plausible angle and tilt and has been kind to share their result.
However, due to the previously mentioned challenges, this file includes multiple orientations
for several PV installations. An example of the tilt and azimuth for an installation is depicted
in table 5.2. This shows a small part of the result of PV installation number 1005. An
important notice is that table 5.2 does not convey the spread of the tilt and azimuth, as
more variation in tilt and azimuth are included, making it difficult to estimate the actual
tilt and azimuth.

Table 5.2: IFE rooftop metadata

Plant ID Tilt Azimuth

1005 79.75 341.35
1005 11.83 281.22
1005 84.99 80.78
1005 84.27 30.75

A solution here is to visually inspect every rooftop with satellite images; this has not been
done due to time challenges. As an alternative to this, the orientation has been estimated
using the power data, as described in section 4.5.
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PV Production Data

The log of the recorded data for each installation is given in a JSON file. The JSON file
consists of a list for each timestamp entry, which has been combined into a single list. An
example of the list is shown in table 5.3. The information is logged in 5 min intervals For
the performance evaluation in this thesis, only AC production was used.

Table 5.3: Information from JSON file containing PV data

Variable Time Interval 1 Time Interval 2 Time Interval 3

Key 197 197 197
Timestamp 2022-03-02T09:15:00 2022-03-02T09:20:00 2022-03-02T09:25:00
Date 2022-03-02 2022-03-02 2022-03-02
Time 09:15:00 09:20:00 09:25:00
Delta Instant Instant Instant
AC Production 4748 3686 4633
Daily Production 1.040 1.420 1.780
Total Production 18697.0 18697.400 18697.801
Month Total Production 0 0 0
Year Total Production 247.217 248.659 249.639
Vnom 142.6 143.3 143.7
Voltage L1 143.5 144.4 144.8
Voltage L2 142.6 143.5 144.4
Voltage L3 11.0 8.5 10.6
Current L1 11.1 8.6 10.7
Current L2 11.0 8.5 10.6
Current L3 50.07 50.04 50.02
Frequency 11592 11592 11592
Run Hours 28.4 31.8 34.8
Temperature 28.4 31.8 34.8
Mocked False False False
MPPT None None None

5.1.2 Refining Dataset

Data Aggregation and Conversion to Hourly Format

The metadata and PV data have .been combined using the filename, as both files have a
unique number in the name. After these have been merged, the data consists of approxi-
mately 20 GB. They have, after that, been merged into an hourly format to make the data
more manageable, both computational and visually. When merging the timestamps, it can
be binned using the sum, mean, first, or last in the corresponding hour. Table 5.4 shows
how the different variables have been merged.

The timestamp has been marked as "first," so the time format becomes left-closed, meaning
that hour 12:00 contains values between 12:00 and 12:59. The line voltage and current were
utilized to calculate the AC production to be logged in W. This is transposed to Wh by
taking the mean of all values in an hour. Every variable marked as "First" (except Timedate)
is utilized to keep a constant value. The aggregation method "Last" is used in cases where
the original data is summed up for each column. Table 5.4 shows the aggregation methods
used for the various variables.
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Table 5.4: Aggregation method for Solcellespeialisten’s dataset

Variable Aggregation

Key First
Timedate First
Capacity First
AC Production Mean
Daily Production Last
Total Production Last
Vnom Mean
Voltage L1 Mean
Voltage L2 Mean
Voltage L3 Mean
Current L1 Mean
Current L2 Mean
Current L3 Mean
Frequency Mean
Run Hours Last
Temperature Mean
Mocked First
MPPT First
Latitude First
Longitude First

Refining Capacity Data

Due to a possibility of wrongly logged capacity in the metadata file, this has been checked,
the method and result are explained in this section.

Due to the data containing slightly more than a year, the data has been filtered to con-
tain exactly one year (365 days). The yearly specific yield is thus calculated on the period
01-03-2022 23:00:00 to 01-03-2023 23:00:00. Furthermore, three types of data have been
removed: 1) Locations outside Norway, 2) Instances where no location was found, and 3)
PV installations that generated 0 kWh/kWp per kWp per year. The capacity in the original
data has been presumed to be in kWp. The result is visualized in Figure 5.1a, and statistical
breakdown is shown in Table 5.5.

Figure 5.1a shows the specific yield of all installations when the capacity is estimated to be
in kWp. From visual inspection of Figure 5.1a, a lot of the data is within the expected range
of approximately 500-1300 kWh/kWp per year, as found in the literature review. However,
many data points are near the 0 kWh/kWp marker. Therefore, some data may have been
logged in different units: Wp and kWp. Table 5.5 supports this hypothesis, as the 50th
percentile of specific yield is 0.91 kWh/kWp. This indicates that half the data is below 0.91
kWh/kWp. From visual inspection of the datafile, many of the specific yields were in the
range of 0.5 to 1 kWh/kWp, corresponding with the 50th and 75th percentile of the table.
Due to this reason, the most likely cause of the skewed results has been determined as logged
capacity in different units. The capacity has therefore been divided by 1000 where the yearly
specific yield is below 5 kWh/kWp. This value was selected to be higher than the expected
specific yield based on the fact that later stages will filter out unexpected values regardless.
After this step, the result still showed some anomalies, as some capacities are still logged
with a capacity under 5 kWp resulting in a yearly specific yield of 300,000 kWh/kWp and
above. In cases like this, the capacity has been multiplied by a factor of 1000. The finalized
adjusted yearly specific yield, after these steps, the result is visualized in figure 5.1b and

28



summarized in table 5.6 together with the capacity.

(a) Raw data (b) Refined data

Figure 5.1: Yearly specific yield vs. installation number scatterplots. Figure (a) displays the raw
data scatterplot. Figure (b) displays the refined capacity scatterplot. Note; y-axis has been limited
for improved visibility.

Table 5.5: Summary statistics of yearly specific yield and capacity. Assuming metadata capacity in
kWp

Statistic Yearly Specific Yield [kWh/kWp] Capacity [kWp]

mean 3,047 6,714
std 48 7,690
min 0.0 0.006
25% 0.7 3,000
50% 0.9 5,000
75% 1.5 9,000
max 988,324 96,000

Table 5.6: Summary statistics of yearly specific yield and refined capacity

Statistic Yearly Specific Yield [kWh/kWp] Capacity [kWp]

mean 797 194
std 287 1,137
min 1.43 2
25% 690 5
50% 840 7
75% 952 10
max 3,086 11,000

In total, the capacity for 344 installations was divided by 1000, and 2 were multiplied by
1000 to bring all to the same unit of kWp, as seen in table 5.6. The mean of the values is
now within the range of the 25th and 75th percentile of data, indicating that most values are
located where expected. By visual inspection, some outliers with a factor of 100 off expected
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values remain in the data. These have been left unaltered due to not altering the data for
the worse. These values and other low and high anomalies will be filtered out in later stages.

Geographical Distribution

Figure 5.2 shows all the installations in Norway provided by Solcellespesialisten. Where
multiple installations are present, they are shown as groups, with a heat-map overlay to show
more accurate placement. All installations are below 66◦ latitude, the limit of CAMS weather
data, and weather data for all locations have been collected. On visual inspection of the
interactive map, some locations’ coordinates do not correspond with the actual placement.
One point, in particular, is placed in the sea, as can be seen in the middle-left part of figure
5.2. Points such as these have been removed from the dataset. Some are also placed just
outside the coast; these placements may not be wrong, but a consequence of the two decimal
coordinates. Table 5.7 shows the number of PV facilities in each county. All counties with
less than 10 PV installations have not been prioritized for further study.

Table 5.7: County location of PV installations from Solcellespesialisten‘s dataset

County Number of PV installations

Rogaland 105
Ostfold 97

Akershus 62
Hordaland 54
Hedmark 45
Buskerud 32
Vestfold 25

Sor-Trondelag 18
Telemark 14

Oslo 11
Oppland 11

Vest-Agder 5
Sogn og Fjordane 3

Aust-Agder 2
Nord-Trondelag 2

More og Romsdal 1
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Figure 5.2: Raw data: Map of installations in Solcellespesialisten‘s dataset
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Missing Data

Missing data points can change the result of time-sensitive calculations such as specific
yield. The data has, therefore, been analyzed for missing timestamps to analyze the quality
of the time series. Furthermore, the different installations have been analyzed separately. In
addition, each month in the PV-facility datalog has been studied. The result can be seen
in table 5.8, where the outcome is grouped into six bins. The vast majority of the data has
no missing timestamps. However, 388 of the months contain less than 10% of the available
month. All these sub 10% availability months are the month of 03.2023. This is the last
month of the dataset and only contains the first day. There is also a low amount of data
that is missing less than 5%. The installations with more than 90% of timestamps available
have not been deleted as this has been set as the threshold for deletion has been set to 90%.
Overall the result shows a low amount of missing timestamps.

Table 5.8: Available timestamps

Category Months
99-100% 4652
95-99% 6
90-95% 1
50-90% 0
10-50% 1
0-10% 388

Due to the data being transformed from 5-min intervals to hourly intervals, there might be
some missing intervals in each hour. The original data has therefore been checked for miss-
ing 5-min gaps. In the original data, the sum of all missing 5-min intervals for each month
equaled full days, indicating that only full days are missing or some data manipulation has
already occurred to fill in the missing time. Therefore, the missing times-intervals in the
original 5-min data match the result of Table 5.8, and each hour is highly likely not to lack
any data.

5.2 UIA

5.2.1 UIA Data

The PV installation from UIA is located on a flat roof. It consists of 120 PV modules with
module-level monitoring (Tigo optimizers). The PV modules are a mix of IBC PolySol, IBC
MonoSol, and SunPower mono-si panels. They are installed in two directions; east (≈ 83.2◦)
and west (≈ 263.2◦), with a tilt of 10◦. Refer to figure 6.10 and 6.11 for layout.

The data is recorded in 5 min intervals from January 2019 to January 2021. Visual in-
spection of the data revealed a lot of small negative power values during the night; These
have been removed and replaced with the value 0. After removing the negative power values,
the timestamp has been resampled to hourly format, using "sum" as the aggregation method.

Weather information has been collected on the roof of UIA using various instruments, in-
cluding pyranometers, temperature sensors, and wind measurement devices. The data has
been recorded in both 1-minute and 1-hour intervals. However, only the 1-hour interval data
has been utilized for this analysis. Visual inspection reveals a lot of negative values in this
dataset GHI, DHI, and DNI values during the night-time. These negative values have been
adjusted to 0.
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Table 5.9: Weather data columns from UIA with descriptions

Columns Description

Timestamp Time and date of the data point
Record Record number
POA1 - POA5 Averages Plane of array irradiance averages
GHI Average Global horizontal irradiance average
DHI Average Diffuse horizontal irradiance average
Albedo1, Albedo2 Averages Albedo averages
DNI Average Direct normal irradiance average
PVT1 - PVT20 Averages PV module temperature
Wind Speed (Max, Min, Avg) Wind speed (max, min, average)
Wind Direction Wind direction from
Precipitation Total Total precipitation
Atmospheric Pressure Avg Average atmospheric pressure
Air Temperature1, Air Temperature2 Averages Air temperature averages
Relative Humidity Avg Average relative humidity
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Chapter 6

Results

This chapter brings forth the results. First, section 6.1 describes the differences (UIA -
CAMS) in local and CAMS irradiance for the location of UIA, Grimstad. After that, section
6.2 shows the result of the inference of tilt and azimuth; this chapter is separated into four
subsections: where the tilt and azimuth are inferred with the local irradiance data from
UIA, irradiance data from CAMS, the effect of shading on the result when CAMS data
was utilized and lastly the result of the clearest day calculation. Furthermore, section 6.4
shows the capacity distribution of the utilized PV installations. The performance ratio of
the systems is after that presented in section 6.5. Continuing with the data analysis, the
found specific yield is in section 6.6. Finally, the RANSAC and polynomial filtering result
is shown in section 6.7.

6.1 Comparative Analysis of Local and CAMS Irradiance Measure-
ments

Figure 6.1 shows three histograms of difference for the Global Horizontal Irradiance (GHI),
Diffuse Horizontal Irradiance (DHI), and Direct Normal Irradiance (DNI) between the mea-
surements done locally at UIA, and the Inferred results from the CAMS service. Nighttime
has been removed by removing data where both local and CAMS data are zero. This is done
in order to emphasize the difference in daytime irradiance data. The data consists of 11 048
hours of data, where one hour is one measurement. The data is from the date 2019-08-04
to 2021-12-31. The leftmost plot shows the difference histograms for the Global Horizontal
Irradiance (GHI). The absolute difference from table 6.1 shows that Q1 differs less than 4.51
W/m2, median less than 15.14 W/m2. And Q3 under 57.14 W/m2 difference. This indicates
that the data is well aligned, and most measurements correlate with an acceptable error
range.

The middle figure shows the same comparison for DHI. Table 6.1 show that Q3 and max
values are slightly more inaccurate, leading to a broader graph. This is not the case for the
Q1, with slightly better accuracy.

The DNI difference depicted in the rightmost graph shows the least accuracy with Q1 under
9.829 W/m2 and median under 44.4 W/m2, and Q3 under 123.1 W/m2 difference. This is
the worst-performing measurement. Resons for the DNI difference to be
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Figure 6.1: Comparison of GHI, DHI, and DNI absolute in histograms: This image consists of three
separate histograms, with the count on the y-axis and the differences of GHI, DHI, and DNI on
the x-axis (in W/m²). The left plot shows the GHI differences, the middle plot displays the DHI
differences, and the right plot illustrates the DNI differences.

Table 6.1: Summary statistics of the absolute error in irradiance data

GHI Difference [W/m2] DHI Difference [W/m2] DNI Difference [W/m2]

Mean 31.1 30.5 93.9
STD 41.5 43.9 130.0
Min 0.0 0.0 0.0
Q1 4.5 5.1 9.8
Median 15.3 16.1 44.3
Q3 42.1 38.2 123.1
Max 596.2 623.7 858.4

Table 6.2 shows the monthly deviance between local and CAMS data irradiance measure-
ments. Due to an increase in day length during the day, these months contain more data.
January, February, November, and December appears to have less deviation in the mean,
Q1, median, and Q3 values for the GHI and DHI measurement. However, the opposite seems
true for the DNI measurements and higher error in general. A large part of the increase in
DNI’s inaccuracy might be due to measurement challenges. Cloud-causing shadow is likely
one of these, as this is a commonly recorded problem. A larger error during the winter
month could be described by snow being detected as shadow [66]. This is also visible in
scatterplot 6.2 where many local DNI measurements measure close to 0 W/m2, while CAMS
data measured high values.

35



Table 6.2: Summary statistics for the difference between local and CAMS data for GHI, DHI, and
DNI by month.

GHI Difference [W/m2]

Count Mean STD Min Q1 Median Q3 Max

January 486 20.72 23.91 0.01 3.57 12.64 29.18 145.32
February 576 25.88 28.61 0.00 4.66 15.81 39.15 180.77
March 779 29.78 36.12 0.01 4.21 15.72 43.02 278.96
April 911 25.41 42.21 0.00 2.94 9.60 28.34 596.26
May 1090 36.29 46.20 0.01 4.06 14.74 51.81 298.87
June 1140 39.23 53.23 0.00 4.65 17.12 52.21 332.43
July 999 43.34 54.97 0.00 6.33 22.71 62.13 404.34
August 1440 35.99 50.38 0.00 5.02 16.13 47.18 483.02
September 1223 29.88 34.70 0.00 5.35 15.85 43.69 270.52
October 1022 27.59 29.22 0.01 6.16 16.87 41.23 272.28
November 724 22.18 22.48 0.00 4.35 14.71 35.52 160.87
December 658 18.85 17.30 0.01 4.37 13.70 29.20 100.23

DHI Difference [W/m2]

Count Mean STD Min Q1 Median Q3 Max
January 486 20.07 24.66 0.01 2.80 9.87 28.42 147.92
February 576 19.15 21.38 0.00 3.27 11.01 27.77 137.11
March 779 23.23 24.68 0.00 5.34 14.94 32.34 149.13
April 911 22.09 26.35 0.01 4.34 14.07 28.89 191.08
May 1090 32.28 36.40 0.00 7.21 19.34 43.34 222.64
June 1140 35.06 44.31 0.04 6.55 18.73 46.40 328.75
July 999 34.63 42.33 0.00 6.26 17.81 46.83 239.89
August 1440 40.26 60.71 0.01 6.34 19.24 49.08 623.71
September 1223 43.12 65.07 0.00 6.97 20.36 50.27 467.23
October 1022 32.32 47.17 0.00 5.92 16.23 40.56 386.99
November 724 19.71 25.29 0.00 3.38 10.60 27.00 197.58
December 658 16.53 18.06 0.00 2.93 10.34 23.89 108.15

DNI Difference [W/m2]

Count Mean STD Min Q1 Median Q3 Max
January 486 154.84 174.67 0.00 16.69 94.16 229.67 769.98
February 576 78.78 112.37 0.00 4.40 33.76 105.17 707.73
March 779 85.28 104.55 0.00 13.73 50.51 117.37 754.62
April 911 63.82 100.69 0.00 5.32 26.10 79.82 789.20
May 1090 70.11 99.43 0.00 5.97 32.49 92.56 727.54
June 1140 66.81 93.80 0.00 5.56 29.77 82.17 672.00
July 999 69.45 93.32 0.00 6.35 35.52 93.93 634.46
August 1440 74.02 104.44 0.00 5.71 32.15 93.18 765.62
September 1223 69.45 98.68 0.00 5.97 28.12 87.33 771.22
October 1022 69.89 96.07 0.01 6.47 32.56 87.91 757.01
November 724 76.65 104.12 0.00 7.51 34.87 98.36 732.28
December 658 130.32 148.99 0.01 16.78 65.30 186.69 812.34
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Figure 6.2 shows a scatterplot of CAMS versus local irradiance data for DHI, DHI, and DNI.
Table 6.3 shows the Pearson and Spearman relationship. Both show a strong correlation.
However, The DNI measurement has a visual anomaly at 0 W/m2 measurements done locally.
This is likely due to the shadow not being detected by the CAMS data. Short-duration clouds
could create such shadow, although the local measurement of 0 W/m2 might indicate that
something was blocking the pyranometer or a measuring error.

Figure 6.2: Scatterplots comparing CAMS and UIA (local) data for GHI, DHI, and DNI: This image
features three separate scatterplots with UIA data on the x-axis and CAMS data on the y-axis.
Left shows the GHI comparison, middle illustrates the DHI comparison and right presents the DNI
comparison.

Table 6.3: Summary of correlation coefficients and linear regression parameters for GHI, DHI, and
DNI scatterplots

Statistic GHI DHI DNI

Pearson’s r 0.9419 0.8412 0.8417
Pearson’s p-value 0.0000 0.0000 0.0000
Spearman’s rho 0.9330 0.9198 0.7822
Spearman’s p-value 0.0000 0.0000 0.0000
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6.2 Inference of Tilt and Azimuth

Figure 6.3, 6.4, 6.6 and 6.7 presents a whisker-boxplot of the results from the inference of
tilt and azimuth based on the clearest day each month. Figure 6.3 and 6.6 being tilt, and
Figure 6.4 and 6.7 being azimuth for the UIA and CAMS data respectively. The error is the
absolute value of the actual value minus the calculated value. The x-axis is the percentile of
best fit, used to calculate the resulting tilt/azimuth, as described in section 4.5.3. The mean
is depicted as a horizontal line within each box. The 25th and 75th percentile are marked
as the bottom and top parts of the colored box. The whiskers on either end are 1.5 · IQR
on their respective end. To not cause any confusion between the percentile along the x-axis
and the 25th and 75th percentile of the boxplot, they are henceforth in this section called
percentile, Q1, and Q3, respectively.

6.2.1 UIA: Local Data

The result from the locally measured irradiance data shows a promising result. The spread
of the calculated tilt decreases as the percentile increases to about the 6th percentile; si-
multaneously, the mean decreases, and the median increases slightly. The Q1, median, and
Q3 values get larger when using more than the 10th percentile of the data. As a result, the
best tilt predictor is in the group 6th to 10th percentile. The 9th and 10th percentile of
data has a mean tilt error of 10.9◦ and 10.8◦ respectively, and a median error of 8.7◦ and
9.4◦ respectively. However, the 7th and 8th percentile has a slightly lower mean and median
error while the max error is larger. It is worth mentioning that these results may alter with
different data.

The azimuth’s mean, Q1, and Q3 results follow the same trend as that of the tilt, where the
deviation of the results decreases as more data is used in the calculation process. However,
a larger gap exists between the 9-10th percentile. The 10th percentile has the lowest Q3
but a slightly higher max value than the 9th percentile. 9th and 10th percentile has a mean
values of 24.1◦ and 23.7◦, median of 11.6◦ and 11.5◦, Q1 of 5.2◦ and 5.2◦, and Q3 of 35.4◦,
29.9◦, respectively. Table 6.4 shows a more extensive and exact summary of the results. The
count value in Table 6.4 is the number of PV systems tested.

Figure 6.3: Inference of tilt: results from UIA
with local data

Figure 6.4: Inference of azimuth: results
from UIA with local data
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Table 6.4: Summary of azimuth and tilt errors for different percentile variations using local irradi-
ance data

Absolute azimuth error [◦]
Percentile Count Mean STD Min Q1 Median Q3 Max

0.5 119 31.977 30.464 0.078 5.112 15.153 67.514 83.345
1.0 119 34.280 29.906 0.057 6.157 23.995 68.266 84.200
2.0 119 35.408 27.971 0.191 10.172 28.446 66.730 82.383
3.0 119 30.541 28.245 0.001 8.524 16.300 57.409 88.057
4.0 119 29.733 28.393 0.016 7.395 14.422 56.001 88.050
5.0 119 28.505 28.329 0.522 6.598 14.788 54.383 90.200
6.0 119 27.027 29.428 0.212 5.509 14.216 41.283 97.815
7.0 119 26.992 29.619 0.052 5.739 14.080 40.140 97.804
8.0 119 25.222 29.636 0.012 3.918 11.736 39.297 95.991
9.0 119 24.124 28.975 0.422 5.152 11.601 35.365 94.614
10.0 119 23.714 28.425 0.203 5.189 11.529 29.891 95.177
15.0 119 26.872 24.957 1.756 11.908 15.353 36.522 100.785
20.0 119 31.618 21.087 2.308 17.997 30.277 38.048 115.493
25.0 119 36.247 20.218 1.981 24.224 36.973 41.736 159.864
30.0 119 41.003 23.503 2.053 28.800 39.573 48.599 182.978
35.0 119 45.692 23.619 0.185 31.507 51.085 56.073 148.851

Absolute tilt error [◦]
Percentile Count Mean STD Min Q1 Median Q3 Max

0.5 119 15.732 14.585 2.176 4.306 6.000 28.856 74.800
1.0 119 15.963 14.862 0.500 4.021 6.500 29.403 68.139
2.0 119 14.559 13.409 0.076 2.741 6.542 28.312 58.500
3.0 119 13.152 11.410 0.013 2.621 6.526 24.216 45.557
4.0 119 12.433 10.566 0.039 2.274 7.065 23.243 39.742
5.0 119 12.774 12.801 0.059 1.863 7.604 21.652 56.833
6.0 119 10.326 12.014 0.231 1.331 7.065 13.192 52.161
7.0 119 10.542 11.245 0.078 1.379 7.709 11.555 48.225
8.0 119 10.797 11.070 0.229 1.438 8.083 12.283 48.000
9.0 119 10.942 10.758 0.117 1.765 8.701 12.212 46.757
10.0 119 10.818 9.991 0.013 1.982 9.380 12.268 38.894
15.0 119 11.943 9.710 0.031 2.853 11.849 15.068 42.986
20.0 119 13.269 8.794 0.247 3.842 15.498 18.539 32.544
25.0 119 15.772 8.571 1.766 7.148 19.042 20.369 35.057
30.0 119 17.825 8.064 1.352 10.498 16.433 22.873 37.046
35.0 119 19.588 7.203 4.444 13.494 16.097 24.214 38.152
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Figure 6.5 shows the resulting azimuth and tilt combinations for all the panels when the
15th percentile is used. The panels with an east direction have all calculated a tilt between
20 − 30◦. As the actual tilt is 10◦, this aligns with the results from table 6.4 where the
mean error is 11.943◦. Noticeably, the panels with a west direction have a smaller tilt angle,
corresponding well with the actual tilt. There also seems to be a small cluster of panels
with an azimuth of approximately 180− 190◦. These are highly likely caused by shading, as
further discussed in section 6.3

Figure 6.5: Tilt and Azimuth matrix: UIA, irradiance measurement recorded locally on UIA. The
matrix shows the resulting tilt and azimuth of the inference of tilt and azimuth using local irradiance
measurements from UIA and the available PV systems on UIA. The 15th percentile results are
shown.
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6.2.2 UIA: CAMS Data

This section includes the result for calculating tilt and azimuth when irradiance measure-
ments from the CAMS service Heliosat-4 have been used. As a result of the CAMS data
possibly being more inaccurate than the local pyranometer measurements, a higher error
deviation was presumed to be found. However, the result in Figure 6.7 is similar to that
where local irradiance data has been used. The result in the 0.5 to 3rd percentile has a wide
IQR range with respect to the other percentiles, similar to the previous results. Furthermore,
the most optimal range for calculating the tilt is in the 4th-10th percentile, similar to when
local irradiance data were used. Overall the result is quite similar. The mean, Q1, and Q3
at 10.1◦, 2.8◦, and 14.0◦ respectivly at 9th percentile.

Regarding Figure 6.7 and the azimuth error, the percentile range of 6th-15th is among the
data with the lowest mean, Q1, and Q2. 9th percentile has a mean error of 24.4◦, Q1 of 8.1◦,
and Q2 of 35.3◦ and max of 98.6◦. However, the 15th percentile improved from the result
using local irradiance measurements, with a mean error of 22.4◦, Q1 of 8.4◦, and Q3 of 24.1◦
and a max of 93.9◦. Table 6.5 shows a more extensive and exact summary of the resulting
percentile groups. The count value is the number of PV systems tested.

Figure 6.6: Inference of tilt: results from UIA
with CAMS data

Figure 6.7: Inference of azimuth: results
from UIA with CAMS data
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Table 6.5: Summary of azimuth and tilt errors for different percentile variations using CAMS data

Azimuth error
Percentile Count Mean STD Min Q1 Median Q3 Max

0.5 120 35.495 28.999 0.117 8.112 26.477 63.721 92.800
1.0 120 37.519 28.279 0.200 10.289 30.955 65.965 90.943
2.0 120 31.152 30.152 0.560 6.186 15.924 61.313 82.650
3.0 120 34.495 27.492 0.099 10.286 26.693 58.292 82.574
4.0 120 33.126 24.576 0.200 14.925 24.848 47.552 82.485
5.0 120 30.882 24.532 0.026 10.305 26.788 45.640 82.639
6.0 120 28.966 24.484 0.359 7.115 24.964 36.255 82.966
7.0 120 28.433 24.838 0.300 7.974 22.740 37.161 94.075
8.0 120 25.743 25.188 0.061 6.399 16.321 36.424 97.927
9.0 120 24.429 24.318 0.033 8.075 13.137 35.331 98.621
10.0 120 23.973 23.212 0.774 8.286 13.026 33.089 99.232
15.0 120 22.360 21.698 1.335 8.445 14.068 24.070 93.890
20.0 120 26.490 32.576 0.063 4.041 19.233 29.456 161.204
25.0 120 30.766 27.622 0.231 16.465 25.069 27.964 236.600
30.0 120 39.259 29.411 7.960 27.136 31.897 42.587 252.200
35.0 120 44.670 30.663 2.388 30.949 34.924 53.271 253.087

Tilt error
Percentile Count Mean STD Min Q1 Median Q3 Max

0.5 120 16.389 15.173 0.848 4.594 6.744 28.125 64.664
1.0 120 16.418 14.470 0.854 4.131 6.565 31.065 54.219
2.0 120 15.592 13.390 1.200 4.641 6.867 30.004 53.545
3.0 120 15.664 12.375 0.892 3.976 10.331 27.438 45.000
4.0 120 12.155 10.415 0.870 3.882 8.258 15.786 42.214
5.0 120 10.756 9.818 0.727 3.669 6.301 16.017 39.640
6.0 120 10.579 8.857 0.398 3.631 7.751 15.059 36.729
7.0 120 10.658 8.116 0.279 3.750 8.662 14.028 33.976
8.0 120 10.041 7.359 0.108 3.238 8.488 14.772 31.250
9.0 120 10.130 7.563 0.211 2.760 9.014 13.950 31.731
10.0 120 10.476 8.198 0.091 2.318 9.486 13.747 34.000
15.0 120 11.390 8.989 0.003 2.165 12.210 15.448 57.078
20.0 120 13.712 8.637 0.404 4.565 16.289 18.861 34.892
25.0 120 14.894 9.755 0.190 5.727 19.283 21.038 36.975
30.0 120 17.156 9.186 0.841 7.880 20.242 23.230 38.098
35.0 120 19.142 7.867 1.213 11.943 16.874 24.500 38.507

Figure 6.8 shows the resulting angle and tilt combinations for all the panels. Again, the result
is similar to where local irradiance data is used, as the east-oriented panels are estimated
with a steeper tilt angle than the west-oriented panels and a cluster of wrongly estimated
angles at around 200◦.
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Figure 6.8: Tilt and azimuth matrix: UIA, irradiance measurement from Heliosat-4. The matrix
shows the resulting tilt and azimuth of the inference of tilt and azimuth using CAMS irradiance
measurements for the location of UIA and the 15th percentile of data.

6.2.3 Solcellespesialisten‘s Data

Figure 6.9 shows the result from the inference of tilt and azimuth method from section 4.5
on Solcellespesialisten’s data. Most PV installations appear to have an azimuth between 100
and 270 degrees, corresponding with optimal azimuth. However, there is a noticeable gap
in the azimuth range of 180◦ to 200◦, with fewer PV installations. Instead, the installations
are clustered on either side of this range.

Figure 6.9: Tilt-Azimuth heatmap of PV distribution in Solcellespesialisten‘s data: The heatmap
shows the distribution of the tilt-azimuth of the PV installations. The x-axis represents the azimuth,
and the y-axis represents the tilt. Both axes are in 10-degree intervals. North is 0◦, and south is
180◦
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6.3 Effect of Shading

Figure 6.10: Northwest-oriented view of the PV
installation on the roof of the University of Agder.
GHI, DHI, and DNI pyranometers are installed in
the image’s foreground. Source [84]

Figure 6.10 presents an image from the roof
of UIA, where the solar panels are installed.
As seen in the figure, a fence is installed
around the roof’s perimeter, leading to a
small amount of shading. In addition, global
horizontal irradiance (GHI), diffuse horizon-
tal irradiance (DHI), and direct normal ir-
radiance (DNI) pyranometers are installed
on a solar tracker in the foreground on the
southern side of the installation. Figure 6.11
illustrates the placement and numbering of
the panels and their number. The red cir-
cle depicts the pyranometers on the south-
ern side. Where tilt or azimuth is calculated
with an error greater than 20◦ is marked
with the color black. The black mark-
ing mainly follows the installation’s perime-
ter, corresponding to shading from the fence
and the panels closest to the pyranometers.
Hence there seems to be a correlation between shading and more significant errors in the
azimuth and tilt estimation.

Figure 6.11: Illustration of the PV installation on the roof of the University of Agder. The orien-
tation of the image is; top (west ≈ 263.2◦), left (north), bottom (south ≈ 83.2◦), left(south). The
red dot roughly illustrates the position of the pyranometers, a source of shading. Modules, where
tilt or azimuth is calculated with an error greater than 20◦, are marked in black. Source: [84]
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Figure 6.12 shows the logged power data for 2020-07-22. Panel A1-A4 is the top left row,
and A5 is the leftmost panel on the third row from the top in figure 6.11. A1-A5 is facing
east. A decrease in produced power is visible after 14:00. The panels V2-V5 are installed at
the bottom in the second row from the left. They have a reduction in power before 12:00.
The shading of the railing likely causes both reductions, as it cannot be seen in the C5-C6
or Y1-Y5 panels. The C6 panel does, however, have a decrease midday; this is aligned with
the sun being in the southern direction and is, therefore, most likely caused by shading from
the pyranometer. The reason this is not reflected in C5 is likely the high altitude of the
sun during July, causing a shorter shadow from the pyranometer that only affects C5. The
short-duration spikes in power reduction during the day might be short lasted shadows by
clouds. However, the timing does not match exactly for all of the shown panels due to this
power reduction might also be caused by someone walking on the roof. Appendix A contains
a table of the modules where the inference was affected by shading. This shows that the
power curve is influenced differently depending on the level of shading and, therefore, the
inference of tilt and azimuth, where significant inaccuracies may occur.

Figure 6.12: Recorded power curve in 5-min data for panels A1-A5, V1-V5, C5-C6, and Y1-Y5.
The panels in groups A, V, and C had a calculated tilt or azimuth degree greater than 20◦. Y1-Y5
is shown as a reference, as close to no shading was present and inferred a low tilt error below 10◦.
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6.3.1 Clearest Day

The clearest day has been found using equation 2.10. The result can be seen in table 6.6
where they are separated into two columns; Clearest day with the use of CAMS weather
data, and with the use of local weather data, both columns shows the result from UIA.

Table 6.6: Result of the clearest day each month using irradiance data

Location: UIA Location: UIA (Local)
Year: 2020 Year: 2020

Data: CAMS Data: Local
Month Clearest day Month Clearest day

1 29 1 29
2 19 2 19
3 5 3 21
4 22 4 22
5 31 5 25
6 15 6 24
7 22 7 22
8 16 8 14
9 2 9 15
10 14 10 16
11 6 11 6
12 25 12 24

6.4 Capacity Distribution

The majority of the capacities are below 10 kWp. There are 462 facilities in total, where
the Q1, median, and Q1 is 5, 7, and 10 kWp, respectively. There are also some very large
installations at 5000 kWp to 11000 kWp.

Figure 6.13: Raw data: Distribution of capacity
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6.5 Performance Ratio

Figure 6.14 shows the resulting PR for all the installations using raw data (6.14a, 6.14b),
RANSAC inliers (6.14c, 6.14d), and polynomial inliers (6.14e, 6.14f). The RANSAC filter
redistributes the PV installation’s PR values, as seen in the difference between figure 6.14a
and 6.14c. The RANSAC regression improves the result as some low and high PR installa-
tions are adjusted to align with the most frequent PR values from the unfiltered plot. For
example, the number of PV installations that get a PR close to 0.5 slightly decreases as
these are shifted to a higher PR. This indicates that these installations had a large spread in
Yf − Yr scatterplot data and that CAMS irradiance data was too high, leading to a low PR.
There is also a slight decrease in the number of installations getting a PR close to 1. This is
likely due to the RANSAC regression finding an optimal fit and getting a more plausible PR
value; it also indicates the opposite of the low PR values that changed, specifically that the
irradiance from CAMS was too low, leading to a higher PR. The fitted polynomial inliers
further align the PV installation’s PR with that of the most frequent values. However, it
also increases the number of installations getting a high PR, close to 1. This is likely due
to fewer data at the higher portions of the Yf − Yr scatterplot and the polynomial filtering
narrowing in too much, only including the uppermost inliers. An example is the installation
in figure 6.22. This result may, therefore, be over-filtered. Therefore, a PR of 0.83 from the
RANSAC filtering is considered to describe the dataset best.

Moving on to the regional PR, Figure 6.15 shows the regional PR values for datasets 1),
2), and 3). The number above each boxplot highlights the number of available PV instal-
lations. Appendix B contains tables with exact values. The fact that counties close to one
another have similar PR might indicates that the inferred results are correct. However,
very few statistical differences could be found in Table 6.7, which utilized the Dunn‘s and
Mann-Whitney U-test. Testing dataset 1), only Rogaland and Akershus could be seen as
statistically different. Moreover, Rogaland differs from Akershus and Østfold when using
dataset 2), and no difference was found with dataset 3). Therefore, with Rogaland, Aker-
shus, and Østfold being the top three countries with the most data, it can be assumed that
the answer is valid and has some differences between counties. However, the difference in
results for the statistical test from the three datasets highlights that the answer depends
on the filtering process applied. Another factor is that some counties have less data, and
statistical differences are harder to spot. Due to the possibility of overfitting, Figure 6.15b
and Table B.2 in the Appendix are seen to reflect the given dataset the best.

One theory for the identified statistical differences in PR values between counties is that
there may be more snow in Akershus and Østfold. Appendix F, G, and H includes the
monthly PR for the different counties for datasets 1), 2), and 3), respectively. They show
that the PR in January and December significantly increases when applying the RANSAC
filter, possibly due to removing 0 Yf values. Removal of 0 Yf values might remove instances
where snow is present. Other possibilities for the statistical difference are variations in CAMS
irradiation data in different counties, roof azimuths, shading variations, and thus variations
in the accuracy of the inferred result of tilt and azimuth between counties.

Figure 6.16 show the PR values distributed across the tilt and azimuth of the corresponding
PV installation. Due to the low amount of installations per tilt/azimuth degree, trends are
difficult to detect with certainties.

47



(a) (b)

(c) (d)

(e) (f)

Figure 6.14: Distribution of integrated Performance Ratio: PR values are computed using the
inferred orientation from section 6.2.3. Y-axis represents the percentage of data falling into each
PR value range, while the x-axis displays the PR value. The bin size is 0.05 along the x-axis. (a):
Using all data and (b): including Turkey’s filter. (c): Using data from the RANSAC regression and
(d): including Turkey’s filter. (e): Using data from the Polynomial fit and (f): including Turkey’s
filter.
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(a) All data: Boxplot of PR for each county

(b) RANSAC inliers: Boxplot of PR for each county

(c) Polynomial inliers: Boxplot of PR for each county

Figure 6.15: Boxplots of PR values across counties for different data processing techniques. Data is
processed using three different datasets: All Data (6.15a), RANSAC inliers (6.15b), and Polynomial
Inliers (6.15c). In all cases, Tukey’s Method is applied, and PR values above 1 are excluded.
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(a) All data

(b) RANSAC inliers

(c) Polynomial inliers

Figure 6.16: Heatmap matrices illustrating the PR for various tilt and azimuth angles in 10-degree
intervals. Data is processed using three different datasets: All Data (6.16a), RANSAC inliers
(6.16b), and Polynomial inliers (6.16c). Tukey’s Method is applied in all cases, and PR values
above 1 are excluded.
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Table 6.7: Counties with significant differences in PR

County All Data RANSAC Inliers Polynomial Inliers

Rogaland Akershus (p=0.0442) Østfold (p=0.0263),
Akershus (p=0.0263)

None

Hordaland None None None
Østfold None None None
Akershus None None None
Buskerud None None None
Hedmark None None None
Sør-Trøndelag None None None
Oslo None None None
Vestfold None None None
Telemark None None None
Oppland None None None
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6.6 Specific Yield

Figure 6.17a shows the specific yield of all PV installations in dataset 1) All data. Figure
6.17b shows the remaining data after filtering with Turkey‘s method. The yearly specific
yield for the whole dataset is inferred to be 866 kWh/kWp.

(a) Unfiltered data. (b) Filtered data.

Figure 6.17: Infered specific yield for dataset 1

Figure 6.18: Map of yearly specific
yield kWh/kWp. Background im-
age from [85]

Figure C.1 displays the specific yield result for the dif-
ferent counties; exact numbers can be seen in appendix
C. Table 6.8 displays the result of the Turkey HSD test.
More statistical differences were detected for the specific
yield than for the PR. Furthermore, most statistical differ-
ences appear not to be located close to one another, which
might indicate a valid result. These differences could be
due to geographical differences, such as the amount of ir-
radiance and weather. However, they could also be due
to the dataset itself, including differences in tilt, orienta-
tion, variation in shading, and corresponding variance in
the accuracy of inferred tilt and azimuth. Oslo had the
highest Weibull curve peak; however, it does not have the
highest mean or median value, indicating that the Weibull
fit might not be the best for Oslo, as there are few PV installations. Figure 6.20 shows the
specific yield for the tilt and azimuth of the corresponding PV installation. Moreover, as
with PR, the lack of data limits further analysis regarding tilt and azimuth.

Figure 6.19: Boxplots of specific yield across counties
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Table 6.8: Counties with significant differences in specific yield

County Significantly different from

Rogaland Sor-Trondelag (p=0.0142)
Hordaland Ostfold (p=0.0005), Vestfold (p=0.0171)
Ostfold Rogaland (p=0.0156), Sor-Trondelag (p=0.0000)
Akershus Ostfold (p=0.0197)
Buskerud None
Hedmark Sor-Trondelag (p=0.0042)
Sor-Trondelag Vestfold (p=0.0001)
Oslo None
Vestfold None
Telemark None
Oppland None

Figure 6.20: Heatmap matrices illustrating the specific yield for various tilt and azimuth angles in
10-degree intervals. Tukey’s Method is applied

6.7 Clustering

This section illustrates the result of the RANSAC inliers and the polynomial fit. Due to
space limitations, not all 448 PV installations are shown. In this section, two examples are
highlighted, one considered an acceptable fit and one considered insufficient. Appendix J
includes some more results.

Figure 6.21 is considered an acceptable fit; The graph shows a close-to-linear trend. This
is expected, as a high amount of irradiation correlated with high module temperature and,
therefore, less efficiency at higher irradiance instances. Figure 6.21c shows the bins. The first
three bins (starting at the top left, as these are closest to 0 on the Yr axis) show a defined
distribution (Normal, Weibull, among others). This clearly defined distribution makes the
process of defining where the inlier/outlier limit is. However, as the binning progresses, this
limit gets less defined. Nevertheless, the binning process works well enough for a tolerable fit.

Figure 6.22 illustrates what is seen as an insufficient result. The RANSAC regression in
Figure (a) is sufficient, as it finds a plausible linear regression. The width of the inliers also
seems decent, altho it could have been wider to allow for more data in the binning process.

53



The binning process in fig 6.22c has a less defined distribution, both in the first bins (top
left, which is closest to 0 on the Yr axis) and the later bins. Due to this, maxima points
(se 6.22d) shift toward higher values, resulting in a bad fit. Therefore, the main problem
with this filtering is that the inlier/outlier limit is hard to detect. Leading to poorly chosen
maxima and minima points. A lack of data points in this dataset at (≈ Yf :0.6, Yr:0.64) is
also visible; this could somewhat contribute to the inferior fit.

(a) RANSAC fit (b) Polynomial fit

(c) Histograms (d) Polynomial borders

Figure 6.21: Clustering Figure 1: Acceptable fit. (a) RANSAC fit: is the result of the section 4.6.3.
(b) Polynomial fit: is the result of section 4.6.4, and shows the fitted left and right polynomial
curves. (c) Histograms: shows the histograms of the bins the data has been grouped into; it also
shows the maxima point as a green dot and the left/right minima as a red point. (d) Error graph:
shows the maxima and left/right minima error values. The error value is gathered from the x-axis
value figure (c), where the error is calculated by equation 4.1.
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(a) RANSAC fit (b) Polynomial fit

(c) Histograms (d) Polynomial borders

Figure 6.22: Clustering Figure 1: insufficient fit. (a) RANSAC fit: is the result of the section 4.6.3.
(b) Polynomial fit: is the result of section 4.6.4, and shows the fitted left and right polynomial
curves. (c) Histograms: shows the histograms of the bins the data has been grouped into; it also
shows the maxima point as a green dot and the left/right minima as a red point. (d) Error graph:
shows the maxima and left/right minima error values. The error value is gathered from the x-axis
value figure (c), where the error is calculated by equation 4.1.
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Chapter 7

Discussions

7.1 Data and Metadata

PV installation data was given by Solcellespesialisten; however, the need for more informa-
tion regarding the units created some uncertainties. The unit of installation capacity was
solved by estimating it to be in kWp, thereafter calculating the specific yield, and adjusting
the capacity in factors of 1000 (Wp, kWp, and MWp) and utilizing the unit that gave the
most likely specific yield. However, some PV installations gave no likely answer when the
capacity unit was set to be in Wp, kWp, or MWp. These values were removed from the
dataset based on not overfitting the result.

The need for more information regarding the timezone of the timestamps is also a source
of inaccuracies in the study. However, the timezone was located by manually checking for
the correlation between the power data and sunrise/sunset and irradiance data, which has
a known timezone. The result can be verified by getting accurate results in inferring the
tilt and azimuth on a known PV installation such as UIA. However, more than correlation
control is difficult when the tilt and azimuth are also unknown.

The result is also volatile regarding annual fluctuations in irradiance, as the dataset is limited
to one year. A dataset over multiple years, such as ten years, would give a more representa-
tive result regarding such deviations. This thesis’s developed method for analysis is scalable
to such a dataset.

Regarding expanding the metadata, recommendations are to standardize the logged PV ca-
pacity unit and display the timezone and the measurement location of temperature data.
Furthermore, giving the owner of the PV installation the ability to log the tilt and azimuth
would be a great inclusion. Finally, in the dataset analyzed, the creation date of the PV
installations matched the start of the dataset better than possible creation data; it is un-
certain what caused this, but including an accurate creation date would allow for further
analysis, such as year-over-year degradation. Furthermore, including module and inverter
type/brand would also allow a more detailed analysis.
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7.2 Comparative Analysis of Local and CAMS Irradiance Measure-
ments

The GHI, DHI, and DNI measurements from CAMS for the location of UIA, Grimstad, are
compared against the local GHI, DHI, and DNI measurements. Nighttime has been removed
from both datasets to not account for similarity during the nighttime. The data is aggre-
gated to hourly format and consists of 11, 048 hours from 04-08-2019 to 03-12-2021.

The accuracy of the GHI and DHI measurements was quite similar. The DNI measurement
had the largest deviance at a median value of 44.3 W/m2. As stated in the literature review,
the CAMS quarterly report [67] found an absolute average error of 16 W/m2 for the GHI, 15
W/m2 for DHI, and 27 W/m2 for DNI. The results from this study found an absolute average
error of 31.1 W/m2 for GHI, 30.5 W/m2 for DHI, and 90 W/m2 for DNI. Therefore, the
values found in this study are significantly higher, especially for the DNI value. This might
be due to Norway being near the satellite viewing edge and cloud/snow detection being less
accurate as a result [66]. The authors of another report [66] found a correlation between
the Heliosat-4 and local measurements; these results follow that of which is found in this
study. [66] found a Pearson correlation of 0.90-0.96 (GHI), 0.68-0.87 (DNI), and 0.68-0.87
(DHI). The results found in this study are 0.94 (GHI), 0.84 (DHI), and 0.83 (DNI). It is
essential to mention that the expected correlation result in [66] was with 15-min data and
hourly data was used in this study. Overall, the correlation aligns with what is expected,
but mean values deviate from the expected results.

7.3 Inference of Tilt and Azimuth

The utilized method can accurately calculate the tilt and azimuth, with a mean error of
14◦ for azimuth and 11.4◦ for tilt, when using the 15th percentile of data: tested on CAMS
irradiance data and UIA PV installation. The IQR range of the calculated tilt and angle
was different than in previous studies [13] where the best fit was found using a small amount
(0,5 to 4th percentile) of the best-fit RMSE values to generate the monthly result. The best
fit found in this study was in the 6th to 15th percentile range. This deviance might be the
latitude difference causing the sun to be lower in the sky and fewer daylight hours available.
The removal of days when the sun reaches a zenith angle above 70◦ was used in both cases;
this will somewhat reduce the impact of the difference in latitude. This, however, will lead
to more data being removed during the winter months at higher latitudes and might be a
reason why this study had to use a higher percentile of data in the calculation process.

Shading was a source of inaccuracy when calculating the tilt and azimuth. For 40 of the 120
modules installed on UIA, a tilt or azimuth with a greater than 20◦ error was calculated.
These 40 modules are located in places with known shadows due to the railing and pyra-
nometer instrumentation. The shading of some panels was limited to only months with a
high solar zenith angle as the shadow stretched further. This was, however, enough to make
the result less accurate. Indicating how sensitive the method is to shade. The azimuth is
affected most by shade, as eight of the modules with above 50◦ azimuth error had a tilt error
below 10◦. One possible explanation for this could be that the impact of power output is
more sensitive to alteration in tilt than azimuth when the panel tilt is low(≤ 15◦) [3, p. 38-
41]. However, the result was satisfactory even with the shaded panels included; the median
error was 12.2◦ for tilt and 14.1◦ for azimuth, Q3 values were 15.5◦ and 24.1◦ respectively
when utilizing the 15th percentile of the data.
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Selecting the day with the least probability of clouds might also be a source of error at
higher latitudes with more snow. The daily diffuse fraction calculation only considers the
DHI and GHI values, not snow-cover. As only one day is selected to represent each month,
snow-covered panels will significantly lessen the accuracy of the curve mishmash. Further
improvements in this field could significantly improve the model accuracy during winter.
Limiting the model to only summer months is also a possibility. This study has yet to be
done due to limited PV system configurations to test it on and the chance of the result
changing at different configurations of tilt and azimuth. Limiting the data to only utilize
summer months could also offer performance when it comes to shading, as the solar zenith
angle is substantially less during the summer months.

The choice of utilizing the top 15th percentile of best matches from the curve fitting for each
month was selected based on the result in table 6.6, where the irradiance data from CAMS
was utilized. The exact value of 15th was selected based on the Q3 value for the azimuth
being ≈ 9◦ lower than the 10th percentile, as well as the other metrics having less of a change
(≈ ±2− 3◦ between the 10th and 15th percentile). It is important to note that this was not
the most optimal choice regarding tilt but that a trade-off has been made between optimal
tilt, angle, mean, median, Q1, Q3, and max values.

7.4 Filtering and Clustering Method for Performance Analysis

The polynomial filtering technique has challenges; however, some are tied to the dataset
used. First, there needs to be more data points in the dataset used. This is due to two
reasons; 1) the Yf − Y r has a concentration of data points at lower values for both axes,
and the number of data points diminishes as the axis values get larger. This creates a prob-
lem with the binning of the Yr axis. The best solution was to include the same amount of
data points in each bin instead of binning based on the Yr value. This did, however not
entirely fix the other problem. 2) The polynomial fit is only appropriately selected if there
is a precise distribution (Normal, Weibull, etc.) with a clear point where outliers start. The
given dataset did not have that, mainly due to a lack of data points in the upper region. A
possible quick improvement for this would have been to execute the polynomial fit on 5-min
data instead of the 1-hour data. However, the 1-hour data format was chosen based on the
more accurate irradiance data at this timescale, and time constraints made it difficult to
revert to 15-min data. Several ways to improve the selection of minimum points have been
tried, including locating the knee point and selecting the lowest point on the curve; however,
neither gave significant improvements. Finding the minima with the largest drop closest to
the maxima was deemed the best. Due to these reasons, this method is only recommended
if the data contains multiple years of data, the timestep is lowered, or both.

Other challenges include the degree of polynomial fit for finding the maxima and minima
points (Figure 4.2). Lower degrees have a higher chance of getting the minimum point closest
to the maxima to be the border between inliers and outliers; however, a higher polynomial
degree will fit the data better. Therefore the best fit was in the range of 2-10th degree
and was chosen based on the lowest RMSE. The polynomial degree is also challenging when
fitting the left/right polyline (Figure 4.3). A compromise was chosen between fitting a high
polynomial that follows the minima points found in (Figure 4.2) and a low polynomial that
filters out any rapid and possible inaccurate choices.

Given the size of the utilized dataset, the RANSAC regression is a better filtering method,
as it could find a plausible regressional line for nearly all datasets. The chosen parameters
were semi-automatically based on a range that worked. RANSAC has found the optimal
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parameters from the list given, this list could be widened, and the only downside would be
increased computational times. However, the chosen parameters remained the same when
done so.

7.5 Performance Analysis

The PR across all installations was determined to be 0.79 (all-data), 0.83 (RANSAC inliers),
and 0.86 (Polynomial inliers), all of which is inline with the findings of the literature review.
The resulting values might, however, be skewed as the number of PV installations is unequal
for different parts of the country. The numbers will therefore represent the average on the
East coast and Østlandet the most, as the majority of PV innovations are located here. The
PR result across all installations when all data and RANSAC inliers were used also indicates
that few shading, non-optimized operation, and other problems are present in the dataset,
as a relatively small increase in PR was seen after the RANSAC filtering.

It should be noted that further analysis has yet to be conducted to determine whether the
differences observed between the use of all data and RANSAC inliers were due to shading
removal, irradiance measurement inaccuracies, or a slight inaccuracy in the RANSAC re-
gression line.

Each county’s PR and specific yield represents the respective location’s PR and specific yield
more accurately than the result from all PV installations. However, the limited amount of
PV installation in each county can lead to some uncertainties, especially those with fewer
installations, as one or multiple faulty values have a more significant impact when a low
amount of PV installations is present. In addition, as PR is adjusted for the irradiation
regarding tilt and azimuth, inaccurate results from the inference of tilt and azimuth may
also supplement inaccuracies.

The use of a fitted Weibull curve to estimate a value for the PR and specific yield has been
used in previous studies [83]. However, the limitation regarding the need for more available
PV installations to get a good fit is a concern when using a low amount of installations;
other metrics, such as mean or median, might be better in such cases. Furthermore, includ-
ing mean and median values makes comparisons across studies more feasible.

7.6 Statistical Analysis

Two methods have been utilized for the statistical probability test, depending on whether the
data is normally distributed. PR has been estimated not to be normally distributed. This
decision is based upon previous findings [23], [83], using nonparametric tests have therefore
been utilized. Using parametric tests for the specific yield was based upon findings that it
should be normally distributed. Parametric tests are seen as more potent than nonparamet-
ric tests and are therefore preferred if the conditions are met. However, one could argue that
nonparametric tests are better when the sample size is limited and should therefore be used.
What states a limited number was, however, hard to find. Parametric tests have also been
previously used on PR [83], which is not expected to be normally distributed, so arguments
can be made for both choices of parametric and nonparametric tests.
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Chapter 8

Conclusions

In conclusion, this study has highlighted the challenges of analyzing a large number of PV
systems with limited metadata, primarily attributed to needing more information such as
orientation, temperature, and unknown measurement units. However, despite these chal-
lenges, it is possible to infer these and conduct an informative analysis that generates a
knowledge foundation about the PV installations in Norway

Metadata is supplemented with irradiance measurements, as well as tilt and azimuth inferred
only utilizing power and satellite irradiance data. The method is tested on a known installa-
tion with 120 PV modules with module-level monitoring (Tigo optimizers). The result shows
a median accuracy of 12.2◦ and 14.1◦ for tilt and azimuth, respectively. Shading is found to
be the most impactful metric for accuracy when inferring tilt and azimuth. Unknown units
of measurement are inferred by utilizing the method of locating highly plausible units. Wp,
kWp, and MWp are likely installed capacity units; thus, every PV installation that does not
give highly probable specific yields using these units is disregarded.

Variations in the specific yield are found across regions in Norway, with Østfold, Vestfold,
and Oslo recording an estimated specific yield of over 900 kWh/kWp, and Rogaland, Aker-
shus, Hedemark, Buskerud, Telemark, and Oppland generating over 800 kWh/kWp. PR is
found using three datasets utilizing different filtering procedures. The first is no filtration,
giving a PR of 0.79 for all installations. The second is a linear filtration process (RANSAC),
finding a PR of 0.83. Finally, a non-linear filtration process accounted for the near-linear
relationship between power and irradiance, giving a PR of 0.86 for all installations. Albit
limitations regarding the number and distribution of PV installations, together with the
limited period available, created some uncertainties regarding the validity of these results,
highlighting the need for data collection.
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Chapter 9

Further work

Further work includes more suitable methods where the current ones do not work optimally
and optimization of the suited ones. Regarding the inference of tilt and azimuth, more data
to find the optimal percentile parameter for the northern climate would be a great inclusion.
The data could either be from existing PV facilities or developing a method to use simulated
facilities. As shading is a major problem that greatly reduces the accuracy of the utilized
method, incorporating a procedure to detect shading in the dataset would increase the ac-
curacy of the inferred tilt and azimuth.

A new method could be to utilize the method developed in [34]. The authors have developed
a procedure to get the typical power output of an optimal day for each month. This optimal
day power curve might also be an interesting topic to look further into, as this could be
utilized instead of the daily diffuse fraction method utilized in this report. The benefit of
implementing such a procedure could be to remove short-lasting power dips that might not
be reflected in the satellite irradiance data. It would also ensure that the power curve does
not include downtime. However, accurate orientation information could be lost due to the
irradiance also being altered to typical daily profiles. The presence of local shading possibly
not being removed is also a concern.

Filtering the PR and Specific yield based on geographical regions is also a valuable inclusion;
methods that could be considered are, for example [86], where they have first filtered on a
national level, then on a more local level.

The process of selecting the day with the least probability of clouds might also be a source
of error at higher latitudes with more snow. The daily diffuse fraction only considers the
DHI and GHI values, not snow-cover. As only one day is selected to represent each month,
a simple improvement could be to analyze the power curve of the clearest-sky day and
detect if it is beneath a threshold. The threshold could, for example, be around the 90th
percentile power production during that month, as this is near clear-sky performance [34].
By implementing such a technique, days with snow cover and low cloud formation can be
detected, and a day with less snow cover can be selected for that month. This would also
enable days with downtime to not be used.
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Appendix A

Modules where Shading Affected the
Inference of Tilt and Azimuth

Table A.1: Modules where the predicted azimuth or tilt error was above 20 degrees. Irradiance
measurements from CAMS and 15th percentile

Percentile True azimuth True tilt Inst. No Azimuth Tilt Azimuth error Tilt error

15.000 83.200 10.000 A1.csv 123.219 67.078 40.019 57.078
15.000 83.200 10.000 A2.csv 85.352 37.524 2.152 27.524
15.000 83.200 10.000 A3.csv 77.966 33.359 5.234 23.359
15.000 83.200 10.000 A4.csv 80.428 34.772 2.772 24.772
15.000 83.200 10.000 A5.csv 126.278 43.630 43.078 33.630
15.000 263.200 10.000 B1.csv 206.911 17.454 56.289 7.454
15.000 263.200 10.000 B2.csv 209.863 17.695 53.337 7.695
15.000 263.200 10.000 B3.csv 169.310 19.650 93.890 9.650
15.000 263.200 10.000 B4.csv 184.662 28.676 78.538 18.676
15.000 263.200 10.000 B5.csv 214.700 20.851 48.500 10.851
15.000 83.200 10.000 C5.csv 19.833 27.667 63.367 17.667
15.000 83.200 10.000 C6.csv 165.321 22.226 82.121 12.226
15.000 263.200 10.000 D5.csv 242.866 9.677 20.334 0.323
15.000 263.200 10.000 D6.csv 330.136 24.818 66.936 14.818
15.000 83.200 10.000 E1.csv 104.000 27.017 20.800 17.017
15.000 83.200 10.000 E2.csv 39.610 23.184 43.590 13.184
15.000 263.200 10.000 F1.csv 326.778 12.395 63.578 2.395
15.000 263.200 10.000 F5.csv 226.075 33.423 37.125 23.423
15.000 263.200 10.000 F6.csv 226.242 33.512 36.958 23.512
15.000 263.200 10.000 F7.csv 226.757 33.243 36.443 23.243
15.000 83.200 10.000 K1.csv 79.139 34.784 4.061 24.784
15.000 83.200 10.000 K2.csv 77.930 34.102 5.270 24.102
15.000 83.200 10.000 K3.csv 79.653 34.530 3.547 24.530
15.000 83.200 10.000 K4.csv 79.471 34.783 3.729 24.783
15.000 83.200 10.000 K5.csv 75.038 30.551 8.162 20.551
15.000 263.200 10.000 S1.csv 196.271 14.745 66.929 4.745
15.000 263.200 10.000 S2.csv 199.284 14.191 63.916 4.191
15.000 263.200 10.000 S3.csv 199.139 14.066 64.061 4.066
15.000 263.200 10.000 S4.csv 198.533 15.099 64.667 5.099
15.000 263.200 10.000 S5.csv 222.922 14.626 40.278 4.626
15.000 263.200 10.000 V1.csv 229.321 30.074 33.879 20.074
15.000 263.200 10.000 V2.csv 223.311 33.834 39.889 23.834
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Percentile True azimuth True tilt Inst. No Azimuth Tilt Azimuth error Tilt error

15.000 263.200 10.000 V3.csv 225.411 32.982 37.789 22.982
15.000 263.200 10.000 V4.csv 225.350 33.404 37.850 23.404
15.000 263.200 10.000 V5.csv 225.258 33.404 37.942 23.404
15.000 263.200 10.000 W1.csv 191.209 28.528 71.991 18.528
15.000 263.200 10.000 W2.csv 190.936 29.679 72.264 19.679
15.000 263.200 10.000 W3.csv 192.409 25.888 70.791 15.888
15.000 263.200 10.000 W4.csv 191.501 27.543 71.699 17.543
15.000 263.200 10.000 W5.csv 193.135 24.122 70.065 14.122
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Appendix B

PR Values of the PV Installations by
County

Table B.1: PR values of PV installations by county: all data filtered using Tukey’s method and
values Above 1 Excluded. The PR value is chosen by the peak of a Weibull curve fitted to a
histogram of all PR Values

Fylke Num PV Installations PR Max Peak Q1 Mean Median Q3 Std
Rogaland 79 0.83 0.72 0.80 0.81 0.89 0.12
Østfold 75 0.77 0.66 0.75 0.75 0.84 0.13
Akershus 49 0.74 0.62 0.72 0.73 0.80 0.14
Hordaland 44 0.83 0.71 0.77 0.82 0.87 0.15
Hedmark 34 0.78 0.70 0.76 0.77 0.83 0.11
Buskerud 28 0.78 0.64 0.72 0.74 0.80 0.15
Vestfold 20 0.79 0.63 0.75 0.74 0.85 0.14
Sør-Trøndelag 14 0.75 0.67 0.72 0.74 0.79 0.13
Telemark 13 0.72 0.57 0.68 0.71 0.82 0.14
Oppland 10 0.76 0.58 0.70 0.75 0.81 0.13
Oslo 7 0.76 0.69 0.71 0.71 0.77 0.12

Table B.2: PR values of PV installations by county: RANSAC inliers derived from Tukey’s method
filtered data and values above 1 excluded. The PR value is chosen by the peak of a Weibull curve
fitted to a histogram of all PR Values

County Num PV Installations PR Max Peak Q1 Mean Median Q3 Std
Rogaland 86 0.87 0.76 0.83 0.83 0.92 0.12
Østfold 70 0.80 0.72 0.77 0.78 0.85 0.11
Akershus 45 0.78 0.69 0.76 0.78 0.82 0.10
Hordaland 44 0.86 0.74 0.82 0.84 0.89 0.10
Hedmark 33 0.83 0.76 0.80 0.82 0.84 0.10
Buskerud 24 0.84 0.77 0.82 0.83 0.88 0.09
Vestfold 22 0.82 0.72 0.79 0.78 0.88 0.12
Sør-Trøndelag 13 0.75 0.75 0.80 0.78 0.84 0.07
Telemark 14 0.82 0.68 0.78 0.82 0.87 0.13
Oppland 10 0.80 0.65 0.74 0.78 0.84 0.14
Oslo 8 0.79 0.70 0.76 0.74 0.85 0.14
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Table B.3: PR values of PV installations by county: polynomial inliers derived from Tukey’s method
filtered data and values above 1 excluded. The PR value is chosen by the peak of a Weibull curve
fitted to a histogram of all PR Values

County Num PV Installations PR Max Peak Q1 Mean Median Q3 Std
Rogaland 82 0.89 0.79 0.84 0.87 0.92 0.11
Østfold 70 0.81 0.75 0.80 0.79 0.88 0.10
Akershus 45 0.81 0.75 0.79 0.81 0.85 0.10
Hordaland 42 0.88 0.78 0.84 0.84 0.91 0.11
Hedmark 33 0.85 0.78 0.83 0.83 0.89 0.08
Buskerud 26 0.90 0.82 0.87 0.88 0.93 0.08
Vestfold 22 0.86 0.77 0.83 0.84 0.89 0.11
Sør-Trøndelag 13 0.75 0.78 0.85 0.82 0.91 0.08
Telemark 14 0.87 0.74 0.82 0.85 0.89 0.11
Oppland 10 0.83 0.69 0.77 0.80 0.88 0.14
Oslo 7 0.84 0.75 0.79 0.79 0.87 0.11

65



Appendix C

Specific Yield of the PV Installations by
County

Table C.1: Specific yield of PV installations by county: All data filtered using Tukey’s method.
The specific yield value is chosen by the peak of a Weibull curve fitted to a histogram of all specific
yield Values

County Num PV Installations Max Peak Q1 Mean Median Q3 STD

Rogaland 96 864.84 738.46 826.29 843.10 934.40 146.55
Østfold 81 949.12 794.89 915.09 939.52 1034.88 174.05
Akershus 54 876.98 745.67 813.63 848.97 925.24 183.91
Hordaland 49 788.57 687.29 782.83 767.96 896.60 153.23
Hedmark 38 849.70 748.08 859.21 872.31 942.07 147.89
Buskerud 28 851.52 731.97 829.98 838.88 940.03 160.40
Vestfold 21 955.61 815.02 935.22 912.60 1082.60 171.22
Sør-Trøndelag 15 682.61 630.37 661.59 677.37 714.96 119.72
Telemark 14 839.23 718.39 847.44 808.88 985.27 174.60
Oppland 10 818.08 691.34 760.30 824.46 858.82 132.63
Oslo 9 972.46 831.57 884.07 859.63 1054.04 190.82
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Appendix D

Estimated Tilt and Azimuth: UIA: Local

Table D.1: Estimated orientation: UIA: Local

Percentile True azimuth True tilt Inst. No Azimuth Tilt Azimuth error Tilt error

15.000 83.200 10.000 A1.csv 26.000 36.000 57.200 26.000
15.000 83.200 10.000 A2.csv 76.019 34.269 7.181 24.269
15.000 83.200 10.000 A3.csv 78.868 33.078 4.332 23.078
15.000 83.200 10.000 A4.csv 78.653 32.622 4.547 22.622
15.000 83.200 10.000 A5.csv 131.669 42.607 48.469 32.607
15.000 83.200 10.000 A6.csv 58.147 23.104 25.053 13.104
15.000 263.200 10.000 B1.csv 182.414 49.103 80.786 39.103
15.000 263.200 10.000 B2.csv 182.319 52.986 80.881 42.986
15.000 263.200 10.000 B3.csv 166.990 18.729 96.210 8.729
15.000 263.200 10.000 B4.csv 162.415 24.623 100.785 14.623
15.000 263.200 10.000 B5.csv 229.997 17.280 33.203 7.280
15.000 263.200 10.000 B6.csv 182.604 46.047 80.596 36.047
15.000 83.200 10.000 C1.csv 95.098 22.258 11.898 12.258
15.000 83.200 10.000 C2.csv 95.118 22.189 11.918 12.189
15.000 83.200 10.000 C3.csv 95.378 22.953 12.178 12.953
15.000 83.200 10.000 C4.csv 94.624 22.647 11.424 12.647
15.000 83.200 10.000 C5.csv 139.590 29.466 56.390 19.466
15.000 83.200 10.000 C6.csv 9.531 38.094 73.669 28.094
15.000 263.200 10.000 D1.csv 250.805 12.886 12.395 2.886
15.000 263.200 10.000 D2.csv 249.980 12.884 13.220 2.884
15.000 263.200 10.000 D3.csv 242.292 9.930 20.908 0.070
15.000 263.200 10.000 D4.csv 252.506 11.104 10.694 1.104
15.000 263.200 10.000 D5.csv 253.082 11.560 10.118 1.560
15.000 263.200 10.000 D6.csv 333.500 30.500 70.300 20.500
15.000 83.200 10.000 E1.csv 106.982 28.747 23.782 18.747
15.000 83.200 10.000 E2.csv 37.165 22.477 46.035 12.477
15.000 83.200 10.000 E3.csv 92.219 24.344 9.019 14.344
15.000 83.200 10.000 E4.csv 91.999 24.205 8.799 14.205
15.000 83.200 10.000 E5.csv 108.835 25.196 25.635 15.196
15.000 83.200 10.000 E6.csv 88.348 20.273 5.148 10.273
15.000 83.200 10.000 E7.csv 88.996 20.253 5.796 10.253
15.000 83.200 10.000 E8.csv 89.859 20.674 6.659 10.674
15.000 263.200 10.000 F1.csv 254.510 12.197 8.690 2.197
15.000 263.200 10.000 F2.csv 277.003 11.988 13.803 1.988
15.000 263.200 10.000 F3.csv 260.368 12.138 2.832 2.138
15.000 263.200 10.000 F4.csv 259.184 12.330 4.016 2.330
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Percentile True azimuth True tilt Inst. No Azimuth Tilt Azimuth error Tilt error

15.000 263.200 10.000 F5.csv 220.393 37.660 42.807 27.660
15.000 263.200 10.000 F6.csv 220.124 37.925 43.076 27.925
15.000 263.200 10.000 F7.csv 220.519 37.663 42.681 27.663
15.000 263.200 10.000 F8.csv 219.405 38.182 43.795 28.182
15.000 83.200 10.000 G1.csv 98.141 22.176 14.941 12.176
15.000 83.200 10.000 G2.csv 96.382 22.204 13.182 12.204
15.000 83.200 10.000 G3.csv 97.950 21.955 14.750 11.955
15.000 83.200 10.000 G4.csv 96.682 22.042 13.482 12.042
15.000 83.200 10.000 G5.csv 96.874 22.166 13.674 12.166
15.000 83.200 10.000 H1.csv 96.932 22.585 13.732 12.585
15.000 83.200 10.000 H2.csv 96.178 21.995 12.978 11.995
15.000 83.200 10.000 H3.csv 96.379 21.678 13.179 11.678
15.000 83.200 10.000 H4.csv 97.096 21.758 13.896 11.758
15.000 83.200 10.000 H5.csv 96.733 22.443 13.533 12.443
15.000 83.200 10.000 I1.csv 95.636 24.713 12.436 14.713
15.000 83.200 10.000 I2.csv 96.688 26.289 13.488 16.289
15.000 83.200 10.000 I3.csv 95.491 25.049 12.291 15.049
15.000 83.200 10.000 I4.csv 95.850 24.663 12.650 14.663
15.000 83.200 10.000 I5.csv 96.212 24.445 13.012 14.445
15.000 83.200 10.000 J1.csv 92.034 19.609 8.834 9.609
15.000 83.200 10.000 J2.csv 99.254 21.023 16.054 11.023
15.000 83.200 10.000 J3.csv 96.592 21.149 13.392 11.149
15.000 83.200 10.000 J4.csv 94.029 20.712 10.829 10.712
15.000 83.200 10.000 J5.csv 95.792 20.785 12.592 10.785
15.000 83.200 10.000 K1.csv 79.487 34.459 3.713 24.459
15.000 83.200 10.000 K2.csv 79.156 34.448 4.044 24.448
15.000 83.200 10.000 K3.csv 81.444 35.184 1.756 25.184
15.000 83.200 10.000 K4.csv 80.378 34.731 2.822 24.731
15.000 83.200 10.000 K5.csv 78.560 32.320 4.640 22.320
15.000 83.200 10.000 L1.csv 95.743 23.074 12.543 13.074
15.000 83.200 10.000 L2.csv 95.130 22.569 11.930 12.569
15.000 83.200 10.000 L3.csv 95.511 22.765 12.311 12.765
15.000 83.200 10.000 L4.csv 93.271 23.462 10.071 13.462
15.000 83.200 10.000 L5.csv 96.055 23.867 12.855 13.867
15.000 83.200 10.000 M1.csv 95.348 23.697 12.148 13.697
15.000 83.200 10.000 M2.csv 95.591 23.568 12.391 13.568
15.000 83.200 10.000 M4.csv 93.541 25.304 10.341 15.304
15.000 83.200 10.000 M5.csv 92.588 25.087 9.388 15.087
15.000 83.200 10.000 N1.csv 89.764 21.700 6.564 11.700
15.000 83.200 10.000 N2.csv 88.426 21.632 5.226 11.632
15.000 83.200 10.000 N3.csv 89.495 21.384 6.295 11.384
15.000 83.200 10.000 N4.csv 90.831 21.266 7.631 11.266
15.000 83.200 10.000 N5.csv 91.171 21.849 7.971 11.849
15.000 263.200 10.000 S1.csv 184.486 5.156 78.714 4.844
15.000 263.200 10.000 S2.csv 182.271 6.712 80.929 3.288
15.000 263.200 10.000 S3.csv 185.045 6.197 78.155 3.803
15.000 263.200 10.000 S4.csv 180.470 2.625 82.730 7.375
15.000 263.200 10.000 S5.csv 205.853 10.882 57.347 0.882
15.000 263.200 10.000 T1.csv 247.847 12.698 15.353 2.698
15.000 263.200 10.000 T2.csv 247.890 12.803 15.310 2.803
15.000 263.200 10.000 T3.csv 247.441 12.938 15.759 2.938
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Percentile True azimuth True tilt Inst. No Azimuth Tilt Azimuth error Tilt error

15.000 263.200 10.000 T4.csv 239.873 10.129 23.327 0.129
15.000 263.200 10.000 T5.csv 240.217 9.969 22.983 0.031
15.000 263.200 10.000 U1.csv 241.757 9.670 21.443 0.330
15.000 263.200 10.000 U2.csv 241.556 9.708 21.644 0.292
15.000 263.200 10.000 U3.csv 240.954 9.500 22.246 0.500
15.000 263.200 10.000 U4.csv 241.583 9.361 21.617 0.639
15.000 263.200 10.000 U5.csv 241.358 9.453 21.842 0.547
15.000 263.200 10.000 V1.csv 223.358 35.123 39.842 25.123
15.000 263.200 10.000 V2.csv 219.945 37.522 43.255 27.522
15.000 263.200 10.000 V3.csv 221.075 37.046 42.125 27.046
15.000 263.200 10.000 V4.csv 219.820 37.578 43.380 27.578
15.000 263.200 10.000 V5.csv 219.864 37.736 43.336 27.736
15.000 263.200 10.000 W1.csv 182.061 18.391 81.139 8.391
15.000 263.200 10.000 W2.csv 182.788 19.130 80.412 9.130
15.000 263.200 10.000 W3.csv 183.041 23.398 80.159 13.398
15.000 263.200 10.000 W4.csv 183.827 17.645 79.373 7.645
15.000 263.200 10.000 W5.csv 181.042 12.966 82.158 2.966
15.000 263.200 10.000 X1.csv 246.058 13.140 17.142 3.140
15.000 263.200 10.000 X2.csv 247.797 12.822 15.403 2.822
15.000 263.200 10.000 X3.csv 246.647 12.768 16.553 2.768
15.000 263.200 10.000 X4.csv 242.866 14.403 20.334 4.403
15.000 263.200 10.000 X5.csv 247.207 12.737 15.993 2.737
15.000 263.200 10.000 Y1.csv 239.208 10.088 23.992 0.088
15.000 263.200 10.000 Y2.csv 240.670 9.878 22.530 0.122
15.000 263.200 10.000 Y3.csv 240.157 9.772 23.043 0.228
15.000 263.200 10.000 Y4.csv 239.660 10.056 23.540 0.056
15.000 263.200 10.000 Y5.csv 240.157 10.137 23.043 0.137
15.000 263.200 10.000 Z1.csv 239.376 9.655 23.824 0.345
15.000 263.200 10.000 Z2.csv 240.090 9.554 23.110 0.446
15.000 263.200 10.000 Z3.csv 238.972 9.749 24.228 0.251
15.000 263.200 10.000 Z4.csv 239.595 9.489 23.605 0.511
15.000 263.200 10.000 Z5.csv 240.800 9.572 22.400 0.428
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Appendix E

Estimated Tilt and Azimuth: UIA:
CAMS

Table E.1: Estimated orientation: UIA: CAMS

Percentile True azimuth True tilt Inst. No Azimuth Tilt Azimuth error Tilt error

15.000 83.200 10.000 A1.csv 123.219 67.078 40.019 57.078
15.000 83.200 10.000 A2.csv 85.352 37.524 2.152 27.524
15.000 83.200 10.000 A3.csv 77.966 33.359 5.234 23.359
15.000 83.200 10.000 A4.csv 80.428 34.772 2.772 24.772
15.000 83.200 10.000 A5.csv 126.278 43.630 43.078 33.630
15.000 83.200 10.000 A6.csv 64.740 25.407 18.460 15.407
15.000 263.200 10.000 B1.csv 206.911 17.454 56.289 7.454
15.000 263.200 10.000 B2.csv 209.863 17.695 53.337 7.695
15.000 263.200 10.000 B3.csv 169.310 19.650 93.890 9.650
15.000 263.200 10.000 B4.csv 184.662 28.676 78.538 18.676
15.000 263.200 10.000 B5.csv 214.700 20.851 48.500 10.851
15.000 263.200 10.000 B6.csv 264.535 3.219 1.335 6.781
15.000 83.200 10.000 C1.csv 97.051 22.801 13.851 12.801
15.000 83.200 10.000 C2.csv 97.233 22.850 14.033 12.850
15.000 83.200 10.000 C3.csv 97.038 23.424 13.838 13.424
15.000 83.200 10.000 C4.csv 96.323 23.053 13.123 13.053
15.000 83.200 10.000 C5.csv 19.833 27.667 63.367 17.667
15.000 83.200 10.000 C6.csv 165.321 22.226 82.121 12.226
15.000 263.200 10.000 D1.csv 270.405 11.837 7.205 1.837
15.000 263.200 10.000 D2.csv 271.342 11.690 8.142 1.690
15.000 263.200 10.000 D3.csv 276.849 10.538 13.649 0.538
15.000 263.200 10.000 D4.csv 277.086 10.763 13.886 0.763
15.000 263.200 10.000 D5.csv 242.866 9.677 20.334 0.323
15.000 263.200 10.000 D6.csv 330.136 24.818 66.936 14.818
15.000 83.200 10.000 E1.csv 104.000 27.017 20.800 17.017
15.000 83.200 10.000 E2.csv 39.610 23.184 43.590 13.184
15.000 83.200 10.000 E3.csv 94.716 25.294 11.516 15.294
15.000 83.200 10.000 E4.csv 95.095 25.374 11.895 15.374
15.000 83.200 10.000 E5.csv 102.490 23.597 19.290 13.597
15.000 83.200 10.000 E6.csv 89.670 20.607 6.470 10.607
15.000 83.200 10.000 E7.csv 90.549 20.640 7.349 10.640
15.000 83.200 10.000 E8.csv 91.625 21.177 8.425 11.177
15.000 263.200 10.000 F1.csv 326.778 12.395 63.578 2.395
15.000 263.200 10.000 F2.csv 252.574 11.421 10.626 1.421
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Percentile True azimuth True tilt Inst. No Azimuth Tilt Azimuth error Tilt error

15.000 263.200 10.000 F3.csv 273.031 10.821 9.831 0.821
15.000 263.200 10.000 F4.csv 272.365 10.851 9.165 0.851
15.000 263.200 10.000 F5.csv 226.075 33.423 37.125 23.423
15.000 263.200 10.000 F6.csv 226.242 33.512 36.958 23.512
15.000 263.200 10.000 F7.csv 226.757 33.243 36.443 23.243
15.000 263.200 10.000 F8.csv 245.858 21.771 17.342 11.771
15.000 83.200 10.000 G1.csv 99.536 22.690 16.336 12.690
15.000 83.200 10.000 G2.csv 98.153 22.607 14.953 12.607
15.000 83.200 10.000 G3.csv 99.355 22.385 16.155 12.385
15.000 83.200 10.000 G4.csv 97.233 22.002 14.033 12.002
15.000 83.200 10.000 G5.csv 98.196 22.537 14.996 12.537
15.000 83.200 10.000 H1.csv 99.364 23.359 16.164 13.359
15.000 83.200 10.000 H2.csv 97.224 22.047 14.024 12.047
15.000 83.200 10.000 H3.csv 97.391 21.989 14.191 11.989
15.000 83.200 10.000 H4.csv 98.051 22.031 14.851 12.031
15.000 83.200 10.000 H5.csv 98.471 22.877 15.271 12.877
15.000 83.200 10.000 I1.csv 97.506 25.221 14.306 15.221
15.000 83.200 10.000 I2.csv 98.315 26.935 15.115 16.935
15.000 83.200 10.000 I3.csv 97.377 25.682 14.177 15.682
15.000 83.200 10.000 I4.csv 97.288 24.844 14.088 14.844
15.000 83.200 10.000 I5.csv 98.011 24.922 14.811 14.922
15.000 83.200 10.000 J1.csv 93.609 20.096 10.409 10.096
15.000 83.200 10.000 J2.csv 100.857 22.193 17.657 12.193
15.000 83.200 10.000 J3.csv 96.895 21.204 13.695 11.204
15.000 83.200 10.000 J4.csv 95.476 21.269 12.276 11.269
15.000 83.200 10.000 J5.csv 96.985 21.289 13.785 11.289
15.000 83.200 10.000 K1.csv 79.139 34.784 4.061 24.784
15.000 83.200 10.000 K2.csv 77.930 34.102 5.270 24.102
15.000 83.200 10.000 K3.csv 79.653 34.530 3.547 24.530
15.000 83.200 10.000 K4.csv 79.471 34.783 3.729 24.783
15.000 83.200 10.000 K5.csv 75.038 30.551 8.162 20.551
15.000 83.200 10.000 L1.csv 97.476 23.473 14.276 13.473
15.000 83.200 10.000 L2.csv 97.249 23.175 14.049 13.175
15.000 83.200 10.000 L3.csv 97.870 23.489 14.670 13.489
15.000 83.200 10.000 L4.csv 95.578 24.270 12.378 14.270
15.000 83.200 10.000 L5.csv 98.259 24.642 15.059 14.642
15.000 83.200 10.000 M1.csv 97.442 24.308 14.242 14.308
15.000 83.200 10.000 M2.csv 97.405 23.980 14.205 13.980
15.000 83.200 10.000 M3.csv 95.266 25.569 12.066 15.569
15.000 83.200 10.000 M4.csv 95.583 25.824 12.383 15.824
15.000 83.200 10.000 M5.csv 95.190 25.886 11.990 15.886
15.000 83.200 10.000 N1.csv 93.074 22.887 9.874 12.887
15.000 83.200 10.000 N2.csv 91.580 22.636 8.380 12.636
15.000 83.200 10.000 N3.csv 91.373 21.939 8.173 11.939
15.000 83.200 10.000 N4.csv 92.544 21.766 9.344 11.766
15.000 83.200 10.000 N5.csv 91.793 21.693 8.593 11.693
15.000 263.200 10.000 S1.csv 196.271 14.745 66.929 4.745
15.000 263.200 10.000 S2.csv 199.284 14.191 63.916 4.191
15.000 263.200 10.000 S3.csv 199.139 14.066 64.061 4.066
15.000 263.200 10.000 S4.csv 198.533 15.099 64.667 5.099
15.000 263.200 10.000 S5.csv 222.922 14.626 40.278 4.626
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Percentile True azimuth True tilt Inst. No Azimuth Tilt Azimuth error Tilt error

15.000 263.200 10.000 T1.csv 272.201 11.626 9.001 1.626
15.000 263.200 10.000 T2.csv 271.652 11.718 8.452 1.718
15.000 263.200 10.000 T3.csv 270.521 11.692 7.321 1.692
15.000 263.200 10.000 T4.csv 275.030 10.310 11.830 0.310
15.000 263.200 10.000 T5.csv 278.172 10.383 14.972 0.383
15.000 263.200 10.000 U1.csv 279.303 10.504 16.103 0.504
15.000 263.200 10.000 U2.csv 277.763 10.700 14.563 0.700
15.000 263.200 10.000 U3.csv 278.576 10.178 15.376 0.178
15.000 263.200 10.000 U4.csv 280.737 10.233 17.537 0.233
15.000 263.200 10.000 U5.csv 279.105 10.170 15.905 0.170
15.000 263.200 10.000 V1.csv 229.321 30.074 33.879 20.074
15.000 263.200 10.000 V2.csv 223.311 33.834 39.889 23.834
15.000 263.200 10.000 V3.csv 225.411 32.982 37.789 22.982
15.000 263.200 10.000 V4.csv 225.350 33.404 37.850 23.404
15.000 263.200 10.000 V5.csv 225.258 33.404 37.942 23.404
15.000 263.200 10.000 W1.csv 191.209 28.528 71.991 18.528
15.000 263.200 10.000 W2.csv 190.936 29.679 72.264 19.679
15.000 263.200 10.000 W3.csv 192.409 25.888 70.791 15.888
15.000 263.200 10.000 W4.csv 191.501 27.543 71.699 17.543
15.000 263.200 10.000 W5.csv 193.135 24.122 70.065 14.122
15.000 263.200 10.000 X1.csv 265.971 12.231 2.771 2.231
15.000 263.200 10.000 X2.csv 266.597 12.222 3.397 2.222
15.000 263.200 10.000 X3.csv 267.195 11.856 3.995 1.856
15.000 263.200 10.000 X4.csv 259.633 12.719 3.567 2.719
15.000 263.200 10.000 X5.csv 267.890 11.992 4.690 1.992
15.000 263.200 10.000 Y1.csv 269.019 10.621 5.819 0.621
15.000 263.200 10.000 Y2.csv 270.543 10.583 7.343 0.583
15.000 263.200 10.000 Y3.csv 270.973 10.505 7.773 0.505
15.000 263.200 10.000 Y4.csv 269.308 10.782 6.108 0.782
15.000 263.200 10.000 Y5.csv 269.009 10.694 5.809 0.694
15.000 263.200 10.000 Z1.csv 271.204 10.312 8.004 0.312
15.000 263.200 10.000 Z2.csv 272.484 10.316 9.284 0.316
15.000 263.200 10.000 Z3.csv 265.204 10.253 2.004 0.253
15.000 263.200 10.000 Z4.csv 270.992 10.003 7.792 0.003
15.000 263.200 10.000 Z5.csv 272.737 10.320 9.537 0.320
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Appendix F

PR for Each County and Month:
Dataset 1) All data

Table F.1: PR for each county and month. Dataset 1) All data

Fylke Month Peak Weibull Q1 Median Q3 Mean

Rogaland Jan 0.19 0.17 0.28 0.44 0.33
Rogaland Feb 0.69 0.47 0.59 0.76 0.58
Rogaland Mar 0.81 0.66 0.75 0.87 0.72
Rogaland Apr 0.86 0.74 0.83 0.90 0.79
Rogaland May 0.88 0.78 0.84 0.91 0.81
Rogaland Jun 0.88 0.77 0.86 0.93 0.81
Rogaland Jul 0.89 0.79 0.88 0.93 0.82
Rogaland Aug 0.86 0.75 0.83 0.90 0.77
Rogaland Sep 0.82 0.68 0.78 0.88 0.72
Rogaland Oct 0.74 0.54 0.68 0.79 0.64
Rogaland Nov 0.35 0.24 0.38 0.54 0.40
Rogaland Dec 0.00 0.08 0.19 0.38 0.27
Hordaland Jan 0.19 0.19 0.31 0.41 0.33
Hordaland Feb 0.72 0.48 0.70 0.81 0.63
Hordaland Mar 0.79 0.58 0.67 0.87 0.67
Hordaland Apr 0.86 0.73 0.85 0.91 0.77
Hordaland May 0.88 0.77 0.86 0.93 0.80
Hordaland Jun 0.86 0.74 0.85 0.91 0.78
Hordaland Jul 0.88 0.78 0.86 0.92 0.82
Hordaland Aug 0.85 0.71 0.82 0.91 0.78
Hordaland Sep 0.82 0.64 0.78 0.86 0.73
Hordaland Oct 0.70 0.52 0.70 0.78 0.66
Hordaland Nov 0.35 0.26 0.41 0.57 0.43
Hordaland Dec 0.03 0.11 0.22 0.39 0.28
Akershus Jan 0.00 0.08 0.18 0.29 0.21
Akershus Feb 0.29 0.24 0.34 0.52 0.38
Akershus Mar 0.59 0.22 0.57 0.70 0.50
Akershus Apr 0.77 0.59 0.76 0.83 0.66
Akershus May 0.81 0.66 0.80 0.88 0.70
Akershus Jun 0.78 0.61 0.76 0.84 0.67
Akershus Jul 0.79 0.62 0.77 0.85 0.68
Akershus Aug 0.79 0.60 0.79 0.87 0.67
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Table F.1 Continued from previous page
Fylke Month Peak Weibull Q1 Median Q3 Mean

Akershus Sep 0.76 0.56 0.74 0.83 0.64
Akershus Oct 0.65 0.42 0.56 0.73 0.52
Akershus Nov 0.23 0.20 0.25 0.38 0.26
Akershus Dec 0.00 0.02 0.06 0.12 0.10
Buskerud Jan 0.00 0.03 0.07 0.14 0.12
Buskerud Feb 0.43 0.25 0.46 0.58 0.41
Buskerud Mar 0.73 0.47 0.65 0.86 0.59
Buskerud Apr 0.82 0.65 0.81 0.88 0.70
Buskerud May 0.83 0.70 0.83 0.88 0.70
Buskerud Jun 0.84 0.71 0.80 0.89 0.72
Buskerud Jul 0.83 0.69 0.83 0.87 0.72
Buskerud Aug 0.85 0.73 0.81 0.90 0.75
Buskerud Sep 0.79 0.62 0.75 0.86 0.67
Buskerud Oct 0.69 0.49 0.63 0.79 0.58
Buskerud Nov 0.13 0.17 0.30 0.41 0.30
Buskerud Dec 0.00 0.01 0.04 0.09 0.10
Østfold Jan 0.19 0.14 0.27 0.37 0.27
Østfold Feb 0.54 0.31 0.49 0.66 0.47
Østfold Mar 0.75 0.52 0.69 0.83 0.62
Østfold Apr 0.81 0.65 0.80 0.86 0.71
Østfold May 0.81 0.66 0.79 0.87 0.71
Østfold Jun 0.82 0.69 0.82 0.88 0.72
Østfold Jul 0.81 0.69 0.81 0.86 0.71
Østfold Aug 0.79 0.63 0.78 0.85 0.69
Østfold Sep 0.78 0.61 0.74 0.84 0.67
Østfold Oct 0.69 0.46 0.62 0.75 0.57
Østfold Nov 0.30 0.21 0.34 0.45 0.33
Østfold Dec 0.00 0.06 0.12 0.21 0.15
Hedmark Jan 0.00 0.07 0.15 0.33 0.21
Hedmark Feb 0.30 0.23 0.42 0.62 0.43
Hedmark Mar 0.75 0.26 0.74 0.83 0.61
Hedmark Apr 0.83 0.73 0.82 0.87 0.75
Hedmark May 0.85 0.78 0.82 0.86 0.78
Hedmark Jun 0.87 0.78 0.85 0.90 0.80
Hedmark Jul 0.85 0.77 0.82 0.87 0.77
Hedmark Aug 0.84 0.78 0.83 0.87 0.75
Hedmark Sep 0.82 0.72 0.80 0.84 0.74
Hedmark Oct 0.70 0.56 0.64 0.70 0.61
Hedmark Nov 0.24 0.23 0.31 0.40 0.36
Hedmark Dec 0.00 0.01 0.04 0.08 0.08
Sør-Trøndelag Jan 0.00 0.02 0.05 0.14 0.08
Sør-Trøndelag Feb 0.19 0.13 0.22 0.38 0.25
Sør-Trøndelag Mar 0.78 0.71 0.76 0.81 0.70
Sør-Trøndelag Apr 0.87 0.74 0.81 0.94 0.79
Sør-Trøndelag May 0.88 0.79 0.87 0.91 0.80
Sør-Trøndelag Jun 0.82 0.76 0.82 0.85 0.76
Sør-Trøndelag Jul 0.80 0.72 0.80 0.83 0.73
Sør-Trøndelag Aug 0.79 0.67 0.78 0.82 0.71
Sør-Trøndelag Sep 0.73 0.62 0.69 0.77 0.62
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Table F.1 Continued from previous page
Fylke Month Peak Weibull Q1 Median Q3 Mean

Sør-Trøndelag Oct 0.51 0.42 0.53 0.59 0.49
Sør-Trøndelag Nov 0.00 0.08 0.16 0.40 0.25
Sør-Trøndelag Dec 0.00 0.00 0.00 0.07 0.05
Oslo Jan 0.00 0.04 0.18 0.31 0.21
Oslo Feb 0.00 0.11 0.40 0.60 0.38
Oslo Mar 0.00 0.20 0.22 0.23 0.25
Oslo Apr 0.66 0.55 0.67 0.71 0.55
Oslo May 0.76 0.68 0.77 0.81 0.64
Oslo Jun 0.75 0.65 0.77 0.80 0.63
Oslo Jul 0.76 0.64 0.75 0.83 0.64
Oslo Aug 0.79 0.57 0.78 0.90 0.66
Oslo Sep 0.77 0.47 0.76 0.86 0.62
Oslo Oct 0.65 0.30 0.62 0.76 0.51
Oslo Nov 0.19 0.13 0.29 0.44 0.28
Oslo Dec 0.00 0.02 0.05 0.16 0.09
Vestfold Jan 0.00 0.14 0.25 0.49 0.30
Vestfold Feb 0.69 0.44 0.63 0.78 0.56
Vestfold Mar 0.79 0.60 0.71 0.86 0.68
Vestfold Apr 0.82 0.67 0.79 0.85 0.72
Vestfold May 0.81 0.69 0.78 0.87 0.69
Vestfold Jun 0.81 0.68 0.82 0.88 0.69
Vestfold Jul 0.81 0.69 0.80 0.86 0.70
Vestfold Aug 0.81 0.69 0.79 0.85 0.69
Vestfold Sep 0.79 0.65 0.73 0.84 0.67
Vestfold Oct 0.69 0.47 0.57 0.77 0.56
Vestfold Nov 0.33 0.23 0.33 0.48 0.33
Vestfold Dec 0.00 0.06 0.14 0.31 0.19
Telemark Jan 0.00 0.00 0.12 0.23 0.12
Telemark Feb 0.51 0.36 0.47 0.57 0.42
Telemark Mar 0.75 0.54 0.72 0.80 0.65
Telemark Apr 0.81 0.69 0.80 0.88 0.77
Telemark May 0.83 0.72 0.85 0.92 0.82
Telemark Jun 0.65 0.70 0.77 0.88 0.79
Telemark Jul 0.83 0.67 0.78 0.89 0.73
Telemark Aug 0.76 0.57 0.69 0.84 0.66
Telemark Sep 0.74 0.54 0.70 0.84 0.62
Telemark Oct 0.61 0.44 0.59 0.63 0.50
Telemark Nov 0.22 0.22 0.27 0.36 0.27
Telemark Dec 0.00 0.00 0.05 0.08 0.07
Oppland Jan 0.00 0.00 0.05 0.10 0.09
Oppland Feb 0.00 0.06 0.25 0.49 0.32
Oppland Mar 0.75 0.46 0.73 0.83 0.61
Oppland Apr 0.83 0.62 0.84 0.91 0.71
Oppland May 0.77 0.48 0.74 0.87 0.65
Oppland Jun 0.81 0.62 0.80 0.88 0.70
Oppland Jul 0.81 0.69 0.81 0.88 0.71
Oppland Aug 0.83 0.72 0.82 0.89 0.73
Oppland Sep 0.79 0.62 0.81 0.84 0.69
Oppland Oct 0.66 0.52 0.59 0.68 0.56
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Table F.1 Continued from previous page
Fylke Month Peak Weibull Q1 Median Q3 Mean

Oppland Nov 0.26 0.20 0.25 0.31 0.24
Oppland Dec 0.00 0.00 0.03 0.07 0.04

76



Appendix G

PR for Each County and Month:
Dataset 2) RANSAC data

Table G.1: PR for each county and month. Dataset 2) RANSAC data

Fylke Month Peak Weibull Q1 Median Q3 Mean

Rogaland Jan 0.52 0.38 0.48 0.64 0.51
Rogaland Feb 0.77 0.58 0.70 0.83 0.69
Rogaland Mar 0.86 0.73 0.80 0.92 0.79
Rogaland Apr 0.87 0.76 0.83 0.91 0.80
Rogaland May 0.87 0.77 0.84 0.90 0.80
Rogaland Jun 0.88 0.78 0.85 0.92 0.81
Rogaland Jul 0.89 0.79 0.86 0.92 0.82
Rogaland Aug 0.87 0.76 0.84 0.91 0.80
Rogaland Sep 0.86 0.74 0.82 0.90 0.79
Rogaland Oct 0.79 0.64 0.74 0.83 0.71
Rogaland Nov 0.64 0.46 0.61 0.71 0.60
Rogaland Dec 0.39 0.27 0.44 0.66 0.47
Hordaland Jan 0.58 0.47 0.56 0.68 0.57
Hordaland Feb 0.78 0.62 0.74 0.83 0.72
Hordaland Mar 0.86 0.69 0.81 0.90 0.79
Hordaland Apr 0.87 0.74 0.86 0.92 0.81
Hordaland May 0.88 0.74 0.86 0.92 0.82
Hordaland Jun 0.88 0.75 0.86 0.92 0.83
Hordaland Jul 0.89 0.77 0.88 0.92 0.84
Hordaland Aug 0.87 0.76 0.86 0.89 0.82
Hordaland Sep 0.85 0.72 0.81 0.89 0.79
Hordaland Oct 0.77 0.63 0.75 0.81 0.71
Hordaland Nov 0.66 0.55 0.63 0.75 0.62
Hordaland Dec 0.54 0.35 0.54 0.70 0.52
Østfold Jan 0.51 0.36 0.48 0.62 0.48
Østfold Feb 0.73 0.53 0.68 0.76 0.64
Østfold Mar 0.79 0.63 0.75 0.84 0.70
Østfold Apr 0.83 0.70 0.80 0.87 0.75
Østfold May 0.82 0.72 0.79 0.85 0.74
Østfold Jun 0.82 0.72 0.80 0.86 0.75
Østfold Jul 0.82 0.72 0.79 0.86 0.74
Østfold Aug 0.82 0.73 0.79 0.86 0.75
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Table G.1 Continued from previous page
Fylke Month Peak Weibull Q1 Median Q3 Mean

Østfold Sep 0.80 0.69 0.76 0.84 0.72
Østfold Oct 0.76 0.58 0.70 0.78 0.68
Østfold Nov 0.56 0.42 0.53 0.63 0.52
Østfold Dec 0.35 0.27 0.35 0.51 0.38
Akershus Jan 0.49 0.33 0.49 0.65 0.49
Akershus Feb 0.70 0.48 0.64 0.75 0.61
Akershus Mar 0.76 0.56 0.71 0.83 0.65
Akershus Apr 0.80 0.62 0.76 0.85 0.71
Akershus May 0.79 0.66 0.78 0.83 0.70
Akershus Jun 0.79 0.64 0.78 0.83 0.70
Akershus Jul 0.79 0.65 0.78 0.83 0.70
Akershus Aug 0.81 0.71 0.81 0.83 0.73
Akershus Sep 0.78 0.68 0.75 0.82 0.71
Akershus Oct 0.73 0.60 0.67 0.76 0.65
Akershus Nov 0.47 0.35 0.44 0.58 0.46
Akershus Dec 0.30 0.18 0.36 0.45 0.35
Buskerud Jan 0.47 0.28 0.53 0.66 0.47
Buskerud Feb 0.76 0.58 0.71 0.83 0.64
Buskerud Mar 0.83 0.69 0.80 0.88 0.72
Buskerud Apr 0.84 0.74 0.82 0.89 0.74
Buskerud May 0.84 0.75 0.80 0.88 0.75
Buskerud Jun 0.85 0.76 0.82 0.88 0.75
Buskerud Jul 0.84 0.78 0.80 0.89 0.76
Buskerud Aug 0.84 0.74 0.81 0.89 0.75
Buskerud Sep 0.83 0.72 0.81 0.86 0.74
Buskerud Oct 0.76 0.59 0.71 0.83 0.66
Buskerud Nov 0.56 0.40 0.53 0.64 0.50
Buskerud Dec 0.34 0.25 0.36 0.54 0.41
Hedmark Jan 0.58 0.37 0.57 0.64 0.51
Hedmark Feb 0.75 0.57 0.72 0.81 0.66
Hedmark Mar 0.82 0.70 0.78 0.88 0.73
Hedmark Apr 0.85 0.76 0.83 0.88 0.77
Hedmark May 0.84 0.75 0.82 0.86 0.77
Hedmark Jun 0.84 0.76 0.82 0.87 0.78
Hedmark Jul 0.85 0.75 0.84 0.87 0.79
Hedmark Aug 0.85 0.76 0.82 0.87 0.79
Hedmark Sep 0.81 0.75 0.78 0.82 0.76
Hedmark Oct 0.76 0.64 0.70 0.76 0.70
Hedmark Nov 0.54 0.43 0.48 0.58 0.50
Hedmark Dec 0.22 0.15 0.25 0.43 0.29
Sør-Trøndelag Jan 0.04 0.12 0.29 0.52 0.36
Sør-Trøndelag Feb 0.59 0.46 0.53 0.70 0.53
Sør-Trøndelag Mar 0.80 0.72 0.78 0.81 0.73
Sør-Trøndelag Apr 0.83 0.74 0.77 0.85 0.75
Sør-Trøndelag May 0.83 0.76 0.80 0.86 0.76
Sør-Trøndelag Jun 0.81 0.74 0.79 0.84 0.74
Sør-Trøndelag Jul 0.81 0.75 0.80 0.83 0.74
Sør-Trøndelag Aug 0.82 0.73 0.79 0.85 0.75
Sør-Trøndelag Sep 0.80 0.70 0.76 0.83 0.72
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Sør-Trøndelag Oct 0.73 0.61 0.68 0.74 0.65
Sør-Trøndelag Nov 0.54 0.36 0.51 0.62 0.48
Sør-Trøndelag Dec 0.00 0.02 0.13 0.45 0.23
Oslo Jan 0.55 0.39 0.54 0.58 0.44
Oslo Feb 0.63 0.52 0.66 0.68 0.53
Oslo Mar 0.72 0.59 0.63 0.75 0.60
Oslo Apr 0.75 0.62 0.72 0.77 0.64
Oslo May 0.75 0.63 0.73 0.76 0.64
Oslo Jun 0.77 0.62 0.74 0.79 0.65
Oslo Jul 0.83 0.69 0.77 0.89 0.71
Oslo Aug 0.79 0.70 0.76 0.81 0.68
Oslo Sep 0.77 0.64 0.71 0.82 0.65
Oslo Oct 0.67 0.62 0.67 0.69 0.58
Oslo Nov 0.55 0.40 0.54 0.59 0.46
Oslo Dec 0.37 0.27 0.42 0.47 0.38
Vestfold Jan 0.56 0.41 0.51 0.67 0.56
Vestfold Feb 0.77 0.63 0.71 0.86 0.73
Vestfold Mar 0.84 0.70 0.76 0.90 0.79
Vestfold Apr 0.88 0.77 0.82 0.91 0.82
Vestfold May 0.87 0.77 0.82 0.90 0.82
Vestfold Jun 0.88 0.76 0.82 0.91 0.83
Vestfold Jul 0.87 0.76 0.82 0.92 0.82
Vestfold Aug 0.83 0.76 0.82 0.92 0.83
Vestfold Sep 0.73 0.71 0.78 0.87 0.79
Vestfold Oct 0.59 0.62 0.72 0.81 0.73
Vestfold Nov 0.49 0.46 0.49 0.69 0.57
Vestfold Dec 0.36 0.27 0.47 0.58 0.48
Telemark Jan 0.40 0.27 0.38 0.49 0.38
Telemark Feb 0.67 0.59 0.71 0.76 0.70
Telemark Mar 0.80 0.67 0.76 0.83 0.74
Telemark Apr 0.83 0.69 0.82 0.87 0.78
Telemark May 0.83 0.67 0.85 0.86 0.78
Telemark Jun 0.86 0.69 0.84 0.88 0.80
Telemark Jul 0.84 0.66 0.81 0.87 0.78
Telemark Aug 0.81 0.65 0.80 0.85 0.75
Telemark Sep 0.77 0.64 0.80 0.84 0.76
Telemark Oct 0.65 0.60 0.67 0.80 0.69
Telemark Nov 0.50 0.47 0.51 0.58 0.53
Telemark Dec 0.13 0.25 0.33 0.55 0.38
Oppland Jan 0.52 0.13 0.53 0.56 0.40
Oppland Feb 0.67 0.58 0.68 0.70 0.58
Oppland Mar 0.78 0.58 0.77 0.83 0.67
Oppland Apr 0.79 0.59 0.78 0.86 0.68
Oppland May 0.78 0.57 0.77 0.85 0.68
Oppland Jun 0.79 0.58 0.80 0.85 0.68
Oppland Jul 0.79 0.60 0.78 0.84 0.69
Oppland Aug 0.79 0.64 0.78 0.85 0.69
Oppland Sep 0.78 0.62 0.74 0.83 0.68
Oppland Oct 0.69 0.53 0.65 0.75 0.60
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Oppland Nov 0.48 0.34 0.41 0.53 0.41
Oppland Dec 0.46 0.26 0.44 0.56 0.39
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Appendix H

PR for Each County and Month:
Dataset 3) Poly data

Table H.1: PR for each county and month. Dataset 3) Poly data

Fylke Month Peak Weibull Q1 Median Q3 Mean

Rogaland Jan 0.67 0.52 0.65 0.76 0.64
Rogaland Feb 0.80 0.64 0.76 0.85 0.74
Rogaland Mar 0.88 0.77 0.83 0.91 0.82
Rogaland Apr 0.89 0.80 0.87 0.92 0.84
Rogaland May 0.89 0.79 0.86 0.93 0.84
Rogaland Jun 0.90 0.79 0.86 0.93 0.85
Rogaland Jul 0.90 0.79 0.88 0.94 0.85
Rogaland Aug 0.89 0.78 0.87 0.91 0.84
Rogaland Sep 0.88 0.78 0.85 0.91 0.83
Rogaland Oct 0.83 0.68 0.81 0.87 0.78
Rogaland Nov 0.75 0.61 0.72 0.80 0.71
Rogaland Dec 0.59 0.42 0.57 0.76 0.59
Hordaland Jan 0.72 0.61 0.70 0.79 0.69
Hordaland Feb 0.82 0.67 0.78 0.87 0.77
Hordaland Mar 0.85 0.73 0.82 0.88 0.80
Hordaland Apr 0.90 0.78 0.88 0.94 0.84
Hordaland May 0.89 0.77 0.85 0.93 0.84
Hordaland Jun 0.87 0.78 0.85 0.92 0.84
Hordaland Jul 0.89 0.79 0.86 0.92 0.84
Hordaland Aug 0.86 0.79 0.86 0.91 0.83
Hordaland Sep 0.88 0.78 0.85 0.91 0.83
Hordaland Oct 0.82 0.69 0.79 0.86 0.77
Hordaland Nov 0.76 0.61 0.72 0.83 0.72
Hordaland Dec 0.71 0.49 0.67 0.78 0.63
Østfold Jan 0.62 0.50 0.68 0.80 0.66
Østfold Feb 0.78 0.64 0.73 0.84 0.73
Østfold Mar 0.82 0.69 0.78 0.87 0.77
Østfold Apr 0.86 0.75 0.81 0.89 0.81
Østfold May 0.85 0.74 0.81 0.89 0.80
Østfold Jun 0.85 0.75 0.81 0.88 0.80
Østfold Jul 0.85 0.76 0.81 0.88 0.80
Østfold Aug 0.86 0.76 0.82 0.89 0.81
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Østfold Sep 0.84 0.72 0.80 0.87 0.79
Østfold Oct 0.79 0.65 0.74 0.85 0.74
Østfold Nov 0.68 0.55 0.68 0.80 0.68
Østfold Dec 0.51 0.40 0.53 0.73 0.56
Akershus Jan 0.70 0.47 0.64 0.75 0.61
Akershus Feb 0.76 0.61 0.71 0.78 0.67
Akershus Mar 0.79 0.62 0.76 0.85 0.70
Akershus Apr 0.82 0.68 0.79 0.87 0.73
Akershus May 0.81 0.68 0.80 0.86 0.73
Akershus Jun 0.82 0.70 0.79 0.86 0.73
Akershus Jul 0.81 0.67 0.79 0.85 0.72
Akershus Aug 0.82 0.74 0.80 0.85 0.75
Akershus Sep 0.81 0.70 0.78 0.84 0.73
Akershus Oct 0.77 0.64 0.72 0.81 0.69
Akershus Nov 0.66 0.46 0.60 0.72 0.59
Akershus Dec 0.55 0.33 0.54 0.67 0.51
Buskerud Jan 0.73 0.51 0.66 0.79 0.62
Buskerud Feb 0.84 0.73 0.81 0.88 0.77
Buskerud Mar 0.87 0.75 0.85 0.93 0.81
Buskerud Apr 0.90 0.79 0.89 0.92 0.84
Buskerud May 0.88 0.79 0.87 0.90 0.83
Buskerud Jun 0.90 0.81 0.86 0.93 0.85
Buskerud Jul 0.89 0.81 0.86 0.91 0.84
Buskerud Aug 0.90 0.79 0.87 0.92 0.84
Buskerud Sep 0.89 0.77 0.87 0.91 0.83
Buskerud Oct 0.83 0.73 0.81 0.86 0.78
Buskerud Nov 0.71 0.59 0.69 0.78 0.67
Buskerud Dec 0.62 0.41 0.55 0.73 0.53
Hedmark Jan 0.70 0.59 0.71 0.83 0.69
Hedmark Feb 0.82 0.73 0.80 0.86 0.77
Hedmark Mar 0.84 0.75 0.80 0.88 0.78
Hedmark Apr 0.87 0.81 0.84 0.88 0.82
Hedmark May 0.87 0.79 0.83 0.88 0.82
Hedmark Jun 0.87 0.80 0.84 0.89 0.83
Hedmark Jul 0.86 0.81 0.85 0.90 0.83
Hedmark Aug 0.83 0.80 0.85 0.90 0.84
Hedmark Sep 0.80 0.75 0.82 0.86 0.82
Hedmark Oct 0.79 0.70 0.77 0.86 0.79
Hedmark Nov 0.59 0.57 0.63 0.76 0.66
Hedmark Dec 0.43 0.32 0.51 0.63 0.50
Sør-Trøndelag Jan 0.64 0.29 0.59 0.78 0.55
Sør-Trøndelag Feb 0.82 0.68 0.75 0.86 0.72
Sør-Trøndelag Mar 0.84 0.74 0.80 0.89 0.76
Sør-Trøndelag Apr 0.85 0.76 0.82 0.90 0.77
Sør-Trøndelag May 0.86 0.77 0.83 0.90 0.78
Sør-Trøndelag Jun 0.83 0.76 0.81 0.87 0.76
Sør-Trøndelag Jul 0.85 0.76 0.81 0.87 0.77
Sør-Trøndelag Aug 0.85 0.75 0.82 0.88 0.77
Sør-Trøndelag Sep 0.86 0.74 0.82 0.92 0.77
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Sør-Trøndelag Oct 0.81 0.68 0.77 0.83 0.72
Sør-Trøndelag Nov 0.76 0.54 0.73 0.78 0.66
Sør-Trøndelag Dec 0.00 0.03 0.46 0.70 0.44
Oslo Jan 0.73 0.55 0.71 0.77 0.63
Oslo Feb 0.73 0.61 0.74 0.76 0.62
Oslo Mar 0.77 0.66 0.68 0.85 0.66
Oslo Apr 0.81 0.70 0.78 0.83 0.70
Oslo May 0.83 0.70 0.79 0.86 0.72
Oslo Jun 0.85 0.70 0.81 0.90 0.73
Oslo Jul 0.83 0.71 0.80 0.87 0.71
Oslo Aug 0.84 0.75 0.80 0.91 0.73
Oslo Sep 0.82 0.77 0.77 0.89 0.71
Oslo Oct 0.74 0.68 0.74 0.76 0.65
Oslo Nov 0.67 0.57 0.62 0.67 0.57
Oslo Dec 0.63 0.40 0.61 0.71 0.52
Vestfold Jan 0.68 0.65 0.70 0.76 0.71
Vestfold Feb 0.81 0.74 0.81 0.89 0.81
Vestfold Mar 0.87 0.76 0.84 0.90 0.83
Vestfold Apr 0.89 0.80 0.86 0.90 0.84
Vestfold May 0.90 0.78 0.86 0.92 0.85
Vestfold Jun 0.90 0.80 0.86 0.93 0.85
Vestfold Jul 0.89 0.78 0.86 0.93 0.85
Vestfold Aug 0.87 0.78 0.85 0.91 0.85
Vestfold Sep 0.84 0.76 0.85 0.87 0.83
Vestfold Oct 0.80 0.73 0.79 0.90 0.80
Vestfold Nov 0.55 0.59 0.65 0.78 0.70
Vestfold Dec 0.63 0.52 0.60 0.75 0.60
Telemark Jan 0.68 0.62 0.64 0.71 0.63
Telemark Feb 0.76 0.68 0.75 0.83 0.74
Telemark Mar 0.84 0.73 0.81 0.88 0.80
Telemark Apr 0.88 0.76 0.86 0.91 0.83
Telemark May 0.88 0.75 0.87 0.90 0.83
Telemark Jun 0.86 0.73 0.86 0.90 0.82
Telemark Jul 0.85 0.72 0.83 0.87 0.80
Telemark Aug 0.86 0.72 0.86 0.87 0.81
Telemark Sep 0.85 0.71 0.83 0.88 0.80
Telemark Oct 0.72 0.69 0.76 0.85 0.76
Telemark Nov 0.68 0.61 0.68 0.77 0.69
Telemark Dec 0.47 0.37 0.55 0.70 0.56
Oppland Jan 0.73 0.52 0.71 0.77 0.59
Oppland Feb 0.74 0.69 0.73 0.78 0.64
Oppland Mar 0.76 0.63 0.77 0.83 0.66
Oppland Apr 0.82 0.61 0.81 0.87 0.71
Oppland May 0.81 0.60 0.80 0.88 0.70
Oppland Jun 0.82 0.61 0.83 0.87 0.71
Oppland Jul 0.82 0.64 0.82 0.89 0.72
Oppland Aug 0.82 0.68 0.80 0.87 0.72
Oppland Sep 0.82 0.66 0.77 0.90 0.71
Oppland Oct 0.78 0.58 0.60 0.89 0.67
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Oppland Nov 0.66 0.46 0.52 0.73 0.56
Oppland Dec 0.73 0.45 0.68 0.77 0.60
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Appendix I

Specific Yield for Each County and
Month

Table I.1: Specific yield for each county and month

Fylke Month Peak Weibull Q1 Median Q3 Mean

Rogaland Jan 3.60 3.19 5.19 8.17 5.89
Rogaland Feb 27.47 17.93 24.56 32.90 24.71
Rogaland Mar 87.48 63.98 85.27 99.13 81.40
Rogaland Apr 0.00 109.33 124.96 139.81 120.18
Rogaland May 0.00 104.41 118.34 129.83 113.95
Rogaland Jun 0.00 108.25 122.01 133.03 115.48
Rogaland Jul 0.00 104.19 116.62 128.46 111.29
Rogaland Aug 0.00 95.49 107.54 118.63 100.82
Rogaland Sep 0.00 67.32 80.67 91.90 75.52
Rogaland Oct 33.07 23.45 30.03 36.46 29.26
Rogaland Nov 9.03 6.64 11.11 15.96 11.82
Rogaland Dec 0.00 1.65 3.08 7.75 4.98
Hordaland Jan 4.10 3.08 5.47 8.91 6.16
Hordaland Feb 24.17 16.77 24.89 30.84 24.01
Hordaland Mar 74.75 56.30 70.06 96.13 73.80
Hordaland Apr 123.19 107.50 118.32 139.36 120.07
Hordaland May 114.93 102.51 111.75 125.82 112.18
Hordaland Jun 112.35 107.19 118.39 131.92 118.48
Hordaland Jul 99.05 90.05 100.57 119.97 104.55
Hordaland Aug 91.92 81.51 92.96 110.51 96.22
Hordaland Sep 84.97 68.66 81.60 96.17 78.86
Hordaland Oct 25.34 20.29 29.04 34.07 28.18
Hordaland Nov 7.25 6.17 10.77 16.87 11.48
Hordaland Dec 0.10 1.22 3.94 7.59 4.90
Østfold Jan 4.36 3.27 5.19 7.98 5.51
Østfold Feb 27.16 17.27 27.03 38.18 25.77
Østfold Mar 92.49 55.83 84.42 104.09 78.09
Østfold Apr 100.19 104.94 120.16 136.40 117.50
Østfold May 101.67 116.60 135.99 155.45 137.92
Østfold Jun 103.81 130.42 152.35 172.78 156.52
Østfold Jul 110.37 121.76 145.64 161.67 140.96
Østfold Aug 92.48 98.49 125.54 136.80 112.67
Østfold Sep 63.71 62.52 76.43 88.65 70.09
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Østfold Oct 29.02 25.95 32.60 41.25 31.70
Østfold Nov 5.33 4.93 6.66 8.07 6.36
Østfold Dec 0.91 1.15 2.14 3.77 2.84
Akershus Jan 0.00 1.95 4.08 6.78 4.59
Akershus Feb 15.13 12.21 20.12 27.84 20.88
Akershus Mar 67.48 34.32 73.11 93.86 67.41
Akershus Apr 0.00 94.86 115.02 128.91 103.89
Akershus May 131.46 103.73 124.89 137.68 116.06
Akershus Jun 138.34 108.82 137.02 148.00 121.72
Akershus Jul 0.00 117.39 129.35 146.75 120.32
Akershus Aug 0.00 95.51 123.94 131.91 104.29
Akershus Sep 0.00 55.74 64.10 75.50 58.66
Akershus Oct 32.17 21.95 30.19 36.25 26.76
Akershus Nov 5.72 3.36 4.95 6.71 4.67
Akershus Dec 0.00 0.43 0.93 1.85 1.63
Buskerud Jan 0.00 0.59 1.53 5.22 3.53
Buskerud Feb 0.00 13.56 22.32 34.99 24.89
Buskerud Mar 84.41 65.60 84.04 116.15 81.86
Buskerud Apr 113.73 97.60 115.77 132.64 108.12
Buskerud May 122.28 96.61 123.87 137.15 110.44
Buskerud Jun 0.00 99.20 135.20 149.05 116.83
Buskerud Jul 0.00 104.65 128.57 140.59 112.52
Buskerud Aug 0.00 97.54 119.71 130.51 105.48
Buskerud Sep 73.20 52.84 66.84 83.22 60.86
Buskerud Oct 32.73 22.64 29.76 39.95 28.92
Buskerud Nov 4.06 3.75 4.91 7.71 5.55
Buskerud Dec 0.00 0.14 0.84 1.55 1.25
Hedmark Jan 0.00 0.88 3.25 5.08 3.87
Hedmark Feb 0.00 9.13 19.92 31.54 20.50
Hedmark Mar 99.20 60.20 93.95 109.70 82.07
Hedmark Apr 0.29 106.82 125.26 137.27 118.01
Hedmark May 130.47 113.63 125.08 131.93 121.10
Hedmark Jun 146.02 123.65 138.99 149.21 134.21
Hedmark Jul 0.25 120.92 132.60 145.80 127.93
Hedmark Aug 0.00 112.31 125.50 133.35 115.51
Hedmark Sep 0.00 54.16 66.78 72.76 60.89
Hedmark Oct 0.00 27.72 35.21 39.36 32.67
Hedmark Nov 6.15 4.11 5.90 7.35 5.65
Hedmark Dec 0.00 0.12 0.63 1.24 0.98
Sør-Trøndelag Jan 0.00 0.33 1.14 2.40 1.39
Sør-Trøndelag Feb 4.30 3.12 5.08 7.58 5.55
Sør-Trøndelag Mar 15.98 53.39 58.44 61.03 54.10
Sør-Trøndelag Apr 106.28 90.99 98.74 111.42 96.47
Sør-Trøndelag May 112.46 104.63 111.47 114.15 105.02
Sør-Trøndelag Jun 114.20 106.44 116.01 119.35 110.73
Sør-Trøndelag Jul 78.17 77.74 85.76 90.36 84.00
Sør-Trøndelag Aug 21.43 79.23 90.69 95.91 82.77
Sør-Trøndelag Sep 0.00 62.92 68.98 74.77 61.21
Sør-Trøndelag Oct 24.83 19.72 22.46 25.17 20.94
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Sør-Trøndelag Nov 3.35 3.53 7.31 10.73 7.88
Sør-Trøndelag Dec 0.00 0.03 0.07 0.92 0.54
Oslo Jan 0.00 0.58 3.48 5.29 3.52
Oslo Feb 0.00 0.86 14.30 27.59 15.23
Oslo Mar 22.21 26.04 31.89 38.97 35.52
Oslo Apr 122.93 89.68 114.59 157.25 121.17
Oslo May 139.83 103.61 127.31 181.80 139.04
Oslo Jun 156.56 120.93 140.81 212.09 159.70
Oslo Jul 161.32 115.56 141.24 184.46 136.27
Oslo Aug 124.50 84.26 121.25 142.00 100.72
Oslo Sep 67.59 40.24 64.24 77.90 54.05
Oslo Oct 32.83 15.41 29.93 39.06 25.74
Oslo Nov 5.55 2.64 5.16 6.78 4.78
Oslo Dec 0.00 0.34 1.12 1.94 1.67
Vestfold Jan 5.49 4.07 6.76 8.66 6.35
Vestfold Feb 38.73 28.73 36.25 40.70 31.51
Vestfold Mar 91.98 81.06 94.24 109.12 93.86
Vestfold Apr 0.00 109.05 118.84 133.74 112.87
Vestfold May 0.00 115.09 133.16 150.90 121.29
Vestfold Jun 0.00 123.35 143.88 168.30 129.47
Vestfold Jul 0.00 121.36 136.77 158.02 121.42
Vestfold Aug 0.00 112.44 122.30 134.68 107.35
Vestfold Sep 0.00 65.74 74.77 81.74 66.11
Vestfold Oct 39.78 28.61 35.89 44.84 32.67
Vestfold Nov 7.56 4.89 7.38 8.59 6.44
Vestfold Dec 0.00 0.90 2.92 5.32 3.38
Telemark Jan 0.00 0.02 2.69 6.95 3.81
Telemark Feb 30.50 18.28 29.58 35.02 25.03
Telemark Mar 98.28 66.34 88.91 108.45 87.00
Telemark Apr 102.74 102.11 120.62 139.20 121.45
Telemark May 127.94 120.38 134.67 150.87 136.45
Telemark Jun 136.80 128.63 137.25 155.60 142.45
Telemark Jul 0.00 113.21 134.60 147.50 125.91
Telemark Aug 0.00 93.12 111.29 131.29 107.12
Telemark Sep 74.91 53.82 65.18 86.53 62.24
Telemark Oct 37.02 24.76 33.69 42.05 30.60
Telemark Nov 7.74 4.45 7.12 8.86 6.20
Telemark Dec 0.00 0.03 1.20 2.99 1.69
Oppland Jan 0.00 0.01 1.07 2.69 2.09
Oppland Feb 0.00 2.19 9.28 28.20 15.03
Oppland Mar 87.89 60.67 84.40 97.04 72.54
Oppland Apr 0.13 92.71 120.14 128.34 102.58
Oppland May 0.14 69.50 113.46 125.06 95.89
Oppland Jun 0.15 96.82 124.58 133.78 108.99
Oppland Jul 0.22 105.18 125.30 128.56 107.94
Oppland Aug 0.28 102.02 113.05 118.08 99.30
Oppland Sep 0.16 50.84 63.17 65.59 55.52
Oppland Oct 0.09 24.86 32.32 37.58 28.32
Oppland Nov 5.06 3.78 4.89 5.44 4.37
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Oppland Dec 0.00 0.05 0.34 0.88 0.64
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Appendix J

Clustering Examples

(a) RANSAC fit (b) Polynomial fit

(c) Histograms (d) Polynomial borders

Figure J.1: Appendix: clustering example 1
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(a) RANSAC fit (b) Polynomial fit

(c) Histograms (d) Polynomial borders

Figure J.2: Appendix: clustering example 2
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(a) RANSAC fit (b) Polynomial fit

(c) Histograms (d) Polynomial borders

Figure J.3: Appendix: clustering example 3
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Appendix K

Code: Downloading Weather Data from
CAMS

1

2 # -*- coding: utf -8 -*-
3 """
4 Created on Tue Mar 21 11:21:51 2023
5

6 @author: marti
7 """
8

9 import os
10 import fnmatch
11 import json
12 import pandas as pd
13 import re
14 import numpy as np
15 import math
16 import re
17 import glob
18 import pvlib
19 from datetime import datetime
20 from requests.exceptions import ReadTimeout
21 import requests
22 from tabulate import tabulate
23 import matplotlib.pylab as plt
24 import seaborn as sns
25

26 #%% getting CAMS weather data
27

28

29 ######################## Cheking for daylight saving (this method has ...
not been used)

30 #Path to folder
31 folder_path = ...

'C:\\ Users\\ marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _merged_Raw_location_3 '
32 #Setting folderpath as file
33 files = os.listdir(folder_path)
34

35 #Finding all data in the folder
36 unique_keys = []
37 for file in files:
38 match = re.search(r'plant_ (\d+) _location \. parquet ', file)
39 if match:
40 key = int(match.group (1))
41 unique_keys.append(key)
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42

43 unique_keys = list(set(unique_keys))
44

45 no_daylight_pressent = []
46 daylight_pressent = []
47 for key in unique_keys:
48 filename = f'{folder_path }\\ plant_{key}_location.parquet '
49 print(filename)
50 daylight = pd.read_parquet(filename)
51

52 # scheck for duplicate in the datetime column
53 if daylight['datetime ']. duplicated ().any():
54 daylight_pressent.append(key)
55 print('the dataframe column has daylight saving present ')
56 else:
57 no_daylight_pressent.append(key)
58 print('the dataframe column does not have daylight saving ...

present ')
59

60 ############################### Downloading weather data from CAMS
61

62 #setting up path to weather folder
63 weather_folder_path = "C:\\ Users \\marti\\ Desktop \\IFE\Værdata"
64 for key in unique_keys:
65 print(key)
66 # Check if the file already exists in the weather folder
67 weather_filename = f'{weather_folder_path }\\ cams_data_{key}. parquet '
68

69 # cheking if weather data has already been downloaded
70 if not os.path.exists(weather_filename):
71 print(f"Downloading weather data for key: {key}")
72 try:
73 # getting metadata: colecting lon , lat , time
74 metadata_location = ...

f'{folder_path }\\ plant_{key}_location.parquet '
75 metadata = pd.read_parquet(metadata_location , columns = ...

["datetime","lat","lon"])
76

77 # locating metadata: if there is metadata in the fiile: ...
continue

78 if not metadata.lat.empty and not metadata.lon.empty: # if ...
metadata has information

79 lat = metadata.lat.iloc [0]
80 lon = metadata.lon.iloc [0]
81 start_date = ...

datetime.strptime(metadata.datetime.min(), ...
"%Y-%m-%dT%H:%M:%S").strftime('%Y-%m-%d')

82 start_date = pd.Timestamp(start_date , tz='Europe/Oslo')
83 end_date = datetime.strptime(metadata.datetime.max(), ...

"%Y-%m-%dT%H:%M:%S").strftime('%Y-%m-%d')
84 end_date = pd.Timestamp(end_date , tz='Europe/Oslo')
85

86 #downloading weather data
87 weather_data = pvlib.iotools.get_cams(latitude = lat , ...

longitude = lon , start = start_date , end = ...
end_date , email='martinkk@uia.no', identifier = ...
'cams_radiation ', integrated = True , timeout = 45 )

88

89 #extracing usfull information from weather data metadata
90 weather_data_df = weather_data [0]
91 weather_data_df["altitude"] = weather_data [1]["altitude"]
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92 weather_metadata_df = ...
pd.DataFrame.from_dict(weather_data [1], ...
orient='index').T

93

94 #saving file
95 weather_data_filename = ...

f'C:\\ Users\\marti \\ Desktop \\IFE\Værdata \\ cams_data_{key}. parquet '
96 weather_metadata_filname = ...

f'C:\\ Users\\marti \\ Desktop \\IFE\Værdata \\ cams_metadata_{key}. parquet '
97

98 weather_data_df.to_parquet(weather_data_filename , ...
index=False)

99 weather_metadata_df.to_parquet(weather_metadata_filname , ...
index=False)

100

101 #error message
102 except ReadTimeout:
103 print(f"timout for key: {key}")
104 #error message
105 except requests.HTTPError as e:
106 print(f"coordinates not found for key:{key}: ...

lat ,long :({lat}, {lon}), error: {e}")
107 #data aloready downloaded
108 else:
109 print(f"weather data already downloaded for key: {key}")
110

111

112

113 #%% Merging
114

115 ######################## Finding the dwonloaded files
116 #folder path
117 folder_path = 'C:\\ Users\\marti \\ Desktop \\IFE\Værdata '
118 #defining folderpath as files
119 files = os.listdir(folder_path)
120

121 #finding data in folder
122 unique_keys = []
123 for file in files:
124 match = re.search(r'cams_data_ (\d+)\. parquet ', file)
125 if match:
126 key = int(match.group (1))
127 unique_keys.append(key)
128

129 unique_keys = list(set(unique_keys))
130

131 ####################################
132 #################################### getting pvdata
133

134 # Set file path and name
135 file_path = ...

"C:\\ Users\\marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _merged_new_capacity_4"
136 pvdata = pd.read_parquet(file_path)
137

138 ####################################
139 #################################### merging data
140 merged_dfs = [] # setting up list
141

142 for key in unique_keys:
143 print(f"key: {key}")
144 #loading weather by the use of key
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145 cams = ...
pd.read_parquet(f'C:\\ Users\\marti \\ Desktop \\IFE\Værdata \\ cams_data_{key}. parquet ')

146 #adding key to CAMS
147 cams["key"] = key
148

149 #getting date
150 cams["datetime"] = cams['Observation ...

period '].str.extract(r'(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\.\d)')
151 # converting time to datetime
152 cams['datetime '] = pd.to_datetime(cams['datetime '])
153 # drop unised column
154 cams = cams.drop(columns =['Observation period '])
155

156 #loading pvdata
157 pvdata_filter = pvdata[pvdata["key"] == key].copy()
158

159 #adding datetime
160 pvdata_filter['datetime '] = pd.to_datetime(pvdata_filter['datetime '])
161

162 #merging
163 merged = pd.merge(pvdata_filter , cams , on=['key',"datetime"], ...

how='left')
164

165 #adding merged to the data in the previus loop
166 merged_dfs.append(merged)
167

168 #merging all merged_dfs
169 new_pvdata = pd.concat(merged_dfs , axis=0, ignore_index=True)
170

171 #savind data
172 new_pvdata.to_parquet("C:\\ Users\\marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _weather_5 \\ pvdata_weather.parquet")
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Appendix L

Code: Merging Solcellespesialisten‘s
Files, Adding Geolocation Data, Refining
Capacity Data

1 # -*- coding: utf -8 -*-
2 """
3 Created on Tue Mar 14 17:53:55 2023
4

5 @author: marti
6 """
7

8 import os
9 import fnmatch

10 import json
11 import pandas as pd
12 import re
13 import numpy as np
14 import math
15 import glob
16 import pvlib
17 from datetime import datetime
18 from requests.exceptions import ReadTimeout
19 import requests
20 from tabulate import tabulate
21 import matplotlib.pylab as plt
22 import seaborn as sns
23

24 import reverse_geocoder as rg # from ...
https :// pypi.org/project/reverse_geocoder/

25 import pandas as pd
26 import folium
27 from folium.plugins import MarkerCluster
28 from folium.plugins import HeatMap
29 import pyarrow.parquet as pq
30

31 #%%
32

33 def process_dataframe_by_chunks_to_parquet(df , key_column , ...
date_column , chunk_size , aggregations , output_file_prefix):

34 df = df.copy()
35 df['chunk_id '] = np.arange(len(df)) // chunk_size
36 df[date_column] = pd.to_datetime(df[date_column ])
37

38 for (chunk_id , key), group_df in df.groupby (['chunk_id ', key_column ]):
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39 print(f"Processing chunk_id {chunk_id}, key {key}")
40 df_hourly = group_df.set_index(date_column , ...

drop=False).resample('H').agg(aggregations)
41 output_file = ...

f"{output_file_prefix}_chunk_{chunk_id}_key_{key}. parquet"
42 df_hourly.to_parquet(output_file , engine='pyarrow ')
43

44

45 def load_parquet_files_to_dataframe(input_file_prefix):
46 files = glob.glob(f"{input_file_prefix}_chunk_ *. parquet")
47 num_files = len(files)
48 dataframes = []
49

50 for i, file in enumerate(files):
51 print(f"Loading file {i + 1} of {num_files}")
52 df = pd.read_parquet(file , engine='fastparquet ')
53 dataframes.append(df)
54

55 print("concatinating df")
56 combined_df = pd.concat(dataframes)
57 return combined_df
58

59

60 #%%%
61 # file_path to all files
62 file_path = ...

"C:\\ Users\\marti \\ Desktop \\IFE\\ OneDrive_2023 -03 -13\\ Sunpoint ...
Merged_data"

63

64 # list to store values
65 all_data_indices = []
66

67

68 for filename in os.listdir(file_path):
69 if fnmatch.fnmatch(filename , 'plant_*_Metadata.csv'):
70 # get name
71 index = int(filename.split('_')[1])
72 # check for matching plant name
73 plant_filename = f'plant_{index}.json'
74 if plant_filename in os.listdir(file_path):
75 all_data_indices.append(index)
76

77

78 # print maching results
79 print('Matching indices:')
80 print(all_data_indices)
81 #%%
82

83

84

85 all_data = []
86 plant_df = []
87 output_folder = ...

"C:\\ Users\\marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _merged_Raw_1"
88

89 if not os.path.exists(output_folder):
90 os.makedirs(output_folder)
91

92 for index in all_data_indices:
93

94
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95 print(index)
96

97 plant_filename = f'plant_{index}.json'
98 metadata_filename = f"plant_{index}_Metadata.csv"
99

100

101 plant_path = os.path.join(file_path , plant_filename)
102 metadata_path = os.path.join(file_path , metadata_filename)
103

104 #loading plant data
105 with open(plant_path , 'r') as f:
106 plant_data = json.load(f)
107

108 #loading metadata
109 metadata_data = pd.read_csv(metadata_path)
110

111 #adding key
112 metadata_data.insert(0, "key", index)
113

114 #convert json to df with loop
115 for lst in plant_data:
116 temp_df = pd.DataFrame(lst)
117 #add key
118 temp_df.insert(0, "key", index)
119 # Add metadata
120 for col in metadata_data.columns:
121 temp_df[col] = metadata_data.at[0, col]
122

123 # merging list from this itteration with last itteration
124 plant_df.append(temp_df)
125

126 # merge and save output
127 merged_data = pd.concat(plant_df , axis =0)
128 output_file = os.path.join(output_folder , ...

f"plant_{index}_merged.parquet")
129 merged_data.to_parquet(output_file)
130 plant_df = [] #clear list for next itteration
131

132

133 merged_data.columns
134

135

136

137 #%% Making hourly data
138

139 #folder path
140 folder_path = ...

'C:\\ Users\\ marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _merged_Raw_1 '
141 #defining folderpath as files
142 files = os.listdir(folder_path)
143

144 #finding data in folder
145 unique_keys = []
146 for file in files:
147 match = re.search(r'plant_ (\d+) _merged \. parquet ', file)
148 if match:
149 key = int(match.group (1))
150 unique_keys.append(key)
151

152 unique_keys = list(set(unique_keys))
153
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154

155 #ssetting up aggregation method
156 aggregations = {
157 'key': 'first',
158 'timedate ': "first",
159 "Capacity": "first",
160 'acproduction ': 'mean',
161 'dailyproduction ': 'last',
162 'totalproduction ': 'last',
163 'vnom': 'mean',
164 'vl1': 'mean',
165 'vl2': 'mean',
166 'vl3': 'mean',
167 'il1': 'mean',
168 'il2': 'mean',
169 'il3': 'mean',
170 'frequency ': 'mean',
171 'runhours ': 'last',
172 'temperature ': 'mean',
173 'mocked ': 'first',
174 'mppt': 'first',
175 "lat": "first",
176 "lon": "first",
177

178 }
179

180

181

182

183 # for loop to loop thue all parquet files in the selected folder
184 for key in unique_keys:
185 filename = f'{folder_path }\\ plant_{key}_merged.parquet '
186 print(filename)
187 subset = pd.read_parquet(filename)
188

189 subset['year'] = pd.to_datetime(subset['timedate ']).dt.year
190 subset['month'] = pd.to_datetime(subset['timedate ']).dt.month
191 subset['date'] = pd.to_datetime(subset['timedate ']).dt.day
192 subset['hour'] = pd.to_datetime(subset['timedate ']).dt.hour
193

194 sorted_data = subset.sort_values (['key', 'timedate '])
195 aggregated_data = sorted_data.groupby (['year', 'month', 'date', ...

'hour']).agg(aggregations).reset_index ()
196

197 # save the data
198 new_filename = ...

f'C:\\ Users\\ marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _merged_Raw_hourly_2 \\ plant_{key}_hourly.parquet '
199 aggregated_data.to_parquet(new_filename , index=False)
200

201

202

203

204

205 #%% adding location data
206

207 #setting path to folder
208 folder_path = ...

'C:\\ Users\\ marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _merged_Raw_hourly_2 \\'
209 #setting name of files
210 file_pattern = os.path.join(folder_path , 'plant_*_hourly.parquet ')
211 files = glob.glob(file_pattern)
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212

213 #getting files
214 data_list = []
215 for file in files:
216 print(file)
217 df = pd.read_parquet(file , columns =['key', 'lat', 'lon'])
218 data_list.append(df)
219

220 print(f'Number of files: {len(data_list)}')
221

222

223 coordinates = pd.concat(data_list , ignore_index=True)
224

225 #finding the uniqeu keys in the df
226 coordinates = coordinates.drop_duplicates(subset='key', keep='first')
227

228 #lists for later use
229 no_location_key = []
230 coordinate_results_list = []
231

232 #Finding lat and long in data
233 for index , row in coordinates.iterrows ():
234 try:
235 lat = str(row['lat'])
236 lon = str(row['lon'])
237 key = row.key
238 coordinates = (lat ,lon)
239 results = rg.search(coordinates)
240 print(key)
241

242

243 results_dict = {'Key': key , ** results [0]}
244

245 coordinate_results_list.append(results_dict)
246 except:
247 print(f"no location data for key: {key}")
248 no_location_key.append(key)
249

250 # convert lists into df
251 location_data = pd.DataFrame(coordinate_results_list)
252 location_data = location_data.rename(columns ={'name': 'city'})
253 location_data = location_data.rename(columns ={'admin1 ': 'Fylke'})
254 location_data = location_data.rename(columns ={'admin2 ': 'kommune '})
255 location_data = location_data.rename(columns ={'cc': 'country '})
256

257 #deliting lat and long
258 location_data = location_data.drop(columns = ["lat","lon"])
259

260 #setting up df to store missing locations
261 latexdf = pd.DataFrame(columns =["Number of instances"])
262 latexdf.loc["missing coordinates", "Number of instances"] = 0
263 latexdf.loc["missing city", "Number of instances"] = 0
264 latexdf.loc["location not in Norway", "Number of instances"] = 0
265

266 #saving data if location is found into folder: ...
IFE_Data_13 .03.2023 _merged_Raw_location

267 for file in files:
268 print(file)
269 #load file
270 df = pd.read_parquet(file)
271 #loacte key
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272 key = int(os.path.basename(file).split('_')[1])
273

274 # merge loaction with data
275 merged_df = pd.merge(df , location_data , left_on='key', ...

right_on='Key', how='left')
276

277 # drop key to avoid duplicate
278 merged_df = merged_df.drop(columns =['Key'])
279

280 #saving file if it do not have missing location data
281 if key not in no_location_key:
282

283 # Filter wrong locations
284 missing_coordinates = merged_df["lat"]. isnull ()
285 missing_city = (~ merged_df["lat"]. isnull ()) & ...

merged_df["city"]. isnull ()
286 location_not_in_norway = (merged_df["country"] != "NO")
287

288 # Count instances for each condition
289 latexdf.loc["missing coordinates", "Number of instances"] += ...

int(missing_coordinates.any())
290 latexdf.loc["missing city", "Number of instances"] += ...

int(missing_city.any())
291 latexdf.loc["location not in Norway", "Number of instances"] ...

+= int(location_not_in_norway.any())
292

293 # Drop rows based on filter conditions
294 merged_df = merged_df [~( missing_coordinates | missing_city | ...

location_not_in_norway)]
295

296 # Save the new data into new folder
297 new_filename = ...

f'C:\\ Users\\ marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _merged_Raw_location_3 \\ plant_{key}_location.parquet '
298 merged_df.to_parquet(new_filename , index=False)
299

300

301 ############################################
302

303 ############################ filtering wrong locations
304 if key in no_location_key:
305 #the file is not save
306 print(f"missing location information in key: {key}, file not ...

saved")
307

308

309

310 #storing missing values as latex table
311 file_path = "C:\\ Users\\ marti\\ Desktop \\IFE\\ Tabeller \\ Location_table.tex"
312 with open(file_path , 'w') as f:
313 f.write(latexdf.to_string ())
314

315

316

317 #%% renaming columns
318 ############## making list of cites in folder
319 #folder path
320 folder_path = ...

'C:\\ Users\\ marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _merged_Raw_location_3 '
321 #defining folderpath as files
322 files = os.listdir(folder_path)
323
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324 #finding data in folder
325 unique_keys = []
326 for file in files:
327 match = re.search(r'plant_ (\d+) _location \. parquet ', file)
328 if match:
329 key = int(match.group (1))
330 unique_keys.append(key)
331

332 unique_keys = list(set(unique_keys))
333

334

335 for key in unique_keys:
336 filename = f'{folder_path }\\ plant_{key}_location.parquet '
337 print(filename)
338 naming_df = pd.read_parquet(filename)
339

340 # apply column renaming
341 naming_df = naming_df.rename(columns ={
342 'key': 'key',
343 "timedate": 'datetime ',
344 'date': 'date',
345 'time': 'time',
346 "Capacity": "capacity[w]",
347 'delta': 'delta',
348 'acproduction ': ...

'acproduction[wh]',
349 'dailyproduction ': ...

'dailyproduction[kwh]',
350 'totalproduction ': ...

'totalproduction[kwh]',
351 'monthTotalproduction ': ...

'monthtotalproduction[kwh]',
352 'yearTotalproduction ': ...

'yeartotalproduction[kwh]',
353 'vnom': 'vnom',
354 'vl1': 'vl1',
355 'vl2': 'vl2',
356 'vl3': 'vl3',
357 'il1': 'il1',
358 'il2': 'il2',
359 'il3': 'il3',
360 'frequency ': 'frequency ',
361 'runhours ': 'runhours ',
362 'temperature ': 'temperature ',
363 'mocked ': 'mocked ',
364 'mppt': 'mppt',
365 "lat": "lat",
366 "lon": "lon"
367 })
368

369 # save the updated dataframe with the same filename
370 naming_df.to_parquet(filename , index=False)
371

372

373 #%% calculating spesific
374

375

376 #folder path
377 folder_path = ...

'C:\\ Users\\ marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _merged_Raw_location_3 '
378 #defining folderpath as files
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379 files = os.listdir(folder_path)
380

381 #finding data in folder
382 unique_keys = []
383 for file in files:
384 match = re.search(r'plant_ (\d+) _location \. parquet ', file)
385 if match:
386 key = int(match.group (1))
387 unique_keys.append(key)
388

389 unique_keys = list(set(unique_keys))
390

391 ########## getting files
392 folder_path = ...

'C:\\ Users\\ marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _merged_Raw_location_3 '
393 #setting name of files
394 file_pattern = os.path.join(folder_path , 'plant_*_location.parquet ')
395 files = glob.glob(file_pattern)
396

397

398 #getting files
399 data_list = []
400 for file in files:
401 print(file)
402 df = pd.read_parquet(file)
403 data_list.append(df)
404

405 print(f'Number of files: {len(data_list)}')
406

407 #merging list into df
408 pvdata = pd.concat(data_list , ignore_index=True)
409

410 """
411 ####################################
412 #################################### Removing days , months , and year ...

without power production
413

414 pvdata['datetime '] = pd.to_datetime(pvdata['datetime '])
415

416 # Removing days where production is 0
417 pvdata_day_orignial_1 = pvdata.copy()
418 pvdata = pvdata[pvdata.groupby ([pd.Grouper(key='datetime ', freq='Y'), ...

pd.Grouper(key='datetime ', freq='M'), pd.Grouper(key='datetime ', ...
freq='D'), 'key '])['acproduction[wh]']. transform(lambda x: ...
x.ne(0).any())]

419 day_len = pvdata.copy()
420 num_days_removed = (len(pvdata_day_orignial_1) - len(pvdata))/24
421

422 # Removing months where production is 0
423 pvdata__month_orignial = pvdata.copy()
424 pvdata = pvdata[pvdata.groupby ([pd.Grouper(key='datetime ', freq='Y'), ...

pd.Grouper(key='datetime ', freq='M'), ...
'key '])['acproduction[wh]']. transform(lambda x: x.ne(0).any())]

425 month_len = pvdata.copy()
426 num_months_removed = (len(pvdata__month_orignial) - len(pvdata))/24
427

428 # Removing years where production is 0
429 pvdata_orignial = pvdata.copy()
430 pvdata = pvdata[pvdata.groupby ([pd.Grouper(key='datetime ', ...

freq='Y')])['acproduction[wh]']. transform(lambda x: x.ne(0).any())]
431 year_len = pvdata.copy()
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432 num_years_removed_yearly = (len(pvdata_orignial) - len(pvdata))/24
433

434 # saving result to latex file
435 table = [[" variabel", "Number of rows deleted", "number of days deleted"],
436 ['Total rows before deletion ', len(pvdata_day_orignial_1), ...

'Number of days '],
437 ['days ', len(day_len), num_days_removed],
438 ['month ', len(month_len), num_months_removed],
439 ['year ', len(year_len), num_years_removed_yearly]
440 ]
441

442 with ...
open("C:\\ Users\\ marti\\ Desktop \\IFE\\ Tabeller \\ pvdata_ife_raw_data_yearly_no_power.tex", ...
'w') as f:

443 f.write(tabulate(table , tablefmt='latex_booktabs '))
444 """
445 ####################################
446 #################################### Spesific yield
447

448 #calculating new key grouper with new data
449 pvdata['datetime '] = pd.to_datetime(pvdata['datetime '])
450 key_group = pvdata.groupby('key')
451

452 #setting up list for later use
453 yearly_wh_list = []
454 #calculating yearly spesific yeld
455 for key , df in key_group:
456 #print(key , year.year)
457 capcaity = df.loc[df.index[0], "capacity[w]"]
458 yearly_wh_value = df["acproduction[wh]"].sum()
459 yearly_wh_list.append ((key , yearly_wh_value , capcaity))
460

461 yearly_wh_df = pd.DataFrame(yearly_wh_list , columns =['key', ...
'yearly_Wh ', "capacity[w]"])

462

463 #converting to capacity[kWp]
464 #yearly_wh_df [" capacity[kwp]"] = yearly_wh_df [" capacity[w]"] / 1000
465 #calculating spesific year [kWh/y / kWp]
466 yearly_wh_df["yearly_spesific_yield"] = yearly_wh_df["yearly_Wh"] / ...

yearly_wh_df["capacity[w]"]
467 #%%
468 #Ploting spesific yield
469 fig , ax = plt.subplots(figsize = (12 ,12))
470 x = yearly_wh_df.reset_index ().index
471 sns.scatterplot(data=yearly_wh_df , x=x,y="yearly_spesific_yield" , ...

alpha=1,)
472 #plt.title('Yearly Spesific yield ', size =25)
473 #plt.legend(title='installation number ', fontsize =12, title_fontsize =25)
474 plt.xlabel('Installation number ', size =25)
475 plt.ylabel('Spesific yield [kWh/kWp]', size =25)
476 plt.xticks(fontsize = 25)
477 ax.set_ylim ([0, 2500])
478 plt.yticks(fontsize = 25)
479 plt.savefig("C:\\ Users\\ marti\\ Desktop \\IFE\\ Figurer \\ Raw_data \\ spesific_yield.png",bbox_inches='tight')
480 plt.clf()
481 plt.close ()
482

483 yearly_wh_df["yearly_spesific_yield"]. describe ()
484

485
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486 pvdata = pd.merge(pvdata , yearly_wh_df [['key', ...
'yearly_spesific_yield ', "yearly_Wh"]], on=['key'])

487

488

489

490 #%% Adjusting capcaity
491

492 ####################################
493 #################################### Adjusting capcaity
494

495 #creating empty columns for later use
496 pvdata['capacity_adjusted[kwp]'] = np.nan
497 pvdata['spesific_yield_adjusted '] = np.nan
498 pvdata['plot'] = np.nan
499

500 pvdata_key_group = pvdata.groupby('key')
501

502

503

504 #assuming capacity is in Watt
505 modified_groups = []
506 for row , group in pvdata_key_group:
507

508 if (group['capacity[w]'].max() < 70_000) and ...
(group['yearly_spesific_yield '].min()< 2500):

509 # save 200 as not adjusted
510 group["plot"] = 200
511 # capacity adjustment
512 group['capacity_adjusted[kwp]'] = (group['capacity[w]']/1000)
513 # calculating new spesific yield
514 group['spesific_yield_adjusted '] = ((group['yearly_Wh ']/1000) ...

/ group['capacity_adjusted[kwp]'])
515

516 elif (group['yearly_spesific_yield '].min() > 2500) and ...
(group["capacity[w]"].min() < 200):

517 #capacity adjustment
518 group['capacity_adjusted[kwp]'] = ((group['capacity[w]']/1000) ...

* 1000)
519 #calculate new spesific yield
520 group['spesific_yield_adjusted '] = ((group['yearly_Wh ']/1000) ...

/ (group['capacity_adjusted[kwp]']))
521 ## save 100 as adjustment
522 group["plot"] = 1000 # was divided
523 elif group['yearly_spesific_yield '].max() < 5:
524 # adjusting capcaity
525 group['capacity_adjusted[kwp]'] = ((group['capacity[w]']/1000) ...

/ 1000)
526 # calculate new spesific yield
527 group['spesific_yield_adjusted '] = (group['yearly_Wh ']/1000) / ...

group['capacity_adjusted[kwp]']
528 # save -1000 as adjustment
529 group["plot"] = -1000 # was multiplied
530 else:
531 group["plot"] = 200 # was multiplied
532 group['capacity_adjusted[kwp]'] = (group['capacity[w]']/1000)
533 group['spesific_yield_adjusted '] = ((group['yearly_Wh ']/1000) ...

/ group['capacity_adjusted[kwp]'])
534

535 #appending data to the lists
536 modified_groups.append(group)
537 #merging the lists
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538 pvdata = pd.concat(modified_groups)
539

540

541 #Renaming spesific yield to yearly spesific yield
542 pvdata.rename(columns ={'yearly_spesific_yield ': 'old_spesific_yield '}, ...

inplace=True)
543 pvdata.rename(columns ={'spesific_yield_adjusted ': ...

'yearly_spesific_yield '}, inplace=True)
544 pvdata.rename(columns ={'capacity_adjusted[kwp]': 'capacity[kwp]'}, ...

inplace=True)
545

546

547

548 #### Dubble checking if the cites got adjusted similarly over the years
549

550 # Group by key and check if all values in the "plot" column are similar
551 groups = pvdata.groupby('key')
552 for key , group in groups:
553 if len(group) == 1:
554 continue#print(f"Key '{key}' has only one value and is ...

excluded from the analysis .")
555 else:
556 std_dev = group['plot'].std()
557 if std_dev < 0.1:
558 print(f"All values in the 'plot' column for key '{key}' ...

are similar.")
559 else:
560 print(f"Not all values in the 'plot' column for key ...

'{key}' are similar.")
561

562 df = pvdata.drop_duplicates(subset='key', keep='first')
563 #storing result information
564 table = [['Total cites multiplied ', (df["plot"] == 1_000).sum()],
565 ['Total cites divided ', (df["plot"] == -1_000).sum()],
566 ['Total cites unchanged ', (df["plot"] == 200).sum()],
567 ]
568

569 with ...
open("C:\\ Users\\ marti\\ Desktop \\IFE\\ Tabeller \\ pvdata_ife_raw_data_altered_cap.tex", ...
'w') as f:

570 f.write(tabulate(table , headers =['Metric ', 'Value'], ...
tablefmt='latex_booktabs '))

571

572 # Ploting spesific yield differnce between log and actual
573 fig , ax = plt.subplots(figsize = (12 ,12))
574 sns.barplot(data=df , x='key',y="plot")
575 plt.title('Factor between recorded and actual value ', size =20)
576 plt.xlabel('Site', size =15)
577 plt.ylabel('Factor ', size =15)
578 plt.xticks ([])
579 #ax.set_ylim ([0, 10000])
580 plt.yticks(fontsize = 15)
581 plt.savefig("C:\\ Users\\ marti\\ Desktop \\IFE\\ Figurer \\ Raw_data \\ Raw_site_capacity_log_difference.png",bbox_inches='tight')
582 plt.clf()
583 plt.close ()
584

585 df["yearly_spesific_yield"]. describe ()
586

587 #Ploting spesific yield
588 fig , ax = plt.subplots(figsize = (12 ,12))
589 x = df.reset_index ().index
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590 sns.scatterplot(data=df , x=x,y="yearly_spesific_yield" , alpha=1,)
591 #plt.title('Yearly Spesific yield ', size =25)
592 #plt.legend(title='installation number ', fontsize =12, title_fontsize =25)
593 plt.xlabel('Installation number ', size =25)
594 plt.ylabel('Spesific yield [kWh/kWp]', size =25)
595 plt.xticks(fontsize = 25)
596 ax.set_ylim ([0, 2500])
597 plt.yticks(fontsize = 25)
598 plt.savefig("C:\\ Users\\ marti\\ Desktop \\IFE\\ Figurer \\ Raw_data \\ adjusted_spesific_yield.png",bbox_inches='tight')
599 plt.clf()
600 plt.close ()
601

602 ####################################
603 #################################### Using adjusted ...

capacity_adjusted[kwp] to calculate monthly spesific yield
604

605 #calculating new key group with new data
606 key_group = pvdata.groupby (['key', pd.Grouper(key='datetime ', freq='M')])
607

608 monthly_wh_list = [] #setting up list for later use
609 #calculating yearly spesific yeld
610 for (key , date), df in key_group:
611 print(key , date.month , date.year)
612 capcaity = df.loc[df.index[0], "capacity[kwp]"]
613 monthly_wh_value = df["acproduction[wh]"].sum()
614 print(monthly_wh_value)
615 monthly_wh_list.append ((date.year , date.month , key , ...

monthly_wh_value , capcaity))
616

617 monthly_wh_df = pd.DataFrame(monthly_wh_list , columns =["year", ...
"month", 'key', 'monthly_Wh ', "capacity[kwp]"])

618

619 #calculating spesific year [kWh/y / kWp]
620 monthly_wh_df["monthly_spesific_yield"] = (monthly_wh_df["monthly_Wh"] ...

/1000) / monthly_wh_df["capacity[kwp]"]
621

622 #storing result in pvdata
623 pvdata = ...

pvdata.merge(monthly_wh_df [["monthly_spesific_yield","key","year","month"]], ...
on=["key","year","month"], how='left')

624

625 #ploting
626 pvdata_hourly_unique_plot = pvdata.groupby (['key', 'year', ...

'month']).agg('last')[['capacity[kwp]', 'monthly_spesific_yield ', ...
"datetime", "yearly_spesific_yield"]]

627 pvdata_hourly_unique_plot['month_rounded '] = ...
pvdata_hourly_unique_plot['datetime '].dt.to_period('M').dt.to_timestamp ()

628

629

630 #Ploting spesific yield
631 fig , ax = plt.subplots(figsize = (12 ,12))
632 sns.scatterplot(data=pvdata_hourly_unique_plot , ...

x='month_rounded ',y="monthly_spesific_yield" , alpha=1, ...
palette='rocket ')

633 #plt.title('Monthly Spesific yield ', size =25)
634 #plt.legend(title='Capacity [kWp]', fontsize =12, title_fontsize =15)
635 plt.xlabel('Capacity [kWp]', size =25)
636 plt.ylabel('Monthly spesific yield [kwh/kWp]', size =15)
637 plt.xticks(fontsize = 25)
638 #ax.set_ylim ([0, 10000])
639 plt.yticks(fontsize = 25)
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640 plt.savefig("C:\\ Users\\ marti\\ Desktop \\IFE\\ Figurer \\ Raw_data \\ Raw_data_spesific_yield__monthly.png",bbox_inches='tight')
641 plt.clf()
642 plt.close ()
643

644 #Ploting histogram of capacity
645 plot = pvdata.drop_duplicates(subset='key')
646

647 #breaking axis
648 break_point_1 = 100
649 break_point_2 = 50
650

651 data_before_break = plot[plot['capacity[kwp]'] <= break_point_1]
652 data_after_break = plot[plot['capacity[kwp]'] > break_point_1]
653

654 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize =(12, 8), sharey=True , ...
gridspec_kw ={'width_ratios ': [1, 1]})

655 # ploting data before break
656 sns.histplot(data=data_before_break , x='capacity[kwp]', ax=ax1 , ...

alpha=1, palette='rocket ', bins = 100)
657 ax1.set_xlim(0, break_point_1)
658

659 # setting title information for ax1
660 ax1.set_xlabel('Capacity [kWp]', fontsize =25)
661 ax1.set_ylabel('PV installations ', fontsize =25)
662 ax1.tick_params(axis='x', labelsize =25)
663 ax1.tick_params(axis='y', labelsize =25)
664

665 # Pploting the data after the break
666 sns.histplot(data=data_after_break , x='capacity[kwp]', ax=ax2 , ...

alpha=1, palette='rocket ',bins = 20)
667 #ax2.set_xlim(break_point_2 , data_after_break['capacity[kwp]'].max())
668

669 # setting title information for ax2
670 ax2.set_xlabel('Capacity [kWp]', fontsize =25)
671 ax2.set_ylabel('PV installations ', fontsize =25)
672 ax2.tick_params(axis='x', labelsize =25)
673 ax2.tick_params(axis='y', labelsize =25)
674 #saving plot
675 plt.savefig("C:\\ Users\\ marti\\ Desktop \\IFE\\ Figurer \\ Raw_data \\ Raw_capacity_distrubution.png",bbox_inches='tight')
676 plt.clf()
677 plt.close ()
678

679 plot["capacity[kwp]"]. describe ()
680 ####################################
681 #################################### Saving new data
682

683 # Save the aggregated data
684 new_filename = ...

'C:\\ Users\\ marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _merged_new_capacity_4 \\ new_capacity.parquet '
685 pvdata.to_parquet(new_filename , index=False)
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Appendix M

Code: Finding Missing Timestamps

1 # -*- coding: utf -8 -*-
2 Created on Thu Mar 16 13:42:45 2023
3

4 @author: marti
5

6 import os
7 import fnmatch
8 import json
9 import pandas as pd

10 import re
11 import numpy as np
12 import math
13 import glob
14 import pvlib
15 from datetime import datetime
16 from requests.exceptions import ReadTimeout
17 import requests
18 #from dataprep.eda import create_report
19 from tabulate import tabulate
20 import matplotlib.pylab as plt
21 import seaborn as sns
22 from datetime import timedelta
23 import reverse_geocoder as rg
24 import pandas as pd
25 import folium
26 from folium.plugins import MarkerCluster
27 from folium.plugins import HeatMap
28

29

30 #%% Loading data
31

32 ####################################
33 #################################### Loading data
34

35 parquet_file = ...
"C:\\ Users\\marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _weather_5 \\ pvdata_weather.parquet"

36

37 # Read the parquet file into a DataFrame
38 pvdata = pd.read_parquet(parquet_file)
39

40 #%%
41

42 ####################################
43 #################################### finding missing timestamp on ...

5-min interval basis
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44

45 ############# finding keys.
46 #folder path
47 folder_path = "C:\\ Users\\ marti\\ Desktop\IFE\\Værdata"
48 #defining path
49 files = os.listdir(folder_path)
50

51 #finding data in folder
52 unique_keys = []
53 for file in files:
54 match = re.search(r"cams_data_ (\d+)\. parquet", file)
55 if match:
56 key = int(match.group (1))
57 unique_keys.append(key)
58

59 unique_keys = list(set(unique_keys))
60

61 ########## getting files
62

63 #Funtion to make expected timestamp
64 def generate_timestamp_expected(year , month):
65 start_date = pd.Timestamp(year , month , 1)
66 days_in_month = start_date.days_in_month
67 end_date = start_date + timedelta(days=days_in_month)
68 return pd.date_range(start=start_date , end=end_date , freq="5min", ...

closed="left")
69

70 #making emty df
71 missing_timestamps_info = pd.DataFrame(columns =["key", "year", ...

"month", "missing_intervals"])
72

73 pvdata_folder = ...
"C:\\ Users\\marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _merged_Raw_1"

74

75 for key in unique_keys:
76 filename = f"{pvdata_folder }\\ plant_{key}_merged.parquet"
77 print(filename)
78 subset = pd.read_parquet(filename)
79

80 # Extract year and month from the "datetime" column
81 subset["datetime"] = pd.to_datetime(subset["timedate"])
82 subset["year"] = subset["datetime"].dt.year
83 subset["month"] = subset["datetime"].dt.month
84

85 # Group by year and month
86 grouped = subset.groupby (["year", "month"])
87

88

89 for (year , month), group in grouped:
90 timestamp_expected = generate_timestamp_expected(year , month)
91 existing_timestamps = group["datetime"]
92 missing_timestamps = ...

timestamp_expected [~ timestamp_expected.isin(existing_timestamps)]
93 missing_intervals = len(missing_timestamps)
94

95 # Saving information
96 missing_timestamps_info = ...

missing_timestamps_info.append ({"key": key ,
97 "year": ...

year ,
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98 "month": ...
month ,

99 "missing_intervals": ...
missing_intervals},

100 ignore_index=True)
101

102 #finding missing days
103 missing_timestamps_info["missing_days"] = ...

missing_timestamps_info["missing_intervals"] / (24 * 60 /5)
104

105 print(missing_timestamps_info)
106

107

108 #%%
109 ####################################
110 #################################### finding missing timestamp on ...

hourly basis
111

112 # function to find missing hours
113 def monthly_hours(year , month):
114 days = pd.date_range(start=f"{year}-{month :02d}-01", ...

periods=pd.Timestamp(year , month , 1).days_in_month , freq="D")
115 return days.shape [0] * 24
116

117 df = pvdata.copy()
118

119 expected_hours = df.groupby (["key", "year", ...
"month"]).size().reset_index(name="expected_hours")

120 #hours availabe
121 expected_hours["monthly_hours"] = expected_hours.apply(lambda row: ...

monthly_hours(row["year"], row["month"]), axis =1)
122 #percentage
123 expected_hours["percent_available"] = ...

(expected_hours["expected_hours"] / ...
expected_hours["monthly_hours"]) * 100

124 filtered_df = expected_hours[expected_hours["percent_available"] >= ...
90]# removin month if it has less than 30

125

126 print(filtered_df)
127

128 expected_hours["percent_available_bins"] = ...
pd.cut(expected_hours["percent_available"], bins=[0, 10, 50, 90, ...
95, 99, 100], labels =["0-10%", "10-50%", "50-90%", "90 -95%", ...
"95-99%", "99 -100%"], duplicates="drop")

129

130 table = ...
expected_hours["percent_available_bins"]. value_counts ().sort_index(ascending=False).reset_index ()

131 table.columns = ["Category", "Count"]
132

133 with ...
open("C:\\ Users\\ marti\\ Desktop\IFE\\ Tabeller \\ missing_timestamp.tex", ...
"w") as f:

134 f.write(table.to_latex(index=False))
135

136 #Ploting histogram of filtered_df
137 fig , ax = plt.subplots(figsize = (12 ,12))
138 sns.displot(data=filtered_df , x="percent_available")
139 # Set the x and y labels and the title
140 plt.title("Number of installations per municipality", size =20)
141 plt.legend(title="Municipality", fontsize =12, title_fontsize =15)
142 plt.xlabel("Month", size =15)
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143 plt.ylabel("Count", size =15)
144 plt.xticks(fontsize = 15)
145 #ax.set_ylim ([0, 10000])
146 plt.yticks(fontsize = 15)
147 plt.savefig("C:\\ Users\\ marti\\ Desktop \\IFE\\ Figurer \\ Spesific_yield \\ countplot_kommune.png",bbox_inches="tight")
148 plt.clf()
149 plt.close ()
150

151

152 #%% Removing innstalations based on visual inspection of map placement
153

154 #removing innstalation placed in the ocean
155 pvdata = pvdata [~(( pvdata['lat'] == 61.05) & (pvdata['lon'] == 4.17))]
156

157 #removing innstalation where there are less than 10 innstalations
158 #getting first row of each instalation
159 first_occurrence_data = pvdata.drop_duplicates(subset="key", keep="first")
160

161 #finding number of instalation in each Fylke
162 first_occurrence_data["county_count"] = ...

first_occurrence_data.groupby("Fylke")["Fylke"]. transform("count")
163

164 filtered_data = ...
first_occurrence_data[first_occurrence_data["county_count"] >= 10]

165

166 #Removing pv instalations where less than 10 is availabe
167 filtered_keys = filtered_data['key']
168 pvdata_filtered = pvdata[pvdata['key'].isin(filtered_keys)]
169

170 #saving new df
171 pvdata_filtered.to_parquet("C:\\ Users \\marti \\ Desktop \\IFE\\ Sammenslått\\ IFE_Data_13 .03.2023 _weather_5 \\ pvdata_weather_filtered.parquet")
172

173 #%% Ploting distrobution of Fylke
174

175 ####################################
176 #################################### Ploting distrobution of Fylke
177

178 #Ploting countplot of fylke
179 plot = pvdata.drop_duplicates(subset =["key", "month"])
180 plot_top_10_kommunes = plot["Fylke"]. value_counts ().nlargest (10).index
181 plot = plot[plot["Fylke"].isin(plot_top_10_kommunes)]
182 fig , ax = plt.subplots(figsize = (12 ,12))
183 sns.countplot(data=plot , x="month", hue= "Fylke")
184 # Set the x and y labels and the title
185 plt.title("Number of installations per county", size =20)
186 plt.legend(title="County", fontsize =12, title_fontsize =15)
187 plt.xlabel("Month", size =15)
188 plt.ylabel("Count", size =15)
189 plt.xticks(fontsize = 15)
190 #ax.set_ylim ([0, 10000])
191 plt.yticks(fontsize = 15)
192 plt.savefig("C:\\ Users\\ marti\\ Desktop \\IFE\\ Figurer \\ Spesific_yield \\ countplot_fylke.png",bbox_inches="tight")
193 plt.clf()
194 plt.close ()
195

196 unique_table = pvdata.drop_duplicates(subset =["key","month"])
197 #Group by fylke and month
198 table = unique_table.groupby (["Fylke", ...

"month"]).size().reset_index(name="count")
199

200 #pivot table to make it easier to read
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201 table_pivot = table.pivot_table(values="count", index="Fylke", ...
columns="month")

202

203 #Replace NAN with 0
204 table_pivot = table_pivot.fillna (0)
205

206 # Print the table
207 print(table_pivot)
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Appendix N

Code: Inference of Tilt and Azimuth for
Solcellespesialisten‘s Data

Parts of this code are from a previous research article [13]. The unaltered code can be found
at [77]. The original copyright and license notice [87] is included here:

MIT License
Copyright (c) 2020 BP-TUe: Bin Meng, Roel Loonen, Jan Hensen
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""

1 # -*- coding: utf -8 -*-
2

3 Created on Thu Apr 10 15:16:14 2023
4

5 @author: marti
6

7

8

9 import pvlib
10 import matplotlib.pyplot as plt
11 import pandas as pd
12 import datetime
13 import math
14 import numpy as np
15 from math import sqrt
16 import scipy.interpolate
17 import glob
18 import os
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19 import multiprocessing
20 import concurrent.futures
21 from concurrent.futures import ProcessPoolExecutor
22 from functools import partial
23 import pytz
24 import re
25

26 import os
27 import shutil
28

29 #defining input and output data
30 input_file = "C:/Users/marti/Desktop/IFE/pvdata_weather_filtered.parquet"
31 output_folder = "C:/ Users/marti/Desktop/IFE/Data"
32 """
33 # Delete all files in the output folder
34 for filename in os.listdir(output_folder):
35 file_path = os.path.join(output_folder , filename)
36 if os.path.isfile(file_path):
37 os.unlink(file_path)
38 """
39

40 #reading file
41 df = pd.read_parquet(input_file)
42

43 # Get unique key values
44 unique_keys = df["key"]. unique ()
45

46

47 #saving each PV instalation in a seperate file , to avoid high memory ...
usage later

48 for key in unique_keys:
49 filtered_df = df[df["key"] == key]
50 output_file = os.path.join(output_folder , f"{key}. parquet")
51 filtered_df.to_parquet(output_file)
52

53

54

55

56 #setting up new input and output folders
57 source_folder = "C:/ Users/marti/Desktop/IFE/Data"
58 dest_folder = "C:/Users/marti/Desktop/IFE/csv"
59 new_folder = "C:/Users/marti/Desktop/IFE/Ikke_regnet"
60

61 for file in os.listdir(new_folder):
62 file_path = os.path.join(new_folder , file)
63 try:
64 if os.path.isfile(file_path):
65 os.unlink(file_path)
66 except Exception as e:
67 print(f"failed to delete {file_path }. Reason: {e}")
68

69 pattern = re.compile(r"^\d+\. parquet$")
70

71 xlsx_files = [f for f in os.listdir(source_folder) if pattern.match(f)]
72 print(f"Filtered xlsx_files: {xlsx_files}")
73

74 for xlsx_file in xlsx_files:
75 csv_file = xlsx_file.replace(".parquet", ".csv")
76 if not os.path.exists(os.path.join(dest_folder , csv_file)):
77 print(f"Copying {xlsx_file} to {new_folder}")
78 shutil.copy(os.path.join(source_folder , xlsx_file), ...
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os.path.join(new_folder , xlsx_file))
79 #saving data
80 folder_paths = "C:/ Users/marti/Desktop/IFE/Ikke_regnet"
81 file_paths = glob.glob(folder_paths + "/*")
82 print(f"Files in {folder_paths }: {file_paths}")
83

84

85 #%% Loading data
86

87 #input_data = pd.read_excel ("C:\\ Users \\marti\\ OneDrive - ...
Universitetet i ...
Agder\\Master -MartinKrebsKristiansen -Solutvikling \\Martin -J5-data\\SolarLog -ACdata \\ Data_from_DB_ACsys1_2020 -full -year.xlsx")

88 """
89 # specify the file
90 parquet_file = ...

'C:\\ Users\\ marti \\ Desktop \\IFE\\ Sammenslått\\ Tilt_azimuth_hourly \\{key}. parquet '
91

92 # open the file
93 parquet_table = pq.read_table(parquet_file)
94

95 # convert the Parquet table to a df
96 df = parquet_table.to_pandas ()
97 file_path = "C:/Users/marti/Desktop/IFE/Ikke_regnet /17. parquet"
98 """
99

100

101 #%%
102 #setting up process to run multiple files simultaneously
103 def process_file(index , file_path):
104 #printing file number
105 print(f"Processing file: {file_path}")
106 pvdata = pd.read_parquet(file_path)
107

108

109 # selecting latitude
110 lat = pvdata.lat[0]
111

112 # selecting longdiude
113 lon = pvdata.lon[0]
114

115 input_data = pvdata.copy()
116

117

118

119 #remane Pac1 to AC_S45
120 input_data = input_data.rename(columns ={'acproduction[wh]': 'AC_S45 '})
121

122

123 #input_data ["ghi"] = input_data.GHI_Avg
124 #input_data ["dhi"] = input_data.DHI_Avg
125 #input_data ["dni"] = input_data.DNI_Avg
126

127

128 # Calculate solar position.
129 solpos = pvlib.solarposition.get_solarposition(input_data.index , ...

lat , lon)
130 input_data['zenith '] = solpos['apparent_zenith ']
131 input_data['azimuth '] = solpos['azimuth ']
132 input_data.head (24)
133

134
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135

136 ###############################################################################################
137 ###############################################################################################
138

139 #selecting irradiance data
140 GHI = input_data['ghi']. resample('1D').sum()
141 DHI = input_data['dhi']. resample('1D').sum()
142 GHIDHI = pd.DataFrame ({'daily_ghi ' : GHI , 'daily_dhi ' : DHI})
143 GHIDHI['clear_sky_index '] = DHI / GHI
144 GHIDHI.head()
145

146

147 # Step 2: Pick out clearest day of each month
148

149 # Obtain the date of the monthly clearest days
150 GHIDHI['time'] = pd.to_datetime(GHIDHI.index)
151 GHIDHI['YYYY'] = GHIDHI['time'].dt.year
152 GHIDHI['MM'] = GHIDHI['time'].dt.month
153 GHIDHI['DD'] = GHIDHI['time'].dt.day
154 GHIDHI_sort = GHIDHI.sort_values(by='clear_sky_index ', axis=0, ...

ascending=True)
155 for i in range(1, 13):
156 a = GHIDHI_sort.loc[GHIDHI_sort['MM'] == i].head (1)
157 locals ()['clearest_day_M {}'.format(i)] = a['DD']
158 print('The clearest day of month {} is {}.{} '.format(i, i, ...

a['DD'][0]))
159

160 # Select the input data of the monthly clearest days
161 input_data['time'] = pd.to_datetime(input_data.index)
162 input_data['MM'] = input_data['time'].dt.month
163 input_data['DD'] = input_data['time'].dt.day
164 for i in range(1, 13):
165 a = locals ()['clearest_day_M {}'.format(i)]
166 a = a.reset_index(drop=True)
167 locals ()['M{}'.format(i)] = input_data.loc[( input_data['MM'] ...

== i) & (input_data['DD'] == a[0])]
168

169

170 #Step 3: Evaluate curve mismatch between normalized plane -of -array ...
irradiance and PV output

171

172

173 solar_constant = 1366.1
174 method = 'spencer '
175 epoch_year = 2022 # year of measurement data (not used)
176 model_am = 'kastenyoung1989 '
177 albedo = 0.2
178 surface_type = None
179 model = 'perez'
180 model_perez = 'allsitescomposite1990 '
181 for i in range(1, 13):
182 print('calculating month {}/12 '.format(i))
183 monthly_data = locals ()['M{}'.format(i)]
184 yyyy = monthly_data.time.dt.year [0]
185 mm = monthly_data.time.dt.month [0]
186 dd = monthly_data.time.dt.day[0]
187 day_of_year = datetime.date(yyyy , mm, dd)
188 dni_extra = pvlib.irradiance.get_extra_radiation(day_of_year , ...

solar_constant , method , epoch_year)
189 air_mass = ...

pvlib.atmosphere.get_relative_airmass(monthly_data.zenith , ...
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model_am)
190 air_mass.fillna(0, inplace=True)
191 AC_norm = (monthly_data.AC_S45 - monthly_data.AC_S45.min()) / ...

(monthly_data.AC_S45.max() - monthly_data.AC_S45.min())
192 locals ()['result_M {}'.format(i)] = []
193

194 # Calulating plane of irradiance for every possible range (0 -360 ...
Azimuth , 0-91 Tilt)

195 surface_tilt_list = range(0, 91, 1)
196 surface_azimuth_list = range(0, 360, 1)
197

198 for surface_tilt in surface_tilt_list:
199 print(f"start { surface_tilt}")
200 for surface_azimuth in surface_azimuth_list:
201

202 poa_cal = ...
pvlib.irradiance.get_total_irradiance(surface_tilt , ...
surface_azimuth , monthly_data.zenith ,

203 monthly_data.azimuth , ...
monthly_data.dni , ...
monthly_data.ghi ,

204 monthly_data.dhi , ...
dni_extra , ...
air_mass , ...
albedo , ...
surface_type , ...
model ,

205 model_perez)
206 poa = poa_cal["poa_global"]
207 poa_norm = (( poa_cal["poa_global"] - ...

poa_cal["poa_global"].min()) /
208 (poa_cal["poa_global"].max() - ...

poa_cal["poa_global"].min()))
209 error = []
210 for j in range(len(poa_norm)):
211 #removing data where solar angle is over 70 degrees
212 if monthly_data.zenith[j] < 70:
213 error.append(AC_norm[j] - poa_norm[j])
214 if len(error) >0:
215 squaredError = []
216 absError = []
217 for val in error:
218 squaredError.append(val * val) # (Error)^2
219 absError.append(abs(val)) # Abs(Error)
220 RMSE = sqrt(np.nansum(squaredError) / ...

len(squaredError)) # RMSE
221 MAE = np.nansum(absError) / len(absError) # MAE
222 dic = {'surface_tilt ' : surface_tilt , ...

'surface_azimuth ' : surface_azimuth , 'RMSE' : ...
RMSE , 'MAE' : MAE}

223 locals ()['result_M {}'.format(i)]. append(dic)
224 locals ()['result_M {}'.format(i)] = ...

pd.DataFrame(locals ()['result_M {}'.format(i)])
225 # Save the DataFrame to a Parquet file
226 # Save the DataFrame to a Parquet file
227 file_name = os.path.basename(file_path).split('.')[0]
228 output_file_path = ...

f"C:/ Users/marti/Desktop/IFE/Results/result_{file_name}_M{i}. parquet"
229 locals ()['result_M {}'.format(i)]. to_parquet(output_file_path)
230

231
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232

233 # Step 4: Generate and overlap monthly results
234 z_list = [0.5,1,2,3,4,5,6,7,8,9,10,15,20,25,30,35]
235 all_results_df = pd.DataFrame(columns = ["z_var", "tilt", "azimuth"])
236 folder_name = f"C:/Users/marti/Desktop/IFE/Figure /{ file_name}"
237 os.makedirs(folder_name)
238 for z_var in z_list:
239 yearly_result = pd.DataFrame ()
240 for i in range(1, 13):
241 result = locals ()['result_M {}'.format(i)]
242 if len(result) > 0:
243 z = result["RMSE"]
244 threshold = np.percentile(z, z_var) # Calulating ...

result of vaying prosentile.
245

246 yearly_result = ...
yearly_result.append(result.loc[result["RMSE"] <= ...
threshold ,["surface_azimuth","surface_tilt"]], ...
sort=True)

247 yearly_result["point"] = ...
yearly_result["surface_azimuth"].map(str) + ',' + ...
yearly_result["surface_tilt"].map(str)

248 x = yearly_result["point"]. tolist ()
249

250 # Overlap monthly results.
251 yearly_count = []
252 for azimuth in range (0 ,360):
253 for tilt in range (0,91):
254 count = x.count(str(azimuth)+','+str(tilt))
255 dic = ...

{'surface_tilt ':tilt ,'surface_azimuth ':azimuth ,'count':count}
256 yearly_count.append(dic)
257 yearly_count = pd.DataFrame(yearly_count)
258 yearly_count.sort_values(by='count', axis=0, ascending=False)
259

260 # Step 5: Obtain the final result of PV orientation estimation
261

262 a = np.radians(yearly_count["surface_azimuth"])
263 b = yearly_count["surface_tilt"]
264 z = yearly_count["count"]
265 xi = np.linspace(a.min(), a.max(), 100)
266 yi = np.linspace(b.min(), b.max(), 100)
267 theta ,r = np.meshgrid(xi, yi)
268 zi = scipy.interpolate.griddata ((a, b), z, (theta , r), ...

method='linear ')
269

270

271 fig , ax = plt.subplots(subplot_kw=dict(projection='polar'))
272 cset = ax.contourf(theta ,r,zi ,[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

11, 12], cmap=plt.cm.jet)
273 ax.set_theta_direction (-1)
274 ax.set_theta_zero_location('N')
275 ax.set_rgrids(np.arange (30, 120, 30))
276 ax.set_thetagrids(np.arange(0, 360, 45), ...

('N','NE','E','SE','S','SW','W','NW'))
277 ax.tick_params(labelsize =20)
278 position=fig.add_axes ([0.89 , 0.1, 0.03, 0.8])
279 cb=plt.colorbar(cset ,ticks =[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

11, 12], cax=position)
280 cb.ax.tick_params(labelsize =20)
281 cb.set_label('# of overlaps ', rotation =270, fontsize =15)

119



282 fig.savefig(f"C:/Users/marti/Desktop/IFE/Figure /{ file_name }/{ file_name}_zvar{z_var }.png")
283

284

285

286 count_max = yearly_count.loc[:, "count"].max()
287 overlap_tilt = yearly_count.loc[yearly_count['count'] == ...

count_max , 'surface_tilt '].mean()
288 overlap_azimuth = yearly_count.loc[yearly_count['count'] == ...

count_max , 'surface_azimuth '].mean()
289 print('Final derivation ...

result:','\n','tilt:',overlap_tilt ,'\n','azimuth:',overlap_azimuth)
290

291 results_df = pd.DataFrame ({"z_var": [z_var], 'tilt': ...
[overlap_tilt], 'azimuth ': [overlap_azimuth ]})

292 all_results_df = all_results_df.append(results_df , ...
ignore_index=True)

293 all_results_df.to_csv(f"C:/Users/marti/Desktop/IFE/csv/{ file_name }.csv", ...
index=False)

294

295

296 print(f"Total number of files to process: {len(file_paths)}")
297

298 #Initiating multiple files simultaneously
299 if __name__ == '__main__ ':
300 file_paths = file_paths # path of files to presess
301

302 with concurrent.futures.ProcessPoolExecutor(max_workers =10) as ...
executor:

303 executor.map(process_file , range(len(file_paths)), file_paths)
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Appendix O

Code: RANSAC and Clustering

1

2 # -*- coding: utf -8 -*-
3 """
4 Created on Tue Apr 18 11:16:58 2023
5

6 @author: marti
7 """
8

9 import pandas as pd
10 import os
11 import pvlib
12 import seaborn as sns
13 import matplotlib.pyplot as plt
14 import numpy as np
15 import glob
16 from scipy.signal import argrelextrema
17 import matplotlib.ticker as ticker
18 from sklearn.metrics import mean_squared_error
19 from sklearn.linear_model import RANSACRegressor
20 from sklearn.model_selection import RandomizedSearchCV
21

22

23 #%% Load data and merge
24

25 # Read the parquet file
26 parquet_file = ...

'C:/ Users/marti/Desktop/IFE/pvdata_weather_filtered.parquet '
27 pvdata = pd.read_parquet(parquet_file)
28

29 # Get the list of files in the folder
30 csv_folder = 'C:/ Users/marti/OneDrive/Dokumenter/Master/IFE/csv'
31

32 #loading file based on the key
33 for unique_key in pvdata['key']. unique ():
34 key = int(unique_key)
35 print(key)
36 file_name = f'{key}.csv'
37 csv_path = os.path.join(csv_folder , file_name)
38

39 if os.path.exists(csv_path):
40 #loading csv file
41 csv_df = pd.read_csv(csv_path)
42

43 #add information from the csv to the parquet
44 for col in csv_df.columns:
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45 if col not in pvdata.columns:
46 pvdata[col] = None
47 #adding inforamtion
48 pvdata.loc[pvdata['key'] == key , col] = csv_df.at[11, col]
49

50 # Remove tilt or azimuth values which are NAN
51 pvdata = pvdata.dropna(subset =['tilt', 'azimuth '])
52

53 #saving files
54 output_directory = 'C:/ Users/marti/Desktop/IFE/orientation_sammenslått'
55

56 # Deleting files for next run
57 files = glob.glob(os.path.join(output_directory , '*'))
58 for f in files:
59 os.remove(f)
60

61 #group by key
62 grouped_data = pvdata.groupby('key')
63

64 for key , group in grouped_data:
65 output_file_path = os.path.join(output_directory , f"{key}. parquet")
66 group.to_parquet(output_file_path)
67

68

69 #saving file
70 #pvdata.to_parquet('C:/ Users/marti/Desktop/IFE/orientation_sammenslått_kombined/all_ife_data ')
71

72 #Debug line
73 #file_path = ...

"C:\\ Users\\marti \\ Desktop \\IFE\\ orientation_sammenslått\\11. parquet"
74

75 #%% Applying filter by cluster
76

77 # itterate over evey csv file
78 for file_name in os.listdir(output_directory):
79 file_path = os.path.join(output_directory , file_name)
80 file_name = file_name.replace('.csv', '')
81 print(file_name)
82

83 # read file
84 input_data = pd.read_parquet(file_path)
85

86 #solar variables
87 solar_constant = 1366.1
88 method = 'spencer '
89 model_am = 'kastenyoung1989 '
90 albedo = 0.2
91 surface_type = None
92 model = 'perez'
93 model_perez = 'allsitescomposite1990 '
94

95 lat = input_data["lat"][0]
96 lon = input_data["lon"][0]
97

98 surface_tilt = input_data["tilt"][0]
99 surface_azimuth = input_data["azimuth"][0]

100

101

102 # Calculate solar position.
103 solpos = pvlib.solarposition.get_solarposition(input_data.index , ...

lat , lon)
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104 input_data['zenith '] = solpos['apparent_zenith ']
105 input_data['azimuth '] = solpos['azimuth ']
106 input_data.head (24)
107

108

109 day_of_year = input_data.index.to_series ().dt.dayofyear
110

111 dni_extra = pvlib.irradiance.get_extra_radiation(day_of_year , ...
solar_constant , method)

112 air_mass = ...
pvlib.atmosphere.get_relative_airmass(input_data.zenith , model_am)

113 air_mass.fillna(0, inplace=True)
114

115

116 poa_cal = pvlib.irradiance.get_total_irradiance(surface_tilt , ...
surface_azimuth , input_data.zenith ,

117 input_data.azimuth , ...
input_data.dni , ...
input_data.ghi ,

118 input_data.dhi , ...
dni_extra , ...
air_mass , albedo , ...
surface_type , model ,

119 model_perez)
120

121

122

123

124 input_data = pd.merge(input_data , poa_cal , left_index=True , ...
right_index=True , how='inner')

125

126 #%% Calculating input data
127

128 input_data["yf"] = (input_data["acproduction[wh]"]/1000) / ...
input_data.capacity_kwp

129

130 input_data = input_data.loc[input_data['yf'] != 0]
131

132 input_data["yr"] = input_data.poa_global / 1000
133

134 input_data["pr"] = input_data["yf"] / input_data["yr"]
135

136 #debugplot
137 # sns.scatterplot(data=input_data , x="yr", y="yf")
138

139

140 #%% error
141

142 input_data["error"] = input_data["yf"] - input_data["yr"]
143

144 #%% step 1. inliers using Ran -Sa_c
145

146

147 #creating RANSAG regressor
148 ransac = RANSACRegressor ()
149

150 #parameter for the grid search
151 param_grid = {
152 'min_samples ': list(range (10, 150)),
153 'max_trials ': [100, 200, 300, 500, 700, 1000, 1500],
154 'residual_threshold ': np.arange (0.07 , 0.15, 0.01) ,
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155 'loss': ['absolute_error '],
156 }
157

158 # executing GridSearchCV
159 #grid_search = GridSearchCV(ransac , param_grid , ...

scoring='neg_mean_squared_error ', cv=5, n_jobs =-1)
160 random_search = RandomizedSearchCV(ransac , param_grid , ...

scoring='neg_mean_squared_error ', n_iter =150, cv=5, n_jobs=-1, ...
random_state =42)

161

162

163 input_data = input_data.dropna(subset =['poa_global '])
164 x = input_data["yr"]. values.reshape(-1, 1)
165 y = input_data["yf"]. values.reshape(-1, 1)
166

167 # fit the x,y coordinates
168 #grid_search.fit(x, y)
169 random_search.fit(x, y)
170

171 #loacate best fit
172 best_ransac = random_search.best_estimator_
173

174 # print best parameters
175 print("Best hyperparameters:", random_search.best_params_)
176

177 # print slope and intercept
178 print('Intercept:', best_ransac.estimator_.intercept_)
179 print('Slope:', best_ransac.estimator_.coef_)
180

181 # locate innlier data
182 inlier_mask = best_ransac.inlier_mask_
183

184 input_data['inlier_ransac '] = inlier_mask
185

186 #making grid of input values
187 x_grid = np.linspace(x.min(), x.max(), 100).reshape(-1, 1)
188

189 # predicting output values
190 y_pred = best_ransac.predict(x_grid)
191

192 #plot input data points , and the RANSAC regression
193 fig , ax = plt.subplots(figsize = (12 ,12))
194 plt.scatter(x[inlier_mask], y[inlier_mask], color='blue', ...

label='Inliers ')
195 plt.scatter(x[~ inlier_mask], y[~ inlier_mask], color='red', ...

label='Outliers ')
196 best_params = random_search.best_params_
197 line_label = f"RANSAC regression\nmin_samples: ...

{best_params['min_samples ']}\ nmax_trials: ...
{best_params['max_trials ']}\ nresidual_threshold: ...
{best_params['residual_threshold ']}\nloss: {best_params['loss ']}"

198

199 plt.plot(x_grid , y_pred , color='green', linewidth=2, label=line_label)
200 plt.legend(fontsize =25, title_fontsize =25)
201 plt.xlabel("Yr", size =25)
202 plt.ylabel("yf", size =25)
203 plt.xticks(fontsize = 25)
204 #ax.set_ylim ([0, 350])
205 #ax.set_xlim ([0, 1])
206 plt.yticks(fontsize = 25)
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207 plt.savefig(f"C:\\ Users\\ marti \\ Desktop \\ filtered non ...
zero\\ Figure \\{ file_name}_RANSAC_.png", bbox_inches="tight")

208 plt.clf()
209 plt.close ()
210

211

212 #%% Step 2. polynomial regression
213 #this step only uses the inlier data from step 1
214

215

216 # copying inliers
217 inliers = input_data[inlier_mask]
218

219 #setting number of bins
220 num_bins = 10
221 inliers['error_bins '] = pd.qcut(inliers['yr'], q=num_bins , ...

labels=False , precision =0)
222

223 def optimize_polyfit(x, y, max_degree =10):
224 min_mse = float('inf')
225 best_degree = 1
226 best_coeffs = None
227

228 for degree in range(1, max_degree +1):
229 coeffs = np.polyfit(x, y, degree)
230 poly_func = np.poly1d(coeffs)
231

232 y_pred = poly_func(x)
233 mse = mean_squared_error(y, y_pred)
234

235 if mse < min_mse:
236 min_mse = mse
237 best_degree = degree
238 best_coeffs = coeffs
239

240 return best_coeffs
241

242 from scipy.optimize import root_scalar
243

244 #finding where the polynomal line crosses 0
245 def find_zero_crossing(poly_func , min_x , max_x):
246 if np.sign(poly_func(min_x)) * np.sign(poly_func(max_x)) > 0:
247 return None
248 zero_crossing = root_scalar(poly_func , method='brentq ', ...

bracket =[min_x , max_x])
249 if zero_crossing.converged:
250 return zero_crossing.root
251 return None
252

253 #fit and plot histograms
254 def fit_poly_and_plot_hist(data , ** kwargs):
255 ax = plt.gca()
256 sns.histplot(data=data , x='error', bins=50, ax=ax)
257 counts , bin_edges = np.histogram(data['error'], bins =50)
258 bin_centers = (bin_edges [:-1] + bin_edges [1:]) / 2
259 best_coeffs = optimize_polyfit(bin_centers , counts)
260 poly_func = np.poly1d(best_coeffs)
261

262 #find local maxima and minima
263 local_maxima = argrelextrema(poly_func(bin_centers), np.greater)
264 local_minima = argrelextrema(poly_func(bin_centers), np.less)
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265

266 #find global maximum
267 global_maximum_index = np.argmax(poly_func(bin_centers))
268 global_maximum = bin_centers[global_maximum_index], ...

poly_func(bin_centers[global_maximum_index ])
269

270 #find the local minima with largest difference in y-value
271 left_minima = None
272 right_minima = None
273 max_diff = float('-inf')
274

275 local_minima_y = poly_func(bin_centers[local_minima ])
276

277 #selecting minima
278 for i in range(len(local_minima_y) - 1):
279 diff = local_minima_y[i + 1] - local_minima_y[i]
280 if diff > max_diff:
281 max_diff = diff
282 minima = bin_centers[local_minima ][i], local_minima_y[i]
283 next_minima = bin_centers[local_minima ][i + 1], ...

local_minima_y[i + 1]
284

285 if minima [0] < global_maximum [0]:
286 left_minima = minima
287 else:
288 right_minima = minima
289 if next_minima [0] < global_maximum [0]:
290 left_minima = next_minima
291 else:
292 right_minima = next_minima
293

294 if left_minima is None:
295 left_minima = bin_centers.min(), poly_func(bin_centers.min())
296 if right_minima is None:
297 right_minima = bin_centers.max(), poly_func(bin_centers.max())
298

299 #Plot the polynomial curve
300 x_plot = np.linspace(bin_centers.min(), bin_centers.max(), 100)
301 y_plot = poly_func(x_plot)
302 ax.plot(x_plot , y_plot , '-', color="red", linewidth =3)
303

304 #plot global maximum and the local minima point
305 ax.plot(* global_maximum , 'go', markersize =10, color="green")
306 ax.plot(* left_minima , 'bo', markersize =10, color="red")
307 ax.plot(* right_minima , 'bo', markersize =10, color="red")
308

309 return global_maximum [0], left_minima [0], right_minima [0]
310

311

312 g = sns.FacetGrid(inliers , col='error_bins ', col_wrap=3, ...
sharex=False , sharey=False , height =4)

313

314 #Plot histograms , fit the polynomial regression
315 g.map_dataframe(fit_poly_and_plot_hist)
316

317 g.set_axis_labels("Error", "Count", fontsize =25)
318 g.set_titles("Bin {col_name}", fontsize =25)
319 for axes in g.axes.flat:
320 axes.tick_params(axis='both', labelsize =15)
321 axes.xaxis.set_major_locator(ticker.MaxNLocator (3))
322
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323 #save
324 plt.savefig(f"C:\\ Users\\ marti \\ Desktop \\ filtered non ...

zero\\ Figure \\{ file_name}FacetGrid_histogram.png", ...
bbox_inches="tight")

325

326 # removefig
327 plt.clf()
328 plt.close ()
329

330

331

332

333 #%% Step 3. Group threshold
334 global_maxima_x = []
335 left_minima_x = []
336 right_minima_x = []
337 yr_values = []
338 mid_yr_values = []
339

340 #plot individual histograms
341 def store_and_plot(data , ** kwargs):
342 g_max_x , l_min_x , r_min_x = fit_poly_and_plot_hist(data , ** kwargs)
343 global_maxima_x.append(g_max_x)
344 left_minima_x.append(l_min_x)
345 right_minima_x.append(r_min_x)
346 return data['yr'].mean()
347

348 g = sns.FacetGrid(inliers , col='error_bins ', col_wrap=3, ...
sharex=False , sharey=False)

349 g.map_dataframe(lambda data , ** kwargs: ...
yr_values.append(store_and_plot(data , ** kwargs)))

350

351 for idx in range(len(yr_values) - 1):
352 mid_yr = (yr_values[idx] + yr_values[idx + 1]) / 2
353 mid_yr_values.append(mid_yr)
354

355 last_mid_yr = yr_values [-1] + (mid_yr_values [-1] - mid_yr_values [-2])
356 mid_yr_values.append(last_mid_yr)
357

358

359 #create stair -like coordinates
360 def create_stair_x_coordinates(x_values , max_x):
361 stair_x_values = []
362 for idx in range(len(x_values) - 1):
363 stair_x_values.extend ([ x_values[idx], x_values[idx + 1]])
364 stair_x_values.extend ([ x_values [-1], max_x])
365 return stair_x_values
366

367 def create_stair_y_coordinates(y_values):
368 stair_y_values = []
369 for idx in range(len(y_values) - 1):
370 stair_y_values.extend ([ y_values[idx], y_values[idx]])
371 stair_y_values.extend ([ y_values [-1], y_values [-1]])
372 return stair_y_values
373

374 ####################
375 #################### Creating poly y value
376 # Fit 3rd-degree polynomials
377 global_poly_coeff = np.polyfit(mid_yr_values , global_maxima_x , 3)
378 left_poly_coeff = np.polyfit(mid_yr_values , left_minima_x , 3)
379 right_poly_coeff = np.polyfit(mid_yr_values , right_minima_x , 3)
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380

381 # Create polynomial functions
382 global_poly_func = np.poly1d(global_poly_coeff)
383 left_poly_func = np.poly1d(left_poly_coeff)
384 right_poly_func = np.poly1d(right_poly_coeff)
385

386 plt.xlim(min(yr_values), max(inliers['yr']))
387

388 x_poly = np.linspace(min(mid_yr_values), mid_yr_values [-1], 100)
389

390 max_x = max(inliers['yr'])
391

392 #plot
393 plt.figure(figsize =(12, 12))
394 plt.plot(yr_values , global_maxima_x , 'g-', label='Global Maxima ')
395 plt.plot(create_stair_x_coordinates(yr_values , max_x), ...

create_stair_y_coordinates(left_minima_x), 'b--', label='Left ...
Minima ')

396 plt.plot(create_stair_x_coordinates(yr_values , max_x), ...
create_stair_y_coordinates(right_minima_x), 'r--', label='Right ...
Minima ')

397

398 #plot the polynomial functions
399 plt.plot(x_poly , global_poly_func(x_poly), 'g:', label='Global ...

Maxima Poly')
400 plt.plot(x_poly , left_poly_func(x_poly), 'b:', label='Left Minima ...

Poly')
401 plt.plot(x_poly , right_poly_func(x_poly), 'r:', label='Right ...

Minima Poly')
402

403

404 plt.tick_params(axis='both', labelsize =25)
405 plt.xlabel('Yr', fontsize =25)
406 plt.ylabel('Error Value ', fontsize =25)
407 plt.legend( fontsize =25, title_fontsize =25)
408

409

410 plt.savefig(f"C:\\ Users\\ marti \\ Desktop \\ filtered non ...
zero\\ Figure \\{ file_name}Polyline.png", bbox_inches="tight")

411

412 # To show the plot
413 plt.clf()
414 plt.close ()
415

416

417 #%% Flipping the curve
418

419 global_y = global_poly_func(x_poly) + x_poly
420 left_poly_y = left_poly_func(x_poly) + x_poly
421 right_poly_y = right_poly_func(x_poly) + x_poly
422

423 """#debug plot
424 plt.figure ()
425 plt.plot(x_poly , global_y , 'g', label='Global Maxima Poly ')
426 plt.plot(x_poly , left_poly_y , 'b', label='Left Minima Poly ')
427 plt.plot(x_poly , right_poly_y , 'r', label='Right Minima Poly ')
428

429 sns.scatterplot(data=input_data , x="yr", y="yf")
430 plt.xlabel('Yr', fontsize =25)
431 plt.ylabel('Yf', fontsize =25)
432 plt.show()
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433 """
434 #%% Selecting inliers
435

436 inlier_poly = []
437

438

439 # finding inliers
440 for index , row in input_data.iterrows ():
441 yf = row["yf"]
442 yr = row["yr"]
443 left_threshold = left_poly_func(yr) + yr
444 right_threshold = right_poly_func(yr) + yr
445

446 inlier_poly.append(left_threshold <= yf <= right_threshold)
447

448 #creating new column with inlier information True/False
449 input_data["inlier_poly"] = inlier_poly
450

451 #Scatterplot
452 plt.figure(figsize =(12, 12))
453 sns.scatterplot(data=input_data , x="yr", y="yf", ...

hue="inlier_poly", palette =['red', 'blue'], legend=False)
454

455 plt.plot(x_poly , global_y , 'g', label='Global Maxima Poly')
456 plt.plot(x_poly , left_poly_y , 'b', label='Left Minima Poly')
457 plt.plot(x_poly , right_poly_y , 'r', label='Right Minima Poly')
458

459 plt.tick_params(axis='both', labelsize =25)
460 plt.xlabel('Yr', fontsize =25)
461 plt.ylabel('Yf', fontsize =25)
462 plt.legend( fontsize =25, title_fontsize =25)
463 plt.savefig(f"C:\\ Users\\ marti \\ Desktop \\ filtered non ...

zero\\ Figure \\{ file_name}_FacetGrid_histogram.png", ...
bbox_inches="tight")

464

465 plt.clf()
466 plt.close ()
467

468

469 output_path = f"C:/Users/marti/Desktop/filtered non ...
zero/data/{ file_name}"

470 #saving information to file
471 input_data.to_parquet(output_path)
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