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Abstract This paper presents a novel and efficient solution for the
3D sensor placement problem based on GPU programming and massive
parallelisation. Compared to prior art using gradient-search and mixed-
integer based approaches, the method presented in this paper returns
optimal or good results in a fraction of the time compared to previous
approaches. The presented method allows for redundancy, i.e. requiring
selected sub-volumes to be covered by at least n sensors. The presented
results are for 3D sensors which have a visible volume represented by
cones, but the method can easily be extended to work with sensors having
other range and field of view shapes, such as 2D cameras and lidars.

B.1 Introduction

The use of 2D cameras and 3D point cloud sensors and algorithms is a key enabler in
autonomous systems. Historically, the automotive and self-driving vehicles industry
have been leading domains, see for example [B1], [B2] and [B3]. Typical sensors used
are radar, lidar and cameras. The use of computer vision sensors are now rapidly
being applied in other industries as well. The paper [B4] presents an example where
the intended application domain was in offshore drilling.

The optimal placement of 2D and 3D sensors is a challenging problem. Most of the
publications found in the open literature are limited to solving the 2D problem, for
example solving a surveillance problem of a 2D floor plan. Mixed-integer programming
is one of the approaches successfully used in solving the 2D problem. Some previous
work has attempted solving the 3D problem by using heuristic approaches such as
Genetic Algorithms. However, such approaches usually end up in a local minimum.
The authors previous work on this topic, [B4], contained several references of different
methods used for both 2D and 3D sensor placement optimisation, see [B5], [B6],
[B7], [B8] and [B9].
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Examples of more recent work are [B10] and [B11] where the problem of optimal
lidar configuration for self-driving cars was considered. Optimal spinning lidar
placement is different from optimal camera placement, since the lidar’s visible volume
can not be described using the two parameters range and field of view, as is the case
with cameras. Instead, both the above mentioned papers model the sensors using
cone-like perception areas, but still discretise the considered volume into cuboids. In
[B10] the mixed-integer programming approach is used, as in [B4] whereas in [B11]
an artificial bee colony evolutionary algorithm is applied.

The main drawback of solutions based on mixed-integer linear programming is
the inability to scale the problems. Nonlinear equations need to be linearised by
introducing many new variables. In addition, the problem size grows very fast when a
high accuracy is wanted (small cuboid size). The time required to find good solutions
is many hours on powerful computers, even for relatively small problems. Gradient
search algorithms have the disadvantage that they often end up in local minima.

In this paper the optimal placement of 3D sensors to cover a volume of interest is
considered by exploiting the parallel processing and 3D architecture of a CUDA-based
GPU. Such GPUs were originally intended for gaming and ray tracing applications,
and hence are ideally suited for massive, parallel computations in 3D environments.
The intended application considered in this paper is optimal 3D sensor placement in
a volume illustrated by Fig. B.1 which shows two industrial robots mounted on linear
track motion. The purpose of the 3D sensors is to monitor safety in a human-robot
collaborative environment, as well as perform early collision detection and avoidance.
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Figure B.1: A multi-sensor industrial robotics cell for human-robot collaboration.
The positions of the six 3D sensors, N1-N6, are to be optimised.

B.2 Problem Formulation

The volume covered by a 3D sensor is modelled as a cone having a limited field of
view Sf and range Sr as illustrated in Fig. B.2. The variables A and Q in the figure
describe the position (x,y,z) and orientation (quaternion Q) of the sensor. A point P
lies inside the cone covered by the sensor if the angle q is smaller than the field of
view Sf/2 and if the distance between the two points A and P is less than Sr. The
entire volume is divided into smaller cuboids.

The objective of the optimisation is to see as many cuboids as possible with the
available sensors. In some cases, redundancy will be specified as a constraint, i.e.
some cuboids must be seen by n sensors or more. Volumes requiring redundancy
could for example be those covered by the linear track motions and the robots shown
in Fig. B.1.
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Figure B.2: Illustration of sensor range (Sr) and field of view (Sf). A and Q
describe the sensor’s location and orientation (quaternion) , respectively. P is a
point outside the sensor’s field of view and q is the angle between the sensor’s centre
line and the line PA.

B.3 Optimisation Method

The optimisation method used in this paper is similar to a brute-force search with the
exception that random floating-point numbers are generated for the sensor locations,
and not a discretised search space. A discretised search space may miss good solutions
if the discretisation is coarse and may also take a long time before a good solution is
found. With a randomised floating-point numbers search good solutions are found
relatively fast. The demonstrated results presented in this paper allow one free
variable per sensor, typically X- or Y-location of a sensor along a wall, or two free
variables, for example the planes XZ or YZ.

As mentioned in the introduction, GPUs were originally intended for 3D gaming
applications and are ideally suited for this type of problem. By exploiting the inherent
capability in CUDA to structure threads in three dimensions, each cuboid in the
volume of interest is assigned a thread running a CUDA kernel. The kernel calculates
the angle q and distance from A to P , and checks if the centre coordinate of the
cuboid is covered by the sensor’s field of view and range as described in Section B.2.

Fig. B.3 shows the layout used in this paper when launching CUDA threads. The
threads (each representing a cuboid) are organised using three-dimensional blocks
of threads and a three-dimensional grid of blocks. In the case studies below, each
block has a dimension of 8 × 8 × 8 threads, i.e. 512 threads per block. The grid
dimension (number of blocks) is scaled such that there is at least enough threads
to cover the entire volume of interest. With such a layout, some blocks will only
partially cover the volume of interest, as seen in the figure, and threads that fall
outside the volume will do no work. However, structuring the blocks in this way,
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Figure B.3: Layout of CUDA threads.

with the number of threads in a block being a multiple of 32 (the number of warps
in a multiprocessor) and not using the maximum capacity of a thread block, helps
the GPU to efficiently schedule the workload across and within the multiprocessors.
For more details on CUDA and GPU processing, see for example [B12]. For CUDA
devices with compute capability 6.1 such as the GTX 1080 used in the case studies
in this paper, the grid y and z dimensions are limited to 65 535. When using a block
dimension of 8× 8× 8, this means that volumes with up to 524 288 cuboids in each
dimension can be processed using a single CUDA grid.

As seen in Fig. B.4, each sensor to be optimised gets its own set of threads, stacked
on top of each other in the CUDA grid. The figure shows only two dimensions for
simplicity. By structuring the threads this way, the coverage equations are calculated
in parallel for all sensors. If a thread calculates that it is covered by the respective
sensor, the thread writes to the corresponding cell in a global cover matrix, which
contains a 32 bit integer for each cuboid in the volume. To be able to differentiate
which sensor covers which cuboid, the thread adds 2N to the number, where N is
the sensor number, counting from 0. This means that bit N in the 32 bit integer
will be set if sensor N covers the cuboid. In fact, the operation is implemented as an
atomic bit-wise OR operation on the global cover matrix. By using a 32 bit integer,
the number of sensors is currently also limited to 32.

In addition to writing to the global cover matrix, each thread also increments
a counter such that the total number of covered cuboids can be extracted from
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Figure B.4: CUDA threads for multiple sensors. Simplified into two dimensions.

GPU memory after all threads have finished. Specifically, each CUDA block uses a
shared memory array for this task, which contains one integer for each thread in the
block. To avoid counting cuboids more than once (if more than one sensor cover the
same cuboid), each thread only increments its counter if no other thread has already
written to the same cell in the global cover matrix. When all threads are finished
writing to the shared memory, one thread in each CUDA block iterates over the
shared memory and writes the total number of covered cuboids to global memory.
This is done to limit the amount of global memory writes, which is slower than using
shared memory which physically resides closer to the processor.

After the CUDA launch is completed, the total number of covered cuboids is
found by adding the numbers from each CUDA block. If this result is better than
any result found in previous iterations, the complete cover matrix is copied from
GPU memory and stored as the best result, along with the randomly generated
sensor location variables.
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B.3.1 Redundancy Constraints

When optimising sensor placement, not only the maximum possible coverage in a
volume is of interest. In practical applications there will be sub-volumes that are
occluded or more critical and thus need to be monitored by a specific amount of
sensors. To accommodate this, the developed method can also incorporate redundancy
constraints. This is done by adding a new matrix (dimensionally identical to the cover
matrix) as input to the CUDA program, where each cell representing a cuboid holds
an integer. The matrix must be pre-filled, and any integer above 0 yields a redundancy
constraint. E.g. the number 3 will enforce a constraint such that the cuboid must be
covered by at least three sensors for the final solution to be considered valid. These
are hard constraints, meaning a solution may not be obtainable depending on the
sensor parameters and free variables.

In the CUDA kernel, this functionality is implemented by checking the cuboid’s
cell in the redundancy matrix, and in addition to writing to the cover matrix as
described above, the value in the redundancy matrix is decreased (atomically) by 1.
If the value is now 0, it means that the redundancy constraint for the cuboid has
been fulfilled, and the number of fulfilled constraints is counted in the same manner
as counting covered cubes. When the CUDA launch is finished, the total number of
fulfilled redundancy constraints are checked against the total number of specified
constraints. If the values match, the solution is considered valid.

B.4 Case Studies

The results from five different case studies are presented in this paper:

I. Two sensors, located at the ceiling, one on each side of a room of size
10m× 10m× 10m, no redundancy requirement. This is the same setup as
presented in [B4] except that the accuracy is increased (the size of the cuboids
is halved to 0.5m× 0.5m× 0.5m).

II. Same volume as above, except four sensors, two rotated downwards and two
rotated upwards. The z coordinates for all sensors are also free variables.

III. Same volume as above, four sensors, two located at the ceiling and two located
at the floor, but this time with a redundancy requirement at the centre of the
volume.

IV. Setup similar to the real volume shown in Fig. B.1: Six sensors, all located at
the ceiling, with a redundancy requirement of 1 for all cuboids near the floor.
The room dimensions are 10m× 10m× 4.5m
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V. Same as above, six sensors representing the real volume, but with redund-
ancy requirements for cuboids representing the robot tracks, forcing the
sensors to focus on the robots. This case also uses a smaller cuboid size
of 0.25m× 0.25m× 0.25m for increased resolution.

Where nothing else is specified, all free variables have lower and upper bounds
equal to the corresponding volume dimensions. In case study IV and V, the volume
is in reality covered by Microsoft Kinect v.2 3D cameras, which have a field of view
(for depth measurements) of 70× 60 degrees. As an approximation, due to the cone
shaped field of view used in this paper, the vertical field of view (60 deg) is used
in the case studies. And even though the Kinect has a specified range of up to
4.2 meters, the sensors are used for measuring longer distances in this volume, as
described in [B13].

One single Nvidia GTX 1080 GPU was used in the presented case studies, and
every iteration was one CUDA-launch with one set of random variables. For each
new iteration new random variables were generated.

B.4.1 Case Study I

Setup:

• 2 sensors, Cuboid size: 0.5m, No. of cuboids: 8000

• Field of View: π/5, Range: 8.0m

• Fixed variables: Rotation (45◦ down), y-coordinates, z-coordinates

• Free variables: x-coordinates

• Redundancy Constraints: None

Fig. B.5 shows the results of case study I. In the final solution both sensors cover
436 cuboids each and 872 cuboids were covered in total. The optimal sensor locations
were found to be:

A0 = [2.499, 10.0, 10.0]T (B.1)

A1 = [7.499, 0.0, 10.0]T (B.2)

In total 1 million sensor location combinations were evaluated and the total com-
putation time was 18.3 seconds. This result is a significant improvement over the
approach based on mixed-integer linear programming presented in [B4] which took
several hours to compute.
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Figure B.5: Case Study I: Result of 3D sensor placement with two sensors, one on
each side of the room. Discretised cuboid size equals 0.5m× 0.5m× 0.5m.

B.4.2 Case Study II

Setup:

• 4 sensors, Cuboid size: 0.5m, No. of cuboids: 8000

• Field of View: π/5, Range: 8.0m

• Fixed variables: Sensor 0 and 1: Rotation (45◦ down), y-coordinates; Sensor 2
and 3: Rotation (45◦ up), x-coordinates

• Free variables: x-coordinates (sensor 0 and 1), y-coordinates (sensor 2 and 3),
z-coordinates

• Redundancy Constraints: None

87



Fig. B.6 shows the results of case study II. In the final solution the sensors cover
423, 427, 420 and 427 cuboids, respectively. A total of 1691 cuboids were covered.
The optimal sensor locations were found to be:

A0 = [7.034, 10.0, 7.272]T (B.3)

A1 = [2.495, 0.0, 7.101]T (B.4)

A2 = [10.0, 2.734, 3.564]T (B.5)

A3 = [0.0, 6.971, 2.747]T (B.6)

In total 5 million sensor location combinations were evaluated and the total compu-
tation time was 1min and 33.8 s.

Figure B.6: Case Study II: Result of 3D sensor placement with four sensors,
one on each wall with different heights, two pointing upwards and two downwards.
Discretised cuboid size equals 0.5m× 0.5m× 0.5m.
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B.4.3 Case Study III

Setup:

• 4 sensors, Cuboid size: 0.5m, No. of cuboids: 8000

• Field of View: π/5, Range: 8.0m

• Fixed variables: Sensor 0 and 1: Rotation (45◦ down), y-coordinates, z-
coordinates; Sensor 2 and 3: Rotation (45◦ up), x-coordinates, z-coordinates

• Free variables: x-coordinates (sensor 0 and 1), y-coordinates (sensor 2 and 3)

• Redundancy Constraints: A volume in the centre of size 2m× 2m× 2m (64
cuboids) must be covered by at least three sensors.

Fig. B.7 shows the results of case study III. In the final solution the sensors cover
436, 436, 426 and 434 cuboids, respectively. A total of 1235 cuboids were covered.
The optimal sensor locations were found to be:

A0 = [3.998, 10.0, 10.0]T (B.7)

A1 = [6.0, 0.0, 10.0]T (B.8)

A2 = [10.0, 6.196, 0.0]T (B.9)

A3 = [0.0, 3.994, 0.0]T (B.10)

In total 5 million different sensor location combinations were evaluated and the total
computation time was 3 minutes and 7.9 seconds.

B.4.4 Case Study IV

Setup:

• 6 sensors, Cuboid size: 0.5m, No. of cuboids: 3600

• Field of View: π/3 (60◦), Range: 8.0m

• Fixed variables: Rotation (all sensors rotated 60◦ down, orientation according
to Fig. B.1), x-coordinates, z-coordinates

• Free variables: y-coordinates (sensor 0 and 1 have an upper limit of 5.0m,
sensor 4 and 5 have a lower limit of 5.0m)

• Redundancy Constraints: All cuboids below z = 1.0m must be covered by at
least 1 sensor.

89



Figure B.7: Case Study III: Result of 3D sensor placement with four sensors, two
located at the floor (yellow, blue) and two at the ceiling (green, red). Discretised
cuboid size equals 0.5m× 0.5m× 0.5m. 64 cuboids in the centre (a volume of
2m× 2m× 2m) has a redundancy requirement of 3.

Fig. B.8 shows the results of case study IV. In the final solution the sensors cover
427, 416, 383, 369, 416 and 434 cuboids, respectively. A total of 1924 cuboids were
covered. The optimal sensor locations were found to be:

A0 = [10.0, 2.281, 4.5]T (B.11)

A1 = [0.0, 0.132, 4.5]T (B.12)

A2 = [10.0, 1.198, 4.5]T (B.13)

A3 = [0.0, 8.91, 4.5]T (B.14)

A4 = [10.0, 9.732, 4.5]T (B.15)

A5 = [0.0, 7.564, 4.5]T (B.16)
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In total 5 million different sensor location combinations were evaluated and the total
computation time was 3 minutes and 0 seconds.

Figure B.8: Case Study IV: Result of 3D sensor placement with six sensors.
Discretized cuboid size equals 0.5m× 0.5m× 0.5m.

B.4.5 Case Study V

Setup:

• 6 sensors, Cuboid size: 0.25m, No. of cuboids: 28 800

• Field of View: π/3 (60 deg), Range 8.0m

• Fixed variables: Rotation (all sensors rotated 60◦ down, orientation according
to Fig. B.1), x-coordinates, z-coordinates

• Free variables: y-coordinates (sensor 0 and 1 have an upper limit of 5.0m,
sensor 4 and 5 have a lower limit of 5.0m)

• Redundancy Constraints: Cuboids representing the robot tracks (see Fig. B.1)
must be covered by at least 3 sensors below z = 1.5m.
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Fig. B.9 shows the results of case study IV. In the final solution the sensors cover
3446, 3448, 3697, 3687, 3434 and 3470 cuboids, respectively. A total of 10 387 cuboids
were covered. The optimal sensor locations were found to be:

A0 = [10.0, 3.343, 4.5]T (B.17)

A1 = [0.0, 3.091, 4.5]T (B.18)

A2 = [10.0, 5.335, 4.5]T (B.19)

A3 = [0.0, 6.696, 4.5]T (B.20)

A4 = [10.0, 8.872, 4.5]T (B.21)

A5 = [0.0, 8.522, 4.5]T (B.22)

In total 5 million different sensor location combinations were evaluated and the total
computation time was 6 minutes and 21.7 seconds.

Figure B.9: Case Study V: Result of 3D sensor placement with six sensors. Dis-
cretised cuboid size equals 0.25m× 0.25m× 0.25m.

The results from the five different sensor placement test cases are summarised in
Table B.1.
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Table B.1: Computation time for the different cases using an NVIDIA GTX 1080
GPU.

Sensors Cuboids Iterations Redundancy Comp.Time (s)

2 8000 1 · 106 No 18.3
4 8000 5 · 106 No 93.8
4 8000 5 · 106 Yes 187.9
6 3600 5 · 106 Yes 180.0
6 28 800 5 · 106 Yes 381.7

B.5 Discussion and Conclusions

The presented solutions for the selected case studies are not trivial to find, in
particular for the cases IV and V where 6 sensors are considered and redundancy
requirements are included. The solution to the largest problem (case study V) was
found in a few minutes compared to several hours or days for gradient-based and
mixed-integer based approaches.

Due to more GPU memory read, writes and copies, using the redundancy func-
tionality increases the computation time, as seen in Table B.1. However as seen
when comparing case study IV and V, the computation time only scales by a factor
of two even though the number of cuboids are scaled by a factor of 8. This is due
to the large capacity of the GPU and that most of the added work is parallelised
through CUDA kernels.

When adding more free variables it takes more iterations to find the best result
when using random number generation. However, the computation times with the
method presented in this paper are much lower than comparable gradient-search and
mixed-integer based solutions. When optimising sensor placement, a calculation time
of several hours or even days would normally be acceptable, which would allow for
solving very large problems and compute a large number of iterations using GPUs.

Random sampling is common in many big data and machine learning algorithms,
but it can not guarantee to find the best solution with a fixed number of iterations.
With a brute-force search the best solution can be guaranteed to be found, but that
could take a long time. The use of random numbers usually give good solutions within
a short time period. With random numbers you can still continue the computations
to make sure you did not miss the optimum, or try a gradient approach at the end
with the current best solution as a starting point to find the closest (local) minimum.

In future expansions, the maximum number of sensors could be increased from 32
by e.g. using 64 bit integers in the cover matrix and/or running multiple CUDA grids
concurrently on the GPU, where each grid writes to its own cover matrix. Dividing
calculations for different sensors across different grids could also allow for processing
volumes containing more cuboids, due to the limits on the CUDA grid dimensions.
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Computation time could also probably be lowered further by moving more of the
program into CUDA kernels, e.g. the generation of random variables.

Other planned future work is: graphical user interface (GUI) for intuitive definition
of constraints, enabling sensor rotations as free variables, inclusion of "pyramidical”
and other field-of-views (better representing lidars for example), return of several
(the n best) solutions and simultaneous distribution of workload on multiple GPUs
for scaling to larger problems. In the final version of the paper the source code will
be made publicly available on GitHub.
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