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Abstract This paper describes a novel approach to the problem of
optimal placement of 3D sensors in a specified volume of interest. The
coverage area of the sensors is modelled as a cone having limited field
of view and range. The volume of interest is divided into many, smaller
cubes each having a set of associated Boolean and continuous variables.
The proposed method could be easily extended to handle the case where
certain sub-volumes must be covered by several sensors (redundancy), for
example ex-zones, regions where humans are not allowed to enter or re-
gions where machine movement may obstruct the view of a single sensor.
The optimisation problem is formulated as a Mixed-Integer Linear Pro-
gram (MILP) utilising logical constraints and piecewise linearisation of
nonlinear functions. The final MILP problem is solved using the Cplex
solver interfaced with Matlab.

A.1 Introduction

The use of 3D sensors and algorithms is a key enabler in autonomous systems.
Currently the automotive and self-driving vehicles industry is leading the development,
see for example [A1], [A2] and [A3]. Typical sensors used are radar, lidar, GNSS,
vehicle odometry and computer vision. In this paper the optimal placement of 3D
sensors to cover a volume of interest is considered. Fig. A.1 shows an offshore drilling
rig, which is one of the intended application domains for the work presented in this
paper.

The optimal placement of 3D sensors is a challenging problem. Most of the
publications found in the open literature are limited to solving the 2D problem, for
example solving a surveillance problem of a 2D floor plan. Mixed-integer programming
is one of the approches successfully used in solving the 2D problem. Some previous
work has attempted solving the 3D problem by using heuristic approaches such as
Genetic Algorithms. However, such approaches usually end up in a local minimum.
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Figure A.1: Example of candidate volume for 3D instrumentation in an offshore
drilling rig. Photo courtesy National Oilwell Varco.

In [A4] it was stated that “although the discovery of an algorithm that can solve
the most general case of the camera layout problem for a given volume of interest
is highly desirable, it may prove quite challenging. The authors therefore focused
on a more manageable subclass of this general problem that can be formulated in
terms of planar regions that are typical of a building floor plan. The region was
approximated by a polygon. This was a valid assumption since most buildings and
floor plans consist of polygonal shapes or can be approximated by a collection of
polygons. The problem then became to reliably compute a camera layout given a
floor plan to be observed, approximated by a polygon. A solution to this problem
was obtained via binary optimisation over a discrete problem space”. The work is
limited to 2D, and the authors write: “In future work, we hope to pursue solutions
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to the optimisation in the continuous space as opposed to the discrete one”.

In the paper [A5], the problem of optimally placing a minimum number of
distributed sensors to fulfil and optimise task requirements in a 2D environment was
addressed. As stated in [A5]: “Overall, the research focus of indoor localisation lies
on the development of signal extraction and localisation methods. Sensor placement
is often done by hand, using the system developers best guess. Thus the resulting
localisation error is neither calculated nor considered”. In [A5] the problem was
formulated in a discrete and continuous search space. The discrete formulations were
evaluated using Binary Integer Programming (BIP) and Mixed Integer Programming
(MIP). The continuous formulation was evaluated using nonlinear programming
(NLP) methods. All evaluations were done using the properties of a visual sensor
system that exploited the thermal infrared radiation of humans for indoor localisation.
All the presented methods were implemented using a 2D environment description
and the resulting problems were solved respectively using MIP, BIP and NLP solvers.
The results were compared against each other, taking their exactness and solving
speed into account. An extension of the proposed methods to a 3D environment
would be possible using the appropriate visibility calculations but was not part of
the work.

In [A6] the following was stated: “Currently most designers of multi-camera
systems place cameras by hand because there exists only little theoretical research on
visual sensor placement. As video sensor arrays are getting larger, efficient camera
placement strategies need to be developed”. The approaches taken in [A6] were
subdivided into algorithms which gave a global optimal solution but were complex
and time/memory consuming, and heuristics which solved the problem in reasonable
time and with reasonable complexity. The main contributions of [A6] were: 1)
Space was sampled according to an underlying importance distribution instead of
using a regular grid of points. 2) A linear programming model for each problem
was presented which gave an optimal solution to the respective problem. It was
shown how to reduce the number of variables and constraints significantly, thus
enabling an optimal solution for larger problems. 3) Several heuristics were proposed
to approximate the optimal solution of the different camera placement problems.
4) An interface that enables the user to comfortably enter and edit the space, the
optimisation problems as well as the other setup parameters was presented. 5)
An experimental and competitive evaluation of the different approaches was given
showing the different algorithms’ specific advantages. In [A6] it was stated: Future
work will be modifying and applying the approaches to the 3D case and introducing
more complex field-of-view and coverage constraints.

In [A7] it was stated: “Although there are many studies about coverage for wireless
multimedia sensor networks, most of them are based on two-dimensional terrain
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assumptions. However, particularly for outdoor applications, three-dimensional
(3-D) terrain structure affects the performance of the WMSN remarkably”. The
optimisation method used in the paper is a hybrid heuristic Genetic-Algorithm. The
optimisation formulation was found to be NP-complete and for such problems there
is no known efficient way to locate a solution. Hence, the authors implemented
a GA-based heuristic approach, but such approaches usually end up in a local
minimum.

In [A8] the problem of 3D camera placement for optical motion capture systems
was studied. Successful performance depended on points being visible from at least
two cameras (redundancy) and on the accuracy of the triangulation. The paper
introduced and compared two methods for camera placement. The first method was
based on a metric that computed target point visibility in the presence of dynamic
occlusion. The second method was based on the distribution of views of target
points. Algorithms, based on simulated annealing, were introduced for estimating
the optimal configuration of cameras for the two metrics and a given distribution of
target points. The running time for one example took about 5 hours to accomplish
over 62,000 iterations. The goal in [A8] was to find a configuration that was very
good, but not necessarily optimal.

The previous work referenced demonstrates that the 3D sensor placement problem
is a challenging problem, and to the authors knowledge, no optimal and efficient
solution to this problem has previously been published.

The paper is organised as follows: Section A.2 presents the required constraints
required to formulate the problem as a Mixed-Integer Linear Program. Section A.3
presents the problem formulation. Section A.4 presents the results from two case
studies, while Section A.5 presents discussion and conclusions.

A.2 Optimisation Method

This section contains some of the ’building blocks’ required to formulate the problem
as a Mixed-Integer Linear Program, see for example [A9]. Section A.2.1 shows
how a non-linear function can be approximated by several piecewise linear line
segments. The accuracy of the approximation can be adjusted by varying the number
of line segments i ∈ {1, · · · , NL}. Section A.2.2 to A.2.4 show how to implement
three different logical constraints (IF-THEN) rules relating continuous and integer
variables.
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A.2.1 Linearisation of Nonlinear Function

Line segment coefficients:

ai =
d

dxi
f(xi) (A.1)

bi = f(xi)− aixi (A.2)

where f(xi) is the nonlinear function to be approximated, ai is the slope of the line
and bi the offset.

Constraints:

yi = aix+ bi (A.3)(
xi −

δ

2
≤ x ≤ xi +

δ

2
− ε
)

=⇒ di (A.4)

zi = diyi (A.5)

y =
∑

zi (A.6)∑
di = 1 (A.7)

where i ∈ {1, · · · , Nn} is an index to the ith line segment of the linearisation. A
total of Nn new help variables yi (continuous), di (Boolean) and zi (continuous) are
introduced.

A.2.2 Implication 1

Constraints:

(f1(x) ≤ x ≤ f2(x)) =⇒ d (A.8)

is equivalent to:

(m− ε)b1 ≤ (f1(x)− x)− ε (A.9)

(m− ε)b2 ≤ (x− f2(x))− ε (A.10)

b1 + b2 − d ≤ 1 (A.11)

where m is a constant smaller than both f1(x) and f2(x) while ε is a small positive
constant. In this paper ε = 1e − 4 is used. d is a Boolean variable, while x, f1(x)
and f2(x) are continuous.
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A.2.3 Implication 2

Constraints:

(f(x) ≥ k) =⇒ d = 0 (A.12)

is equivalent to:

− (ε+M)(1− d) ≤ −f(x)− k − ε (A.13)

where M is a constant larger than f(x). d is a Boolean variable, while x and f(x)
are continuous.

A.2.4 Implication 3

Constraints:

n−1∑
i=1

di = 0 =⇒ dn = 0 (A.14)

is equivalent to:

− d1 − d2 − · · ·+ dn ≤ 0 (A.15)

where di and d are Boolean variables.

A.3 Problem Formulation

The volume covered by a 3D sensor is modelled as a cone having a limited field of
view Sf and range Sr as illustrated in Fig. A.2. The variables A and Q in the figure
describe the position (x,y,z) and orientation (quaternion Q) of the sensor. A point P
lies inside the cone covered by the sensor if the angle q is smaller than the field of
view Sf and if the distance between the two points A and P is less than Sr.

The entire volume is divided into smaller cubes. For each cube i, the variables
in Table A.1 are defined, where i ∈ {1, · · · , Nc}, s ∈ {1, · · · , Ns}, Ns is a constant
equal to the number of sensors and Nc equals to the number of smaller cubes covering
the volume.
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q

A, Q

P Sr

Sf

Figure A.2: Illustration of sensor range (Sr) and field of view (Sf). A and Q
describe the sensor’s location and orientation (quaternion) , respectively. P is a
point outside the sensor’s field of view and q is the angle between the sensor’s center
line and the line PA.

The following constraints are used in the optimisation problem.

0 ≤ Sx,s ≤ L (A.16)

PAxi,s = xi − Sx,s (A.17)

PAyi,s = yi − Sy,s (A.18)

PAzi,s = zi − Sz,s (A.19)

qi,s = f1(PAxi,s, PAyi,s, PAzi,s) (A.20)

L2
i,s = PA2

xi,s
+ PA2

yi,s
+ PA2

zi,s
(A.21)

L2
i,s >= S2

r,s =⇒ bi,s = 0 (A.22)

qi,s >= Sf,s =⇒ bi,s = 0 (A.23)
Ns∑
s=1

bi,s = 0 =⇒ bi = 0 (A.24)

Note that in this set of constraints, the free variables to optimise are the Sx,s, Sy,s or
Sz,s locations of the sensors, but only one of them for each sensor. Eq. (A.21) (the
linearisation of the square function) is defined only for a one-dimensional function.

In eq. (A.20) the nonlinear function f1(x1, x2, x3) equals

L =
√
x21 + x22 + x23 (A.25)

f1(·) = arccos (D1x1/L+D2x2/L+D3x3/L) (A.26)
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Table A.1: MILP Variable definitions.

bi Boolean variable for cube i
bi,s Boolean variable for each cube i and each sensor s
xi x-location of centre of cube i
yi y-location of centre of cube i
zi z-location of centre of cube i
Sx,s x-location of sensor s
Sy,s y-location of sensor s
Sz,s z-location of sensor s
PAxi,s The x-distance between sensor s and cube i
PAyi,s The y-distance between sensor s and cube i
PAzi,s The z-distance between sensor s and cube i
qi,s Angle between sensor s and cube i
Li,s Distance between sensor s and cube i

where D1, D2 and D3 are the vector components corresponding to the sensor orient-
ation (quaternion Q) illustrated by the cone’s centre line shown in Fig. A.2.

The two nonlinear functions f1 and (·)2 in eqs. (A.20)-(A.21), respectively, are
linearised using the approach specified in eqs. (A.1)-(A.7). Fig A.3 shows the
linearisation of the acos function in eq. (A.26). Fig A.4 shows the corresponding
errors caused by the linearisation for Nn = 10 and Nn = 20. Fig A.4 shows that the
error caused by linearisation can be made small, but the price is the introduction
of additional help variables and a larger optimisation problem to solve when Nn

increases.
The logical IF-THEN type constraints in eq. (A.22) and (A.23) are implemented

using Implication 2 defined in Section A.2.3 while the IF-THEN type constraint in
eq. (A.24) is implemented using Implication 3 defined in Section A.2.4. Eq. (A.24)
means that if no sensor covers the cube i, then the Boolean variable for that cube is
set to zero.

The total number of constraints for the optimisation problem becomes equal to
((32Nn + 14)Ns + 2)Nc, where Nn is the number of line segments in the linearisation
functions, Nc number of cubes and Ns number of sensors. Eq. (A.24) gives two
constraints per cube and for each sensor there are 32Nn + 14 constraints per cube.
Although the number of constraints grow linearly with Nc, Nc increases with

(
1
L

)3,
which makes scaling of the proposed method a challenge.
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Figure A.3: Plot of eq. (A.26) when Nn = 20 between −15 ≤ x1 ≤ 15. Blue circles:
exact sample points. Red: Piecewise linear line segments.

Figure A.4: Error plot corresponding to Fig. A.3. Blue: Nn = 10, Red: Nn = 20.
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A.4 Case Studies

This section contains two case studies. First, a case study containing two opposing
sensors is presented, with Nn = 20 piecewise line-segments in the nonlinear function
approximations. Second, a case study with four sensors and Nn = 10 piecewise
line-segments is presented.

A.4.1 Case Study I

In this first case study a volume with dimensions 10× 10× 10 m3 is considered. For
illustration purposes, only Ns = 2 sensors are specified. The locations, range and
field of view of the two sensors are given as follows.

Sy,1 = 10 (A.27)

Sy,2 = 0 (A.28)

Sz,1 = Sz,2 = 10 (A.29)

Sr,1 = Sr,2 = 8 (A.30)

Sf,1 = Sf,2 =
π

10
(A.31)

Sx,1 and Sx,2 are the free variables to optimize. The orientations of the two sensors
are specified as follows:

Sensor 1: RotZ
(
−π

2

)
, RotY

(
π
4

)
Sensor 2: RotZ

(
π
2

)
, RotY

(
π
4

) where RotY and RotZ are the standard 3×

3 rotation matrices about the Y and Z axes, respectively. The corresponding
quaternions with these rotational angles are:

Q1 = [0.6533, 0.2706, 0.2706,−0.6533]
Q2 = [0.6533,−0.2706, 0.2706, 0.6533]

The corresponding direction vectors for the two sensors are then given as:

Sensor 1: D1 = 0, D2 = −0.7071, D3 = −0.7071
Sensor 2: D1 = 0, D2 = 0.7071, D3 = −0.7071

Hence, both sensors are located at the top of the volume, angled 45o downwards
towards the floor, and with opposite Y-directions.

Since two sensors of the specified type are not able to cover the entire volume,
the objective function in this case study is defined to maximise the number of cubes
i covered by the sensors. Hence,

max

(
Nc∑
i=1

bi

)
(A.32)

For the presented case study with Ns = 2, Nn = 20, a volume of 10× 10× 10m3
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Figure A.5: Result of optimsation with two 3D sensors. Sensor positions are
marked with red circles.

and a cube size of 1× 1× 1m3 resulted in a total of 820, 002 variables and a total of
1, 310, 000 constraints. Since most of the elements in the constraints are zeros, sparse
matrices were used in the Matlab interface to Cplex. The Cplex presolver was able
to reduce the problem size down to 216, 034 variables and 417, 658 constraints. Still,
Cplex v12.7 required several hours to solve the problem on an Intel i7-6700K CPU
@ 4.00GHz with 32GB of RAM.

Fig. A.5 illustrates the result of the optimisation. The cubes inside the volume
covered by the two 3D sensors are plotted in the figure with different colours (blue
and red). The optimised positions for the two sensors are

Sx,1 = 3.1 (A.33)

Sx,2 = 6.9 (A.34)

The sensors are positioned in such a way that there is zero overlap between the cubes
bi,s and the boundaries of the defined volume is avoided. In this way the maximum
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value of the objective function in eq. (A.32) is obtained.

A.4.2 Case Study II

In this second case study the same volume with dimensions 10 × 10 × 10 m3 is
considered. This time Ns = 4 sensors are specified. The locations, range and field of
view of the two sensors are given as follows.

Sy,1 = 10, Sy,2 = 0 (A.35)

Sx,3 = 10, Sx,4 = 0 (A.36)

Sz,1 = Sz,2 = 10 (A.37)

Sz,3 = Sz,4 = 0 (A.38)

Sr,1 = Sr,2 = Sr,3 = Sr,4 = 8 (A.39)

Sf,1 = Sf,2 = Sf,3 = Sf,4 =
π

10
(A.40)

Sx,1, Sx,2, Sy,3 and Sy,4 are the free variables to optimize. The orientations of the
four sensors are specified as follows by the direction vectors:

Sensor 1: D1 = 0, D2 = −0.7071, D3 = −0.7071
Sensor 2: D1 = 0, D2 = 0.7071, D3 = −0.7071
Sensor 3: D1 = −0.7071, D2 = 0, D3 = 0.7071

Sensor 4: D1 = 0.7071, D2 = 0, D3 = 0.7071
The first two sensors are located at the top of the volume, angled 45o downwards

towards the floor, and with opposite Y-directions. The last two sensors are located at
the floor level (Sz,3 = Sz,4 = 0), angled 45o upwards and with opposite X-directions.
In the constraints, the only difference when optimising the sensor y-location instead
of the x-location occurs in eq. (A.20) where PAy,s becomes the free variable instead
of PAx,s, where PAy,s depends on the sensor’s y-location Sy,s in eq. (A.18). It would
also be straightforward to allow Z as the free variable of one or more sensor locations.

The objective function is kept the same as in Case Study I, ie.

max

(
Nc∑
i=1

bi

)
(A.41)

For the presented case study with Ns = 4, Nn = 10, a volume of 10× 10× 10m3

and a cube size of 1.25× 1.25× 1.25m3 resulted in a total of 428, 548 variables and a
total of 685, 056 constraints. The Cplex presolver was able to reduce the problem
size down to 65, 877 variables and 135, 650 constraints. Several hours were required
to solve the problem on an Intel i7-6700K CPU @ 4.00GHz with 32GB of RAM.

Fig. A.6 shows the result of the optimisation. The cubes inside the volume
covered by the four 3D sensors are plotted in the figure with different colours. The
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Figure A.6: Result of optimzation with four 3D sensors. Sensor positions are
marked with red circles.

optimised positions for the sensors are

Sx,1 = 7.51 Sx,2 = 2.51 (A.42)

Sy,3 = 2.46 Sy,4 = 7.54 (A.43)

The sensors are positioned in such a way that there is zero overlap between the cubes
bi,s and the boundaries of the defined volume are avoided. In this way the maximum
value of the objective function in eq. (A.41) is obtained.

A.5 Discussion and Conclusion

In this paper the problem of optimal placement of 3D sensors has been addressed
based on a Mixed-Integer Linear Programming framework. Logical constraints of
IF-THEN type have been converted to the matrix inequality format Ax ≤ b. Two
types of nonlinear functions (acos and (·)2) were linearised by introducing a set
of help variables (yi, di, zi). In order to keep the number of help variables to a
manageable level, the nonlinear functions had to be chosen such that they were only
dependent on one single variable. For this reason, the free variable to optimise for
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the sensors in the presented case study where the mounting locations of the sensors
in the x-, y- or z-directions. The authors do not think this limitation is a significant
restriction of the proposed method in practice. For example, in Fig. A.1 the sensors
would typically be mounted on the vertical or horizontal support beams of the rig.
The orientation of a 3D sensor is also fixed in the proposed method. Often a gimbal
head is used to mount sensors and then the orientation of the sensor can be chosen
quite freely. To include the possibility of several different mounting orientations in
the optimisation problem, a discrete set of identical sensors can be added to the
problem formulation, with the same localisation direction to optimise (Sx,s, Sy,s or
Sz,s), but with different orientation vectors.

In this paper the objective function was chosen to maximise the number of cubes
covered by the sensors. This choice was selected mainly because it is easy to verify
graphically (Figs. A.5 and A.6) that the optimal solution has no overlap in cubes
covered by the different sensors and that the sensors are not mounted near the
boundaries of the volume. However, a more realistic objective function in practice
would be to minimise the cost of the sensors needed to cover the entire area. In
this case several different sensors with different cost, range and field of view would
be made available along each possible mounting position and additional constraints
would be introduced requiring every cube in the volume to be covered.

The proposed method can easily handle the case where a certain sub-volume
must be covered by several sensors (redundancy). For example assume that the
sub-volume of cubes i ∈ I must be covered by at least N sensors. The constraints to
specify this requirement would be

∀i ∈ I
Ns∑
s=1

bi,s ≥ N. (A.44)

Examples of sub-volumes requiring redundancy could be explosive zones on a rig,
regions where humans are not allowed to enter or regions where machine movement
would cause shadow volumes not visible when using only a single sensor.

Even though the proposed method currently takes several hours to solve, the
method is not prone to ending up in local minima, which can be the case with more
heuristic approaches to solving the 3D sensor placement optimisation problem. The
general problem of optimal placement of 3D sensors is challenging. Most literature
in this area has limited the study to more manageable subclasses of the problem,
such as for example 2D floor plan cases. The reference [A8] also demonstrates that
other solution frameworks, in their case simulated annealing, can also take several
hours to solve.

One limitation of the presented method is the potentially large number of variables
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and constraints required due to the discretisation of the volume of interest into smaller
cubes, and the need to linearise the nonlinear functions acos and (·)2 for each cube
element. Large sets of constraints and variables in particular, slow down the MILP
solver. Future work by the authors will focus on techniques to reduce the number
of variables and constraints required and as a result faster solution times. One way
in which this could be achieved could be to follow the approach suggested by [A6]:
Sample space according to an underlying importance distribution instead of using a
regular grid of points.
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