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ABSTRACT

Context. Simulations of asteroid binaries commonly use mutual gravitational potentials approximated by series expansions, leading
to truncation errors, and also preventing correct computations of force and torque for certain configurations where the bodies have
overlapping bounding spheres, such as in the rotational fission model for creating asteroid binaries and pairs.
Aims. We address errors encountered when potentials truncated at order two and four are used in simulations of binaries, as well as
other errors related to configurations with overlapping bounding spheres where the series diverge.
Methods. For this we utilized a recently developed method where the gravitational interaction between two triaxial ellipsoids can be
calculated without approximations for any configuration. The method utilizes surface integration for both force and torque calculations,
and it is exact for ellipsoidal shapes. We also computed approximate solutions using potentials truncated at second and fourth order,
and we compare these with the solutions obtained with the surface integral method. The approximate solutions were generated with
the “General Use Binary Asteroid Simulator” (GUBAS).
Results. If the secondary is located with its centroid in the equatorial plane of the primary, the error in the force increases as the
secondary is moved closer to the primary, but is still relatively small for both second and fourth order potentials. For torque calculations,
the errors become more significant, especially if the other body is located close to one of the extended principal axes. On the axes
themselves, the second order series approximation fails by 100%. For dynamical simulations of components separated a few primary
radii apart, the fourth order approximation is significantly more accurate than the second order. Furthermore, because of larger errors
in the torque calculations, the rotational motion is subject to greater inaccuracies than the translational motion. For configurations
resembling contact binaries where the bounding spheres overlap, the errors in both force and torque in the initial stages of the simulation
are considerable, regardless of the approximation order, because the series diverge. A comparison of the computational efficiency of
the force and torque calculations shows that the surface integration method is approximately 82 times and four times slower than
the second and fourth order potentials, respectively, but approximately 16 times faster than the order eight potential. Comparing the
computation efficiency of full simulations, including the calculations of the equations of motion, shows that the surface integration
scheme is comparable with GUBAS when an order four potential is used.
Conclusions. The errors generated when mutual gravitational potentials are truncated at second or fourth order lead to larger errors
in the rotational than in the translational motion. Using a mathematically exact method for computing forces and torques becomes
important when the bodies are initially close and the bounding spheres overlap, in which case both the translational and rotational
motion of the bodies have large errors associated with them. For simulations with two triaxial ellipsoids, the computational efficiency
of the surface integral method is comparable to fourth order approximations with GUBAS, and superior to eight order or higher.
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1. Introduction

Dynamical simulations of binary asteroids are relevant for under-
standing their formation processes, and their evolution over time.
Among the near-Earth population of asteroids, smaller asteroids
get spun up by the Yarkovsky – O’Keefe – Radzievskii – Paddack
effect (YORP) effect, and break apart when they reach a critical
spin limit via rotational fission (Weidenschilling 1980; Margot
et al. 2002; Pravec & Harris 2007). Studying the dynamics of
post-fissioned asteroids allows us to understand how such sys-
tems evolve over time, as they can either remain in stable orbits
about each other (as binaries or multiple systems), reimpact, or
undergo mutual escape thus forming asteroid pairs (Pravec et al.
2010; Jacobson & Scheeres 2011; Boldrin et al. 2016; Davis &
Scheeres 2020b; Ho et al. 2022).

Asteroids have nonspherical shapes, and for binaries where
the components are close, there is a continuous exchange of

energy and angular momentum, leading to a significant spin-
orbit coupling. The dynamics of nonspherical binary asteroids
is described by the solution to the full two-body problem (F2BP)
for rigid bodies (Maciejewski 1995). However, solving the F2BP
is not a trivial task as there is no analytical solution for the
mutual potential between two nonspherical bodies (apart from
between two thin disks; Conway 2016; Wold & Conway 2021).
Therefore, approximations of the mutual potential are often
made in order to solve the F2BP.

The most common approach is to expand the potential
through the use of spherical harmonics (Scheeres et al. 1996;
Hu & Scheeres 2002; Boldrin et al. 2016; Feng & Hou 2017).
However, a drawback with this is that the power series only con-
verges outside the bounding sphere (Brillouin sphere), which is
the smallest sphere that can completely contain the circumfer-
ence of the body. Inside the Brillouin sphere, the power series
approximating the gravitational potential diverges (Moritz 1980).
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Furthermore, when using series approximations to the potential,
higher order terms are often neglected, which leads to truncation
errors.

Paul (1988) presents a different approach to compute the
mutual potential of two bodies of finite sizes using power
series. The mass distribution of the bodies is described through
inertia integrals. Unlike spherical harmonics, where the poten-
tial is expressed in spherical coordinates, the method by Paul
(1988) uses Cartesian coordinates. Tricarico (2008) has further
applied this method to bodies with arbitrary shapes and mass
distributions. The power series of Paul (1988) converts the six-
dimensional volume integral of the mutual potential to six open
summations. The method was improved by Hou et al. (2017),
who reduced the six open summations to one single summation
in order to make it more computationally efficient. Moreover,
the formulation of Hou et al. (2017) allows the inertia integrals
to be stored before the mutual potential is calculated, while the
approaches by Paul (1988) and Tricarico (2008) require the iner-
tia integrals to be recomputed before the mutual potential is
evaluated. Even though this approach is computationally very
efficient, it will still suffer from divergence problems within the
bounding spheres of the bodies (Tricarico 2008), and truncation
errors.

The potential of an arbitrarily shaped body can also be mod-
eled with a homogeneous polyhedron. This approach has been
utilized to determine the gravitational potential of an asteroid
(Werner 1997; Werner & Scheeres 1997; Tsoulis 2012; Conway
2015), and the mutual potential of two polyhedra (Werner &
Scheeres 2005; Fahnestock & Scheeres 2006, 2008; Scheeres
et al. 2006). However, this method can be very time consuming
if the polyhedron is represented by many triangular faces. A
different method is the mascon model (Muller & Sjogren 1968,
1969; Geissler et al. 1996), where the body is modeled by point
masses to represent its mass distribution. On the other hand,
despite using many point masses, the mascon model can yield
large errors in the forces and the resolution of the surface is
poorly represented by spherical balls (Werner & Scheeres 1997).
The mascon model has been modified to become more accurate
by replacing the point masses with tetrahedrons (Chanut et al.
2015; Aljbaae et al. 2017, 2020, 2021), which provides the
gravitational potential to that of a polyhedron. Chanut et al.
(2015) found that their method results in more accurate estima-
tion of the gravitational potential close to the body, and is also
computationally faster, compared to the polyhedron approach by
Tsoulis (2012). Aljbaae et al. (2021) showed that the approach by
Chanut et al. (2015) reduced the computation time by more than
95%, while losing less than 2% of the precision, compared to
the polyhedron approach outlined by Tsoulis & Petrović (2001).

Previous works that have studied the dynamics of aster-
oid binaries after fission typically consider a mutual potential
approximation order of order two (Scheeres 2009; Jacobson &
Scheeres 2011; Boldrin et al. 2016), or order four (Davis &
Scheeres 2020b). However, only a few authors have considered
the significance of higher order terms in simulations, and how
the order of the series approximation affects the dynamics. Hou
et al. (2017) investigate the importance of higher order terms for
a planar two-ellipsoid system where the ellipsoids are initially in
contact. They find that truncating the potential at second order
is sufficient to describe systems where the mutual orbit is Hill
stable, and also when the bodies undergo mutual escape. On
the other hand, they find that additional terms become neces-
sary to describe the trajectory if the bodies are highly elongated.
Davis & Scheeres (2020b) find that higher order terms in the
gravitational potential and nonplanar effects do not significantly

change the formation process (rotational fission) itself of asteroid
binaries, but can slow down the overall evolutionary process, for
example, mutual escape occurs later in the simulations. Agrusa
et al. (2020) compare four different full two-body codes to deter-
mine the most optimal method to simulate the motion of the
(65803) Didymos binary system. The two-body codes they con-
sider model the asteroids as polyhedral or mascon shapes. They
find that expanding the mutual potential up to order four is
sufficient to describe the motion of the Didymos binary system.

However, an accurate shape model of an asteroid is often not
available. Modeling an asteroid as a triaxial ellipsoid is com-
monly used to approximate the shape of the body to study the
F2BP (Scheeres 2009; Jacobson & Scheeres 2011; Boldrin et al.
2016; Ho et al. 2021, 2022), and the gravitational potential of
such bodies can be expressed analytically (MacMillan 1930).

Approximating the shape of asteroids as ellipsoids have
previously been used to study the dynamics of post-fissioned
asteroid systems (Jacobson & Scheeres 2011; Boldrin et al. 2016;
Ho et al. 2022). In the rotational fission model, the initial sep-
aration between the two bodies is very small. In some cases,
especially for nonplanar cases, we might expect that a series
approximation to the potential could cause erroneous values for
both force and torque in the initial stages of the simulation, when
the bounding spheres of the two bodies overlap and the power
series diverges. Previous work on post-fissioned asteroid binary
systems avoid this issue by imposing initial conditions which
ensure that the bounding spheres do not intersect (Jacobson &
Scheeres 2011; Hou et al. 2017; Boldrin et al. 2016).

In a series of papers (Wold & Conway 2021; Ho et al.
2021, 2022), we have investigated another approach to the F2BP,
where the forces and torques (and mutual potential) are com-
puted directly by integrating over the surface of one body in the
gravitational field of the other (Conway 2016). For ellipsoidal
bodies, the surface integration approach by Conway (2016) yield
exact values for force, torque, and mutual gravitational poten-
tial. Wold & Conway (2021) outline the surface integration and
demonstrate the method in some torque-free planar cases of two
spheroids and two disks. Ho et al. (2021) extend this to nonplanar
cases, and also use it to study the dynamics of the 1999 KW4 sys-
tem. While the surface integral method is exact for spheroids and
triaxial ellipsoids, it can be somewhat computationally demand-
ing as multiple double integrals must be evaluated at each time
step. However, compared to evaluating triple integrals at each
time step, it is very efficient. The surface integration method to
compute the forces is exact for ellipsoidal bodies because it does
not use series expansions, and it also produces exact results in
cases when the bounding spheres of the two bodies overlap.

Hou et al. (2017) used their method to compare the differ-
ences between different expansion orders for ellipsoidal shapes,
and found that the discrepancy in the results becomes smaller
with higher orders. However, no comparisons with a mathemat-
ically exact method have yet been performed. In this paper, we
utilize our surface integration method to investigate the errors in
force and torque produced by methods that calculate force and
torque based from a series approximation of the mutual poten-
tial. We also explore what consequences these initial errors may
have on the dynamical behavior of a newly fissioned asteroid
binary. For comparing with approximation-based methods, we
have chosen to utilize the open source software “General Use
Binary Asteroid Simulator” (GUBAS)1 developed by Davis &
Scheeres (2020a). GUBAS uses the efficient algorithm based on

1 Github repository: https://github.com/meyeralexj/gubas

A38, page 2 of 15

https://github.com/meyeralexj/gubas


A. Ho et al.: The accuracy of mutual potential approximations in simulations of binary asteroids

recursive relations as described by Hou et al. (2017), and allows
the user to choose the approximation order of the potential.

Section 2 presents a brief review of the methods that are
compared in this manuscript, and the technical details of the
comparisons. In Sect. 3 we consider various configurations
and study the difference in the values of the forces and torques
using second and fourth order approximations and the surface
integration method. Two test simulations are presented in
Sect. 4 to show the long-term consequences of using these two
approaches on the prediction of the dynamic behavior of asteroid
binaries. Section 5 compares the computational efficiency of the
methods. A summary and discussion of our results are presented
in Sect. 6.

2. Force, torque, and mutual gravitational potential

2.1. Surface integration method

In the surface integration method, the force F and torque M on
an extended body with surface S , surface normal n and density
ρ, in the gravitational potential, Φ, of another extended body are
expressed by the following integrals:

F(r̃) = ρ
"

S

Φ(r̃)ndS (1)

M(r̃) = −ρ
"

S

Φ(r̃)n × r̃dS . (2)

The mutual potential energy U between the two bodies is also
expressed via a surface integral

U =
ρ

3

"
S

[
r̃Φ(r̃) −

1
2
|r̃|2g(r̃)

]
· ndS , (3)

where g(r̃) = ∇Φ is the gravitational field acting on the inte-
grated body at a point described by the position vector r̃. The
position vector r̃ is measured in the body-fixed frame of the body
exerting the gravitational field (see Wold & Conway 2021; Ho
et al. 2021, for details).

In this work, we assume that both bodies have uniform densi-
ties, and are triaxial ellipsoids. For a triaxial ellipsoid, Φ can be
expressed analytically, hence Eqs. (1)–(3) above give solutions
to the force, torque, and gravitational potential that are exact and
not affected by truncation errors or other inaccuracies arising
from using approximations. For the gravitational potential of a
triaxial ellipsoid we use the expression derived by MacMillan
(1930).

2.2. Mutual gravitational potential expressed as power series

Whereas in the surface integration method, the force and torque
between two rigid bodies is calculated by integrating Φ over
a surface, most other methods derive force and torque by first
expanding U in a series, and then differentiate U. We have cho-
sen to compare with the output from the software GUBAS (Davis
& Scheeres 2020b) where the mutual potential U is expanded as

U = −G
N∑

n=0

1
rn+1 Ũn, (4)

where r is the separation between the mass centers of the two
bodies, G the gravitational constant, N the truncation order

ẑp

x̂p

ẑs

x̂s

θs
r

ẑp

x̂p

r

ẑs

x̂s

Convergent Divergent

Fig. 1. Illustration of where the series expansion given by Eq. (4) con-
verges (left) and diverges (right) between two extended bodies. The
dotted lines correspond to the bounding spheres around each respec-
tive body. In the figure, the secondary is rotated an angle θs around the
ŷs-axis. The hat variables denote body-fixed coordinates.

of the potential, and Ũ contains the inertia integrals that are
expanded with Legendre polynomials (Hou et al. 2017). The
force is computed as

F∗ =
∂U
∂(∗)
, for ∗ = x, y, z (5)

and the torques as (Maciejewski 1995)

M′
s = −αi ×

∂U
∂αi
− βi ×

∂U
∂βi
− γi ×

∂U
∂γi

(6)

Mp = r ×
∂U
∂r
−M′

s, (7)

where αi, βi, γi are the coordinate vectors of the secondary
expressed in the body-fixed frame of the primary. The prime
notation denotes the vector expressed in the body-fixed frame
of the primary (Hou et al. 2017).

The inertia integrals make use of Legendre polynomials
to describe the mass distribution of the bodies, and therefore
plays the same role as the spherical harmonics coefficients
(Tricarico 2008). Similar to spherical harmonics, the power
series described by Eq. (4) converges in a certain region.
Tricarico (2008) showed that the mutual potential, using this for-
mulation, converges at every point outside the bounding spheres
as long as the bounding spheres do not share any common points
(see Fig. 1 for an illustration).

When using the mutual potential in Eq. (4), higher order
terms with order >N have been neglected, which leads to trunca-
tion errors. In summary, whereas obtaining force and torque from
the truncated potential is computationally efficient, the disad-
vantages are a divergent potential for some configurations where
the bodies are in close proximity, and truncation errors. The sur-
face integral method does not encounter these disadvantages, but
might be computationally more expensive, at least compared to
lower-order potentials. This is because the computational effi-
ciency decreases with a higher number of integral dimensions.
Furthermore, the only integrals required to calculate Eq. (4) are
the inertia integrals, which are only solved once and can be
reused throughout the simulation (Hou et al. 2017).

The surface integration method allows us to fully solve the
two-body problem, for two triaxial ellipsoids, in any nonoverlap-
ping configurations, without being affected by truncation errors
in the mutual potential. This puts us in the position to investigate
how truncation errors, and errors caused by divergence in the
series approximation of U might affect the ensuing dynamics of
the binary system.
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3. Comparisons between the two methods

Thus there are two things we wish to investigate, truncation
errors and errors related to overlapping bounding spheres. The
first one we address by investigating the difference in force and
torque between the two bodies for different positions of the sec-
ondary in the equatorial plane of the primary (for configurations
where the bounding spheres do not overlap). The second one we
address by investigating the difference in force and torque on the
two bodies when the two bounding spheres overlap. Finally, we
run some longer simulations where the equations of motion are
solved in order to investigate how any errors in force and torque
made at the initial stages propagate in the ensuing dynamics.

In order to extract values of the forces and torques from
GUBAS, we made a slight modification to the software so that
the computed forces and torques at the first time step are written
to an external file. The forces and torques are also converted to
standard SI units (m, s, and kg).

Whereas GUBAS uses relative coordinates for the position
of the secondary relative to the primary, we use inertial frame
coordinates for the positions of both bodies. Furthermore, in the
formulation by Hou et al. (2017), the torque on the secondary is
calculated in the body-fixed frame of the primary, while in our
method the torque on the secondary is computed in its own body-
fixed frame. In order to compare the torque on the secondary
calculated in the two approaches, we therefore convert M′

s com-
puted by GUBAS to the body-fixed frame of the secondary by
the transformation

Ms = R
T
s RpM′

s, (8)

where Rp and Rs are the rotation matrices of the primary and
secondary, respectively, and superscript T denotes the transpose.

Moreover, in order to compare velocities and positions from
our method with that from GUBAS, we convert our positions and
velocities to the body-fixed frame of the primary. The angular
velocities from our code and from GUBAS are both expressed in
the body-fixed frame of each respective body, hence there is no
need for transformations of these.

Throughout the manuscript, whenever we compute the rel-
ative difference between two vectors vi and vj (can be force,
torque, angular velocity, or translational velocity) from model
i and j, respectively, we evaluate this as:

δv =
|vi − v j|

|v j|
, (9)

where | | denotes the norm.
For consistency, when we later (in Sect. 4) solve the equa-

tions of motion, we use the same Runge-Kutta method with equal
time steps, in both the surface integral method and in GUBAS.
Any differences between the simulations should therefore not be
affected by the choice of integration scheme.

The surface integration itself in our method is performed
with the QAG2 adaptive integration algorithm from the QUAD-
PACK implementation in the GNU scientific library (Galassi
et al. 2002). The integration order can be selected from one to
six, and using higher orders increases the accuracy while reduc-
ing the computational efficiency. Unless otherwise specified, we
use the sixth-order QAG integrator3.

2 The QAG algorithm is the “simple adaptive integrator” in the
QUADPACK library.
3 Using an order four QAG integrator can reduce the computation time
by a factor of two.
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Fig. 2. Illustration of how the secondary is placed in the xy-plane of the
primary. The red line corresponds to the separation vector r between the
centroids. In the left panel, r is parallel to one of the principal axes of
the primary, whereas in the right panel, it is parallel to a principal axis
of both bodies. The axes are given in dimensionless quantities.

3.1. Effect of truncation errors in mutual potential on the force
and torque

For the first experiment, we assume that the binary consists of a
primary with semiaxes (ap, bp, cp) = (400 m, 390 m, 350 m) and
a secondary with (as, bs, cs) = (100 m, 90 m, 80 m), and both
have densities of ρ = 2000 kg m−3, corresponding to a mass ratio
of q = ms/mp = 0.013. A number of observed binaries have esti-
mated mass ratios close to this value (Pravec et al. 2016; Naidu
et al. 2020).

The secondary is first rotated an angle θs = 45◦ about its
y-axis (see Fig. 1), and then placed with its centroid in the equa-
torial plane (xy-plane) of the primary (see Fig. 2). In this manner,
the configuration is made nonplanar. The secondary is thereafter
placed at a number of different positions in the xy-plane of the
primary, so that the distance between them varies from a min-
imum value up to a maximum value of five primary radii (we
take ap to be the primary radius). Asteroid binary observations
by Pravec et al. (2016) show that the orbits of the secondaries
have semimajor axes between three to seven times the primary
radius, hence our chosen range corresponds to common dis-
tances found in nature. The minimum distance at which we place
the secondary corresponds to the distance when the two bound-
ing spheres of the bodies start to intersect. This is to ensure that
the mutual potential described by Eq. (4) converges.

For each position of the secondary in the equatorial plane of
the primary, we compute the forces and the torques on both the
primary and the secondary using the surface integral method,
and using a second and fourth order mutual potential with
GUBAS. In this manner, can can study how the errors in the
force and torques change with increasing separation between the
bodies and with the order of the potential. In our calculations,
we have rounded force and torque components with magnitudes
smaller than 10−16 off to zero.

We first study how the mutual potential differ at various sep-
arations between the methods, which is shown in Fig. 3. The
errors in the mutual potential are smaller than 0.09 and 0.006%
for the second and and fourth order potentials, respectively. The
largest error, for this particular scenario, does not occur at the
minimum separation, but takes place at approximately 1.25 pri-
mary radii. Our results are similar to the results of Chanut
et al. (2015), who compared their method with the polyhedron
approach by Tsoulis (2012), where they found that the largest dis-
crepancy in the gravitational potential occurred near the edges of
the asteroid in which the distance to the body’s center of mass is
the largest.

The results of the calculations of the forces and torques are
shown in Fig. 4 where the relative difference between the surface
integration method and the two expansion approaches is shown

A38, page 4 of 15



A. Ho et al.: The accuracy of mutual potential approximations in simulations of binary asteroids

1 2 3 4 5 6 7
r/ap

0.00

0.02

0.04

0.06

0.08

Re
la

tiv
e 

er
ro

r i
n 

th
e 

m
ut

ua
l p

ot
en

tia
l U

vs (2)
vs (4)

Fig. 3. Relative error (in percentage) in the mutual potential U from the
second (red line) and fourth order (blue line) potentials compared to the
surface integration method, as functions of the separation in primary
radii ap.

as a color scale in the xy-plane of the primary. The panels to
the left show the relative difference in force, while the middle
and right panels show the relative difference in the torque on the
primary and secondary, respectively.

In the left-most panels it can be seen that the relative errors
in the force are largest when the bodies are close: ∼0.4% for the
second order approximation, and roughly an order of magnitude
smaller for the fourth order approximation. As the separation
becomes larger, the errors decrease, and become negligible
(<0.001%), consistent with what is to be expected. For the fourth
order approximation, the error in the force has already dropped
to 0.001% when the distance between the bodies is 2–3ap. Over-
all, we see that the relative error in force from the fourth order
potential is roughly an order of magnitude smaller than that from
the second order potential, as a fourth order expansion is closer
to the exact solution with smaller truncation errors.

We now consider the relative error in the torque on the pri-
mary as shown in the middle panels. When the secondary’s
centroid is placed either on the x- or y-axis of the primary, the
error in the torque on the primary, δMp, is 100% for the sec-
ond order potential, regardless of the separation between the two
bodies. This happens because in this configuration the vector
between the centroids of the two bodies, r, is parallel with the
principal axes of the primary. In these configurations, the second
order approximation yields a vanishing torque on the primary
(Kane et al. 1983; Poursina & Anderson 2012). The zero torque
from the second order approximation is however unrealistic in
this case, as the torque calculation from both the surface inte-
gration method and fourth order potential indicates that nonzero
torques are experienced by the primary.

For the torque on the secondary, as is shown in the right-
most panels in Fig. 4, the 100% error, from the second order
approximation, occurs only when it is placed with its centroid on
the y-axis of the primary. Similar to the torque on the primary,
this happens because r is parallel with a principal axis (in this
case, the intermediate-axis) of the secondary (see right panel of
Fig. 2). At other regions in the xy-plane where r is not parallel
with any one of the principal axes, the errors in Mp, when using
the second order potential, range between ∼2 and ∼10% when
the bodies are close, and drops to ∼1% at larger distances. The

error in Ms, on the other hand, is ∼10% at the smallest sepa-
ration and ∼3% at the largest distances. Furthermore, similar to
the force, the relative errors in Mp and Ms using the fourth order
potential are roughly an order of magnitude smaller than when
using the second order potential.

It is clear from Fig. 4 and from the discussion above that the
relative error in the torques is larger than in the force. This is also
seen in other work that involves expansions to study electrostatic
forces (Poursina & Anderson 2012; Poursina & Butcher 2020).
We therefore argue that using approximations to the mutual
potential may have a larger effect on the rotational motion of
the bodies than on the translational motion.

We briefly investigate how the mass ratio of the system may
affect the differences in the computed forces and torques. The
semiaxes of the secondary are changed to (as, bs, cs) = (250 m,
240 m, 230 m), while keeping the semiaxes of the primary and
the densities of the bodies the same, which corresponds to a mass
ratio of q = 0.25. The resulting errors in forces and torques are
slightly lower, but similar, to that of Fig. 4. However, the decrease
in the errors are less than one percent. This suggests that the mass
ratio of the system should not significantly affect the computed
forces and torques, provided that the bodies are sufficiently far
apart.

3.2. Primary and secondary with overlapping bounding
spheres

In this section, we investigate situations where the bounding
spheres of the bodies overlap and the mutual potential described
by Eq. (4) no longer converges (Tricarico 2008). This happens
when the surface of the secondary is allowed to almost touch the
surface of the primary. This type of configuration is particularly
relevant for newly fissioned asteroid systems, as the bodies are
initially very close.

Figure 5 shows two examples from two different viewing
angles of the configurations we investigate in this section. The
position of the secondary is such that the separation between
the ellipsoids is the shortest while ensuring that the surfaces
of the bodies do not overlap. The bodies nearly touch, that
is, there is no normal force involved in our calculations. We
choose a number of different positions of the secondary such
that the point P is distributed over the entire upper half of
the surface of the primary (because of symmetry, we only
consider surface connection points on the upper half of the pri-
mary). Contrary to what was done in the previous section, we
now keep all three axes of each of the body-fixed coordinate
systems parallel.

We compute force and torques as in the previous section,
but for three different shapes of the primary. The long semiaxis
of the primary is fixed at ap = 400 m, and three values of the
axis ratios ap/bp and ap/cp are chosen. The three different shape
models of the primary are listed in Table 1, one is a spheroid
(Model 1) and two of them are rather elongated (Models 2 and
3). The secondary is kept at the same size and shape as in the
previous section.

The results of the comparison between the output from
GUBAS and the output from the surface integration method are
shown in Figs. 6 and 7, again as colored contour plots. All panels
in the figures show the surface of the primary ellipsoid viewed
from above, along the z-axis, and each point in the xy-plane rep-
resents the connection point P on the surface of the primary as
illustrated in Fig. 5.

Figure 6 shows the relative error in the force that arises when
using second or fourth order potentials. The error increases as the
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Fig. 4. Relative error (in percentage) in force and torques arising from using second (top) and fourth order (bottom) mutual potentials. The two
left-most panels show the force, and the middle and right-most panels show the torque on the primary and secondary, respectively. Each position in
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Fig. 5. Example configurations where the surfaces of the ellipsoids are almost touching. The left panel shows a view of the xz-plane, where the
bodies are almost touching at point P1. The bounding spheres around each body are marked with dotted lines, and are seen to overlap. Point P2 is
at the pole of the primary, and P3 at the equator. Each connection point Pi corresponds to a position vector ri between the centroids of the bodies.
The right panel shows a view from above of the xy-plane.

secondary is moved closer to the pole of the primary (point P2
in the left panel of Fig. 5). At this location the distance between
the centroids is at the minimum, and the error in the force is
the largest. For the spheroidal primary (Model 1), the error is
rather small for both the second and fourth order approximations
(<0.5%), whereas for the elongated models it ranges from ∼50%
to above 1000%.

For the more elongated model (Model 3), the errors from the
fourth order approximation become larger than that from the sec-
ond order. As the separation between the mass centers r becomes

smaller, the bounding spheres will overlap more, causing a larger
error in the mutual potential when it is expanded through power
series. Furthermore, the forces between two extended bodies,
obtained from expanding inertia integrals up to order N, scale
as (ap/r)N (Kane et al. 1983). For nearly all configurations we
have considered here, we have that r < ap. The higher order
gravity terms will therefore result in values larger than the lower
order terms, thus inflating the values of the computed forces. The
forces from the expansion method therefore become greater than
the values obtained with the surface integration method.
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Fig. 6. Percentage difference between force F from GUBAS using second and fourth order potentials, relative to force from surface integration
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Table 1. Parameters used for the three models chosen for the tests in
Sect. 3.2.

Model ap/bp ap/cp q

Model 1 1.000 1.067 0.012
Model 2 1.231 2.000 0.028
Model 3 1.455 4.000 0.065

Notes. The second and third columns show the axis ratios of the pri-
mary, while the fourth column shows the mass ratio, q = ms/mp, of
the system. Model 1 is a spheroid, and Models 2 and 3 are elongated
ellipsoids. The long semiaxis of the primary is fixed at ap = 400 m.

The error in the torque on the primary arising from using
second and fourth order potentials is shown in the first and sec-
ond rows of Fig. 7. Similar to the force calculations, the error
is larger for the most elongated primary, particularly near the
pole, regardless of whether the expansion order is two or four.
As for the force calculations, when the primary becomes more
elongated, the relative error using the fourth order approximation
becomes greater than when using the second order approxima-
tion. This is again because the separation r becomes smaller, and
higher order gravity terms inflate the computed torques.

There are five surface connection points on the primary
where the torque is zero. These are located at (x = ±ap, y = 0)
and at (x = 0, y = ±bp) (along the equator) and at (x = 0, y = 0)
(the pole). Only the point in the pole is included in Fig. 7
(white region). Away from the region around the pole of the pri-
mary, Model 1 yields relative errors in Mp up to 16% with the
second order approximation, while the error from using fourth

order approximations is smaller by one magnitude. Hence for a
spheroidal primary, both the fourth and the second order method
give relatively good approximations of the torque, despite the
bounding spheres overlapping.

The results for the torque on the secondary are shown in the
third and fourth rows of Fig. 7. The relative error behaves in
much the same way as for the primary, but is significantly larger
in magnitude for model 3, as the errors can reach as high as 104%
for the fourth order approximation.

4. Dynamical simulations of binaries

We run two different simulations in this section, in the first
one the two asteroids are spaced relatively far apart, and in
the other they resemble a contact binary that just separated
into two components via rotational fission. For solving the
equations of motion, we use the standard fourth order Runge-
Kutta method. For the surface integration method, the rotational
motion is described using Euler parameters (quaternions), and
the equations of motion of the bodies are described in Ho et al.
(2021).

4.1. Scenario 1: a binary with moderate separation

In the first simulation, the asteroids orbit each other at a dis-
tance of three to four times the primary radius, thus resembling
some observed binaries (Pravec et al. 2016). The semiaxes and
densities of the two bodies are the same as in Sect. 3.1. We
place the secondary initially at the position r = [1800, 0, 5]
m relative to the primary, and give it an initial velocity v =
[0, 0.12, 0] m s−1. The primary has an initial angular velocity
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Fig. 7. Same as Fig. 6, but now showing the error in the computed torques on both bodies. The first and second rows show the relative differences
in the torque on the primary Mp, while the third and fourth rows show the difference in the torque on the secondary Ms. Within the white region,
the torques acted on the bodies are zero, and we have chosen to exclude this region from the plot as it is difficult to show relative error in M when
M is close to zero.
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Fig. 8. For scenario 1: the difference between between GUBAS and our
method for the position of the secondary relative to the primary. The top,
middle and bottom shows the difference in the x, y and z components,
respectively. The red line is the difference between GUBAS second
order approximation and the surface integration method, whereas the
blue line shows the difference between GUBAS fourth order approxi-
mation and the surface integration method.

of ωp = [0, 0, 10−4] rad s−1, whereas the secondary has zero ini-
tial angular velocity. The bodies are also placed initially such
that their body-fixed axes are parallel. The integration time is
100 days, with a fixed time step of five minutes.

Figure 8 shows the difference between the output from
GUBAS and the surface integration method for the x, y and
z-components of the position of the secondary. In the second
order approximation, the x and y position of the secondary
fails by approximately ±50 m at the most (∼3% of the distance
between the primary and secondary), and for the z-component
with ±0.25 m at the most. The position calculated with the fourth
order approximation in GUBAS is indeed a very good approxi-
mation, as shown by the blue line in Fig. 8, where the differences
are smaller than ∼1 m for all three components. This agrees with
the findings in Sect. 3.1, where the errors from the fourth order
potential is an order magnitude smaller than the second order
approximation.

Hou et al. (2017) compare how the x-position of the sec-
ondary deviates between different orders of the potential, with an
initial separation of 3.6 times the primary radius. The deviation
of the x-position, between the second and fourth order potential,
surpassed over 1000 m after ∼130 h. In our simulations, after
130 h, the deviation in the x-position is ∼1.4 and ∼10−3 m for the
second and fourth order approximations, respectively. Our com-
parison between the surface integration scheme and the second
order potential is similar to the order ten and order eight com-
parison performed by Hou et al. (2017), where the x-position
deviated by ∼5 m after 130 h. The system considered by Hou
et al. (2017) has a mass ratio of q = 0.512. However, as discussed
in Sect. 3.1, the mass ratio of system should not significantly alter
the differences in the computed forces, as long as the bodies are
sufficiently far apart.

In Fig. 9 we plot the differences in the components of the
angular velocities of both the primary and secondary through-
out the simulation. The discrepancies between the second order
approximation and the surface integration method are of order
10−10 and 10−6 rad s−1 for the primary and secondary, respec-
tively, and the difference is reduced by a factor of ten when the
fourth order potential is used.
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Fig. 9. Same as Fig. 8, but for the components of the angular velocity.
The left panels show the components for the primary, and the right pan-
els show the components for the secondary.
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Fig. 10. Relative difference (in percentage) between the models for the
speed (top) and the angular speed (bottom) of the secondary. The red
line shows the second order potential approximation relative to the sur-
face integral method, and the blue line the fourth order method relative
to the surface integration method.

As the results from Sect. 3 indicate that the choice of approx-
imation order for the potential affects the rotational motion more
significantly than the translational motion, we wish to compare
differences in translational and rotational velocity. This is shown
in Fig. 10 where we have plotted the difference in the velocity
and the angular velocity of the secondary, as calculated from
both the second and fourth order potential relative to the surface
integration method. For the second order potential, the relative
difference in the translational velocity is under ∼3%, while the
relative difference in the angular velocity averages at ∼70%.
The error in the rotation period of the secondary, computed as
Ts = 2π/|ωs|, also averages at roughly 70%. This showcases that
using the surface integration scheme to determine the motion of
asteroids, in which the results are exact for ellipsoidal shapes, is
more important to correctly predict rotational motion.

The Double Asteroid Redirection Test (DART) is a NASA
mission that aims to demonstrate how a kinetic impactor can
be used to redirect the orbits of objects that may potentially
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Fig. 11. Illustration of the initial configuration for the rotational fission
scenario described in Sect. 4.2.

collide with Earth (Cheng et al. 2018; Rivkin et al. 2021).
One of the observable quantities after the impact is the orbital
period of the secondary, and may fluctuate over time scales from
days to months depending on the shape of the target body and
the momentum transfer enhancement factor (Richardson et al.
2022). It is therefore interesting to briefly check whether the
approximation order of the potential significantly influences the
period of the secondary in a binary system. In doing this, we find
(for the assumed binary in this section) a relative error of <0.1%
in the period from using the second order potential, and for the
fourth order potential a relative error in the period of <0.001%.
The former corresponds to a difference in ∼3.6 s in the orbital
period, while the latter a difference of ∼0.4 s.

In summary, for the assumed binary in this section, a vari-
ation of approximately ±10 m in the position of the secondary,
±10−6 rad s−1 in the angular velocities, and <0.1% in the sec-
onday’s orbital period are small enough to be negligible for the
overall orbit. Hence, provided the components are far enough
apart, using the fourth order potential is sufficient to describe
the dynamics of asteroid systems, such as the Didymos binary
system (see also Agrusa et al. 2020). However, these results
are based on asteroids with perfect ellipsoidal shapes, while
real asteroids are better described with, for example, polyhedral
shapes.

4.2. Scenario 2: a fissioned contact binary

In this section, we simulate an asteroid binary after a contact
binary has separated into two components due to rotational fis-
sion. The bodies in this system are initially very close so that
their bounding spheres overlap in the initial stages of the sim-
ulation. We compare the output from simulations using the
approximative method from GUBAS with that from our surface
integration method.

The initial conditions are the same as those of Ho et al.
(2022), where the secondary is initially rotated by an angle θs =
5◦ about its body-fixed y-axis and the surface-to-surface distance
between the primary and secondary is 1 cm (see Fig. 11). The
semiaxes of the primary are (ap, bp, cp) = (1000, 700, 650) m,
and for the secondary (as, bs, cs) = (699, 469, 435) m, chosen
so that the mass ratio is q = 0.3. This mass ratio is large
enough to yield a negative total energy for the system so that the
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Fig. 12. For scenario 2: The difference in the x-, y- and z-coordinates
of the position of the secondary relative to the primary. The red and
blue lines correspond to the difference between the surface integration
method and the order two and four approximations by GUBAS, respec-
tively. The left column shows the difference during the first five hours,
while the right column shows the difference over the whole simulation
time span.

components do not undergo mutual escape. The integration time
is one year with time steps of five minutes.

Given the selected semiaxes of the two bodies and the
required surface-to-surface distance of 1 cm, the initial position
of the secondary becomes (x, y, x) = (1667.2, 0, 0) m, while the
primary is located at the origin. By equating the centrifugal force
with the gravitational attraction in this configuration, we find the
initial angular velocity ω0 that the system must have in order to
undergo rotational fission (for details see Ho et al. 2022)

ω0 = β

√
F

msrcm
, (10)

where F is the magnitude of the gravitational force, ms the mass
of the secondary, rcm the distance between centroid of the sec-
ondary and the center of mass of the system (see Fig. 5) and β a
cohesion factor. Following Ho et al. (2022), we use β = 1.01. The
gravitational forces used to determine ω0 are obtained by mea-
suring F for the given initial configuration for all three models
(similarly to what is done in Sect. 3). For the chosen configura-
tion we get a numerical value of ω0 = 2.99 × 10−4 rad s−1 (spin
period of 5.84 h) from the surface integration method. For the
second and fourth order approximation methods, we find ω0 =
2.92 × 10−4 and 2.97 × 10−4 rad s−1, respectively (correspond-
ing to spin periods of 5.98 and 5.88 h). Conservation of angular
momentum thereafter gives the initial translational velocities of
the components (for details, see Ho et al. 2022). Thus the fis-
sion limit ω0 is slightly different in the three cases because it
ultimately depends on the mutual gravitational potential.

With these initial conditions, we compute again the differ-
ence in x-, y- and z-coordinates of the secondary as a function
of integration time, and plot the result in Fig. 12, where the first
five hours are plotted separately in the left-hand panels. After
the first five hours, the coordinates already deviate by more than
50 m along the x and y-directions. As time passes, the difference
increases, and ∆x and ∆y can become larger than 10 km, and ∆z
larger than 1 km. It also appears that the magnitude of the dif-
ference is the same regardless of whether the second order or the
fourth order approximation is used.

A38, page 10 of 15



A. Ho et al.: The accuracy of mutual potential approximations in simulations of binary asteroids

0 2000 4000 6000 8000
1
0
1

x -
 [r

ad
/s

] 1e 4 Primary
vs (2) vs (4)

0 2000 4000 6000 8000
2.5

0.0

2.5

y -
 [r

ad
/s

] 1e 4

0 2000 4000 6000 8000
t - [hr]

2.5

0.0

2.5

z -
 [r

ad
/s

] 1e 4

0 2000 4000 6000 8000
2.5

0.0

2.5

x -
 [r

ad
/s

] 1e 4 Secondary

0 2000 4000 6000 8000
5

0

5

y -
 [r

ad
/s

] 1e 4

0 2000 4000 6000 8000
t - [hr]

5

0

5

z -
 [r

ad
/s

] 1e 4

Fig. 13. Difference in angular velocity components for the primary (left)
and secondary (right). The red and blue lines correspond to the differ-
ence between the surface integration method, and the order two and four
approximations by GUBAS, respectively.

In order to check if the large differences could be caused by
slightly different initial angular velocities, we started some sim-
ulations with the same initial angular velocity of ω0 = 2.99 ×
10−4 rad s−1 (the value computed from the surface integration
method) for all three models, but found that ∆x-, ∆y- and ∆z
reach the same order of magnitude as that shown in Fig. 12.
Using ω0 = 2.92 × 10−4 rad s−1 as the initial angular velocity
(the value from the second order potential) results in the bodies
colliding for both the surface integration method and the fourth
order approximation, already after the first time step.

The secondary orbits closer to the primary with the second
order approximation, and the separation between the primary
and the secondary is ∼4.5 primary radii on average, and never
exceeds eight primary radii. For the fourth order approximation
and the surface integration method, the separation is on average
∼5.4 and ∼5.5 primary radii, respectively, and can reach up to
ten primary radii. This is a consequence of the different initial
conditions, as the second order potential yields a lower initial
velocity compared to the other two methods. On the other hand,
if the same initial conditions are used, the average separation is
approximately 5.4 primary radii for all three models.

The differences in the angular velocity components are also
larger compared to scenario 1, with a magnitude of ∆ω of the
order 10−4 rad s−1 for both bodies and for both approximations,
shown in Fig. 13. This difference also occurs when the same
initial conditions are used.

Contrary to the simulation in the previous subsection, where
the bodies are further apart, both the second and the fourth order
approximation produce equally erroneous velocities and angular
velocities, as seen in Fig. 14. The relative differences are greater
than 130% on average, regardless of expansion order. Provided
that the bodies are modeled as ellipsoids, using an exact method
therefore becomes more important for the outcome of both the
translational and rotational motion of the bodies if that they are
initially very close.

The relatively large differences in the evolution of the binary
between the surface integration scheme and the two other meth-
ods are likely due to the proximity of the bodies during the first
few hours of the simulation. After about ten hours, the average
separation between the bodies is sufficiently large that the dif-
ference in the mutual potential between the surface integration
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Fig. 14. Same as Fig. 10, but now for scenario 2.
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Fig. 15. For scenario 2: Top: the orbital period of the secondary from
the three models as functions of time. Bottom: the relative difference (in
percentage) in the orbital period between the expansion methods and the
surface integration method.

approach and the other two methods is relatively small, but as the
bodies have evolved very differently up till then, they continue to
evolve differently.

In Fig. 15 we show how the orbital period of the secondary
changes over time with the three different methods. By using
the second order potential, the orbital period is generally shorter
compared to using either the fourth order potential or the sur-
face integration method method, consistent with the secondary
orbiting closer to the primary in the former case. The error in
the orbital period can exceed 10% for both the second and fourth
order potentials.

Hou et al. (2017) find that higher order terms become impor-
tant to determine the trajectories of post-fissioned binaries if the
bodies are more elongated. In order to check whether changing
the shape of the primary to a more spherical shape has large
effects on the outcome, we changed the semiaxes of the pri-
mary to (ap, bp, cp) = (1000, 900, 850) m (which also results in
different semiaxes and positions of the secondary, and different
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Fig. 16. Relative error (in per cent) in force and mutual potential energy
in the left and right columns, respectively. The top and bottom rows
correspond to the relative difference of the order two and order four
potentials. The black lines indicate the separation between positive and
negative total energies. Regions to the left and right of the respective
lines correspond to positive and negative system energies.

values ofω0), the discrepancy of the positions and angular veloc-
ities, between the surface integration method and the output of
GUBAS, are of the same order of magnitude as in Figs. 12 and
13. Therefore, the use of a more accurate method is also impor-
tant for the dynamics of newly fissioned contact binaries, even if
the bodies have low elongations.

4.3. Energy differences – Formation of asteroid pairs and
stable binaries

After a contact binary has separated into two components by
rotational fission, the secondary may end up in a stable orbit
around the primary, or escape (reimpact with the primary is also
possible). This depends on the total energy of the system, if the
total energy is negative, the system may become a stable binary,
whereas if the total energy is positive, and there is no loss of
energy, the components may undergo mutual escape. Therefore,
if we assume that there is no exchange of energy with the sur-
roundings and that the bodies are rigid, the initial total energy
of the system determines whether the contact binary becomes an
asteroid pair or a binary (Pravec et al. 2010; Jacobson & Scheeres
2011; Boldrin et al. 2016; Ho et al. 2022).

In the rotational fission model, the initial energy of the con-
tact binary depends on the mutual gravitational potential, and
hence affects predictions of which systems may form binaries
and which may form asteroid pairs. In order to address the influ-
ence that the choice of approximation order has on the ability to
form stable binaries we compute the total energy for a number of
different configurations with the three methods.

We assume a contact binary where the two components have
equal shapes (as defined by their axis ratios), and vary the mass
ratio from 0.01 to 0.3 as this is the region around zero total
energy. For each assumed value of q, we choose several dif-
ferent orientation angles θs of the secondary, from 0◦ to 90◦
(see Fig. 11). The initial conditions are the same as described
in Sect. 4.2 (see also Ho et al. 2022).

The results are displayed in Fig. 16 in the form of a line in the
q-θs plane marking the separation between positive and negative

system energies. As the mass ratio increases, the total energy of
the system starts to become negative but can remain positive if
θs is large enough. The separation between positive and nega-
tive energies varies between the methods but generally ranges
between q ∼ 0.21 and q ∼ 0.26. The fourth order approximation
is seen to produce results that are fairly close to that from the
surface integration method.

The difference between the methods is larger for lower values
of θs, but is still quite small, that is, for a given θs the zero energy
line occurs over a span in q that is always less than 0.02. As seen
in the figure, the fourth order and the surface integral method is
quite similar, whereas the second order potential yields a zero
energy line more shifted toward lower mass ratios. For instance,
if the mass ratio is q ≈ 0.23, the second order method predicts
that the contact binary becomes a pair if θs ≳ 40◦. But with the
fourth order method, the contact binary can still form a stable
binary as long as θs does not exceed ∼20◦. Simulations that use
the surface integral method for determining the mutual poten-
tial will therefore predict formation of asteroid pairs at slightly
higher mass ratios compared to methods that use expansions of
the mutual potential.

As θs approaches 90 degrees, the separation vector r
becomes smaller in order to maintain the 1 cm surface-to-surface
separation. As a consequence, the bounding spheres between the
bodies will intersect more when θs increases, and we expect the
mutual potential to differ more between the methods. However,
as seen in Fig. 16, this is not the case, since the gap between
the separation lines becomes smaller. Upon further inspection,
the discrepancy in both the force and mutual potential energy
become smaller when the system approaches higher mass ratios
(q ≈ 0.3) with θs = 90◦, illustrated by the colored contours in
Fig. 16. The largest differences are found at low mass ratios and
when θs is small, where the errors in the force can reach 7% when
q = 0.01 for the second order potential, while error reduces to
roughly 2% when the potential is truncated to order four.

5. Computational efficiency

While the surface integration method is exact for bodies of
ellipsoidal shapes, it is also more time-consuming to compute
as multiple double integrals must be solved and transcenden-
tal functions need to be evaluated. In this section, we compare
the CPU times required to compute the forces and torques. We
also compare the CPU times of the full dynamical simulations
to complete. The comparisons are performed using the same
single-core computer.

We first investigate the efficiency in the force and torque
calculations. The evaluation times are measured in the code
segments where the forces and torques are calculated, which
excludes the time required to initialize the program and to solve
the equations of motion. The second column of Table 2 shows the
CPU time required to evaluate the forces and the torques of both
bodies, averaged over 37182 different configurations. The second
and fourth order potentials are approximately 82 times and four
times faster than the surface integration method, respectively,
while the potential truncated to order eight is roughly 16 times
slower than the surface integration scheme.

The third and fourth columns of Table 2 shows the CPU
times of the simulations described in Sect. 4. Here, the CPU
times are measured from the moment the respective programs
initiate until they terminate. This includes the time required to
initialize the program, solve the equations of motion, and sav-
ing the results. The output is saved at each time step both for
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Table 2. Comparison of CPU times for the methods.

Method Force computations Scenario 1 Scenario 2
Average CPU time [s] CPU time [s] CPU time [s]

Surface integral method 0.055 1369 6435
GUBAS (O(2) expansion) 6.723 ×10−4 96 375
GUBAS (O(4) expansion) 0.014 1555 6120
GUBAS (O(8) expansion) 0.877 119 474

Notes. The second column shows the average CPU time required to compute the forces and torques. Scenario 1 and 2 correspond to the simulations
presented in Sect. 4, where the first one is for a binary with larger separation, and the second one is for a newly fissioned contact binary.

our method and with GUBAS in order to facilitate the compar-
ison, although this can be changed for GUBAS to reduce the
CPU time. The second order potential used by GUBAS is very
efficient compared to the surface integration method. However,
if the potential is truncated to order four, the CPU times for the
simulations are comparable to the surface integration scheme.
This is due to the differences in how the equations of motions are
solved, and how they are optimized, for each software. Finally,
for higher orders of the potential it seems that the surface inte-
gral method would be preferable, as an approximation order of
eight with GUBAS takes approximately 33 h compared to 1369 s
with the surface integral method.

6. Summary and discussion

By utilizing the surface integral method that we have developed
and described in some recent publications (Wold & Conway
2021; Ho et al. 2021, 2022), we are able to accurately describe,
without approximations, the gravitational interaction between
two triaxial ellipsoids. This makes us able to address errors in
force and torque calculations between two ellipsoids using meth-
ods based on series approximations, such as the inertia integral
method, where the mutual gravitational potential is truncated at
a certain order. A publicly available implementation of this is
GUBAS (Davis & Scheeres 2020a), which we use in this work to
compute interactions between two ellipsoids based on potentials
truncated at second and fourth order. Previous work have com-
pared approximative methods to each other for ellipsoidal (Hou
et al. 2017) and polyhedral shapes (Agrusa et al. 2020). In this
manuscript, we have compared the surface integration method
with a method that expands the mutual potential truncated up to
order four.

For a typical binary asteroid, where the secondary orbits
the primary in the equatorial plane, both the second and fourth
order potentials give similar values of the force compared to the
surface integration method. The errors become insignificant at
distances of 3–5 primary radii, and less than one percent even
when the secondary is close to the primary.

For the torque, however, the errors become more significant,
especially if the bodies are displaced such that the separation
vector between the mass centers, r, is parallel with one of the
principal axes of the body for which the torque is being calcu-
lated. In this case the second order approximation fails by 100%.
This is due to a mathematical limitation inherent in the second
order approximation (Kane et al. 1983; Poursina & Anderson
2012). Fourth order potentials can correct somewhat for this,
but generally if the other body lies in the neighborhood of one
of the principal axis of the body for which the torque is evalu-
ated, the errors in the torque are notably larger than elsewhere.
Consequently, approximative methods affect rotational motion

more than translational motion, and using a more accurate
method therefore becomes more important to correctly describe
the rotational motion. The percentage errors in the torques are
approximately an order of magnitude larger than the errors in
the force. However, as long as the separation between the two
components of the binary is sufficiently large (a few primary
radii), simulations using the surface integration method and the
expansion approaches show negligible differences in the torques.

The most notable differences and largest errors occur in sit-
uations where the two bodies are close with their centroids not
in the same plane. These configurations are particularly relevant
for contact binaries that separate due to rotational fission when
a certain spin limit is reached. The two bounding spheres of
the bodies intersect, and the series approximation of the mutual
potential described by Eq. (4) no longer converges (Tricarico
2008). The surface integration approach, on the other hand, is
still valid, and we find that for a secondary placed close to the
surface of the primary (insignificant surface-to-surface distance
of 1 cm), errors are largest when the secondary is placed closed
to the pole of the primary. The errors from the second order
approximation are generally larger than from the fourth order,
but if the primary is elongated enough in this configuration,
the errors from the fourth order approximation may dominate.
This is because the forces obtained by inertia integrals scale as
(ap/r)N for an order N expansion. When r < ap (as is the case
for overlapping bounding spheres), the contribution from higher
order gravity terms may inflate the calculated force, and lead to
large errors.

Using a more accurate method to determine the forces and
torques in the initial stages becomes more important if the bod-
ies are initially close and the bounding spheres overlap. In these
cases, the difference in the computed forces between the methods
result in significantly different angular and translational veloc-
ities in the initial stages of the simulation. This leads to, for
a binary with q = 0.3, deviations in the position of the sec-
ondary relative to the primary of more than 10 km, while the
angular velocity components differ by ∼10−4 rad s−1. The latter
corresponds to relative differences in the angular velocity (and
rotation period) that exceed 100%. We also find that these initial
differences can lead to differences in the orbital period of the
secondary of more than 10%. These discrepancies in the simu-
lations are also seen even when the initial conditions are equal,
which indicates that the use of a more accurate method to deter-
mine the mutual potential is particularly important the first hours
of a post-fissioned asteroid system, in which the bodies are still
relatively close.

With the surface integration method we calculate higher sys-
tem energies for contact binary systems, compared to second and
fourth order methods. Assuming that there is no loss of energy,
our calculations therefore predict formation of asteroid pairs
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(total energy positive) at slightly higher mass ratios. These calcu-
lations were done for a few configurations where the secondary
lies in the equatorial plane of the primary, but the separation
between positive and negative system energies also changes with
the shape of the bodies and their densities (Ho et al. 2022). Fur-
thermore, the outcome of the system, for example, whether the
two components collide or how long the secondary remains in
orbit before escaping, may also be affected by how the mutual
potential is computed. A future study comparing these outcomes
may further demonstrate the importance of using a more accu-
rate method to determine the mutual potential in order to study
dynamics of post-fissioned asteroid systems.

The mass ratio of the system does not significantly alter
the differences in the computed forces or torques between the
methods, provided that the bodies are sufficiently far apart. How-
ever, if the bodies are close, the use of a more realistic method
becomes more important to the mutual potential for systems with
lower mass ratios. For a post-fissioned asteroid system, the error
in the force, from a second order potential, can reach ∼7% when
q = 0.01, and reduces to ∼4% when q = 0.30. When the poten-
tial is truncated to order four, the errors in the force are reduced
to ∼2 and ∼1% for mass ratios 0.01 and 0.30, respectively.

We benchmark the methods by comparing the CPU times
required to compute the forces and torques, and to complete the
long-term simulations. Due to the nature of double integrals,
the forces computed by the surface integration scheme is slower
than that of GUBAS. However, for the full simulations, the time
required for the simulations to finish from the surface integration
method is comparable to the ones from GUBAS when an order
four potential is used.

In this manuscript, we have only considered bodies of ellip-
soidal shapes. However, modeling an asteroid as a polyhedron
provides a more realistic representation of its shape. It may be
of interest to compare the surface integration method with other
expansion methods, applied to polyhedral shapes in the future.
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Appendix A: Open-source software

The software that uses makes use the surface integration method,
as outlined by Conway (2016) and Ho et al. (2021), to solve the
F2BP is available on GitHub4.

4 Github repository: https://github.com/alexhosians/SIANS

A38, page 15 of 15

https://github.com/alexhosians/SIANS

	The accuracy of mutual potential approximations in simulations of binary asteroids
	1 Introduction
	2 Force, torque, and mutual gravitational potential
	2.1 Surface integration method
	2.2 Mutual gravitational potential expressed as power series

	3 Comparisons between the two methods
	3.1 Effect of truncation errors in mutual potential on the force and torque
	3.2 Primary and secondary with overlapping bounding spheres

	4 Dynamical simulations of binaries
	4.1 Scenario 1: a binary with moderate separation
	4.2 Scenario 2: a fissioned contact binary
	4.3 Energy differences – Formation of asteroid pairs and stable binaries

	5 Computational efficiency
	6 Summary and discussion
	Acknowledgements
	References
	Appendix A: Open-source software


