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ABSTRACT An online topology estimation algorithm for nonlinear structural equation models (SEM) is
proposed in this paper, addressing the nonlinearity and the non-stationarity of real-world systems. The
nonlinearity is modeled using kernel formulations, and the curse of dimensionality associated with the kernels
is mitigated using random feature approximation. The online learning strategy uses a group-lasso-based
optimization framework with a prediction-corrections technique that accounts for the model evolution. The
proposed approach has three properties of interest. First, it enjoys node-separable learning, which allows
for scalability in large networks. Second, it offers privacy in SEM learning by replacing the actual data
with node-specific random features. Third, its performance can be characterized theoretically via a dynamic
regret analysis, showing that it is possible to obtain a linear dynamic regret bound under mild assumptions.
Numerical results with synthetic and real data corroborate our findings and show competitive performance
w.r.t. state-of-the-art alternatives.

INDEX TERMS Network topology inference, time-varying graph learning, structural equation models,
random feature approximation.

I. INTRODUCTION
Structural Equation Models (SEM) are a prevalent tool to
model interactions in real-world networks due to their sim-
plicity and ability to express instantaneous directed relation-
ships between interacting entities [1], [2], [3]. The advantages
of SEM over simple correlation-based models lie in lever-
aging the directionality, which is key to many applications,
such as modeling the functional connectivity between brain
regions [4] and interactions in financial networks [5], to name
a few. SEM modeling and its topology estimation are chal-
lenging because real-life networks are large, dynamic, and
comprise nonlinear interactions, as well as leveraging directly
node-specific data may raise privacy concerns [1].

Although SEM-based topology estimation has been ex-
plored in literature, most of the approaches are developed for
stationary linear systems and provide offline (batch-based) so-
lutions [6], [7]. Modeling time-varying systems call for online

optimization strategies, which can be classified into time-
unstructured and time-structured methods [8], [9]. The former
update the model only when a new data sample arrives [10],
whereas the latter first predict the model based on its evolution
and then correct the prediction when the new data sample is
available [11]. The time-structured algorithms are expected to
perform better since they take advantage of the prior related
to the model evolution but typically have a slightly higher
computational cost. A SEM-based online topology estimation
has been proposed in [12], but it adopts the time-unstructured
strategy and fails to exploit the model evolution; hence, subop-
timal. On the other hand, [9] and [13] propose time-structured
online SEM learning strategies, but the models are restricted
to linear interactions. Moreover, the node operations of these
algorithms are computationally expensive, and they assume
symmetric interactions of the network data, which destroys
SEM’s directionality features.
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Aiming to overcome the above challenges, we propose an
online topology learning algorithm for nonlinear and directed
SEM using a time-structured optimization framework. The
nonlinearity is tackled using kernel methods, and the curse of
dimensionality of kernels is mitigated through random feature
(RF) approximation. Kernel techniques are conventionally
used for nonlinear topology estimation [14], [15], [16] and
help transform the problem into an amenable form. Instead,
RF is typically used to reduce the complexity of nonlinear
models as well as to ensure that connectivity is inferred with-
out revealing nodal attributes [17], [18], [19], [20], [21], [22].
Through a series of design choices and theoretical derivations,
we show how kernels and RFs can be incorporated into the
online nonlinear SEM model and show that the proposed
algorithm has the following four properties:

i) Sparse model evolution: The proposed SEM learning
strategy uses a prediction-correction approach to model
the SEM evolution. Exploiting the fact that real-world
networks exhibit sparse directed interactions, we in-
troduce a group-lasso-based regularizer to learn sparse
models.

ii) Scalability: The proposed algorithm is separable across
the nodes with a fixed computational complexity per
iteration, thereby facilitating scalability in large graphs.

iii) Privacy: The node separability and the random features
avoid sharing the true data, thus, ensuring node privacy.

iv) Convergence Guarantee: A dynamic regret analysis of
the proposed algorithm is conducted, guaranteeing con-
vergence, and showing the role played by the different
components of the proposed method.
Numerical experiments on synthetic data and real data
from neuroscience and finance corroborate the above
contributions and show superior performance to com-
peting alternatives.

The rest of the paper is organized as follows. Section II
presents the nonlinear SEM, kernel formulation, and random
feature approximation. Section III develops an online strategy
for learning the nonlinear SEM using a prediction-correction
algorithm. The dynamic regret analysis of the proposed algo-
rithm is performed in Section IV, and the numerical results
are provided in Section V. Section VI concludes the paper.
All proofs are collected in the Appendix.

II. PROBLEM FORMULATION
Consider N interdependent time series, and let yn[t] be the
value of the n-th time series at time t . A nonlinear SEM with
no exogenous variables models the dependencies among these
time series as

yn[t] =
N∑

n′=1,n′ �=n

fn,n′ (yn′ [t]) + un[t], n = 1, . . . , N, (1)

where fn,n′ (·) encodes the nonlinear influence of n′-th time se-
ries on n-th time series, and un[t] is the observation noise [23].
For example, in the context of brain networks, yn[t] represents
the electroencephalogram (EEG) recorded at the n-th node

(sensor) at time t , and fn,n′ (·) encodes the functional connec-
tivity between the nodes n and n′.

Kernel representation: The nonlinear structure in (1) allows
modeling a broader range of problems, but at the same time
makes it more difficult to analyse and model the time series
interactions. A typical way to approach these challenges is to
consider the nonlinear function in (1) belonging to a repro-
ducing kernel Hilbert space (RKHS):

Hn′ :=
{

fn,n′ (·) | fn,n′
(
yn[t ′]

)
=

∞∑
t=0

βn,n,′t κn′
(
yn[t ′], yn′ [t]

)}
, (2)

where κn′ (·, ·) is a positive definite kernel function,
measuring the similarity between its arguments. Every
positive definite kernel has an associated RKHS char-
acterized by the inner product: 〈κn′ (y, x1), κn′ (y, x2)〉 :=∑∞

t=0 κn′ (y[t], x1)κn′ (y[t], x2). RKHS kernels satisfy

the reproducing property
〈
κ

(p)
n′ (y, x1), κn′ (y, x2)

〉
=

κn′ (x1, x2), and induces a norm ‖ fn,n′ ‖2
Hn′ =∑∞

t=0
∑∞

t ′=0 βn,n,′t βn,n,′t ′ κn′ (yn[t], yn[t ′]). It is possible
to express any function in RKHS as an infinite sum of kernel
evaluations weighted by βn,n,′t [15].

For a node n, the functional dependency can be obtained by
solving

{
f̂n,n′

}
n′ = argmin

{ fn,n′ ∈Hn′ }
1

2

T −1∑
τ=0

[
yn[τ ] −

N∑
n′=1,n′ �=n

fn,n′ (yn′ [τ ])

]2

+ λ

N∑
n′=1,n′ �=n

�
(|| fn,n′ ||Hn′

)
, (3)

where �(·) is a regularizing function with the hyperparam-
eter λ > 0. We consider �(x) = |x| to induce a sparse SEM
model. In (3), the function fn,n′ (·) belongs to the RKHS,
which is an infinite dimensional space [cf. (2)]. However,
for non-decreasing regularizing functions such as �(x) =
|x|, x ≥ 0, the solution of (3) can be expressed with a finite
number of parameters using the Representer Theorem [24]:

f̂n,n′ (yn′ [τ ]) =
T −1∑
t=0

βn,n,′t κn′ (yn′ [τ ], yn′ [t]) . (4)

As the number of data samples increases, the number of kernel
evaluations in (4) and the parameters required to express the
function also increases. We overcome this curse of dimension-
ality by using random feature (RF) approximation.

RF approximation: RF approximation limits the kernel
evaluations to a fixed lower-dimensional Fourier space for ker-
nels with a shift-invariant property, i.e., κn′ (yn′ [τ ], yn′ [t]) =
κn′ (yn′ [τ ] − yn′ [t]); thus, preventing the dimensionality
growth. According to Bochner’s theorem [25], an inverse
Fourier transform of a probability distribution can represent
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a shift-invariant kernel:

κn′ (yn′ [τ ], yn′ [t]) =
∫

R
πκn′ (v) e jv(yn′ [τ ]−yn′ [t])dv

= Ev

[
e jv(yn′ [τ ]−yn′ [t])

]
, (5)

where πκn′ (v) is the kernel-specific probability density func-
tion (pdf), v is the random variable associated to the pdf, and
E[·] is the expectation operator. Given a sufficient number D
of i.i.d. samples {vi}D

i=1 drawn from distribution πκn′ (v), the
expectation is estimated by the sample mean:

κ̂n′ (yn′τ ], yn′t]) = 1

D

D∑
i=1

e jvi(yn′ τ ]−yn′ t]). (6)

Finding the probability distribution which is the inverse
Fourier transform of a kernel is a difficult task in general.
However, choosing a Gaussian kernel with variance σ 2 avoids
this difficulty since its Fourier transform is also a Gaussian
with variance σ−2. This allows writing the real part of (6) as

κ̂n′ (yn′τ ], yn′t]) = zv,n′ [τ ]
zv,n′ [t], (7)

where

zv,n′ [τ ] = 1√
D

[
sin (v1yn′τ ]) , . . . , sin (vDyn′τ ]) ,

cos (v1yn′τ ]) , . . . , cos (vDyn′τ ])
]


. (8)

A fixed dimensional (2D) representation of the function
f̂n,n′ (·) is obtained by substituting (7) into (4):

˜̂fn,n′ (yn′τ ]) =
T −1∑
t=0

βn,n,′t zv,n′ [τ ]
zv,n′ [t]

= αn,n′
zv,n′ [τ ], (9)

where αn,n′ = ∑T −1
t=0 βn,n,′t zv,n′ [t]. Using (9), we can refor-

mulate the non-parametric problem (3) into a parametric
optimization problem:

{̂
αn,n′

}
n′ = argmin

{αn,n′ }
1

2

T −1∑
τ=0

⎡⎣yn[τ ] −
N∑

n′=1,n′ �=n

α

n,n′zv,n′ [τ ]

⎤⎦2

+ λ

N∑
n′=1,n′ �=n

||αn,n′ ||2, (10)

The regularizer in (10) is a group-lasso regularizer to en-
force sparsity in the RF coefficient αn,n′ ∈ R2D. For brevity,
we stack the vectors αn,n′ and zv,n′ [t] along the index
n′ = 1, . . . , N, n′ �= n to form αn ∈ R2(N−1)D and zn[t] ∈
R2(N−1)D, and compactly write (10) as

α̂n = arg min
αn

Ln (αn) + λ

N∑
n′=1,n′ �=n

||αn,n′ ||2, (11)

where

Ln(αn) = 1

2

T −1∑
τ=0

[
yn[τ ] − α


n zn[τ ]
]2

. (12)

Solving problem (11) requires access to all the batch of time
series {yn[τ ]}T −1

τ=0 which may be practically infeasible as they
evolve over time and, at the same time, it is computationally
demanding. Targeting real-world nonstationary systems with
streaming data, we develop an online strategy enhanced by
prediction correction mechanisms [11] that exploit the non-
linear SEM evolution. However, the group-lasso regularizer,
required to enforce sparse dependencies is non-differentiable,
making the deployment of prediction-correction methods not
straightforward.

III. TIME-VARYING SOLUTION
A. ONLINE LOSS FUNCTION
Following online optimization, we replace the batch loss in
(12) with a recursive least square loss (RLS) using an expo-
nential window:

	̃n
t (αn) = μ

t∑
τ=0

γ t−τ 	n
τ (αn). (13)

where 	n
τ (αn) = 1

2 [yn[τ ] − α

n zn[τ ]]2 is the instantaneous loss

function, γ ∈ (0, 1) is the forgetting factor of the window, and
μ = 1 − γ normalizes the window. The RLS loss function can
be expanded as

	̃n
t (αn) = 1

2
μ

t∑
τ=0

γ t−τ
(
y2

n[τ ] + α

n zn[τ ]zn[τ ]
αn

−2yn[τ ]zn[τ ]
αn
)

= 1

2
μ

t∑
τ=0

γ t−τ y2
n[τ ] + 1

2
α


n �n[t]αn − r

n αn, (14)

where

�n[t] = μ

t∑
τ=0

γ t−τ zn[τ ]zn[τ ]
, (15)

rn[t] = μ

t∑
τ=0

γ t−τ yn[τ ]zn[τ ]. (16)

The new optimization problem using the RLS loss becomes

arg min
αn

	̃n
t (αn) + λ

N∑
n′=1,n′ �=n

‖αn,n′ ‖2. (17)

The objective function in (17) has a differentiable loss but
a non-differentiable regularizer. We solve it using composite
objective mirror descent (COMID) [26] with the online up-
dates:

α(1)
n [t + 1] = arg min

αn

⎡⎣∇α	̃n
t (αn[t])
 (αn − αn[t])
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+ 1

2νt
‖αn − αn[t]‖2

2 + λ

N∑
n′=1,n′ �=n

‖αn,n′ ‖2

⎤⎦ , (18)

where α
(1)
n [t + 1] denotes the one-step COMID descent of

αn[t], νt the step size, and ∇α	̃n
t (αn[t]) the gradient of

	̃n
t (αn[t]) w.r.t. αn, which can be computed from (14) as

∇α	̃n
t (αn[t]) = �n[t]αn − rn[t]. (19)

In an online setting, the parameters �n[t] and rn[t] can be
estimated recursively as �n[t] = γ�n[t − 1] + μzv[t]zn[t]

and rn[t] = γ rn[t − 1] + μyn[t]zn[t] [cf. (15) and (16)].

The COMID update (18) can be solved in closed-form for
each lasso group αn,n′ ∈ αn [cf. (10)] using the multidimen-
sional shrinkage thresholding operator (MSTO) [27]:

α
(1)
n,n′ [t + 1] = (

αn,n′ [t] − νt vn,n′
)

×
[

1 − νtλ

‖αn,n′ [t] − νt vn,n′ ‖2

]
+

, (20)

where
[
v


n,1, v

n,2, . . . , v


n,N

]

� ∇α	̃n

t (αn[t]) and [x]+ =
max{0, x}. The MSTO solution (20) involves a one-step CO-
MID update. For brevity of the succeeding formulation, we
represent the K-step version of (20) as

α(K )
n [t + 1] = MSTO(K ) (

	̃n
t (αn[t]), νt , λ

)
, (21)

which computes the K-step descent update of αn,n′ [t] as in
(20), for n′ = 1, . . . , N, n′ �= n, for the loss function 	̃n

t (·) with
the parameters νt and λ, and stacks them to form α

(K )
n [t + 1].

B. PREDICTION-CORRECTION ALGORITHM
Although we can follow a time-unstructured learning strategy
by directly using (21), such an approach discards the model
evolution and leads to a suboptimal solution. Problem (17)
features a strongly convex time-varying loss function and a
properly convex regularizer, and such an optimization prob-
lem can be solved online using time-structured optimization
methods that account for the model evolution. We follow the
prediction-correction strategy as proposed in [11].

Prediction: The first step is to predict at time t , the yet
unobserved loss function 	̃n

t+1(αn) using Taylor series expan-
sion:

	̃
n,pr
t+1 (αn) = αn


∇αα	̃n
t (αn)αn + [∇α	̃n

t (αn[t])

+∇tα	̃n
t (αn[t]) − ∇αα	̃n

t (αn[t])αn[t]
]


αn (22)

In addition to the gradient computed in (19), prediction (22)
requires computing the Hessian ∇αα	̃n

t (αn[t]) and the partial
derivative of ∇α	̃n

t (αn[t]) w.r.t. time ∇tα	̃n
t (αn[t]) which have

the forms

∇αα	̃n
t (αn[t]) = �n[t], (23)

∇tα	̃n
t (αn[t]) = (�n[t] − �n[t − 1])α − (rn[t] − rn[t − 1]).

(24)

FIGURE 1. Schematic of the proposed method.

The group-lasso regularizer is a time-invariant function and
just performs the thresholding operation in (20), irrespective
of the time indices. Hence, it does not require prediction.
Using the predicted loss (22) in place of (17), we predict the
RF coefficients as

αpr
n [t + 1] = MSTO(P) (

	̃
n,pr
t+1 (αn[t]), νt , λ

)
, (25)

where α
pr
n [t + 1] denotes the P-step COMID descent of αn[t]

under the predicted loss. The gradient of the predicted loss
involved in the MSTO operation (25) can be obtained from
(22) as

∇α	̃
n,pr
t+1 (αn[t]) = (2�n[t − 1] − �n[t − 2])αn

+ 2rn[t − 1] − rn[t − 2]. (26)

Correction: At time t + 1, the loss 	̃n
t+1(·) [cf. the one ap-

pearing in (17)] becomes available, and the predicted RF
coefficients α

pr
n [t + 1] are corrected via C-step COMID de-

scents:

αn[t + 1] = MSTO(C) (
	̃n

t+1

(
αpr

n [t + 1]
)
, νt , λ

)
, (27)

A high-level system model of the proposed method is pre-
sented in Fig. 1. At each time instant, the algorithm computes
two estimates of the model parameters. For instance, at time
t + 1, we have two estimates: i) the predicted coefficient
α

pr
n [t + 1], which is predicted based on evolution of the

model and ii) the corrected coefficient αn[t + 1], which is
obtained by correcting the predicted coefficient when a new
data sample is available. Note that in the proposed framework,
nodes do not share the actual data {yn[t + 1]}N

n=1,n �=n′with

each other; instead the random features {zv,n[t + 1]}N
n=1,n �=n′

are shared, which ensures the privacy. A pseudocode of the
proposed prediction-correction algorithm is provided in Al-
gorithm 1. The computational complexity of the proposed
algorithm is mainly contributed by the gradient evaluation
steps (26) and (19); and it is of order O(N2D2) per node.

IV. DYNAMIC REGRET
To characterize the performance of the proposed online algo-
rithm, we analyse its dynamic regret [28], which characterizes
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Algorithm 1: Proposed Algorithm.

the distance of the online loss function from the optimal
counterpart in each time instant. The regret analysis is derived
under the following mild assumptions:

A1) Bounded time series: there exists By > 0 such that
{|yn[t]|2}n,t ≤ By ≤ ∞,

A2) Shift-invariant kernels: the kernels are shift-invariant,
i.e., k(xi, x j ) = k(xi − x j ).

A3) Bounded minimum eigenvalue of �n[t]: There exists
ρl > 0 such that min(�n[t]) ≥ ρl , ∀t , where min(·)
is the minimum eigenvalue operator.

A4) Bounded maximum eigenvalue: there exists L > 0
such that 2max(�n[t]) < L < ∞, ∀t , where max(·)
is the maximum eigenvalue operator.

Dynamic regret is defined as the sum of differences be-
tween the online estimated cost function and optimal cost
function:

Rn[T ] =
T −1∑
t=0

[
hn

t (αn[t], zn[t]) − hn
t

(
β∗

n[t], κn[t]
)]

, (28)

where αn[t] collects the estimated RF coefficients [cf. (27)]
and zn[t] is the RF features; and β∗

n[t] ∈ R(N−1)t and κn[t]
are the optimal coefficients and the kernel-based features in
RKHS, respectively. The function hn

t (·, ·) is defined as

hn
t (w, x) = 1

2

[
yn[t] − w
x

]2 + λ

N∑
n′=1

‖wn,n′ ‖2, (29)

which is related to (11) by replacing the cumulative loss by an
instantaneous loss. We also define the optimal RF coefficients
α∗

n[t] as

α∗
n[t] = arg min

αn
hn

t (αn, zn[t]). (30)

Adding and subtracting hn
t (α∗

n[t], zn[t]) in (28) gives

Rn[T ] =
T −1∑
t=0

(
hn

t (αn[t], zn[t]) − hn
t

(
α∗

n[t], zn[t]
))

︸ ︷︷ ︸
Rrf

n [T ]

+
T −1∑
t=0

(
hn

t (α∗
n[t], zn[t]) − hn

t

(
β∗

n[t], κn[t]
))

︸ ︷︷ ︸
ξn[T ]

, (31)

where Rrf
n [T ] is the regret w.r.t. optimal cost in RF space and

ξn[T ] is the cumulative error in RF approximation. Dynamic
regret can be bounded by bounding Rrf

n [T ] and ξn[T ].
Theorem 1: Under assumptions A1, A2, A3, and A4, the

dynamic regret Rn(T ) satisfies

Rn(T ) ≤
((

1 + L

2ρl

)√
2(N − 1)DBy + λ

√
N − 1

)
× T

(
q(P+C)‖α∗

n[0]‖2 + q(P+C)d + q(P+C+1)l
) + εηLhT,

where η > 0 is a constant, Lh is the Lipschitz continuity
parameter of function hn

t (·, ·), d is the maximum temporal
variation in the optimal solution ‖α∗

n[t] − α∗
n[t − 1]‖2, and

l is the maximum error in the optimal prediction ‖α∗
n[t] −

α
pr∗
n [t]‖2 with α

pr∗
n [t] the optimum prediction at time t . The

quantity q ∈ (0, 1) is the contraction coefficient, and its value
for various optimization techniques is provided in [29].

Proof: See Appendix.
The dynamic regret bound in Theorem 1 is linear in

time, which implies that limt→∞ Rn(T )/T = constant , where
constant is the steady state error, which depends on l =
‖α∗

n[t] − α
pr∗
n [t]‖2, d = ‖α∗

n[t] − α∗
n[t − 1]‖2, and the con-

stant ε ≥ 0. Having a linear variation of the dynamic regret is
a favourable attribute of the proposed online algorithm, since
it implies that asymptotically, the solution will converge to the
optimal online solution, but with steady state errors. Further, if
d and l are low (slowly varying systems), it is possible to have
a very low bound for the asymptotic Rn(T )/T by controlling
ε. The constant ε is inversely related to the number of RF
features [30], meaning that setting ε to zero requires an infinite
number of RF features. Hence, ε is controlled in the expense
of model complexity.

V. NUMERICAL EXPERIMENTS
This section compares the proposed algorithm with competing
alternatives using both synthetic data from Erdös-Rényi graph
models and real data from epileptic seizure and financial time
series. We compare the proposed approach with the following
alternatives:
� Pro-SEM: the time-unstructured linear time-varying

SEM from [12], based on a proximal online gradient
framework;

� TV-SEM: the time-structured linear time-varying SEM
from [31];

� MSTO: A nonlinear SEM by merely performing a one-
step multidimensional shrinkage thresholding [cf. (21)]
without any prediction-correction steps.

The first two alternatives are considered as baselines as
they have also shown superior performance to other online
learning strategies in the respective papers. Instead, the third
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alternative is considered to highlight the importance of the
proposed time-structured strategy.

In all experiments, the proposed algorithm has one-step
prediction (P = 1) and one-step correction (C = 1). Wherever
the SEM topologies are plotted for visualization, we use the
normalized 	2 norms of the RF coefficients as the topology es-
timates, defined as b̂n,n′ [t] := ‖αn,n′ [t]‖2/(maxm ‖αn,m[t]‖2).
The per node computational complexity of Pro-SEM, TV-
SEM, MSTO, and the proposed method are in the order
of O(N2), O(N3), O(N2D2), and O(N2D2), respectively.
Compared to the proposed algorithm, MSTO has the same
computational complexity, whereas the linear Pro-SEM is
computationally lighter. TV-SEM’s computational complex-
ity increases cubically, while that of the proposed method
increases quadratically, which is favourable when scaling to
large networks.

A. SYNTHETIC DATA
In this experiment, we consider simulated data from a slowly-
varying SEM model. We generate graph-connected time series
using the following nonlinear SEM model:

y[t] = 0.1(I − W[t])−1u[t] + 0.1 sin((I − W[t])−1u[t]),
(32)

where y[t] ∈ R5 is the signal at time t , u[t] ∼ N (0, 0.1),
I ∈ R5×5 is the identity matrix, and the operator sin(·) acts
element-wise to introduce non-linearities. The matrix W[t] ∈
R5×5 is constructed such that it attributes slowly-evolving
model dynamics to (32), and is of the form:

W[t + 1] = W[t] + 0.001 sin(0.01t )W[t], (33)

where W[0] ∈ R5×5 is constructed using an Erdős-Rényi ran-
dom graph with diagonal entries zero.1

Our synthetic data set consists of 100 multi-variate time
series, generated using (32), each having T = 5000 signal
samples. Out of the 100 multi-variate time series, 20 are used
to tune the hyperparameter of all the algorithms based on a
grid search for the best model fitness. The model fitness is
measured via Mean Squared Error (MSE), defined as

MSE[T ] =
∑T −1

t=0 ‖y[t] − ŷ[t]‖2
2

NT
, (34)

where ŷ[t] ∈ R5 is the signal estimated using the learned SEM
model. The hyperparameter values of the proposed algorithm
are (σn, λ, γ , νt ) = (5, 0.0009, 0.98, 2/ max{max(�n[t])}n)
and the RF count is D = 5. The MSEs averaged across the
remaining 80 multi-variate time series are plotted in Fig. 2,
which shows that the proposed method outperforms all al-
ternatives. This is because the alternatives do not exploit
the evolution of the model or cannot learn non-linearities,
whereas the proposed algorithm features both.

Dynamic Regret: In Fig. 3, we plot the rate of change
of the dynamic regret w.r.t. optimal cost function in RF

1We choose a small Erdős-Rényi graph of size 5 to corroborate the dynamic
regret, which involves high computational complexity.

FIGURE 2. MSE comparison on the synthetic data set.

FIGURE 3. Dynamic regret in RF space.

space Rrf
n [T ]/T . The convergence of Rrf[T ]/T is evident from

Fig. 3, which supports our theoretical analysis in Theorem 1.
We wish to note that a numerical evaluation of the second
component of the dynamic regret ξn[T ] is a daunting, complex
process since it involves finding the optimal parameters in a
high dimensional RKHS. However, ξn[T ]/T is upper bounded
by the value εηLh [cf. Lemma 2], where ε is a user-controlled
parameter. By setting ε to be very small, the rate of change
of the overall dynamic regret Rn[T ]/T can be made closer to
Rrf[T ]/T , when T → ∞.

B. REAL DATA: EPILEPTIC SEIZURE
In this experiment, we examine the functional connectivities
among different brain regions via learned SEM topologies
using an EEG dataset. Our goal is to distinguish between
the normal and epileptic dynamics in the brain networks.
We use an EEG dataset of children with intractable seizures
collected from the Children’s Hospital, Boston [32]. The data
set consists of multivariate time series of potential differences
between electrodes inserted in the brain. There are a total of
23 times series measuring EEG activities in different brain
regions. We fit this data using different algorithms and test
their capability to distinguish the pre-seizure and the seizure
events. We measure the performance via the Maximum Mean
Discrepancy (MMD) of the distribution of nodal degrees,
which is a standard approach used to measure the distance
between two graphs [33], [34]. The MMD is defined as

MMD2(p1||p2) = Ex,y∼p1

[
k(x, y)

] + Ex,y∼p2

[
k(x, y)

]
− 2Ex∼p1,y∼p2

[
k(x, y)

]
(35)

where k(x, y) is the radial basis kernel function computing the
distance between x and y, and MMD2 measures the distance
between distributions p1 and p2. In this experiment, p1 and p2
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FIGURE 4. Snapshots of estimated topologies.

TABLE 1. Maximum Mean Discrepancy for Node Degree on EEG Data

correspond to the distributions of nodal degrees for the pre-
seizure and seizure events, respectively.

We used the proposed method with the RF count
D = 5 along with the hyperparameters (σn, λ, γ , νt ) =
(1, 0.1, .98, 2/ max{max(�n[t])}), obtained using a grid
search for the best MMD. The hyperparameters of other al-
gorithms are also tuned using the same strategy.

Table 1 compares the MMD of the different algorithms
using the seizure data from two subjects, S1 and S2. The MMD
of the proposed algorithm is an order-one magnitude higher
compared to alternatives, which highlights that the proposed
algorithm distinguishes the seizure and the pre-seizure events
better. This is due to the fact that the functional connectiv-
ities in brain are highly nonlinear [15], and all alternatives,
except MSTO, discard the nonlinear components in the con-
nectivity. MSTO, on the other hand, can accommodate the
non-linearities; however, it does not take advantage of the
brain connectivity evolution, and is at the second place in the
comparison.

A snapshot of the estimated graph topology before seizure
and after seizure is shown in Fig. 4(a) and (e), respectively.
Before the seizure, the connections are concentrated across
certain regions, and during the seizure, they get more dis-
rupted, which agrees with the observations in [35]. The reason
for the disrupted topology is the increase in pathogenic neural
discharge during seizure [36].

We further compare the per-node computational complexity
of the proposed method and the time-structured benchmark

FIGURE 5. Comparison of cumulative computational time on epileptic
data.

TABLE 2. Categorized List of Financial Times Series

TV-SEM. The experiment is conducted in a machine with
specifications: 2.4 GHz 8-core Intel Core i9 and 16 GB 2667
MHz DDR4 RAM. In Fig. 5, we plot the cumulative compu-
tation time of the prediction and the correction steps, where it
can be observed that the proposed model performs the predic-
tion and the correction much faster. The shorter computation
time stems from the node separability feature, which the TV-
SEM does not have. The other alternatives are not considered
in Fig. 5 since they are time-unstructured algorithms that do
not take advantage of the model evolution, and hence, are
faster than the time-structured methods.

C. FINANCIAL TIME SERIES
We consider financial time series belonging to three cat-
egories: airline industry, oil industry, and cryptocurrency,
which are listed in Table 2. The data set includes 15 time
series of 879 samples each, which are the closing price values
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TABLE 3. Clustering Coefficients of Stock Groups Under COVID and
post-COVID Market Dynamics, Computed Using (36)

of the stocks from 01-06-2019 to 14-10-2022, including the
COVID-19 outbreak. The pandemic had a serious impact on
world economy, affecting the natural dynamics of the stock
market. A high dip in the S & P 500 index was observed
around 25-02-2020 to 25-06-2020, which we mark as the
pandemic period. Our goal in this experiment is to identify
clusters in the data using the learned SEM topologies and
examine the variations in the clusters during and after the
pandemic. Since the stock groups in Table 2 are formed by
selecting the stocks from similar industries, they are expected
to show stronger intra-group dependencies than intergroup
dependencies, under the normal market conditions [37].

Let Vi = 1, 2, 3, denote the set of nodes corresponding to
the stocks in each group. We measure the performance via the
clustering coefficient ρi that computes the ratio of the number
of edges within group-i to the total number of edges connected
to group-i members:

ρi =
∑

n∈Vi
1(bn,n′ > δ|n′ ∈ Vi )∑

n∈Vi
1(bn,n′ > δ) + ∑

n′∈Vi
1(bn,n′ > δ)

, (36)

where δ is a threshold selected to consider the strongest 2 N
edges for clustering; and 1(·) is an indicator function de-
fined as 1(x) = 1, when x is true, and 0, otherwise. A high
value of ρi indicates that intra-group interactions in group-
i are stronger compared to its intergroup interactions. The
first 20% of the data samples are used to tune the hyper-
parameter for the lowest MSE resulting in (σn, λ, γ , νt ) =
(1, 1, .98, 2/ max{max(�n[t])}) and RF count for the exper-
iment is D = 10.

Table 3 lists the clustering coefficients of the three groups,
averaged across 80 days, randomly sampled from the COVID
and post-COVID intervals. As expected, the clustering is more
predominant with post-COVID market dynamics than with
the COVID market dynamics. The proposed method identi-
fies better such clusters compared with the alternatives. The
MSTO algorithm is next in the comparison. This observation
is supported by the fact that the interactions among the finan-
cial time series are complex [38], which cannot be effectively

FIGURE 6. Estimated SEM topology on 05-05-2020 (during COVID).

FIGURE 7. Estimated SEM topology on 08-12-2021 (after COVID).

modeled using the linear Pro-SEM and TV-SEM. It is further
interesting to note here as the crypto cluster is much easier
identified in the post-COVID period. This follows the intuition
that the airline and oil sectors have more financial transactions
between them, whereas cryptocurrencies are exchanged only
with each other.

Further, the SEM topologies estimated using the proposed
algorithm for a COVID-affected market day and a post-
COVID day are shown in Figs. 6 and 7, respectively. In line
with the expectation, more intra-group market interactions can
be observed in Fig. 7, whereas these interactions get disrupted
in Fig. 6.

VI. CONCLUSION
This paper proposed an online algorithm to learn the nonlinear
structural equation model (SEM), targeting the streaming data
from real-world systems with nonlinear dynamics. The pro-
posed method leverages the kernel formulation with random
feature approximation to obtain a low-dimensional repre-
sentation of the nonlinear dynamics. The algorithm uses a
prediction-correction strategy equipped with a group-lasso-
based optimization framework, solved via composite object
mirror descent. Unlike the state-of-the-art algorithms, the pro-
posed method offers data privacy at the network node through
node separability and random features. In addition, the pro-
posed online problem is separable across nodes, improving
scalability in large graphs. A dynamic regret analysis has
been derived to ensure the theoretical guarantee of the al-
gorithm. Using synthetic, epileptic, and financial data, we
demonstrated that the SEM topology learned using the pro-
posed model fits the data better and can distinguish between
the changes in the system dynamics with less computational
complexity compared to the state-of-the-art alternatives. Our
future research will involve extending the algorithm by incor-
porating vector autoregressive (VAR) or structural VAR mod-
els, considering time-lagged interactions among the nodes,
which are inherent to many real-world networks.
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APPENDIX
PROOF OF THEOREM 1
Theorem 1 provides an upper bound for the dynamic regret
Rn(T ) = Rrf

n (T ) + ξn(T ). We prove the theorem by bounding
Rrf

n (T ) and ξn(T ) using the following two lemmas.
Lemma 1: Under assumptions A1, A3, and A4, and letting

νt = 2
L , the dynamic regret w.r.t. the optimal cost function in

the RF space is upper bounded by

Rrf
n (T ) ≤

((
1 + L

2ρl

) √
2(N − 1)DBy + λ

√
N − 1

)
× T

(‖α∗
n[0]‖2 + q(P+C)d + q(P+C+1)l

)
.

Proof: The Cauchy-Schwarz inequality allows us to
bound Rrf

n [T ] by bounding the cumulative optimality gap∑T −1
t=0 ‖αn[t] − α∗

n[t]‖2 and the gradient of the loss function
‖∇	̃n

t (αn[t])‖2 [39].
The bound for optimality gap is given in [9, Prop. 1]:

‖αn[t] − α∗
n[t]‖2 ≤ qC (

qP‖αn[t − 1]

−α∗
n[t − 1]‖2 + qPd + (

1 + qP)
l
)

(37)

Since q < 1, we can express cumulative error in terms of the
initial optimal solution α∗

n[0]. Setting αn[0] = 0, we bound the
cumulative optimality gap as

T −1∑
t=0

‖αn[t] − α∗
n[t]‖2 ≤ T q(P+C)‖α∗

n[0]‖2

+ T q(P+C)d + T q(P+C+1)l (38)

The gradient of the loss is bounded by following Lemma 1.2
in [19]:

‖∇	̃n
t (αn[t])‖2 ≤

((
1+ L

2ρl

) √
2(N −1)DBy+λ

√
N−1

)
(39)

The claim can be then proved by adding (38) and (39). �
Lemma 2: Under assumptions A1 and A2, there exists a

constant ε ≥ 0 such that the cumulative approximation error
ξn[T ] satisfies

ξn(T ) ≤ εηLhT .

Proof: The proof follows from [19, Th, 2]. �
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