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Online Edge Flow Imputation on Net-
works

R. Money, J. Krishnan, B. Beferull-Lozano, E. Isufi

Abstract: An online algorithm for missing data imputation for
networks with signals defined on the edges is presented. Leveraging the
prior knowledge intrinsic to real-world networks, we propose a bi-level
optimization scheme that exploits the causal dependencies and the flow
conservation, respectively via (i) a sparse line graph identification strat-
egy based on a group-Lasso and (ii) a Kalman filtering-based signal recon-
struction strategy developed using simplicial complex (SC) formulation.
The advantages of this first SC-based attempt for time-varying signal im-
putation have been demonstrated through numerical experiments using
EPANET models of both synthetic and real water distribution networks.

E.1 Introduction
Multivariate time series analysis is paramount in sensor, brain, and social networks,
to name a few. Data generated from such interdependent systems can be repre-
sented as a time-varying graph, in which the recorded signals may be linked to the
nodes [100, 101], or the edges [102], depending on the task at hand. Many applica-
tions including anomaly detection [103], time series forecasting [104], and missing
data imputation [6] can benefit from learning and exploiting the graph structure.
Among these applications, it is worth paying special attention to the missing data
imputation [6, 18, 19] since many real-world systems are partially observed because
of Re.g., sensor or communication failure, or simply the impossibility to have sen-
sors in all locations. This paper focuses on time-varying data imputation on the
edges of networks, such as water or traffic networks, referred to as flow-based net-
works . While there are methods for imputing data at the nodes [6,18,19,105,106],
extending them to flow-based networks is not immediate.

Imputation in flow-based networks can benefit from simplicial complex (SC) for-
mulations [45,107], using algebraic tools from Hodge theory [108], [109] to encapsu-
late the adjacencies among the flow signals, e.g., the flow conservation in the network.
In addition to this spatial information that SC encapsulates, one can also exploit the
temporal priors, such as causal dependencies among the signals [1–4,11,21–23]. The
flow signals are mostly interdependent in real-world systems, and their dependencies
are often time-lagged in nature and cannot be observed physically. For instance, the
flow in a pipe of a water network can influence the flow in another non-directly con-
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Figure E.1: Causal influence of (t − 1)-th flows on t-th flows, represented using a
line graph.

nected pipe in a time-lagged way. Similarly, a traffic block on a road can causally
affect the traffic on another road. In such real-world networks, imputation can be
enhanced by exploiting causal interactions between the flows. Imputation strate-
gies utilizing both spatial and temporal dependencies have not been explored in
flow-based networks.

This paper proposes a data imputation algorithm exploiting the spatio-temporal
priors related to flow conservation and causal dependencies among flows. The al-
gorithm learns a line graph connecting the flows, which stands in for an abstract
representation of the time-lagged causal dependencies, as illustrated in Fig. E.1.
One major challenge here is that a batch-based offline strategy is impractical in
applications requiring real-time imputation of streaming flows. The proposed strat-
egy learns a line graph in an online fashion. Using the learned line graph at each
time step, a flow-conservation-based Kalman filter estimates the missing flows from
streaming partial observations. The main contributions of this work are:

1. A method to estimate sparse causal dynamic dependencies among flows. This
is achieved via a vector autoregressive model and a group-Lasso-based opti-
mization framework. The latter is solved in an online fashion via composite
objective mirror descent.

2. A Kalman-filter-based data imputation technique for streaming flows by ex-
ploiting the learned causality and the flow conservation devised via simplicial
complexes.

3. The proposed algorithm can impute permanently unobserved flows, benefiting
from the joint exploitation of the flow conservation and the causal dependen-
cies.

To the best of our knowledge, this is the first work that considers multivariate time
series data over simplicial complex. This work opens the door to the exploitation of
learned line graphs and adjacency relationships among the time-varying signals over
simplices (e.g., edge flows), which is useful in various applications such as forecasting,
control strategy design, and change point detection.
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E.2 Preliminaries

Consider a physically connected network G ≜ (V , E), where V and E denote the sets
of nodes and edges with cardinalities V ≜ |V| and E ≜ |E|, respectively. We consider
a flow-based network, for example, a water network with nodes as junctions, edges
as pipes, and water flows as signals on the edges.

E.2.1 Modelling Flow Conservation in a Simplicial Complex

Given the set of nodes V , a k-simplex Sk is a subset of V having k + 1 distinctive
elements [34], [35]. A simplicial complex (SC) of order K, denoted as ΨK , is a set
of k-simplices for k=0, 1 . . . , K such that a simplex Sk∈ΨK only if all of its subsets
also belong to ΨK . The typical low-order simplices, named after their geometrical
shapes, are nodes (0-simplex), edges defined by two nodes (1-simplex), and triangles
defined by three nodes (2-simplex). Let the number of k-simplices in ΨK be Nk.
The proximities between different k-simplices in an SC can be represented using an
incidence matrix Bk ∈ RNk−1×Nk , k ≥ 1, where the row and the column indices of
Bk correspond to (k − 1)- and k-simplices, respectively. The structure of an SC is
encoded by Hodge Laplacians, constructed using Bk’s as

Lk =


Bk+1B

⊤
k+1, for k = 0,

B⊤
k Bk +Bk+1B

⊤
k+1, for 1 ≤ k ≤ K − 1,

B⊤
KBK , for k = K,

(E.1)

where L0 is the graph Laplacian. The higher-order Laplacians Lk, for 1≤k≤K−1,
consist of two terms: i) the lower Laplacian, Ll

k≜B
⊤
k Bk, which encodes the adjacen-

cies w.r.t. next-low-order simplices; and ii) the upper Laplacian, Lu
k ≜ Bk+1B

⊤
k+1,

which encodes the adjacencies w.r.t. next-high-order simplices.
In a SC, k-simplex signals are mappings from k-simplices to the real set R.

The 0-simplex, 1-simplex, and 2-simplex signals reside on the nodes, edges, and
triangles, respectively. For flow-based networks, we consider 1-simplex signals or
simply the flow signals. The flow signal at time t between two nodes i and j is
defined as f(i,j)[t] = −f(j,i)[t], ∀ (i, j) ∈ E. We stack the flows into a vector f̃ [t] =

[f1[t] f2[t] . . . fE [t]]
⊤. The node-to-edge incidence matrix B1 ∈ RV×E has entries

B1(m,n) = 1, if the flow n is leaving the node m, −1 if entering the node m, and
0 if the flow is not connected to m. According to the flow conservation principle,
the sum of flows entering and leaving a node is zero, i.e., B1f̃ [t] = 0 ∈ RV [20]. The
first-order lower Laplacian Ll

1, can be used to model the flow conservation since it
describes the relationship among the edges incidenting on a node, which is given by

∥B1f̃ [t]∥22 = f̃ [t]⊤B⊤
1 B1f̃ [t] = f̃ [t]⊤Ll

1f̃ [t] = 0. (E.2)

One can also exploit the edge-to-triangle relationship of flows using B2, but we do
not consider it since there is no contextual prior associated with B2.

E.2.2 Modelling Causal Dependencies using Line Graphs

We also take advantage from the fact that flows in a real-world network exhibit
causal interactions. We construct a dynamic line graph connecting the flows using
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a P -th order dynamic VAR model to describe the time-lagged causal dependencies
among the flows:

f̃ [t] =
P∑

p=1

[
Ã(p)[t]f̃ [t− p] + b(p)[t]

]
+ u[t], (E.3)

where Ã(p)[t] ∈ RE×E is the unknown weighted adjacency matrix of the line graph
that captures the influence of the p-th time-lagged vector flow on the vector flow at
time t, and u[t] is the process noise, Rwhich is assumed to be temporarily white and
zero mean. The term b(p)[t] ∈ RE is the bias component, which makes the model
slightly different from a standard VAR model. We include the bias term since
the normalization of the flow signals, which is a requirement for the subsequent
formulation, cannot easily be achieved for permanently unobserved flows. Using
an augumented matrix A(p)[t] = [Ã(p)[t] b(p)[t]] ∈ RE×E+1 and the signal vector
f [t] = [f̃ [t]⊤; 1]⊤ ∈ RE+1, (E.3) can be compactly written as

f [t] =
P∑

p=1

A(p)[t]f [t− p] + u[t]. (E.4)

E.3 Problem formulation

Assume that at a particular time t, only a subset of flows is observable. The observed
flow vector is fo[t] = M[t]f [t] ∈ RE+1, where M[t] ∈ R(E+1)×(E+1) is a diagonal masking
matrix, with M(n, n)[t] = 0 if the n-th flow is missing and M(n, n)[t] = 1, otherwise.
In this setting, some flows can be permanently unobserved. The goal is to find in
an online fashion both a sequence of line graphs {A(p)[t]}p,t, representing the causal
dependencies between flows and the original signal f [t] from the partial observation
fo[t].

E.4 Online estimation of the line graph and data

A naive one-step optimization strategy to estimate A(p)[t] and f [t] leads to nonconvex
formulations that are difficult to solve [6]. Hence, we propose a bi-level optimization
problem with the following steps: i) signal reconstruction- missing flows are esti-
mated using the observed flows by assuming a known line graph topology; and ii)
line graph identification- line graph is estimated using the reconstructed signals.

E.4.1 Signal Reconstruction

Assume that we have an estimate at time t of the topology Â(p)[t], ∀p and estimates
of P previous flow values {f̂ [t−p]}Pp=1. We propose a Kalman-filtering-based strategy
for signal reconstruction, and to facilitate the formulation, the available data are
arranged as
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ÂS [t]≜


Â(1:P )[t]︸ ︷︷ ︸
E × P (E + 1)

IP (E + 1)− E 0︸︷︷︸
(P (E + 1)− E)× E

,CS [t]≜


M[t]︸︷︷︸

(E + 1)× (E + 1)

0︸︷︷︸
(E + 1)× (P − 1)(E + 1)

0︸︷︷︸
(P − 1)(E + 1)× (E + 1)

I(P − 1)(E + 1)

,

yS [t] ≜ [fo[t]
⊤; f̂ [t− 1 : t− P + 1]⊤]⊤, (E.5)

f̂S [t] ≜ [f̂ [t]⊤; f̂ [t− 1]⊤; . . . ; f̂ [t− P + 1]⊤]⊤,

where Â(1:P )[t] = [Â(1)[t], . . . , Â(P )[t]] and IN denotes N×N identity matrix. A state-
space representation capturing the VAR relationships (E.15) and the missing data
modelling is

f̂S [t] = ÂS [t]f̂S [t− 1] + vt, (E.6)

yS [t] = CS [t]f̂S [t] +wt, (E.7)

where f̂S [t] ∈ RP (E+1) is current state vector, ÂS [t] ∈ RP (E+1)×P (E+1) is the state
transition matrix and yS [t] ∈ RP (E+1), and CS ∈ RP (E+1)×P (E+1) are the observed
signal and the observation matrix, respectively. The process noise vt and the ob-
servation noise wt are assumed zero-mean Gaussian. The optimal estimates of f̂S [t]
can be obtained using a Kalman filter (KF) [33].

1) Prediction:

f̂St|t−1 = ÂS [t]f̂St−1|t−1, (E.8)

Pt|t−1 = ÂS [t]Pt−1|t−1Â
S [t]

⊤
+Qt, (E.9)

where t|t− 1 refers to the estimate at time t given the observation up to t− 1, Pt|t−1 ∈
R(E+1)P×(E+1)P is the prediction error covariance matrix and Qt ∈ R(E+1)P×(E+1)P ,
the noise covariance matrix.
2) Update: The KF update of the state vector can be expressed as convex opti-
mization problem [46], [47]:

minimize
f̂S
t|t,wt

w⊤
t Rt

−1wt+(f̂St|t − f̂St|t−1)
⊤P−1

t|t−1(f̂
S
t|t − f̂St|t−1),

subject to yS [t] = CS [t]f̂St|t +wt. (E.10)

Solving (E.10) yields the standard KF update equation:

f̂St|t = f̂St|t−1 +Kt(y
S [t]−CS [t]f̂St|t−1). (E.11)

The covariance matrix can be updated as

Pt|t = Pt|t−1 −KtC
S [t]Pt|t−1. (E.12)
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where Kt =Pt|t−1C
S [t]⊤(CS [t]Pt|t−1C

S [t]⊤+Rt)
−1 is the Kalman gain and Rt is the

covariance matrix of the observation noise.
3) Flow-conservation update: The KF update problem (E.10), penalized with
the flow conservation (E.2), can be written as

minimize
f̂S
t|t,wt

w⊤
t Rt

−1wt + (f̂St|t − f̂St|t−1)
⊤P−1

t|t−1(f̂
S
t|t − f̂St|t−1)

+ µf̂St|t[t]
⊤Lf̂St|t[t],

subject to yS [t] = CS [t]f̂St|t +wt, (E.13)

where

L =

[
L̃l
1 0(E + 1)× (P − 1)(E + 1)

0(P − 1)(E + 1)× (E + 1) 0(P − 1)(E + 1)× (P − 1)(E + 1)

]
,

with L̃l
1=[Ll

1 0E ;0
⊤
E 0] ∈ R(E+1)×(E+1), the Laplacian Ll

1 padded with zero vector
0E ∈ RE to nullify the bias component in f [t] and µ is a hyperparameter. We regu-
larize flow conservation instead of imposing it as a constraint, based on the assump-
tion that the flow conservation is not strictly satisfied in real-world networks. The
optimization problem (E.13) is quadratic with a closed-form solution (see, E.7.1):

f̂St|t =(CS [t]
⊤
R−1

t CS [t] +P−1
t|t−1 + 2µL)−1×

(CS [t]
⊤
Rt

−1yS [t] +P−1
t|t−1f̂

S
t|t−1), (E.14)

E.4.2 Line Graph Identification

The element-wise version of (E.15) for the nth flow is

fn[t] =

E+1∑
n′=1

P∑
p=1

a
(p)
n,n′ [t]fn′ [t− p] + un[t], (E.15)

where a
(p)
n,n′ [t] ∈ R represents the influence of the p-th time-lagged value of flow

n′ on flow n. For notational convenience, we stack the elements of a
(p)
n,n′ [t] in the

lexicographic order of the indices p, and n′ to obtain an[t] ∈ R(E+1)P and also stack
the same elements along index p to obtain an,n′ [t] ∈ RP . Assuming flows are known,
the online topology identification can be formulated as [23,48]

ân[t] = arg min
an∈R(E+1)P

ℓnt (an) + λ
E+1∑
n′=1

∥an,n′∥2, (E.16)

where ℓnt (an) =
1
2
[fn[t]− a⊤

n f̂
S [t− 1]]2 is the instantaneous loss function for a node

n and λ is a hyperparameter. The second term is a group-lasso regularizer added in
line with the assumption that the real-world dependencies are sparse.

In general, proximal algorithms can solve objective functions of the form (E.16)
having a differentiable loss function and a non-differentiable regularizer. Following
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Figure E.2: Schematic representation of the proposed algorithm.
[48], we use online composite objective mirror descent (COMID), which is effective
and comes with convergence guarantees. The online COMID update is

ân[t+ 1] = arg min
an∈R(E+1)P

J
(n)
t (an), (E.17)

where J
(n)
t (an) ≜ ∇ℓnt (ân[t])

⊤ (an − ân[t])

+
1

2γt
∥an − ân[t]∥22 + λ

E+1∑
n′=1

∥an,n′∥2. (E.18)

Equation (E.18) has the gradient of the loss ℓnt (an) as the first term, and the
Bregman divergence and sparsity-promoting regularizer as the second and the third
terms, respectively. Bregman divergence makes the algorithm more stable by con-
straining ân[t+1] to be close to ân[t] and it is chosen to be B(an, ân[t]) =

1
2∥an−ân[t]∥22

so that the COMID update has a closed-form solution [40] and γt > 0 is the corre-
sponding step size. The gradient in (E.18) is evaluated as

vn[t] ≜ ∇ℓnt (ân[t]) = f̂S [t− 1]
(
a⊤
n f̂

S [t− 1]− fn[t]
)

(E.19)

The optimization problem is separable across nodes and a closed-form solution for
(E.17) is obtained via the multidimensional shrinkage-thresholding operator [41]:

ân,n′ [t+1]=
(
ân,n′ [t]−γtvn,n′ [t]

)[
1− γtλ

∥ân,n′ [t]−γtvn,n′ [t]∥2

]
+

, (E.20)

where [x]+ = max {0, x}. A schematic representation of the proposed algorithm
is shown in Fig. F.1. The computational complexity of the algorithm is mainly
contributed by (E.14), and it is of order O

(
P 3(E + 1)3

)
.

E.5 Experimental Results

We use flow data from a real water network and a synthetic network, both generated
using the EPANET software. The flow signals are the hourly sampled volume of
water in m3/h. A demand-driven model is used to generate data such that the water
flows meet the time-varying water demands at the nodes. We compare the results
with the state-of-the-art algorithms Graph-based Semi-supervised learning for Edge
Flows (FlowSSL) [20] and Joint Signal and Topology Identification via Recursive
Sparse Online learning (JSTIRSO) [6]. FlowSSL exploits the flow conservation of
the flows, whereas JSTIRSO uses a causal graph structure to impute the missing
data. We compare the algorithms via the normalized mean squared error (NMSE):

NMSEn(T ) =

∑T
t=1(fn(t)− f̂n(t))

2∑T
t=1 fn(t)

2
. (E.21)
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Pipes with  flow reading  available

Pipes with flow reading  unavailable

Figure E.3: Physical graph.
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Figure E.4: Time varying random missing-flow patterns.
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Figure E.5: Permanently unobserved flows.
Figure E.6: Synthetic Water Network Topology.
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A total of 125 data samples are generated, and the initial 25 samples are used to
tune the hyperparameters of all the algorithms to achieve the lowest NMSE averaged
across all edges via grid search. The line graph is initialized with random values
drawn from N (0, 1). The NMSEs are averaged over 50 runs of experiments.

E.5.1 Synthetic Water Network

A water distribution model, shown in E.3, is simulated, which consists of 1 reservoir,
9 pipes, and 8 nodes. Below, we examine two types of missing data patterns with
the hyperparameter setting (µ, λ) = (0.5, 0.1).

E.5.1.1 Random variation in missing-flows

We assume that 10%, 20%, and 30% of randomly chosen flows are missing at each
time instant. NMSEs are plotted in Appendix E.4.2, which shows that the proposed
method is better than the competitors because, unlike them, it takes full advantage
of the flow conservation and causal dependencies. Going beyond 30% of missing data
results in very high NMSEs by all algorithms, and is not included in Appendix E.4.2
to maintain the legibility.

E.5.1.2 Permanently unobserved flows

We consider flow-3 and flow-5 are permanently missing. The NMSEs for both the
missing flows are shown in E.5. The proposed method provides better imputation
performance compared to FlowSSL [20], whereas JSTIRSO [6] fails to reconstructs
the missing signal since it does not exploit the flow conservation.

E.5.2 Cherry Hills Water Networks

Cherry Hills is a real water network consisting of 40 pipes and 36 nodes [110]. We
assume a reference flow direction as in Fig. E.7, and the hyperparamters are tuned to
(µ, λ) = (50, 0.04). We examine four different scenarios in which 20%, 30%, 40%, and
50% of the flows are randomly missing at each time stamp. The average NMSEs
computed from the estimates of random missing flows are plotted in Fig. E.11,
where the proposed method outperforms the other two algorithms, especially with
a significant margin for the 50% missing case. NMSEs of all algorithms is very
high when more than 50% of flows are missing. The experiment is repeated with
15%, 20%, and 25% of permanently missing flows, and the results are plotted in
Fig. E.10, where the proposed algorithm outperforms the competitors in all the
cases.

One instance of the learned line graph (T=100, p=3) is shown in Fig. E.8. We
wish to note that the line graph is an abstract graph induced by the various physics-
based equations describing the space-temporal variation of the flows. Although one
could attempt to analyse the line graph using the underlying differential equations
governing the space-time system, this is a daunting complex process, which is beyond
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the scope of this study. However, a good prediction implies necessarily that the data-
driven line graph is close to the unknown real graph. To demonstrate the importance
of the learned line graph, we repeat the Kalman prediction using a random line graph
without considering any relation to the data. NMSEs obtained for permanently
missing flows at t=100, using random and learned line graphs, are 1.08 and 0.06,
respectively. Similar results were obtained for all the other experiments highlighting
the role of the learned line graph.

Figure E.7: Cherry Hills Flows.

Figure E.8: Estimated Line Graph.
Figure E.9: Cherry Hills Water Network.

131



0 20 40 60 80 100T
0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

S
E

Proposed:15%
FlowSS   :15%
JSTIRSO :15%

Proposed:20%
FlowSS   :20%
JSTIRSO:20%

Proposed:25%
FlowSS   :25%
JSTIRSO :25%

Figure E.10: Permanently Missing Flows.
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Figure E.11: Randomly Missing Flows.

Figure E.12: Cherry Hills Water Network:NMSE.

E.6 Conclusion

We proposed a novel missing data imputation scheme for flow-based networks. The
proposed algorithm comprises a simplicial-complex-based Kalman filter and a group-
lasso-based optimization strategy to take advantage of the flow conservation and
causal dependency of real-world networks. This study paves the way for exploring
higher order connectivity in real-life networks using simplicial complexes.
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E.7 Supplementary Material

E.7.1 Derivation of Flow-Conservation-based Kalman Filter

The optimization problem (E.13) is a convex quadratic optimization problem that
yields flow-conservation-based Kalman updates. We adopt a similar strategy as fol-
lowed in [47] to obtain a closed-form solution. We first reformulate the problem
(E.13) by substituting the constraint wt = yS [t]−CS [t]f̂St|t in the objective function:

minimize
f̂S
t|t

(yS [t]−CS [t]f̂St|t)
⊤
Rt

−1(yS [t]−CS [t]f̂St|t)

+(f̂St|t − f̂St|t−1)P
−1
t|t−1(f̂

S
t|t − f̂St|t−1)

⊤ + µ(f̂St|t)
⊤Lf̂St|t, (E.22)

where

L︸︷︷︸
P (E + 1)× P (E + 1)

≜


L̃l

1︸︷︷︸
(E + 1)× (E + 1)

0︸︷︷︸
(E + 1)× (P − 1)(E + 1)

0︸︷︷︸
(P − 1)(E + 1)× (E + 1)

0︸︷︷︸
(P − 1)(E + 1)× (P − 1)(E + 1)

 .

Next, we differentiate the objective function with respect to f̂St|t and equate to 0

to find the optimum f̂St|t:

−2CS [t]⊤R−1
t (yS [t]−CS [t]f̂St|t)

+ 2P−1
t|t−1(f̂

S
t|t − f̂St|t−1) + 2µLf [t] = 0 (E.23)

=⇒ f̂St|t =(CS [t]
⊤
R−1CS [t] +P−1

t|t−1 + 2µL)−1×

(CS⊤
R−1YS [t] +P−1

t|t−1f̂
S
t|t−1), (E.24)

which is the required flow-conservation-based Kalman filter solution.

133


