
Appendix D

PAPER D

Title: Online Joint Nonlinear Topology Identification and
Missing Data Imputation over Dynamic Graphs

Authors: R. Money, J. Krishnan, B. Beferull-Lozano

Conference: European Signal Processing Conference 2022

109



Online Joint Nonlinear Topology Iden-
tification and Missing Data Imputa-
tion over Dynamic Graphs

R. Money, J. Krishnan, B. Beferull-Lozano

Abstract: Extracting causal graph structures from multivariate
time series, termed topology identification, is a fundamental problem in
network science with several important applications. Topology identifi-
cation is a challenging problem in real-world sensor networks, especially
when the available time series are partially observed due to faulty com-
munication links or sensor failures. The problem becomes even more
challenging when the sensor dependencies are nonlinear and nonstation-
ary. This paper proposes a kernel-based online framework using random
feature approximation to jointly estimate nonlinear causal dependencies
and missing data from partial observations of streaming graph-connected
time series. Exploiting the fact that real-world networks often exhibit
sparse topologies, we propose a group lasso-based optimization frame-
work for topology identification, which is solved online using alternating
minimization techniques. The ability of the algorithm is illustrated using
several numerical experiments conducted using both synthetic and real
data.

D.1 Introduction

Data analytics on complex networked systems such as large-scale sensor networks,
social networks, brain networks, etc., have gained much research attention in the
last decade. Most such complex networks generate data in the form of multivariate
time series, which are often interdependent. These dependencies can be represented
in the form of a graph. Representing and processing data on graph structures have
become increasingly important due to diverse range of applications, such as data
compression, denoising, change point detection, etc. Often, such dependencies are
not directly observable and must be inferred. Identification of causal graph structure
from multivariate time series is termed topology identification, which is a challenging
task due to the nonstationary and nonlinear nature of the dependencies.

It is essential to have sufficient and good quality data when solving a topology
identification problem; however, data might not be fully observable in many real-
world situations. Sensor networks, for instance, transmit data captured by sensors





through communication channels to an end-user for processing. These networks
are susceptible to data loss due to sensor failures or communication impairments,
making it challenging to identify the topology. A practically significant algorithm for
topology identification must be (i) capable of working online to handle nonstationary
dependencies, (ii) capable of recognizing nonlinear dependencies, and (iii) capable
of dealing with noisy and incomplete observations.

Online linear topology identification is fairly well studied in the literature [1,48].
In [48], an optimization problem is formulated by taking into account the sparse
nature of real-world dependencies and solving the problem using composite objective
mirror descent (COMID), and in [1], a time-varying convex optimization framework
has been used for topology identification. Recently, several works on nonlinear
topology identification have been proposed [9–11,21,22,36], among which [21,22,36]
propose online solutions for nonlinear topology identification problems, whereas [11]
and [9] propose batch solutions using kernel and neural networks, respectively.

While the aforementioned works demonstrate promising results in topology es-
timation, all assume complete data availability with no sensor failures or commu-
nication issues. A joint linear topology identification and missing data imputation
using block coordinate descent and Kalman smoothing have been recently proposed
in [18]. Similarly, [6] proposes a computationally light approach using inexact prox-
imal gradient descent. However, [18] and [6] assume linear causality, which does not
make sense for most real-world time series.

In this paper, we propose an online nonlinear topology identification algorithm
accounting for missing data by solving a group lasso-based optimization framework.
Considering the well-established underlying theory and the ability to carry out on-
line training, kernels are used to model nonlinearity, which are approximated using
random features [16] to control the computational complexity. To the best of our
knowledge, this is the first attempt to address jointly (i) nonlinearity, (ii) nonsta-
tionarity, and (iii) missing data in topology identification.

D.2 Problem formulation

D.2.1 Nonlinear topology identification

A P -th order nonlinear vector autoregressive (VAR) process with N number of nodes
can be expressed as

yn[t] =
N∑

n′=1

P∑
p=1

f
(p)
n,n′(yn′ [t− p]) + un[t], (D.1)

where yn[t] is the observation of the n-th time series at time t, f (p)
n,n′(.) encodes the

causal influence of p-th time-lagged value of n′-th time series on n-th time series,
and un[t] is the observation noise. The nonlinear VAR model is a suitable model
owing to the fact that the causal dependencies in the real world are time-lagged in
nature. Moreover, the VAR model implies the famous causality hypothesis proposed
by Granger [99], under certain assumptions [63].





D.2.1.1 Kernel representation

We assume that the function in (D.1) belongs to a reproducing kernel Hilbert space
(RKHS):

H(p)
n′ :=

{
f
(p)
n,n′ | f (p)

n,n′ (y) =
∞∑
t=p

β
(p)
n,n′,t κ

(p)
n′ (y, yn′ [t− p])

}
, (D.2)

where κ
(p)
n′ (., .) is a positive definite function that measures the similarity between

its arguments, and is termed kernel. Every positive definite kernel is associated to
a RKHS with inner product ⟨κ(p)n′ (y, x1), κ

(p)
n′ (y, x2)⟩ :=

∑∞
t=0 κ

(p)
n′ (y[t], x1)κ

(p)
n′ (y[t], x2)

and it satisfies the reproducing property ⟨κ(p)n′ (y, x1), κ
(p)
n′ (y, x2)⟩ = κ

(p)
n′ (x1, x2), thus

thereby inducing the RKHS norm ∥f (p)
n,n′∥2H(p)

n′
=
∑∞

t=0

∑∞
t′=0 β

(p)
n,n′,t β

(p)
n,n′,t′ κ

(p)
n′ (yn[t], yn[t

′]).

As any function in the RKHS can be expressed as an infinite combinations of kernel
evaluations, f (p)

n,n′ can be expressed as (D.2), with β
(p)
n,n′,t being the weight associated

with each kernel evaluation. A functional optimization problem can be formulated
to obtain the required causal dependency for a given node n:{

f̂
(p)
n,n′

}
n′,p

= arg min{
f
(p)

n,n′∈H
(p)

n′

} 1

2

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

f
(p)
n,n′(yn′ [τ − p])

]2
+λ

N∑
n′=1

P∑
p=1

Ω

(
||f (p)

n,n′ ||H(p)

n′

)
, (D.3)

where
∑N

n′=1

∑P
p=1Ω

(
||f (p)

n,n′ ||H(p)

n′

)
is the regularizer and λ is the hyperparemter

associated with it. If Ω(.) is nondecreasing, the solution of (D.3) can be expressed
with a finite number of kernel evaluations using Representer Theorem [38]:

f̂
(p)
n,n′ (yn′ [τ − p]) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)κ

(p)
n′ (yn′ [τ − p], yn′ [t− p]) . (D.4)

Here, the number of kernel evaluations required is equal to the number of data
samples. As the number of data samples increases, the number of optimization
variables increases, which is commonly known as the curse of dimensionality in
kernel formulations. We use the random feature (RF) approximation to mitigate
this problem.

D.2.1.2 RF approximation

RF approximation addresses the curse of dimensionality by restricting the kernel
evaluations to an approximate fixed lower-dimensional Fourier space. Furthermore,
linear optimization techniques are easier to use in random Fourier space than in
infinite-dimensional RKHS. We use shift-invariant kernels to facilitate RF approx-
imation, i.e., κ

(p)
n′ (yn′ [τ ], yn′ [t]) = κ

(p)
n′ (yn′ [τ ]− yn′ [t]). According to Bochner’s theo-

rem [30], a shift invariant kernel can be represented using an inverse Fourier trans-
form of a probability distribution:

κ
(p)
n′ (yn′ [τ − p], yn′ [t− p]) =

∫
π
κ
(p)

n′
(v) ejv(yn′ [τ−p]−yn′ [t−p])dv

= Ev[e
jv(yn′ [τ−p]−yn′ [t−p])], (D.5)





where E is the expectation operator, π
κ
(p)

n′
(v) is the kernel specific probability density

function (pdf) and v is the random variable corresponding to the pdf. With sufficient
number of i.i.d. samples {vi}Di=1, the expectation in (D.5) can be replaced with
sample mean:

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p])=

1

D

D∑
i=1

ejvi(yn′ [τ−p]−yn′ [t−p]). (D.6)

Note that (D.6) is an unbiased estimator of the kernel evaluation with a fixed num-
ber D of terms [43]. For a Gaussian kernel with variance σ2, the inverse Fourier
transform can be shown to be also a Gaussian with variance σ−2. Using this informa-
tion, the real part of (D.6), which is also an unbiased estimator of kernel evaluation,
can be expressed as

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p]) = z

(p)
v,n′ [τ ]

⊤z
(p)
v,n′ [t], (D.7)

where, z
(p)
v,n′ [τ ] =

1√
D

[
sin (v1yn′ [τ − p]) , . . . , sin (vDyn′ [τ − p]) ,

cos (v1yn′ [τ − p]) , . . . , cos (vDyn′ [τ − p])

]⊤
. (D.8)

A fixed dimensional (2D) approximation of the function f̂
(p)
n,n′ is readily obtained by

substituting (D.7) in (D.4):

˜̂
f
(p)
n,n′ (yn′ [τ − p]) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)z

(p)
v,n′ [τ ]

⊤z
(p)
v,n′ [t]

= α
(p)
n,n′

⊤z
(p)
v,n′ [τ ], (D.9)

where α
(p)
n,n′ =

∑p+T−1
t=p β

(p)
n,n′,(t−p)z

(p)
v,n′ [t]. The following notations are introduced to

simplify the formulations:

α
(p)
n,n′ = [α

(p)
n,n′,1, . . . , α

(p)
n,n′,2D]

⊤ ∈ R2D, (D.10)

z
(p)
v,n′ [τ ] = [z

(p)
v,n′,1[τ ], . . . z

(p)
v,n′,2D[τ ]]

⊤ ∈ R2D, (D.11)

z
(p)
v,n′,k[τ ] =

{
sin(v

k
yn′ [τ − p]), if k ≤ D

cos(v
k−D

yn′ [τ − p]), otherwise.

The functional optimization (D.3) is reformulated as a parametric optimization prob-
lem using (D.9):

{
α̂

(p)
n,n′

}
n′,p

= arg min{
α

(p)

n,n′

}Ln
(
α

(p)
n,n′

)
+ λ

N∑
n′=1

P∑
p=1

Ω(||α(p)
n,n′ ||2), (D.12)

where

Ln
(
α

(p)
n,n′

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

α
(p)
n,n′

⊤ z
(p)
v,n′ [τ ]

]2
, (D.13)





which can be expanded in terms of RF components as

Ln
(
α
(p)
n,n′,d

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

2D∑
d=1

α
(p)
n,n′,d z

(p)
v,n′,d[τ ]

]2
. (D.14)

For convenience, the parameters {α(p)
n,n′,d} and {z(p)v,n′,d[τ ]} are stacked in the lexico-

graphic order of the indices p, n′, and d to obtain the vectors αn ∈ R2PND and
zv[τ ] ∈ R2PND, respectively, which allows to rewrite the loss function as

Ln(αn) =
1

2

T−1∑
τ=P

[
yn[τ ]−α⊤

nzv[τ ]

]2
. (D.15)

D.2.2 Missing data

To formulate the topology identification problem with missing data and noisy obser-
vation, we assume that only a subset of the nodes is observed. The motif of missing
data is represented by the masking vector m[t] ∈ RN , where mn[t], n = 1, ..., N , are
i.i.d Bernoulli random variables. The observed vector signal ỹ[t] at time t is given
by

ỹ[t] = m[t]⊙ (y[t] + e[t]), (D.16)

where y[t] = [y1[t], ..., yn[τ ]]⊤ ∈ RN and e[t] ∈ RN are the original signal and
observation noise in vector form and ⊙ represents the element wise multiplication.

D.2.3 Nonlinear topology identification with missing data

A batch formulation for the joint topology identification and missing data imputa-
tion can be formulated similarly to [18] and [6] as follows:

{α̂, ŷ[τ ]}τ=T−1
τ=P = arg min

α,y[τ ]

T−1∑
τ=P

1

2
∥y[τ ]−α⊤zv[τ ]∥22

+ λ
N∑

n′=1

2D∑
d=1

∥αn,n′,d∥2+
T−1∑
τ=P

ν

2Mτ
∥ỹ[τ ]−m[τ ]⊙ y[τ ]∥22, (D.17)

where α = [α⊤
1 , . . . ,α

⊤
N ] ∈ R2PND × RN , Mτ is cardinality of m[τ ], and ν is a

hyperparameter that regulates the signal reconstruction part.

D.3 Joint online estimation of nonlinear topology
and missing data

Note that zν depends on P previous values of all the N time series. Hence the
required online estimation strategy should estimate P previous values of the time





series along with the instantaneous values:

{α̂, ŷ[t], {ŷ[τ ]}t−1
τ=t−P} =

argmin
α,y[t]

{y[τ ]}t−1
τ=t−P

ℓt
(
α,y[t], {y[τ ]}t−1

τ=t−P

)
+λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2, (D.18)

where the non decreasing function Ω(.) = |.| and the loss function is defined as

ℓt
(
α,y[t], {y[τ ]}t−1

τ=t−P

)
=

1

2
∥y[t]−α⊤zv[t]∥22 +

ν

2Mt

∥ỹ[t]−m[t]⊙ y[t]∥22. (D.19)

We relax the formulation (D.18) since it is computationally expensive as well as
nonconvex. We assume that {ŷ[τ ]}t−1

τ=t−P are independent realizations of random
variables {y[τ ]}t−1

τ=t−P [6] and obtain a new loss function:

ℓ̃t (α,y[t]) =
1

2
∥y[t]−α⊤zv[t]∥22

+
ν

2Mt

∥ỹ[t]−m[t]⊙ y[t]∥22. (D.20)

Now the loss function is convex and separable across n. Hence the optimization
problem for a node can be expressed as

{α̂n, ŷn[t]}=argmin
αn,yn[t]

ℓnt (αn, yn[t])+λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2, (D.21)

whereℓnt (αn, yn[t])=
1

2

[
yn[t]−α⊤

n zv[t]

]2
+

ν

2Mt
(ỹn[t]−mn[t]yn[t])

2. (D.22)

We use the alternating minimization method in which (D.21) is solved by alter-
nating between two sub-problems that are convex and have closed-form solutions.
Since the optimization problem with respect to yn[t] (the signal reconstruction prob-
lem) is quadratic, a closed-form solution can be obtained. The second optimization
problem with respect to αn (topology identification) is in a form similar to the one
discussed in [22], where it is solved in a closed form using composite objective mirror
descent (COMID) method.

D.3.1 Signal reconstruction

The signal reconstruction problem can be formulated as

ŷn[t] = argmin
yn[t]

ℓnt (αn, yn[t]) . (D.23)

The solution of (D.23) is obtained by finding the zero derivative point of the objective
function:

ŷn[t] =
νmn[t]ỹn[t]

Mt + νmn[t]
+

kn[t]Mt

νmn[t] +Mt

, (D.24)

where kn[t] = α⊤
nzv[t]. Let νmn[t]

Mt+νmn[t]
= qn[t], then,

ŷn[t] = qn[t]ỹn[t] + [1− qn[t]]kn[t]. (D.25)





D.3.2 Topology identification
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Figure D.1: True edges (a(p)n,n′) and estimated weights (̂b(p)n,n′) for various missing data
scenarios.
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Figure D.3: Results: Experiment using synthetic data.

We use the estimates {ŷn[τ ]}tτ=t−P obtained using (D.25) to find the topology.
This sub-problem can be formulated as

α̂n = arg min
αn

ℓnt (αn) + λ
N∑

n′=1

P∑
p=1

∥α(p)
n,n′∥2. (D.26)

where ℓnt (αn) =
1
2
[ŷn[t]−α⊤

nzv[t]]
2. The convex objective function in (D.26) contains

two terms: a smooth loss function and a non-smooth regularizer. Such problems
can be solved efficiently using COMID methods [22]. The online COMID update is





given by

αn[t+ 1] = argmin
αn

J
(n)
t (αn), (D.27)

where J
(n)
t (αn) ≜ ∇ℓnt (αn[t])

⊤[αn −αn[t]]

+
1

2γt
∥αn −αn[t]∥22 + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (D.28)

In (D.28), αn[t] ∈ R2PND is the estimate of αn at time t. The objective function
J
(n)
t (.) consists of three terms: (i) gradient of the loss function, (ii) Bregman di-

vergence ∥αn − αn[t]∥22 chosen such that the optimization problem (D.28) has a
closed-form solution (γt is the step size associated with the divergence), and (iii) a
sparsity promoting group lasso regularizer. Note that the Bregman divergence term
increases stability of the online algorithm by enforcing the next iterate αn[t+ 1] to
be closer to current iterate αn[t]. The gradient in (D.28) is evaluated as

vn[t] := ∇ℓnt (αn[t]) = zv[t][α
⊤
nzv[t]− ŷn[t]]. (D.29)

A closed-form solution for (D.27) is obtained via the multidimensional shrinkage-
thresholding operator:

α
(p)
n,n′ [t+ 1] = [α

(p)
n,n′ [t]− γtv

(p)
n,n′ [t]]×[

1− γtλ

∥α(p)
n,n′ [t]− γtv

(p)
n,n′ [t]∥2

]
+

, (D.30)

where [x]+ = max {0, x}. The above solution is a product of two terms: first
term minimizes the loss function ℓnt (αn) and the second term enforces sparsity on
the updates. The proposed algorithm for jointly estimating the topology and the
missing data is summarized in Algorithm 8.

Algorithm 8:

Result:
{
α

(p)
n,n′ [t+ 1]

}
n,n′,p

, ŷ[t]

Initialize {yn[t]}Pt=1,
{
α

(p)
n,n′ [P ]

}
n,n′,p

as all-ones vector, λ, kernel parameters, γ, D, ν

(heuristically chosen)
for t = P, P + 1, . . . do

Get data observation vector ỹn[t] and masking vector m[t], compute zv[t]

for n = 1, . . . , N do
compute ŷn[t] using (D.25)
compute vn[t] using (D.29)
for n′ = 1, . . . , N do

compute α
(p)
n,n′ [t+ 1] using (D.30)

end
end

end





D.4 Experiment

In this section, we test the capability of our algorithm using both synthetic and real
data. We generate graph-connected time series with known topologies and varying
levels of missing data for synthetic data experiments, whereas, in the second part,
we use real data from Lundin’s offshore oil and gas platform1. The ℓ2 norms of
the estimated weights (̂b(p)n,n′ [t] := ∥α(p)

n,n′ [t]∥2) are used to visualize the dependencies
among the time series. For all the experiments, we used Gaussian reproducing kernel
k with variance σ2

k = 5.

D.4.1 Experiments using Synthetic data

The data used in this experiment are generated using nonlinear VAR model de-
scribed in (D.1) with N = 10, P = 4 and random Gaussian noise with mean 0 and
variance 0.01. The nonliner function in (D.1) is taken as f (p)

n,n′(x) = a
(p)
n,n′(x)g(x), ∀n, n′, p,

where g(x) = 0.25 sin(x2) + 0.25 sin(2x) + 0.5 sin(x) and a
(p)
n,n′(x) ∈ {0, 1}. We term a

(p)
n,n′

as edge and when a
(p)
n,n′ = 0, it disables the dependencies between the nodes n and

n′ for the time lag p. Furthermore, a(p)n,n′(x) = 0, when g(x) = 0. The time series
are initialized randomly using samples drawn from uniform distribution U(0, 1). To
bring time variance in the topology, 30% of the active edges are made to disappear
after every 1000 time stamps, and new equal number of different edges are made
active. To simulate various missing data scenarios, we generate different masks
m[t] ∀ t, whose samples are drawn from Bernoulli distribution with probabilities
0.95, 0.75, 0.65, corresponds to 5%, 25%, 35% of missing data respectively.

In Fig. D.1, we compare the true edges a
(p)
n,n′ and estimated causal weights b̂

(p)
n,n′

at three different time instants having different edge patterns. The edges and the
estimated weights are arranged in a matrix form of size N × N for p = 1, 2, . . . , P

and are stacked in Fig. D.1, such that the resulting matrices are of size NP×N . The
estimated weights are normalized and hard-thresholded to 0 or 1 to have the best
match with the edges. It can be observed in Fig. D.1 that for 5% of missing data,
the proposed algorithm estimates most of the edges accurately, and as the num-
ber of missing data increases, the estimation accuracy decreases. The ROC curve
corresponding to the time stamp t = 990 is plotted in Fig. D.2 by computing the
probability of detection (PD) and the probability of false alarm (PFA). Figure D.2
shows that the areas under all the three curves are close to 1, indicating the char-
acteristics of a good ROC curve. It can also be observed that the area under the
curve deviates more from 1 as the number of missing data increases. Also, the ROC
curve for a recent online linear topology estimation algorithm termed TIRSO [48]
is included in Fig. D.2. Note that TIRSO’s ROC is computed based on full data;
even then, its performance significantly lags behind the proposed algorithm. Intu-
itively, JSTIRSO [6], the extension to TIRSO that accounts for missing data, should
also perform inferiorly to the proposed algorithm. These observations illustrate how

1https://www.lundin-energy.com/





effectively the proposed algorithm identifies nonlinear topologies compared to its
linear counterparts.

D.4.2 Experiments using Real data

We use real data from Lundin’s oil and gas plant, consisting of time series recorded
from multiple pressure (P), temperature (T), and oil level (L) sensors from system20

of the plant. The system20 is a plant section where oil, gas, and water are separated
from the well extracts. There are 24 sensors in total recording 24 time series, sampled
at intervals of 5s. Below, we examine two different missing data scenarios.

D.4.2.1 Missing data due to limited communication capacity

Assume that only a subset of the sensor values can be transmitted at each timestamp
due to the limited capacity of the communication channel. We randomly select 8 out
of the 24 sensors (∼ 33.33%) at each time stamp and jointly estimate the topologies
and the missing data. The true and observed time series of a sensor, along with
the reconstructed values, are shown in Fig. D.4, which shows that the proposed
algorithm reconstructs the signal even with a high amount of missing data. Since the
ground truth dependencies are unavailable, we compare the dependencies estimated
from the partial observations with that from a full observation in Fig. D.5, which
shows that the algorithm can estimate most of the dependencies from the partial
observations.

D.4.2.2 Missing data due to sensor failure

Here we consider the case where the recording from a particular sensor is missing for
a certain period of time due to a sensor failure. In the experiment, time series from
sensor-2 are masked from time instant t = 4000 to t = 4200, which constitutes about
16 minutes of data. Figure D.6 shows that the proposed algorithm reconstructs
sensor-2 signals accurately during the missing data interval without having access
to any information from sensor-2. This clearly showcases the advantage of exploiting
causal dependencies in missing data imputations.

Conclusion
This paper presents a novel algorithm for joint nonlinear topology identification and
missing data imputation. The nonlinear causal dependencies are modeled using a
computationally light kernel formulation based on random feature approximations.
Experiments on real and synthetic data have demonstrated the effectiveness of the
proposed algorithm under various missing data scenarios.
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Figure D.4: Original and reconstructed signal when only 33.33% of data is observ-
able.

Figure D.5: Causality graph estimated for oil and gas platform (Only the significant
edges are shown).
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Figure D.6: Comparison of real and reconstructed signal when an interval of data
is missing for a sensor.

Figure D.7: Results: Experiment using real data.



