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Abstract—Online topology estimation of graph-connected time
series is challenging in practice, particularly because the depen-
dencies between the time series in many real-world scenarios
are nonlinear. To address this challenge, we introduce a novel
kernel-based algorithm for online graph topology estimation. Our
proposed algorithm also performs a Fourier-based random feature
approximation to tackle the curse of dimensionality associated
with kernel representations. Exploiting the fact that real-world
networks often exhibit sparse topologies, we propose a group-Lasso
based optimization framework, which is solved using an iterative
composite objective mirror descent method, yielding an online
algorithm with fixed computational complexity per iteration. We
provide theoretical guarantees for our algorithm and prove that
it can achieve sublinear dynamic regret under certain reasonable
assumptions. In experiments conducted on both real and synthetic
data, our method outperforms existing state-of-the-art competi-
tors.

Index Terms—Online graph learning, nonlinear topology
identification, regret analysis, random Fourier features.

I. INTRODUCTION

MULTIVARIATE time series data is generated by vari-
ous real-world networks, including large-scale cyber-

physical systems (CPS), financial networks and brain networks.
In such systems, the time series are interdependent, and the
dependencies can be represented as graphs; in other words,
the multivariate time series is graph connected. Some of these
dependencies are often imperceptible by direct inspection. Infer-
ring and exploiting the hidden graph structure of data can provide
valuable insights and better outcomes in many application fields.
For instance, it can aid in developing better control actions in
CPS [1], provide explainable analysis in brain networks [2], and
improve the accuracy of forecasts in financial time series [3].

Real-world networks often exhibit time-delayed and directed
dependencies among their components. For example, consider
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Fig. 1. Schematic of processing stages in an oil and gas platform

an oil and gas processing platform with multiple wells and sep-
arators, which uses hundreds of sensors and actuators to extract
raw oil and separate it into oil, water and gas (Fig. 1). If an event
occurs in a well, its impact will be reflected in the separators
after a delay. Similarly, the oil level in separator-2 depends on
the pressure that is controlled by an actuator in separator-3. The
data acquired from such a system form a multivariate time series,
possibly having many directed time-lagged interactions, which
can be represented using a graph structure. Understanding these
dependencies is crucial as it aids in predicting the near-future
evolution of sensor variables and identifying appropriate control
actions. While we use an oil and gas platform scenario for
illustration purposes, similar interactions exist in many impor-
tant networks, such as the brain, the stock market, and smart
water networks (SWN). Henceforth, we use the term topology
identification to refer to the estimation of such dependencies.

One significant challenge associated with the aforementioned
real-world graph-connected networks is the time-varying nature
of the dependencies. However, extensive research in the field of
online learning [4], [5], has led to the development of methods
that outperform classical batch solutions in terms of both compu-
tational complexity and ability to track changes. These methods
can be applied to topology identification to mitigate the prob-
lem of time-varying dependencies. For instance, [6] proposes a
sparse online solution for topology identification using proxi-
mal updates, while [7] introduces a prediction-correction algo-
rithm based on a time-varying convex optimization framework
that exhibits an intrinsic temporal-regularization of the graph
topology.

Real-world systems, such as the one shown in Fig. 1, are not
only dynamic but also further complex due to the nonlinear na-
ture of their dependencies. In CPSs such as oil and gas platforms
or SWNs, nonlinearity may arise from various sources, including
control mechanisms of the actuator, nonlinear liquid flows (see,
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e.g., [8]), and saturation of tanks. Similarly, the interactions
in stock market networks and network-structured data related
to brain imaging techniques, such as electroencephalography
(EEG), electrocorticography (ECoG), positron emission tomog-
raphy (PET), also exhibit a high level of nonlinearity, with
multiple nonlinear effects contributing to the complexity of
these systems [9]. Topology estimation based on simple linear
models [6], [7] is inadequate for such applications, since many
of the inherent nonlinear interactions within the system are
discarded.

An effective way to deal with the nonlinearity is to invoke
kernel machines, which can approximate any nonlinear con-
tinuous function, if enough training samples are available. For
instance, in [10], a novel topology identification algorithm based
on the nonlinear structural vector auto-regressive (SVAR) model
using kernels is proposed. Deep neural networks (DNNs) are
also powerful alternatives to kernels for modelling nonlinear
interactions. Nonlinear dependencies are estimated in [11] using
a temporal convolutional neural network and an attention mech-
anism, while [12] uses a vector autoregressive (VAR) model with
an invertible neural network approach to capture dependencies,
and [13] applies a group-Lasso regularizer on neural weights
to obtain sparse nonlinear dependencies. Although the above-
mentioned kernel- and DNN-based methods are powerful tools
to model nonlinear dependencies, their batch-based (offline)
nature makes them unsuitable for real-time applications that
require online topology estimation with every new data sample
to track changes in the system. Moreover, such batch-based
approaches suffer from a high computational complexity since
the algorithm must process the entire data batch together.

The preceding discussion highlights the need for algorithms
that can learn nonlinear and dynamic topologies. Kernels are
an ideal choice because they offer the advantage of building
interpretable models that can be learned online [14], [15], [16].
In kernel frameworks, the data points are transformed to a
function space, where a linear relationship exists between them.
However, working in a function space has some limitations in
the context of online topology identification. First, the standard
online convex optimization techniques cannot be readily used
as the dimension of optimization variables is not fixed, and
it increases with every new data sample. Second, the number
of parameters required to express the function increases with
the number of data samples, and the computational complexity
becomes prohibitive at some point, which is typically known
as the curse of dimensionality [17]. In [16], the dimensionality
growth is mitigated by discarding the past data samples using a
forgetting window. However, this approach can lead to subopti-
mal function learning because it discards data samples without
assessing their significance in representing the functions to be
learned.

Sparse kernel dictionaries and random feature (RF) approx-
imation are two popular techniques for tackling the curse of
dimensionality associated with kernels. However, existing al-
gorithms have limitations for online topology identification of
multivariate time series. For instance, the sparse functional
stochastic gradient descent (FSGD) method in [18] requires mul-
tiple kernel orthogonal matching pursuit (KOMP) sub-iterations,
resulting in high computational complexity. Additionally, in a
multivariate setting with N time series, the FSGD derivation
in [18] results in identical functional dependencies between
a time series n and all other time series n′ = 1, 2, . . . , N (as
observed in [19]), which prevents distinguishing the different

functional dependencies. An alternative approach, presented
in [20], involves learning a sparse kernel dictionary based on
coherence criteria. However, its convergence guarantees assume
static optimal parameters (representing the topology), which is
impractical for time-varying systems.

The RF approximation approach not only addresses kernel
dimensionality growth but also provides greater mathematical
flexibility for modelling and learning the nonlinear interaction
among multivariate time series while enabling theoretical anal-
ysis. RF approximation was originally proposed in [21], and
the idea has recently gained popularity in large-scale machine
learning problems [22], [23], [24]. In addition to providing a
computational boost in large-scale data sets, RF allows working
in fixed lower dimensional spaces, making it convenient for on-
line convex optimization routines. RF approximation in kernels
can also be used to understand neural networks [25], [26], and
researchers have shown equivalence in function approximation
between neural networks and RF approximations [25]. Multiple
Random Fourier features can be also used to initialize the learn-
ing process, and the best one can be kept to avoid overfitting [27],
[28].

In this work, we propose a kernel-based online nonlinear
topology identification algorithm using RF approximation. We
assume that the dependencies of the system can be modelled
using nonlinear additive sparse model. The sparsity assump-
tion is motivated by real-world systems that are often sparse
due to the dominant local interactions, and it helps to avoid
overfitting during learning. The algorithm estimates nonlinear
sparse topologies in an online manner at each time instant, using
a proximal optimization technique called composite objective
mirror descent (COMID) and features incremental updates to
the model upon the arrival of new data samples, making it
suitable for applications characterized by topology drifts [29],
[30]. Through theoretical guarantees based on dynamic regret
analysis and numerical evidence, we show the effectiveness of
our algorithm in tracking the changes in topology.

The main contributions of this work are listed below:
i) We propose an online nonlinear topology estimation algo-

rithm with fixed computational complexity per iteration
called Random feature-based nonlinear topology iden-
tification via recursive sparse online learning (RFNL-
TIRSO). This algorithm differs significantly from our
previous work in [31], by using a running average loss
inspired by the recursive least square (RLS) formula-
tion instead of an instantaneous loss function, which is
susceptible to noise and converges slowly. Compared
with [31], RFNL-TIRSO achieves significantly faster
convergence speed and improved robustness to the input
noise.

ii) We provide theoretical guarantees for the convergence
of RFNL-TIRSO, which was lacking in [31]. The article
derives an upper bound for dynamic regret of RFNL-
TIRSO, based on the strong convexity property of the
RLS loss function. Dynamic regret characterizes the
tracking capability of an online algorithm [32], and we
achieve a sublinear dynamic regret under certain reason-
able assumptions applicable to real-world applications.
Our dynamic regret analysis encompasses three key el-
ements: an online kernel-based nonlinear algorithm, a
non-differentiable objective function, and a model with
multiple decoupled functions for interpretable topology
identification. Existing related works [33], [34], [35],
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[36], [37], [38], [39] do not offer complete coverage of
these three elements.

iii) The performance of the proposed algorithm is tested with
extensive experiments using both real and synthetic data.
The algorithm estimates interpretable topologies using
time series data from sensors in an oil and gas plant.
Furthermore, the algorithm demonstrates its effectiveness
in detecting epileptic seizure events using EEG signals.

The remainder of the article is organized as follows: Sec-
tion II presents the system model, kernel formulation, and RF
approximation. In Section III, we develop the RFNL-TIRSO
algorithm. Theoretical analysis of RFNL-TIRSO is performed
in Section IV, followed by the numerical results in Section V.
Finally, Section VI concludes the article.

Notations: Bold lowercase and uppercase letters denote
column vectors and matrices, respectively. The operators
∇, (.)�, E, Λmax(.), Λmin(.), <., .> respectively denote gra-
dient, transpose, expectation, maximum eigenvalue, minimum
eigenvalue, and inner product operators. The symbols 1N and
IN represent all-one vector of dimension N and identity matrix
of dimension N ×N , respectively.

II. NONLINEAR TOPOLOGY IDENTIFICATION

A. System Model

Consider a collection of N sensors (nodes) generating a
multi-variate time series denoted by y[t] ∈ R

N , where t =
0, 1, . . . , T − 1 denotes the time index. We assume that the
dynamics of the sensor network can be captured by a P -th order
VAR model with additive nonlinear functional dependencies:

yn[t] =
N∑

n′=1

P∑
p=1

f
(p)
n,n′(yn′ [t− p]) + un[t], (1)

where yn[t] is the value of time series at time t observed at
node 1 ≤ n ≤ N , f (p)

n,n′ is a nonlinear function that captures the
influence of the p-lagged data point of node n′ on node n, and
un[t] is the process noise, which is assumed to be zero mean
i.i.d. random process. With respect to model (1), we define
topology identification as the estimation of the functional de-
pendencies {f (p)

n,n′(.)}Pp=1, ∀n, n′, from the observed time series
{yn′ [t]}Nn′=1.

B. Kernel Representation

Assume that the functions f (p)
n,n′ in (1) belong to a reproducing

kernel Hilbert space (RKHS):

H(p)
n′ :=

{
f
(p)
n,n′ |f (p)

n,n′(y)=
∞∑
t=p

β
(p)
n,n′,(t−p)κ

(p)
n′ (y, yn′ [t− p])

}
,

(2)

where κ
(p)
n′ : R× R → R is a positive definite kernel, which

characterizes the RKHS. The kernel is a function measuring
the similarity between the data points y and yn′ [t− p]. The
expression (2) follows from the fact that any function in RKHS
can be expressed as an infinite combination of kernel eval-
uations [40], i.e., the function f

(p)
n,n′(y) can be expressed as

the linear combination of the similarities between y and the
data points {yn′ [t− p]}t=∞

t=p , with weights β(p)
n,n′,(t−p). Here, we

consider a Hilbert space with the inner product 〈κ(p)
n′ (y, x1),κ

(p)
n′

(y, x2)〉 :=
∑∞

t=0 κ
(p)
n′ (y[t], x1) κ

(p)
n′ (y[t], x2) using kernels

with reproducible property 〈κ(p)
n′ (y, x1), κ

(p)
n′ (y, x2)〉 = κ

(p)
n′

(x1, x2). Such a Hilbert space with the reproducing kernels is
termed as RKHS, and the inner product described above induces
the RKHS norm,‖f (p)

n,n′ ‖2H(p)

n′
=
∑∞

t=0

∑∞
t′=0 β

(p)
n,n′,t β

(p)
n,n′,t′ κ

(p)
n′

(yn[t], yn[t
′]). For further reading on RKHS, we recommend

referring to [41].
The required functions {f (p)

n,n′ ∈ H(p)
n′ }n′,p at a particular node

n can be obtained by solving the following non-parametric
optimization problem in batch form, considering all the samples
at once:{

f̂
(p)
n,n′

}
n′,p

= arg min{
f
(p)

n,n′ ∈H(p)

n′
}
1

2

T−1∑
τ=P

[
yn[τ ]

−
N∑

n′=1

P∑
p=1

f
(p)
n,n′(yn′ [τ − p])

]2
+ λ

N∑
n′=1

P∑
p=1

Ω(||f (p)
n,n′ ||H(p)

n′
).

(3)

For a non-decreasing function Ω, the solution of (3), denoted as
{f̂ (p)

n,n′ }n′,p can be obtained in terms of finite kernel evaluation
by invoking the Representer Theorem [42]:

f̂
(p)
n,n′ (yn′ [τ − p])

=

p+T−1∑
t=p

β̂
(p)
n,n′,(t−p) κ

(p)
n′ (yn′ [τ − p], yn′ [t− p]) . (4)

Although the solution (4) entails only a finite number (equal to
T ) of kernel evaluations, its computational complexity becomes
prohibitively high for a large value of T . This is a major draw-
back of kernel formulations, which is commonly referred to as
the curse of dimensionality. In alignment with [14], [24], we use
RF approximation to solve the curse of dimensionality.

C. RF Approximation

As observed in Section II-B, the RKHS is characterized by an
inner product. Resorting to the theory of RF approximation, the
inner product can be expressed in a random Fourier space, which
facilitates the approximation of an RKHS function to a function
in a fixed low dimensional space, thereby preventing the di-
mensionality growth. By working in this fixed low-dimensional
space, we can leverage standard convex optimization tools for
solving the topology identification problem.

The RF approximation requires that the kernel defining the
RKHS should be shift invariant, i.e., κ(p)

n′ (yn′ [τ − p], yn′ [t−
p]) = κ

(p)
n′ (yn′ [τ − p]− yn′ [t− p]). Many popular kernels are

shift-invariant, such as the Laplacian, the Cauchy, and the Gaus-
sian kernels. By Bochner’s Theorem [43], every shift-invariant
kernel can be expressed as an inverse Fourier transform of a
probability density function. Following this theorem, the kernel
evaluation can be expressed as

κ
(p)
n′ (yn′ [τ − p], yn′ [t− p])

=

∫
R

π
κ
(p)

n′
(v) ejv(yn′ [τ−p]−yn′ [t−p])dv
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= Ev

[
ejv(yn′ [τ−p]−yn′ [t−p])

]
, (5)

where E is the expectation operation, π
κ
(p)

n′
(v) is the probability

density function corresponding to the kernel under considera-
tion, and v is the random variable associated with the probability
density function. By using an adequate number of i.i.d. samples
{vi}Di=1 from the distribution π

κ
(p)

n′
(v), we can approximate the

expectation in (5) as a sample mean (weak law of large numbers):

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p])

=
1

D

D∑
i=1

ejvi(yn′ [τ−p]−yn′ [t−p]), (6)

irrespective of the distribution π
κ
(p)

n′
(v). Notice that (6) is an

unbiased estimator of the kernel evaluation in (5) [44]. In gen-
eral, finding the probability distribution, which is the inverse
Fourier transform of a kernel, is a challenging task. However,
for a Gaussian kernel with variance σ2, the Fourier transform
is also a Gaussian with variance σ−2. Hence, in this work, we
restrict our choice of the kernel to Gaussian kernels. Further,
the real part of (6) is also an unbiased estimator of the kernel
evaluation [22], and (5) can be expressed in vector form using
only the real components as

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p]) = z

(p)
v,n′(τ)

�z(p)
v,n′(t), (7)

where

z
(p)
v,n′(τ) =

1√
D

[
sin (v1yn′ [τ − p]) , . . . , sin (vDyn′ [τ − p]) ,

cos (v1yn′ [τ − p]) , . . . , cos (vDyn′ [τ − p])

]�
. (8)

Substitute (7) in (4) to obtain an approximation of the function
f̂
(p)
n,n′ in a fixed dimension (2D):

ˆ̂
f
(p)
n,n′ (yn′ [τ − p])) =

p+T−1∑
t=p

β̂
(p)
n,n′,(t−p)z

(p)
v,n′(τ)

�z(p)
v,n′(t)

= α
(p)
n,n′

�z(p)
v,n′(τ), (9)

whereα(p)
n,n′ =

∑p+T−1
t=p β̂

(p)
n,n′,(t−p)z

(p)
v,n′(t). For the sake of sim-

plicity, we define the following notations:

α
(p)
n,n′ = [α

(p)
n,n′,1, . . . , α

(p)
n,n′,2D]� ∈ R

2D, (10)

z
(p)
v,n′(τ) = [z

(p)
v,n′,1 (τ) , . . . z

(p)
v,n′,2D (τ)]� ∈ R

2D, (11)

z
(p)
v,n′,k (τ) =

{
sin(v

k
yn′ [τ − p]), if k ≤ D

cos(v
k−D

yn′ [τ − p]), otherwise.

The functional optimization (3) can be reformulated as a
parametric optimization problem using (9). First, we define the
parametric form of the loss function in (3):

Ln
(
α

(p)
n,n′

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

α
(p)
n,n′

�
z
(p)
v,n′ (τ)

]2
,

(12)

which can be expanded in terms of RF components as

Ln
(
α
(p)
n,n′,d

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

2D∑
d=1

α
(p)
n,n′,d z

(p)
v,n′,d (τ)

]2
.

For convenience, the variables {α(p)
n,n′,d} and {z(p)v,n′,d(τ)} are

stacked in the lexicographic order of the indices p, n′, and
d to obtain the vectors αn ∈ R

2PND and zv(τ) ∈ R
2PND,

respectively, and loss function can be compactly rewritten as:

Ln(αn) =
1

2

T−1∑
τ=P

[
yn[τ ]−α�

nzv(τ)
]2
. (13)

Following [24], the original regularization term in (3) can be
converted to an equivalent parametric form as:

Ω
(||f (p)

n,n′ ||H(p)

n,n′

)
=Ω

⎛⎝
√√√√p+T−1∑

τ=p

p+T−1∑
t=p

β̂
(p)
n,n′,(τ−p) β̂

(p)
n,n′,(t−p) k

(p)
n′ (yn(τ), yn(t))

⎞⎠

= Ω

⎛⎝
√√√√p+T−1∑

τ=p

p+T−1∑
t=p

β̂
(p)
n,n′,(τ−p)β̂

(p)
n,n′,(t−p)z

(p)
v,n′(τ)

�z(p)
v,n′(t)

⎞⎠
= Ω(||α(p)

n,n′ ||2). (14)

The function Ω in (14) is chosen to be Ω(.) = |.|, where |.|
represents the absolute value function, in order to promote the
group sparsity of α

(p)
n,n′ [10]. Such regularizers are typically

known as group-Lasso regularizers (see, Fig. 2 for a visual
representation of the Lasso groups). Note that the function |.|
is non-decreasing, thereby satisfying the regularization criteria
to apply the Representer Theorem. Using (13) and (14), a para-
metric form of (3) can be constructed as follows:

{α̂n}n′ = arg min
{αn}

Ln (αn) + λ

N∑
n′=1

P∑
p=1

||α(p)
n,n′ ||2. (15)

Although the topology can be estimated by solving (15), this
approach has several drawbacks since it is a batch formulation,
meaning that (15) requires the entire batch of the time series sam-
ples yn[t], t = 0, 1, . . . , T − 1 from all the nodes. This batch
formulation is not suitable for streaming data, where the data
is available in a sequential manner and real-time tracking of
time-varying topologies is required. Furthermore, the compu-
tational complexity of batch optimization can be prohibitively
high, especially with large batch sizes. Motivated by the above
factors, we propose an online topology estimation strategy in
the following section, which addresses these limitations and has
lower computational complexity.
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Fig. 2. RKHS parameters (left) and fixed-size RF parameters (right). The Lasso groups of RF parameters are indicated in different colours.

III. ONLINE LEARNING

To formulate an online optimization framework, we replace
the batch loss function Ln(αn) in (15) with a stochastic (instan-
taneous) loss function 
nt (αn) =

1
2 [yn[t]−α�

nzv(t)]
2:

α̂n = arg min
αn


nt (αn) + λ

N∑
n′=1

P∑
p=1

‖α(p)
n,n′ ‖2. (16)

The loss function lnt (αn) in (16) is analogous to a Least Mean
Square (LMS) formulation. However, notice that the estimates
of LMS are prone to observation noise and can be unstable
in practice. To overcome this problem, we formulate (16) in
a recursive least square (RLS) sense, which further provides
necessary stability in addition to faster convergence:


̃nt (αn) = μ
t∑

τ=P

γt−τ 
nτ (αn). (17)

In (17), we replace the instantaneous loss with a running average
loss using an exponential window. The parameter γ ∈ (0, 1) is
the forgetting factor of the window, and μ = 1− γ is set to
normalize the exponential weighting window. We expand the
RLS loss function as follows:


̃nt (αn) =
1

2
μ

t−1∑
τ=P

γt−τ
(
y2n[τ ] +α�

nzv(τ)zv(τ)
�αn

−2yn[τ ]zv(τ)
�αn

)
(18)

=
1

2
μ

t−1∑
τ=P

γt−τy2n[τ ] +
1

2
α�

nΦ[t]αn − rn[t]
�αn, (19)

where

Φ[t] = μ
t∑

τ=P

γt−τzv(τ)zv(τ)
�, (20)

rn[t] = μ

t∑
τ=P

γt−τyn[τ ]zv(τ). (21)

As in a typical RLS formulation, these quantities can be updated
recursively as Φ[t] = γΦ[t− 1] + μzv(t)zv(t)

� and rn[t] =
γrn[t− 1] + μyn[t]zv(t). The gradient of the loss function can
be obtained as

∇
̃nt (αn) = Φ[t]αn − rn[t]. (22)

Finally, using the RLS loss function, the topology can be esti-
mated by solving

argmin
αn


̃nt (αn) + λ

N∑
n′=1

P∑
p=1

‖α(p)
n,n′ ‖2. (23)

The cost function in (23) consists of a differentiable loss function
and a non-differentiable group-Lasso regularizer. To solve (23)
online, we can use methods such as online subgradient descent
(OSGD) or mirror descent (MD), which linearize the entire
objective function using a subgradient. However, linearizing
the group-Lasso regularizer, compromises its ability to induce
sparsity, resulting in non-sparse estimates. To overcome this,
we employ an alternate optimization technique – a modified
version of the MD algorithm known as composite objective
mirror descent (COMID) [45]. In COMID, the differentiable
part of the objective function is linearized, while keeping the
regularizer intact, preserving the sparsity-inducing property.

The online COMID updates can be written as

αn[t+ 1] = argmin
αn

J
(n)
t (αn), (24)

where J (n)
t (αn) � ∇
̃nt (αn[t])

� (αn −αn[t])

+
1

at
B(αn,αn[t]) + λ

N∑
n′=1

P∑
p=1

‖α(p)
n,n′ ‖2, (25)

whereαn[t] ∈ R
2PND is the estimate ofαn at time t. The objec-

tive function J
(n)
t in (25) consists of 3 parts: (i) gradient of loss
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function given by (22), (ii) a Bregman divergence term with at as
the step size, and (iii) a sparsity enforcing group-Lasso regular-
izer. The Bregman divergence [46] improves the stability of the
online algorithms by constraining the value of the new estimate
αn[t+ 1] within the proximity of the previous estimate αn[t].
The Bregman divergence B(αn,αn[t]) =

1
2‖αn −αn[t]‖22 is

selected in such a way that the optimization problem (24) has a
closed form solution [46]. For notational convenience, we denote
the gradient in (25) as

vn[t] := ∇
̃nt (αn[t]). (26)

The objective function in (25) is expanded by omitting the
constants leading to the following formulation:

J
(n)
t (αn) ∝ α�

nαn

2at
+α�

n

(
vn[t]− 1

at
αn[t]

)

+ λ

N∑
n′=1

P∑
p=1

‖α(p)
n,n′ ‖2

=
N∑

n′=1

P∑
p=1

⎡⎣α(p)
n,n′

�
α

(p)
n,n′

2at
+α

(p)
n,n′

�
(
v
(p)
n,n′ [t]− 1

at
α

(p)
n,n′ [t]

)

+ λ‖α(p)
n,n′ ‖2

]
. (27)

A closed form solution for (24) using (27) can be obtained via
the multidimensional shrinkage-thresholding operator [47]:

α
(p)
n,n′ [t+ 1] =

(
α

(p)
n,n′ [t]− atv

(p)
n,n′ [t]

)
×
[
1− atλ

‖α(p)
n,n′ [t]− atv

(p)
n,n′ [t]‖2

]
+

, (28)

where [v
(1)
n,n′

�,v(2)
n,n′

�, . . . ,v(P )
n,n′

�]� � vn,n′ forn′ = 1 . . . N ,

[v�
n,1,v

�
n,2, . . . ,v

�
n,N ]��∇
̃nt (αn[t]), and [x]+=max{0, x}.

The first part α(p)
n,n′ [t]− γtv

(p)
n,n′ [t] in (28) forces the stochastic

gradient update of α(p)
n,n′ in a way to descend the recursive loss

function 
̃nt (αn), and the second part in (28) enforces group
sparsity of α

(p)
n,n′ . This closed-form expression estimates the

required dependency between the time series yn and the p-th
time lagged value of time series yn′ at time instant t+ 1, in terms
of the parameter vector α

(p)
n,n′ [t+ 1]. We name the proposed

algorithm, which is shown in Algorithm 1, as Random feature
based nonlinear topology identification via recursive sparse
online learning (RFNL-TIRSO).

IV. THEORETICAL RESULTS

In this section, we present the performance analysis and
convergence guarantee of RFNL-TIRSO using dynamic regret
analysis. Regret is a popular metric to measure the performance
of an online algorithm [48]. Despite being originally devel-
oped for static learning problems, numerous online algorithms
involving dynamic regret analysis have been developed [33],
[34], [35], [36] to solve problems in a dynamic environment;
however, all of them belong to the class of linear algorithms.
Additionally, [33], [34], [35] assume differentiable objective
functions, which are not applicable to RFNL-TIRSO. Dynamic

Algorithm 1: RFNL-TIRSO Algorithm.

regret bounds for nonlinear algorithms have been proposed
in [37], [38], [39]. In [37], the problem under consideration
is limited to positive functions, whereas our problem formu-
lation does not have such a limitation. The regret analysis
presented in [38] differs significantly from our proposed method
for several reasons. First, the objective function used in [38]
must be differentiable, whereas, in our proposed method, the
regularizer is non-differentiable. Second, unlike [38], our regret
analysis involves multiple decoupled functions that represent
interpretable topological connections. Although [39] provides
a logarithmic regret bound using second-order information, the
objective function in their analysis is differentiable.

Our theoretical analysis is based on the following
assumptions:
� A1 : Bounded samples: For all the time series samples,

there exists By > 0 such that {|yn[t]|2}n,t ≤ By ≤ ∞.
� A2 : Shift-invariant kernels: kernels used are shift-

invariant, i.e., k(xi, xj) = k(xi − xj).
� A3 : Bounded minimum eigenvalue of Φ[t]: There exists
ρl > 0 such that Λmin(Φ[t]) > ρl, where Λmin(.) denotes
the minimum eigenvalue.

� A4 : Bounded maximum eigenvalue of Φ[t]: There exists
L > 0 such that Λmax(Φ[t]) < L < ∞, where Λmax(.)
denotes the maximum eigenvalue.

A1 is reasonable in practice as the signals from real-world
applications are bounded. A2 is true for typical kernels such as
Gaussian and Laplacian. SinceΦ(t) is a sum of rank one matrices
formed using feature vectors,A3will hold as long as the feature
vectors are linearly independent. This is a reasonable assumption
in practice when a sufficient amount of data is available. Note
that A3 is important for the strong convexity assumption of the
loss function, which is used in the sequel. A4 can be obtained
by combining A1 and the fact that the sum of eigenvalues of
Φ[t] is equal to its trace.

A. Dynamic Regret Analysis

As a preliminary step to the regret analysis, we define the
optimum RKHS and RF coefficients.
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Optimum RKHS coefficients: Using the batch form solution
(4), obtained using the Representer Theorem, a parametric au-
toregressive representation at time t can be obtained as

ŷn[t] = β̂
�
nκt, (29)

where β̂n ∈ R
NPt and κt ∈ R

NPt are respectively obtained by
stacking the variables β̂(p)

n,n′,(τ−p) and the kernel evaluations in
(4) along the lexicographic order of the indices n′, p, and the
time index up to t. The optimum RKHS coefficients β∗

n[t] for
each node n at time t can be obtained by solving

β∗
n[t] = arg min

β̂n

hn
t (β̂n,κt), (30)

where the cost function hn
t (β̂n,κt) in (30) is composed

of two terms: hn
t (β̂n,κt) = μ

∑t
τ=P γt−τ 1

2 [yn[t]− β̂
�
nκt]

2 +

ωn(β̂n), where the first term is RLS loss function, and the
second term ωn(.) is the group-Lasso regularizer defined as

ωn(β̂n) = λ
∑N

n′=1

∑P
p=1 ‖β̂

(p)

n,n′ ‖2.
Optimum RF coefficients: Following the same procedure, we

define the optimum RF coefficients α∗
n[t] at time t > P as

α∗
n[t] = arg min

αn

hn
t (αn, zv(t)), (31)

where hn
t (αn, zv(t)) = 
̃nt (αn) + ωn(αn), and 
̃nt (.)

is the RLS loss defined in (17) and ωn(αn) =

λ
∑N

n′=1

∑P
p=1 ‖α(p)

n,n′ ‖2. Note that the optimum RF
coefficients α∗

n[t] is different from the RFNL-TIRSO estimate
αn[t] obtained by the computationally light COMID algorithm,
as RFNL-TIRSO only makes one COMID update per time
instant.

Dynamic Regret: Dynamic regret is defined as the cumulative
sum of the difference between the estimated cost function and the
optimal cost function over all time instants. In our framework,
it can be expressed as

Rn[T ] =

T−1∑
t=P

[
hn
t (αn[t], zv(t))− hn

t (β
∗
n[t],κt)

]
. (32)

Our aim is to find a theoretical bound for Rn[T ]. Since our
online algorithm works in the RF space, we conduct the regret
analysis in relation to the optimal cost function in the RF space,
i.e., hn

t (α
∗
n[t], zv(t)). It is worth noting that this choice is not

arbitrary as there exists a one-to-one mapping between the two
spaces, ensuring no loss of generality. Adding and subtracting
hn
t (α

∗
n[t], zv(t)) in (32) yields

Rn[T ] = Rrf
n[T ] + ξn[T ], (33)

where Rrf
n[T ] =

∑T−1
t=P [h

n
t (αn[t], zv(t))− hn

t (α
∗
n[t], zv(t))]

is the regret with respect to optimal cost in RF space and ξn[T ] =∑T−1
t=P [h

n
t (α

∗
n[t], zv(t))− hn

t (β
∗
n[t],κt)] is the cumulative RF

approximation error caused by the dimensionality reduction.
1) Bounding the Regret W.r.t. Optimal cost Function in RF

Space: Theorem 1 bounds Rrf
n(T ).

Theorem 1: Under the assumptions of A1, A3, A4, and letting
at =

1
L , the dynamic regret of RFNL-TIRSO (Algorithm 1)

w.r.t. the optimal cost function in the RF space satisfies

Rrf
n(T ) ≤

((
1 +

L

ρl

)√
2PNDBy + λ

√
PN

)

× (‖α∗
n[P ]‖2 +W n(T )) ,

where W n(T ) =
∑T−1

t=P ‖α∗
n[t]−α∗

n[t− 1]‖2 is the path
length.

Proof: See Appendix A.
From Theorem 1, it can be readily seen that if W n(T ) is

sublinear, then the regret will also be sublinear.
2) Bounding the Cumulative RF Approximation Error: The-

orem 2 provides a bound for ξn(T ).
Theorem 2: Under assumptions A1 and A2, there exists ε ≥ 0

such that the cumulative approximation error ξn[T ] of RFNL-
TIRSO (Algorithm 1) satisfies

ξn(T ) ≤ εLhTC,

where Lh > 0 is the Lipschitz continuity parameter of the cost
function.

Proof: See Appendix B.
Finally, we bound the dynamic regret Rn(T ) using

Theorems 1 and 2.
Theorem 3: Under the assumptions of A1, A2, A3, and A4,

the dynamic regret Rn(T ) of RF-NLTIRSO (Algorithm 1)
satisfies

Rn(T ) ≤
((

1 +
L

ρl

)√
2PNDBy + λ

√
PN

)
× (‖α∗

n[P ]‖2 +W n(T )) + εLhTC.

Proof: Theorem 3 can be directly and readily proved by
substituting Theorem 1 and Theorem 2 in (33).

It is important to note that by setting ε = O( 1√
T
), we can

achieve a dynamic regret of O(W n(T ) +
√
T ). In such cases,

if W n(T ) is sublinear, the dynamic regret becomes sublinear
as well. Ideally, an online algorithm should aim for a sublinear
dynamic regret, indicating that Rn(T )/T → 0 as T → ∞, or
in the worst case, a linear regret, which implies Rn(T )/T →
constant , where constant is known as the steady-state error.
In our case, when W n(T ) is sublinear, the steady-state error is
εLfC. By choosing a small value for ε, we can ensure a small
steady-state error. Appendix B demonstrates that we can make
ε sufficiently small by increasing the number of random features
D while considering the trade-off with complexity [21].

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of RFNL-TIRSO
through extensive numerical experiments. We compare it with
three state-of-the-art competitors: TIRSO [6], RFNL-TISO [31],
and PDIS [20], [49]. TIRSO is a linear online topology al-
gorithm, chosen to highlight the advantages of RFNL-TIRSO,
which is a nonlinear algorithm. RFNL-TISO is another online
nonlinear topology estimation algorithm that uses an instanta-
neous least mean square loss function. However, RFNL-TIRSO
is expected to outperform RFNL-TISO due to its utilization of
an RLS-based loss function, as discussed in Section III. The
third algorithm, PDIS [20], [49], is a recent online nonlinear
topology identification algorithm that uses dictionaries of kernel
functions with partial-derivative-imposed sparsity. To the best
of our knowledge, these three algorithms serve as the best
benchmarks for comparing the performance of RFNL-TIRSO.
While other batch-based algorithms are available [10], [12],
[13], they are not directly comparable to our algorithm as they
operate offline.



2034 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Fig. 3. The true and estimated edges using various algorithms for g(x) = g1(x). In each subfigure, the x-axis corresponds to nodes n = 1, . . . , 10, and the
y-axis corresponds to nodes n = 1, . . . , 10 for time lags p = 1, . . . , 4. The edge values are indicated by the colour code.

The per node computational complexity of RFNL-TIRSO,
RFNL-TISO, and TIRSO, are in the order of O(N2P 2D2),
O(NPD), and O(N2P 2), respectively. Although RFNL-
TIRSO has a higher computational complexity than the other
algorithms, it offers robustness, and theoretical performance
guarantees, which are not provided by the competing algorithms.
We demonstrate the robustness and performance of RFNL-
TIRSO through several numerical experiments in this section.

The experiments in this section involve both synthetic and
real data sets. The synthetic dataset consists of graph-connected
time series data generated with different topology transition pat-
terns to highlight the ability of algorithm to track time-varying
topologies. The real data set used include (i) time series data
collected from Lundin’s offshore oil and Gas platform1 and (ii)
Epileptic seizure data [50].

A. Experiments Using Synthetic Data Sets

1) Piecewise Stationary Topology: We generate a multivari-
ate time series using a nonlinear VAR model (1) with N =

10, P = 4. The nonlinear function in (1) is taken as f (p)
n,n′(x) =

a
(p)
n,n′(x)g(x), where g(x) is a nonlinear function and a(p)n,n′(x) ∈

{0, 1}. The experiments are conducted with three different
realizations of g(x): g1(x) = 0.25 sin(x2) + 0.25 sin(2x) +
0.5 sin(x), g2(x) = 0.25 cos(x2) + 0.25 cos(2x) + 0.5 cos(x),
and with a Gaussian kernel, i.e., g3(x) = (1/

√
2π)exp(−x2/2).

We refer to a
(p)
n,n′ as an edge, and a

(p)
n,n′(.) = 0/1 means that

the p-th time-lagged dependency between n and n′ is dis-
abled/enabled. A graph-connected time series is generated by

1[Online]. Available: https://www.lundin-energy.com/

restricting the number of active edges to be 30% of the total
available edges. Further, we introduce abrupt changes in the
topology after every 1000 time step by randomly cutting off
30% of the available active edges. In the experiments, the initial
P data samples are generated randomly, and the remaining data
are generated using model (1). The hyperparameters for all the
algorithms used in the experiments are tuned heuristically to get
the maximum area under the receiver operating curve, which is
explained below. The hyperparameter settings for RFNL-TIRSO
are (σn, λ, at) = (2.5, 0.01, 0.1/Λmax(φ[t])), for g1 and g2, and
(1, 0.01, 0.1/Λmax(φ[t])) for g3. The top row of Fig. 3 contains
the true edges {a(p)n,n′ } at different time steps, which are arranged
in matrices of size N ×N , for p = 1, 2, . . . , P , and stacked
vertically, resulting in matrices of size NP ×N . The estimated
dependencies {â(p)n,n′ } using different algorithms are shown in
the bottom rows. After computing the normalized 
2 norms
b̂
(p)
n,n′ [t] = ‖α(p)

n,n′ [t]‖2/(maxn′ ‖α(p)
n,n′ [t]‖2), the presence of an

edge is detected using a threshold δ as âpn,n′ = 1{b(p)n,n′ [t] < δ},
where 1{x} = 1/0, if x is true/false. It is clear from Fig. 3 that
the estimates of RFNL-TIRSO are very close to the ground truth,
and they outperform the other algorithms.

A numerical comparison of the performances of the algo-
rithms is made using the probability of false alarm (PFA) and
the probability of detection (PD). The probability of false alarm
(PFA) refers to the probability that the algorithm reports the
presence of a dependency in the network that is not actually
present. On the other hand, the probability of detection(PD)
refers to the probability that the algorithm detects a dependency
that is truly present in the network. In our experiment, we
assume there is a presence of a detected edge from the p− th

https://www.lundin-energy.com/
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Fig. 4. Receiver-Operating Curve for different realizations of the nonlinear function g(x) (averaged over 50 experiment runs).

TABLE I
AUC FOR DIFFERENT ALGORITHMS (COMPUTED OVER 50 EXPERIMENT RUNS). SD INDICATES THE STANDARD DEVIATION

TABLE II
AUC FOR DIFFERENT VALUES OF D (COMPUTED OVER 50 EXPERIMENT RUNS). SD INDICATES THE STANDARD DEVIATION

time-lagged value of n′ − th sensor to the present value of the
n− th sensor if the value of coefficient b(p)n,n′ [t] is greater than a
threshold δ ∈ [0, 1], and define PFA and PD as

PD[t] � 1−
∑

n�=n′
∑P

p=1 E

[
1{b(p)n,n′ [t] < δ}1{an,n′ = 1}

]
∑

n�=n′
∑P

p=1 E[1{an,n′ = 1}] ,

PFA[t] �
∑

n�=n′
∑P

p=1 E

[
1{b(p)n,n′ [t] > δ}1{an,n′ = 0}

]
∑

n�=n′
∑P

p=1 E [1{an,n′ = 0}] ,

(34)

where 1{x} = 1/0, if x is true/false and δ is a threshold. From
(34), it is clear that when δ = 0, both PD and PFA become one.
With an increase in δ, both PD and PFA decrease, eventually
reaching zero when δ equals one.

The Receiver-Operating curve (ROC) of the different algo-
rithms at time t = 2990 is plotted in Fig. 4 by varying δ from 0
to 1, withPFA in the x-axis andPD in the y-axis. The area under
the ROC curve (AUC) is computed to evaluate the performance
of the algorithm. A topology identification algorithm with a
high AUC value is characterized by a high PD and low PFA,
indicating that it can accurately identify network topologies
while minimizing the occurrence of false positives. From Fig. 4,
it can be observed that the area under ROC (AUC) of the

RFNL-TIRSO is substantially better than TIRSO and slightly
better than RFNL-TISO for all three nonlinearity functions.
These observations are more evident from Table I, where the
computed AUC values are tabulated. We further analyze the
AUC of RFNL-TIRSO for different RF space dimensions, i.e.,
D ∈ {20, 30, 50}, at different time instants in Table II, for
the nonlinear function g(x) = g1(x). As expected, the AUC
increases with D and the number of data samples. A similar
AUC trend as in Table II was obtained for the other two nonlinear
functions g1 and g2.

2) Lorenz Graph: We also conduct experiments using syn-
thetic data sets generated from the Lorenz graph [51].
We consider a discretized version of the Lorenz graph in-
volving 3 time series exhibiting the following nonlinear
dependencies:⎛⎝y1[t+ 1]

y2[t+ 1]

y3[t+ 1]

⎞⎠=0.01

⎛⎝ 10(y2[t]− y1[t])

y1[t](28− y3[t])− y2[t]

y1[t]y2[t]− 8
3y3[t]

⎞⎠+

⎛⎝y1[t]

y2[t]

y3[t]

⎞⎠
(35)

In comparison with the model used in Section V-A1, the Lorenz
graph model (35) introduces only first-order dependencies (P =
1) among the nodes. Additionally, it is important to note that
(35) incorporates non-additive nonlinear interactions among the
nodes, which differs from the VAR assumption in (1). In this
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Fig. 5. Lorenz graph detection using RFNL-TIRSO: (a) True Binary depen-
dency, (b) Estimated dependency, (c) Binary estimated dependency by stetting
threshold as 0.5.

Fig. 6. EIER performance for the Lorenz graph experiment.

section, we compare the performance of the RFNL-TIRSO algo-
rithm and the PDIS algorithm [49]. Since the TIRSO algorithm
assumes P > 1 in its implementation, it is not included in this
comparison. To ensure a fair comparison, we replicate the exact
experimental setup as described in [49]. The performance eval-
uation is based on the edge identification error rate (EIER), de-

fined as EIER = ‖A−Â‖0
N(N−1) × 100, where A represents the true

dependency matrix and Â represents the estimated dependency
matrix. For RFNL-TIRSO, Â is computed using b̂

(1)
n,n′ . The

hyperparameters are heuristically tuned to minimize the EEIR,
resulting in the setting (σn, λ, at) = (1, .3, 1/(tΛmax(φ[t]))).

The estimated and true binary adjacency matrices (excluding
self-dependencies) are shown in Fig. 5, and the EIER up to
t = 1750 are plotted in Fig. 6. We remark that although the
PDIS algorithm is designed by assuming non-additive nonlinear
interactions, its performance lags behind the proposed RFNL-
TIRSO algorithm, which assumes additive nonlinearities. This
is because the RFNL-TIRSO algorithm employs an RLS loss
function, which results in an improved convergence speed com-
pared with the LMS loss used in PDIS.

3) Numerical Evaluation of Dynamic Regret: In Section
IV-A, we derived a theoretical bound for the dynamic re-
gret Rn[T ]=Rrf

n[T ]+ξn[T ]. In this section, using experi-
ments conducted on synthetic data, we numerically compute
the dynamic regret of RFNL-TIRSO w.r.t. the optimal cost in
the RF space, defined as Rrf

n[T ]=
∑T−1

τ=P [h
n
τ (αn[τ ], zv(τ))−

hn
τ (α

∗
n[τ ], zv(τ))], for T = 1, . . . , 1000. This allows us to ex-

perimentally validate our theoretical results. Here, αn[τ ] is the
RF coefficient estimated using RFNL-TIRSO at time τ , and
α∗

n[τ ] is the optimum RF coefficient, computed using a stan-
dard gradient descent algorithm until convergence. It is worth
mentioning that the estimation ofα∗

n[τ ] involves very high com-
putational complexity compared with that ofαn[τ ]. In Fig. 7, we

Fig. 7. Regret w.r.t. optimal cost function in RF space. Vertical lines indicate
the topology change points.

plot Rrf
n[T ] and Rrf

n[T ]/T . For this experiment, we use the same
data generation mechanism with nonlinear dependencies g1 and
g2, as explained in Section V-A1, having topology change points
at T = 250 and T = 500. Fig. 7 shows that Rrf[T ] is sublinear
w.r.t. T and Rrf[T ]/T is negligibly small, which is in agreement
with the theoretical results stated in Theorem 1. It is important
to note that numerically evaluating the second component of the
dynamic regret ξn[T ] is a complex task since it involves finding
optimal parameters in a high dimensional RKHS. However, as
shown in Theorem 2 we emphasize that ξn[T ]/T is theoretically
bounded by εLfC, where ε is a user-controlled parameter. The
value of ξn[T ]/T can be made small to obtain a dynamic regret
Rn[T ]/T upper bounded by a small constant for T → ∞.

B. Experiments Using Real Data Sets

1) Oil and Gas Platform Data: In this section, we describe
experiments conducted using real data collected from Lundin’s
Offshore Oil and Gas platform Edvard-Grieg.2 We collected
multivariate time series data from 24 nodes (numbered as n =
1, 2, . . . , 24.) of the plant corresponding to various temperature
(T), pressure (P), and oil-level (L) sensors. The sensors are
placed in the separators of decantation tanks separating oil, gas,
and water. The time series are obtained by uniformly sampling
the sensor readings with a sampling rate of 5 seconds. We assume
that the hidden logic dependencies are present in the network
due to the various existing physical connections and control
actuators. The data obtained from the sensors are preprocessed
by normalizing them to zero mean unit variance signals.

The dependencies are learned using RFNL-TIRSO (D = 10),
RFNL-TISO, and TIRSO by assuming a VAR model of order
P=12. A Gaussian kernel having a variance of 1 is used in all
the experiments with hyperparameter setting λ = 0.1 and step
size at=1/Λmax(φ[t]) (tuned to obtain minimum NMSE). The
estimated dependencies are visualized in Fig. 8 using the 
2
norms ‖αn,n′ [t]‖2. RFNL-TIRSO identifies interpretable con-
nections; for instance, two pressure sensors in the same separator
are connected, and the oil level in separator-1 is connected to
the pressure variation in separator-2. As expected, most of the
identified interactions are local (e.g., interactions inside a separa-
tor), with very few long-distance interactions (e.g., interactions
between two separators). The strong local interactions among
variables such as temperature, pressure, and oil level within a

2[Online]. Available: https://www.lundin-energy.com/

https://www.lundin-energy.com/
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Fig. 8. Topology estimated using RFNL-TIRSO for Oil and Gas platform. Temperature, pressure, and level sensors are denoted by the labels ‘T’,‘P’, and ‘L’ in
the node index, respectively.

Fig. 9. NMSE comparison: data from the Oil and Gas platform.

container are directly linked to fluid dynamics of the oil and gas
in the closed chamber as governed by the underlying differential
equations [52]. However, various control mechanisms governing
the whole oil and gas platform and the physical connections
across different chambers can also cause some longer-distance
non-trivial interactions, although they will not typically be as
predominant as the local interactions. For instance, the primary
inlet separator and the electrostatic coalescer can interact despite
not being physically connected. When there are changes in the
oil level within the coalescer, it can affect the head of the system,
leading to changes in the pressure and oil level within the primary
inlet separator, which operates based on gravity.

We wish to note that the estimated dependencies can be inter-
preted as an abstract graph representation of various physics-
based equations describing the spatio-temporal variation of
the signals. However, since ground truth dependencies are not
available in this experiment, directly evaluating the estimated
graph using the underlying differential physics-based equations
is a complex and time-consuming task that is beyond the scope

Fig. 10. Time-normalized regret and path length: data from Edvard-Grieg Oil
and Gas platform.

Fig. 11. NMSE with different learning rate at: data from Edvard-Grieg Oil
and Gas platform.
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Fig. 12. Estimated brain topology for the subjects P1 and P2 during various stages of seizure.

of this study. Instead, we assess the ability of the algorithms
to learn the dependencies based on the accuracy of time series
forecasting using the learned VAR model. A high prediction
accuracy implies that the estimated dependencies are close to
the underlying unknown true dependencies. In our study, we
measure the prediction accuracy using normalized mean squared
error (NMSE):

NMSE (T) =

∑T
t=1(yn[t+ tstep]− ŷn[t+ tstep])

2∑T
t=1(yn[t+ tstep])2

, (36)

where ŷn[t+ tstep] is the estimate of the time series generated
by the nth node at time instant t+ tstep based on the VAR
model learned at time t. Fig. 9 shows the NMSE of the estimated
signals corresponding to a particular sensor n = 8 using various
algorithms. We exclude the PDIS algorithm in this experiment
since it is not specifically designed for signal prediction. The
NMSE is calculated according to (36) with a prediction horizon
of tstep = 12, representing one-minute ahead prediction. For the
RFNL-TIRSO and TIRSO algorithms, we conduct the experi-
ments by varying the forgetting factor γ ∈ {0.1, 0.5, 0.7, 0.98}.
The best NMSE performance is achieved by the RFNL-TIRSO
algorithm when γ = 0.98, surpassing all the competing al-
gorithms. As γ decreases, the performance of RFNL-TIRSO
approaches that of RFNL-TISO, as expected from (17). Fur-
thermore, we plot the dynamic regret and cumulative variation
of the optimal parameter estimates in Fig. 10, demonstrating that
our algorithm is capable of tracking the topology even when the
optimal topology undergoes variations.

In Section IV, we show that the RFNL-TIRSO converges if
the learning rate is less than 1/L, where L is the upper bound of
Λmax(φ[T ]). The performance of RFNL-TIRSO under various
learning rates is shown in Fig. 11. Intuitively as the learning
rate increases, RFNL-TIRSO converges faster; and when the
learning rate surpasses 1/L, convergence is not guaranteed, as
evidenced in Fig. 11. Note that if the data has a high variance,
the value of Λmax(φ[T ]) will also be high, necessitating the use
of a lower learning rate to ensure algorithm convergence.

2) Epileptic Data Set: The dataset used for this experi-
ment [50] is collected from the Children’s Hospital Boston, and
it consists of EEG recordings from two pediatric subjects with
intractable seizures, labelled as P1 (age 11, gender female) and
P2 (age 10, gender female). Subjects were monitored for several
days after discontinuing anti-seizure medication to characterize
their seizures and assess their candidacy for surgical interven-
tion. The EEG recordings followed the electrode positions and
nomenclature of the well-known International 10-20 system
standard. The signals were sampled at a rate of 64 samples per
second, and a total of 23 channels were recorded: FP1:F7, F7:T7,
T7:P7, P7:O1, FP1:F3, F3:C3, C3:P3, P3:O1, FP2:F4, F4:C4,
C4:P4, P4:O2, FP2:F8, F8:T8, T8:P8, P8:O2, FZ:CZ, CZ:PZ,
P7:T7, T7:FT9, FT9:FT10, FT10:T8, and 2T8:P8, representing
the potential difference between the corresponding electrodes.

The estimated brain topologies using RFNL-TIRSO (P =
2, D=20) at different time instants (before seizure, during
seizure, after seizure) are visualized in Fig. 12, based on the

2 norms ‖αn,n′ [t]‖2. It can be observed that the estimated
topologies before and after the seizure are very similar, with
connections concentrated across specific brain regions. How-
ever, during the seizure, the topologies become more disrupted,
which aligns with the findings in [53]. This disruption can be
attributed to increased pathogenic neural discharge during the
seizure [54].

The brain can be divided into several regions, namely, tem-
poral, frontal, occipital, parietal and central. Epilepsies are
generally classified according to the region of the brain where
they originate, with common classifications including tempo-
ral lobe (TL) epilepsy and frontal lobe (FL) epilepsy [55].
In TL epilepsy, more inter-region connections originate from
the temporal region, whereas in FL epilepsy, such connections
originate from the frontal region. To illustrate this, we present an
experiment using the brain data of P1 and P2, who belong to the
TL and FL epilepsy categories [56], respectively. To measure
the activity level of different brain regions, we group all the
channels connected to the ‘temporal’ region into group-T and
the ‘frontal’ region into group-F. Note that all the connections
between the ‘frontal’ and the ‘temporal’ regions are excluded
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Fig. 13. Activation levels in ‘T’ and ‘F’ regions of the brain.

in this experiment. We define the activation level of a group as
the sum of the degrees of all the nodes belonging to the group
divided by the total number of nodes in the group, where the
degree of a node refers to the total number of edges connected
to the node. The activation levels of group-T and group-F for P1
and P2 are shown in Fig. 13(a) and (b), respectively. From the
figures, it can be observed that for P1 and P2, the activation levels
of group-T and group-F, respectively, exhibit an initial spike,
and then the activation spreads across the other brain regions.
These observations align with the characteristics of TL and FL
epilepsies.

VI. CONCLUSION

This article presents a novel online nonlinear topology iden-
tification algorithm called RFNL-TIRSO. The algorithm is de-
signed to process multivariate time series data in a sequential
manner and estimate time-varying nonlinear dependencies. The
theoretical analysis demonstrates that RFNL-TIRSO follows
a sublinear dynamic regret, guaranteeing its ability to track
changes in the topology of the system in dynamic environments.
To evaluate the performance of RFNL-TIRSO, both real and
synthetic data sets are used, and the algorithm outperforms the
state-of-the-art online topology estimation methods.

APPENDIX A
PROOF OF THEOREM 1

In this section, we derive a theoretical upper bound forRrf
n(T ).

Since the function hn
t is convex

Rrf
n(T ) =

T−1∑
t=P

[hn
t (αn[t], zv(t))− hn

t (α
∗
n[t], zv(t))]

≤
T−1∑
t=P

∇hn
t (αn[t], zv(t))

�(αn[t]−α∗
n[t]). (37)

Note that ∇hn
t (αn[t], zv(t)) is the gradient of

hn
t (αn[t], zv(t)) with respect to αn[t]. Apply Cauchy-Schwarz

inequality on right hand side of (37) to get

Rrf
n(T ) =

T−1∑
t=P

[
hn
t (αn[t], zv(t))− hn

t (α
∗
n[t], zv(t))

]

≤
T−1∑
t=P

‖∇hn
t (αn[t], zv(t))‖2 ‖αn[t]−α∗

n[t]‖2.

(38)

The optimality gap of any proximal gradient descent algorithm
with an objective function having 1) a strongly convex and
Lipschitz smooth loss function and 2) a Lipschitz continuous
regularizer is derived in [36]. We can show that RFNL-TIRSO
is a proximal gradient descent algorithm by following the proofs
provided in [6]. Hence, the cumulative optimality gap is bounded
as

T−1∑
t=P

‖αn[t]−α∗
n[t]‖2 = ‖α∗

n[P ]‖2+W n(T ), (39)

where W n(T ) =
∑T−1

t=P ‖α∗
n[t]−α∗

n[t− 1]‖2 is the path
length, which is a measure of the cumulative variation of the op-
timality gap. Next, we bound for the term ‖∇hn

t (αn[t], zv(t))‖2
in (38).

Lemma 1: Under the assumptions A1, A3 and A4,

‖∇hn
t (αn[t], zv(t))‖2 ≤

((
1 +

L

ρl

)√
2PNDBy + λ

√
PN

)
.

Proof: The cost function consists of a differentiable loss
function 
̃nt and a non-differentiable regularizer ωn. We intro-
duce the notation un to denote a subgradient of the regularizer
ωn(αn[t]). The gradient of the entire cost function can be
bounded by bounding the gradient of these two terms:

‖∇hn
t (αn[t], zv(t))‖2 ≤ ‖∇
̃nt (αn[t])‖2 + ‖un‖2. (40)

The term ‖∇
̃nt (αn[t])‖2 is bounded in Lemma 1.2 using
Lemma 1.1, and the term ‖un‖2 is bounded in Lemma 1.3.

Lemma 1.1: Under assumptions A1 and A3

‖αn[t+ 1]‖2 ≤ (1− atρl)‖αn[t]‖2 + at
√

2PNDBy.

Proof: From Lemma 7 in [6] we have,

‖αn[t+ 1]‖2 ≤ (1− atρl)‖αn[t]‖2 + at‖rn[t]‖2. (41)

Using (21), we can bound ‖rn[t]‖2 as

‖rn[t]‖2 =

∥∥∥∥∥μ
t∑

τ=P

γt−τyn[τ ]zv(τ)

∥∥∥∥∥
2



2040 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

≤ μ

∥∥∥∥∥
t∑

τ=P

γt−τyn[τ ]12PND

∥∥∥∥∥
2

(42)

≤ μ
√
2PNDByγ

t
t∑

τ=P

(
1

γ

)τ

(43)

=
√
2PNDBy

(
1− γt−P+1

)
(44)

≤√
2PNDBy. (45)

Inequality (42) is obtained by replacing the RF vector (sinusoidal
components) with an all-one vector having a higher norm, (43)
is obtained using the assumption A1, (44) follows from μ =
1− γ, and (45) follows from γ ≤ 1. Lemma 1.1 is proved by
substituting (45) in (41).

Lemma 1.2: Under assumptions A1, A3, and A4, the RFNL-
TIRSO algorithm with step size parameter at = 1

L satisfies

‖∇
̃nt (αn[t])‖2 ≤
(
1 +

L

ρl

)√
2PNDBy.

Proof: Invoke Lemma 1.1, set at = a, and let δ = (1− aρl)
and 0 ≤ δ ≤ 1, to get

‖αn[t+ 1]‖2 ≤ δ‖αn[t]‖2 + at
√

2PNDBy (46)

The bound of ‖αn[t+ 1]‖2 in terms of the norm of the initial
estimate ‖αn[P ]‖2 is obtained by t− P + 1 recursion of (46):

‖αn[t+ 1]‖2 ≤ δt−P+1‖αn[P ]‖2 + a
√

2PNDBy

t−P∑
i=0

δi

=
a
√
2PNDBy(1− δt−P+1)

1− δ
(47)

≤ a
√

2PNDBy

1− (1− aρl)
) =

1

ρl

√
2PNDBy (48)

In (47), we assumed that the RF coefficients are initialized with
zeros, i.e., αn[P ] = 02PND.

Using (48) and (45), we can bound gradient:

‖∇
̃nt (αn[t])‖2 = ‖φ[t]αn[t]− rn[t]‖2 (from (22))

≤ ‖φ[t]αn[t]‖2 + ‖rn[t]‖2
≤ Λmax(φ[t])‖αn[t]‖2 + ‖rn[t]‖2 (49)

= L

√
2PNDBy

ρl
+
√

2PNDBy (50)

≤
(
1 +

L

ρl

)√
2PNDBy (51)

Inequality (49) holds since spectral norm of φ[t] = Λmax(φ[t]),
whereas (50) is obtained by combining the Assumption A4, (48),
and (45). Next, we bound ‖un‖2.

Lemma 1.3: The norm of a subgradient of the regularizer can
be bounded as

‖un‖2 ≤ λ
√
PN.

Proof: To prove Lemma 1.3, we apply Lemma 2.6 from [4],
which states that every subgradient of ωn(.) is bounded by its

Lipschitz continuity parameter Lωn . In the following, we show
that Lωn = λ

√
PN .

Lipschitz continuity of ωn means there exists Lωn > 0 such
that

|ωn(a)− ωn(b)| ≤ Lωn‖a− b‖2 (52)

for all real a and b. From the group-Lasso regularizer, we have

ωn(xn) = λ
N∑

n′=1

P∑
p=1

‖x(p)
n,n′ ‖2. (53)

Expanding the left-hand side of (52) using (53) yields

|ωn(an)− ωn(bn)| (54)

= λ

∣∣∣∣∣
N∑

n′=1

P∑
p=1

‖a(p)
n,n′ ‖2 −

N∑
n′=1

P∑
p=1

‖b(p)n,n′ ‖2
∣∣∣∣∣ (55)

= λ

∣∣∣∣∣
N∑

n′=1

P∑
p=1

‖a(p)
n,n′ ‖2 − ‖b(p)n,n′ ‖2

∣∣∣∣∣ (56)

≤ λ

N∑
n′=1

P∑
p=1

∣∣∣‖a(p)
n,n′ ‖2 − ‖b(p)n,n′ ‖2

∣∣∣ (57)

≤ λ

N∑
n′=1

P∑
p=1

‖a(p)
n,n′ − b

(p)
n,n′ ‖2 (58)

≤ λ
√
PN‖an − bn‖2. (59)

In the above derivation, inequality (57) follows from the triangle
inequality, inequality (58) from the reverse triangle inequality
and (59) from the basic inequality ‖q‖1 ≤ √

M‖q‖2, q ∈ RM .
From (59), we obtain the required Lipschitz parameter to be
λ
√
PN .

Substitute the bounds of ‖∇lnt (αn[t])‖2 given by Lemma 1.2
and ‖un‖2 given by Lemma 1.3 in (40) to complete the proof
of Lemma 1. Finally, the proof of Theorem 1 can be completed
by substituting Lemma 1 and (39) in (38).

APPENDIX B
PROOF OF THEOREM 2

The cumulative approximation error due to the RF approxi-
mation is

ξn[T ] ≤
∣∣∣∣∣
T−1∑
t=P

[hn
t (α

∗
n[t], zv(t))− hn

t (β
∗
n[t],κt)]

∣∣∣∣∣ . (60)

Using the triangle inequality,

ξn[T ] ≤
T−1∑
t=P

∣∣∣hn
t (α

∗
n[t], zv(t))− hn

t (β
∗
n[t],κt)

∣∣∣
≤

T−1∑
t=P

Lh

∣∣∣∣∣
N∑

n′=1

P∑
p=1

t+p−1∑
t′=P

[
β
(p)∗
n,n′,(t′−p)z

(p)
v,n′(t)

�
z
(p)
v,n′(t

′)

− β
(p)∗
n,n′,(t′−p)k

(p)
n′ (yn′ [t− p], yn′ [t′ − p])

]∣∣∣∣ (61)
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≤
T−1∑
t=P

Lh

N∑
n′=1

P∑
p=1

t+p−1∑
t′=p

∣∣∣∣β(p)∗
n,n′,(t′−p)

∣∣∣∣×∣∣∣∣z(p)
v,n′(t)

�
z
(p)
v,n′(t)− k

(p)
n′ (yn′ [t− p], yn′ [t′ − p])

∣∣∣∣. (62)

Inequality (61) is obtained from the Lipschitz continuity of the
cost function (Lh > 0 is the Lipschitz continuity parameter)
and (62) follows from Cauchy-Schwarz inequality. As shown
in [21], we can prove that for a given shift-invariant kernel k(p)n′

(assumption A2), the approximation error due to the random
Fourier approximation is bounded by

sup
yn(t)

∣∣∣∣z(p)
v,n′(t)

�
z
(p)
v,n′(t)− k

(p)
n′ (yn′ [t− p], yn′ [t′ − p])

∣∣∣∣ ≤ εpn′

(63)

with a probability given by 1− 28(σp
n′/ε

p
n′)2 exp(−Dεpn′/12).

Here, εpn′ ≥ 0 is a constant and σp
n′ is the variance of the random

feature vector norm. Using (63),

ξn[T ] ≤
T−1∑
t=P

Lh

N∑
n′=1

P∑
p=1

t+p−1∑
t′=P

∣∣∣∣β(p)∗
n,n′,(t′−p)

∣∣∣∣εpn′ . (64)

Let ε = max εpn′ , which leads to

ξ(T ) ≤
T−1∑
t=P

Lhε

N∑
n′=1

P∑
p=1

t+p−1∑
t′=P

∣∣∣∣β(p)∗
n,n′,(t′−p)

∣∣∣∣ (65)

≤
T−1∑
t=P

εLhC (66)

≤ εLhTC, (67)

where C is a constant and (66) follows from the assumption A1:
since yn(t) is bounded, the optimal parameters should also be
bounded.
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