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Random Feature Approximation for
Online Nonlinear Graph Topology Iden-
tification

R. Money, J. Krishnan, B. Beferull-Lozano

Abstract: Online topology estimation of graph-connected time se-
ries is challenging, especially since the causal dependencies in many real-
world networks are nonlinear. In this paper, we propose a kernel-based
algorithm for graph topology estimation. The algorithm uses a Fourier-
based Random feature approximation to tackle the curse of dimension-
ality associated with the kernel representations. Exploiting the fact that
the real-world networks often exhibit sparse topologies, we propose a
group lasso based optimization framework, which is solve using an it-
erative composite objective mirror descent method, yielding an online
algorithm with fixed computational complexity per iteration. The ex-
periments conducted on real and synthetic data show that the proposed
method outperforms its competitors.

B.1 Introduction

The amount of data generated from interconnected networks such as sensor net-
works, financial time-series, brain-networks, etc., are increasing rapidly. Extraction
of meaningful information from such interconnected data, represented in the form of
a graph can have many practical applications such as, signal denoising [62], change
point detection [54], time series prediction [53], etc. Many of the functional relation-
ships in such networks are causal and identification of this causal graph structure is
termed topology identification. Many real world causal systems can be well described
using vector autoregressive model (VAR) as naturally most of the dependencies are
time-lagged in nature. Moreover under causal sufficiency, VAR causality implies
well known Granger causality [63].

Topology identification based on the linear VAR model has been well-studied.
In [48], an efficient way to estimate linear VAR coefficients from streaming data is
proposed. However, such linear VAR models fail to capture the real-world nonlinear
dependencies.A novel nonlinear VAR topology identification is proposed in [11] in
which, the kernels are used to linearize the nonlinear dependencies by mapping them
to a higher-dimensional Hilbert space. However, being a batch-based approach, [11]
is computationally expensive and is not suitable for identifying the time-varying





topologies.
The above shortcomings are tackled by kernel-based online algorithms [61], [21].

In [21], sparse VAR coefficients are recursively estimated using a composite objective
mirror decent (COMID) approach, whereas [61] uses functional stochastic gradient
descent (FSGD), followed by soft-thresholding. However, the kernel-based represen-
tations have a major drawback of unaffordable growth of computational complexity
and memory requirement, which is commonly known as the “curse of dimensional-
ity". Both [61] and [21] propose to circumvent this issue by restricting the numeric
calculation to a limited number of time-series samples using a time window, which
results in suboptimal performance.

A standard procedure to address the curse of dimensionality is to invoke the ker-
nel dictionaries [64]. Often, the dictionary elements are selected based on a budget
maintaining strategy. In large-scale machine learning problems, the dictionary size
can go prohibitively high in order to maintain the budget. Recently, the random
feature (RF) approximation [16] techniques are gaining popularity in approximat-
ing the kernels, which are shown to yield promising results compared to the budget
maintaining strategies [16, 42].

In this work, we use RF approximation to avoid the curse of dimensionality in
learning nonlinear VAR models. We approximate shift-invariant Gaussian kernels
using a fixed number of random Fourier features. The major contributions of this
paper are i) formulation of a kernel-based optimization framework in the function
space, ii) reformulation of i) to a parametric optimization using RF approximation,
and iii) an online algorithm to estimate the sparse nonlinear VAR coefficients us-
ing COMID updates. We provide numerical results showing the proposed method
outperforms the state-of-the-art topology identification algorithms.

B.2 Kernel Representation

Consider a multi-variate time series with N nodes. Let yn[t] be the value of time
series at time t = 0, 1, . . . , T − 1 observed at node 1 ≤ n ≤ N . A P -th order non-
linear VAR model assuming additive functional dependencies can be formulated as

yn[t] =
N∑

n′=1

P∑
p=1

a
(p)
n,n′f

(p)
n,n′(yn′ [t− p]) + un[t], (B.1)

where f (p)
n,n′ is the function that encodes the nonlinear causal influence of the p-lagged

data at node n′ on the node n, a(p)n,n′ is the corresponding entry of the graph adja-
cency matrix, and un[t] is the observation noise. Considering the model (B.1), topol-
ogy identification can be defined as the estimation of the functional dependencies{
a
(p)
n,n′f

(p)
n,n′(.)

}P

p=1
for n = 1, 2, . . . , N from the observed time series {yn[t]}Nn=1.

We assume that the functions f (p)
n,n′ in (B.1) belong to a reproducing kernel Hilbert

space (RKHS):

H(p)
n′ :=

{
f
(p)
n,n′ | f (p)

n,n′ (y) =
∞∑
t=0

β
(p)
n,n′,t κ

(p)
n′ (y, yn′ [t− p])

}
, (B.2)





where κ(p)
n′ : R×R → R is the kernel associated with the Hilbert space. The kernel

measures the similarity between data points y and yn′ [t − p]. Referring to (B.2),
evaluation of the functional f (p)

n,n′ at y can be represented as the linear combination
of the similarities between y and the data points {yn′ [t− p]}t=∞

t=0 , with weights β(p)
n,n′,t.

The inner product, ⟨κ(p)n′ (y, x1), κ
(p)
n′ (y, x2)⟩ :=

∑∞
t=0 κ

(p)
n′ (y[t], x1)κ

(p)
n′ (y[t], x2), is defined

in the Hilbert space using kernels with reproducible property ⟨κ(p)n′ (y, x1), κ
(p)
n′ (y, x2)⟩ =

κ
(p)
n′ (x1, x2). Such a Hilbert space with the reproducing kernels is termed as RKHS and

the inner product induces a norm, ∥f (p)
n,n′∥2H(p)

n′
=
∑∞

t=0

∑∞
t′=0 β

(p)
n,n′,t β

(p)
n,n′,t′ κ

(p)
n′ (yn[t], yn[t

′]).

We refer to [37] for further reading on RKHS.
For a particular node n, the estimates of

{
f
(p)
n,n′ ∈ H(p)

n′

}
n′,p

are obtained by solving the

functional optimization problem:

{
f̂
(p)
n,n′

}
n′,p

= arg min{
f
(p)

n,n′∈H
(p)

n′

} 1

2

T−1∑
τ=P

[
yn[τ ]−

N∑
n′=1

P∑
p=1

a
(p)
n,n′f

(p)
n,n′(yn′ [τ − p])

]2
. (B.3)

It is to be noted that in (B.3), the functions {f (p)
n,n′} belong to the RKHS defined in

(B.2), which is an infinite dimensional space. However, by resorting to the Representer
Theorem [38], the solution of (B.3) can be written using a finite number of data samples:

f̂
(p)
n,n′ (yn′ [τ − p]) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)κ

(p)
n′ (yn′ [τ − p]), yn′ [t− p]) . (B.4)

Notice that the number of coefficients required to express the function increases with the
number of data samples. In the recent works [61], [21], this problem is solved by using a
time window to fix the number of data points, resulting in suboptimality. However, in this
work in align with [42] and [43], we use RF approximation to tackle the dimensionality
growth.

B.3 Random Feature Approximation
To invoke RF approximation, we assume the kernel to be shift-invariant, i.e., it satisfies
the property κ

(p)
n′ (yn′ [τ − p]), yn′ [t− p]) = κ

(p)
n′ (yn′ [τ − p])− yn′ [t− p]). Bochner’s theo-

rem [30] states that every shift-invariant kernel can be represented as an inverse Fourier
transform of a probability distribution. Hence the kernel evaluation can be expressed as

κ
(p)
n′ (yn′ [τ − p]), yn′ [t− p]) =

∫
π
κ
(p)

n′
(v) ejv(yn′ [τ−p]−yn′ [t−p])dv

= Ev[e
jv(yn′ [τ−p]−yn′ [t−p])], (B.5)

where π
κ
(p)

n′
(v) is the probability density function which depends on type of the kernel, and

v is the random variable associated with it. If sufficient amount of iid samples {vi}Di=1 are
collected from the distribution π

κ
(p)

n′
(v), the real ensemble mean in (B.5) can be expressed

as a sample mean:

κ̂
(p)
n′ (yn′ [τ − p]), yn′ [t− p]) =

1

D

D∑
i=1

ejvi(yn′ [τ−p])−yn′ [t−p]), (B.6)





irrespective of the distribution π
κ
(p)

n′
(v). Note that the unbiased estimate of kernel evalu-

ation in (B.6) involves a summation of fixed D number of terms. In general, computing
the probability distribution corresponding to a kernel is a difficult task. In this work the
kernel under consideration is Gaussian; for a Gaussian kernel kσ with variance σ2, it is
well known that the Fourier transform is a Gaussian with variance σ−2. Considering the
real part of (B.6), which is also an unbiased estimator, (B.5) can be approximated as

κ̂
(p)
n′ (yn′ [τ − p], yn′ [t− p]) = zv (yn′ [τ − p])⊤ zv (yn′ [t− p]) , (B.7)

where zv(x) =
1√
D
[sin v1x, . . . , sin vDx, cos v1x, . . . , cos vDx]

⊤. (B.8)

Subsisting (B.7) in (B.4), we obtain a fixed dimension (2D terms) approximation of
the function f̂

(p)
n,n′ :

ˆ̂f
(p)
n,n′ (yn′ [τ − p])) =

p+T−1∑
t=p

β
(p)
n,n′,(t−p)zv (yn′ [τ − p])⊤ zv (yn′ [t− p])

= θ
(p)
n,n′

⊤
zv (yn′ [τ − p]) , (B.9)

where θ
(p)
n,n′

⊤
=
∑p+T−1

t=p β
(p)
n,n′,(t−p)zv (yn′ [τ − p])⊤ = [θ

(p)
n,n′,1, . . . , θ

(p)
n,n′,2D] ∈ R2D. For

the sake of clarity, in the succeeding steps, we define the following notation:

α
(p)
n,n′ = [α

(p)
n,n′,1, . . . , α

(p)
n,n′,2D]

⊤ ∈ R2D, (B.10)

zv (yn′ [τ − p]) = [z
(p)
n′,1 (τ) , . . . z

(p)
n′,2D (τ)]⊤ ∈ R2D, (B.11)

where α
(p)
n,n′,d = θ

(p)
n,n′,da

(p)
n,n′ . The functional optimization (B.3) is reformulated as a

parametric optimization problem using (B.9):{
α̂
(p)
n,n′,d

}
n′,p,d

= arg min{
α
(p)

n,n′,d

}Ln
(
α
(p)
n,n′,d

)
, (B.12)

where

Ln
(
α
(p)
n,n′,d

)
:=

T−1∑
τ=P

1

2

[
yn[τ ]−

N∑
n′=1

P∑
p=1

2D∑
d=1

α
(p)
n,n′,d z

(p)
n′,d (τ)

]2
. (B.13)

For convenience, optimization parameters
{
α
(p)
n,n′,d

}
and

{
z
(p)
n′,d (τ)

}
are stacked in

the lexicographic order of the indices p, n′, and d to obtain the vectors αn ∈ R2PND

and zτ ∈ R2PND, respectively, and (B.12) is rewritten as

α̂n = argmin
αn

Ln (αn) , (B.14)

where Ln(αn) =
1

2

T−1∑
τ=P

[
yn[τ ]−α⊤

nzτ

]2
(B.15)

Now, in order to avoid overfitting, we propose a regularized optimization framework:

α̂n = argmin
αn

Ln (αn) + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2, (B.16)





where λ ≥ 0 is the regularization parameter and α
(p)
n,n′ = (α

(p)
n,n′,1, α

(p)
n,n′,2, . . . , α

(p)
n,n′,2D) ∈

R2D. The second term in (B.16) is a group-lasso regularizer, which promote a group-
sparse structure in α

(p)
n,n′ , supported by the assumption that most of the real world

dependencies are sparse in nature.
However, notice that the batch formulation in (B.16) has some significant limita-

tions: i) requirement of complete batch of data points before estimation, ii) inability
to track time varying topologies, and iii) explosive computational complexity when
T is large even if RF approximation is used. To mitigate these problems, we adopt
an online optimization strategy, which is explained in the following section.

B.4 Online Topology Estimation

In this case, we replace the batch loss function Ln(αn) in (B.16) with the stochastic
(instantaneous) loss function lnt (αn) =

1
2
[yn[t]−α⊤

nzt]
2:

α̂n = argmin
αn

lnt (αn) + λ
N∑

n′=1

P∑
p=1

∥α(p)
n,n′∥2. (B.17)

Notice that the sparsity promoting group lasso regularizer is non-differentiable. The
use of online subgradient descent (OSGD) is not advisable in this situation as it
linearizes the entire objective function and fails to provide sparse iterates. To avoid
this limitation of OSGD, we use the composite objective mirror descent (COMID)
[39] algorithm which resembles the nature of proximal methods, hence improving
convergence. The online COMID update can be written as

αn[t+ 1] = argmin
αn

J
(n)
t (αn), (B.18)

where J
(n)
t (αn) ≜ ∇ℓnt (αn[t])

⊤ (αn −αn[t])

+
1

2γt
∥αn −αn[t]∥22 + λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2. (B.19)

In (B.19) αn[t] ∈ R2PND denotes the estimate of αn at time t. The first term in
equation (B.19) is the gradient of the loss function lnt (αn), the second and third
term are Bergman divergence and sparsity promoting regularizer respectively. The
Bregman divergence is included to improve the stability of algorithm from adver-
saries by constraining αn[t + 1] to be close to αn[t]. The Bregman divergence
B(αn,αn[t]) =

1
2
∥αn − αn[t]∥22 chosen in such a way that the COMID update has

a closed form solution [40] and γt is the corresponding step size. The gradient in
(B.19) is evaluated as

vn[t] := ∇ℓnt (αn[t]) = zt

(
α⊤

nzt − yn[t]
)

(B.20)

Expanding the objective function in (B.19) and omitting the constants leads to the
following formulation:





J
(n)
t (αn) ∝

α⊤
nαn

2γt
+α⊤

n

(
vn[t]−

1

γt
αn[t]

)
+ λ

N∑
n′=1

P∑
p=1

∥α(p)
n,n′∥2

=
N∑

n′=1

P∑
p=1

[
α

(p)⊤

n,n′ α
(p)
n,n′

2γt
+α

(p)⊤

n,n′

(
v
(p)
n,n′ [t]−

1

γt
α

(p)
n,n′ [t]

)
+ λ∥α(p)

n,n′∥2
]
. (B.21)

A closed form solution for (B.18) using (B.21) is obtained via the multidimensional
shrinkage-thresholding operator [41]:

α
(p)
n,n′ [t+ 1] =

(
α

(p)
n,n′ [t]− γtv

(p)
n,n′ [t]

)
×[

1− γtλ

∥α(p)
n,n′ [t]− γtv

(p)
n,n′ [t]∥2

]
+

, (B.22)

where [x]+ = max {0, x}. The first term α
(p)
n,n′ [t] − γtv

(p)
n,n′ [t] in (B.22) forces the

stochastic gradient update of α(p)
n,n′ in a way to descend instantaneous loss function

lnt (αn) and the second term in (B.22) enforces group sparsity of α(p)
n,n′ . Note that

the close form solution (B.22) is separable in n′ and p.
The proposed algorithm, termed as Random Feature based Nonlinear Topology

Identification via Sparse Online learning (RF-NLTISO), is summarized in Algo-
rithm 6.

Algorithm 6: RF-NLTISO Algorithm

Result: α
(p)
n,n′ , for n, n′ = 1, .., N and p = 1, .., P

Store {yn[t]}Pt=1,
Initialize λ, γ, D (heuristically chosen) and kernel parameters depending
on the type of the kernel.

for t = P, P + 1, . . . do
Get data samples yn[t], ∀n and compute zτ

for n = 1, . . . , N do
compute vn[t] using (B.20)
for n′ = 1, . . . , N do

compute α
(p)
n,n′ [t+ 1] using (B.22)

end
end

end

B.5 Experiments

We compare the performance of the proposed algorithm, RF-NLTISO, with the the
state-of-the-art online topology estimation algorithms. Experiments shown in this





section are conducted using 1) synthetic datasets with topologies having different
transition patterns and 2) real datasets collected from Lundin’s offshore oil and
Gas platform. For the performance comparison, we choose TIRSO [48] and NL-
TISO [21] algorithms, which are the state-of-the-art counterparts of RF-NLTISO,
to the best of our knowledge. TIRSO is developed based on a linear VAR model
assumption, whereas NL-TISO, a kernel-based topology estimation algorithm, is
developed for nonlinear VAR models. Although a kernel-based functional stochastic
gradient based algorithm [61] is also available, its performance has been shown to
be inferior compared to NL-TISO [21].

B.5.1 Experiments using Synthetic Data

B.5.1.1 Topology with switching edges

We generate a multi-variate time series using nonlinear VAR model (B.1) with N =

5, P = 2. An initial random graph with edge probability of 0.1 is generated and the
graph adjacency coefficients a

(p)
n,n′ are drawn from a Uniform distribution U(0, 1).

After every 1000 samples, one of the active (non-zero) edge disappears and another
one appears randomly, which brings an abrupt change in the graph topology. The
nonlinearity in (B.1) is introduced using a Gaussian kernel with variance 0.01 and
the kernel coefficients are chosen randomly from a zero mean Gaussian distribution
with variance 30. Note that the initial P data samples are generated randomly
and rest of the data is generated using the model (B.1). The coefficients

{
α

(p)
n,n′ [t]

}
are estimated using the proposed RF-NLTISO algorithm with a Gaussian kernel
having variance 0.1 and number of random features D = 50. The hyper-parameters
λ and γ are heuristically chosen as 0.1 and 1000, respectively. To visualize causal
relationships, we compute the ℓ2 norms b

(p)
n,n′ [t] = ∥α(p)

n,n′ [t]∥2 and arrange them in
a matrix similar to the graph adjacency matrix. A similar strategy is adopted for
the NL-TISO and the TIRSO algorithms. The normalized version of true and the
estimated dependencies at various time samples are shown in Fig. B.1, where in
each subplot, the 5 × 5 dependency matrices corresponding to p = 1 and 2 are
concatenated, resulting in a 10 × 5 size matrix. We normalized the coefficients by
dividing each coefficients with highest value of coefficient in a pseudo adjacency
matrix. From the Fig. B.1, it is clear that RF-NLTISO is able to perform equal or
better compared to NL-TISO algorithm and clearly outperforms TIRSO.

Next we conduct the same experiments using RF-NLTISO with different numbers
of random feature (D ∈ {10, 30, 50}). These experiments are repeated 1000 times
to find probability of miss detection (PMD) and false alarm (PFA), which we define
as

PMD[t] ≜

∑
n̸=n′

∑P
p=1 E

[
⊮{∥b̂(p)n,n′ [t]∥2 < δ}⊮{

∥∥αn,n′
∥∥
2
≥ δ}

]
∑

n̸=n′
∑P

p=1 E
[
⊮{
∥∥αn,n′

∥∥
2
≥ δ}

] ,

PFA[t] ≜

∑
n̸=n′

∑P
p=1 E

[
⊮{∥b̂(p)n,n′ [t]∥2 > δ}⊮{

∥∥αn,n′
∥∥
2
≤ δ}

]
∑

n̸=n′
∑P

p=1 E
[
⊮{
∥∥αn,n′

∥∥
2
≤ δ}

] . (B.23)
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Figure B.1: Causal dependencies estimated using different algorithms compared
with the true dependency.
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Figure B.3: Probability of Miss Detection (PMD).
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From Figs. B.2 and B.3, it is observed that for the given choices of D, PMD is better
for RF-NLTISO compared to NL-TISO; however, NL-TISO is performing better in
terms of PFA. Both the figures show an overshoot at the topology-switching time
instances. It is also observed that for the proposed algorithm, PMD decreases with
D, whereas PFA increases with D, which in turn suggests a tuning for D for an
effective trade-off between PFA and PMD.

B.5.1.2 Slowly varying topology

We compare the performance of RF-NLTISO with the state-of-the-art algorithms
using a slowly varying graph topology. The same experiment setup as discussed in
B.5.1.1 is adopted with the following more slowly time varying topology:

a
(p)
n,n′ [t+ 1] = a

(p)
n,n′ [t] + 0.01 sin(0.03 ∗ t) (B.24)

The normalized values of one of the active edges is plotted in Fig. B.4. The figure
also shows the normalized values of the corresponding estimated coefficients (̂b(p)n,n′ [t]

for NL-TISO and RF-NLTISO and â
(p)
n,n′ [t] for TIRSO ). From the figure, it can be

observed that the RF-NLTISO estimates are closer to the true value compared to
the estimates from the other two algorithms. In this example, the quality of TIRSO
estimates lags considerably behind the kernel-based algorithms due to the fact that
the underlying VAR model is nonlinear.

B.5.2 Experiments using Real Data

This section is dedicated to experiments using real data collected from Lundin’s
offshore oil and gas (O&G) platform Edvard-Grieg1. We have a multi-variate time
series with 24 nodes; and the nodes corresponds to various temperature (T), pressure
(P), or oil-level (L) sensors. The sensors are placed in the separators of decantation
tanks that separate oil, gas, and water. The time series are obtained by uniformly
sampling the sensor readings with a sampling rate of 5s. We assume that hidden
logic dependencies are present in the network due to various physical connections
and various control actuators. The data obtained from the network is normalized
by making it a zero mean unit variance signal, before applying the algorithm. The
causal dependencies are learned using RF-NLTISO with D = 10, 50, 100 and a Gaus-
sian kernel having a variance of 0.1 and with hyper parameter values λ = 0.1 and
γ = 10. The signal is reconstructed using the estimated dependencies. Fig. B.6
shows the mean squared error (MSE), defined as MSE(t) = E((yn(t)− ŷn(t))

2) for
a particular sensor n = 8, of RF-NLTISO estimates in comparison with other algo-
rithms. We observe that the RF-NLTISO estimates with random feature number
D ≥ 50 show better MSE performance compare to NL-TISO. The causality graph
estimated by RF-NLTISO is shown in Fig. B.7.

One of the main attractiveness of RF-NLTISO is that even though it is a kernel-
based algorithm, it has a fixed computational complexity throughout the online

1https://www.lundin-energy.com/
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Figure B.6: MSE comparison of NL-TISO with RF-NLTISO.

Figure B.7: Causality graph in oil and gas plant estimated by RF-NLTISO. P, T, L
represent pressure, temperature, and oil level sensors, respectively.
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Figure B.8: Comparison of computation time of kernel-based algorithms.

Figure B.9: Real data.

iterations. To demonstrate this, in Fig. B.8, we plot the computation time required
to estimate the coefficients at each time instant by NL-TISO and RF-NLTISO with
different values of D. The experiment is conducted in a machine with processor
2.4 GHz 8-core Intel Core i9 and 16GB 2667 MHz DDR4 RAM. Fig. B.8 shows
that the computation time of NL-TISO increases considerably with time but that
of RF-NLTISO remains more or less constant for a particular value of D.





B.6 Conclusion

We propose a kernel-based online topology identification method for interconnected
networks of time-series with additive nonlinear dependencies. In this work, the curse
of dimensionality associated with kernel representation is tackled using random fea-
ture approximation. Assuming that the real-world dependencies are sparse, we use
composite objective mirror decent update to estimate the online sparse causality
graph. The effectiveness of the proposed algorithm is illustrated through experi-
ments conducted on synthetic and real data, which shows that the algorithm out-
performs the state-of-the-art competitors. We devote the convergence and stability
analysis of the proposed algorithm to our future work.




