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Abstract

This thesis aims to improve the accuracy of fake news detection by using Tsetlin Machines
(TMs). TMs are well suited for noisy and complex relations within the provided data, which
on initial analysis, overlaps nicely with characteristics found in fake news. We provide a
performant and deterministic preprocessor, which is responsible for tokenizing, lemmanzing,
and encoding to a representation that the TM understands. We compare our approach with
TMs against Neural Network (NN) models over a variety of well-known datasets within the
fake news domain. Our findings show from comparable results to significant improvements
over state of the art. Additionally, we show how TMs allow for interpretable propositional
logic rules. For datasets with 2 classifications, we further convey these rules during inference
by applying a color between red and green, which shows the intensity and what direction
each word pulls the classification towards.

Keywords: Tsetlin Machine, Fake News Detection, Drop Clause, Interpretable Pattern
Recognition, Propositional Logic
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Chapter 1

Introduction

In this paper we will go over recent advancements within the TM field. The accompanying
source code described herein is available online1.

1.1 Artificial Intelligence

AI has in recent years shown massive growth within several fields, which has garnered the
attention of the public at large. While more primitive AI has been around for a few decades,
recent advancements have shown how impactful AI can be, or more specifically the Machine
Learning (ML) kind. AI has allowed machines to exhibit intelligent behavior and carry out
tasks that would otherwise be relegated to humans. Common areas benefiting from AI in
various degrees include; chatbots, virtual assistants, text-to-speech, speech-to-text, object
recognition, text recognition, fraud detection, stock market predictions, and recommendation
engines. While some of these areas are broad, and some narrow, there is a huge swath of
fields which also benefit from ML. What all these fields have in common is that ML has
been instrumental to various improvements over the years they have been available.

NNs are a big part of ML, which can be simplified as a system modelled after the biological
brain. Terminology is however a bit different, neurons become nodes, synapses become
edges, each of which are assigned a weight during training according to a chosen reward
function. A new concept called layers can also be found in NNs. These layers are named
input, hidden, and output. There is also a variant where more hidden layers are used, named
Deep Learning (DL). While this may sound overtly simple, both NNs and DL have a wide
array of research improving the state of the art year-over-year, adding complexity in each
step in the pursuit of additional performance.

Fine tuning a NN is a difficult task, because the underlying task is itself difficult. Making
sense of a NN is complex, and if it is not executed correctly the resulting model could end
up learning the wrong thing. Why is this a bad thing if it is ultimately correct? Outside of
technological issues, there has been ethical issues raised where a AI would disqualify women
from being hired because they were women [13]. That is illegal. Cases such as this one
highlight the need for interpretability within ML. Ablation studies are used to address such
issues, where some data is hidden from the NN, which through experimentation highlights
what data contributes to the overall outcome.

With ablation studies the problem is not entirely solved. In Amazon’s case blocking out
names of applicants was not enough, the resumes still contained indirect links to the applicant
being a woman which was picked up by Natural Language Processing (NLP). A direct

1Source code https://github.com/vetleledaal/ikt590
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example would be based on the school the applicant went to, which in general seems fine,
until it penalizes the resume more harshly if it was an all-women school. This shows there
is a need for interpretability within ML which shows causation, and not just correlation.

NLP is not only limited to parsing resumes, a big societal issue exist around the spread
of fake news. Social media definitely contributes to the current situation by the ease of
distribution [42]. This runs into the same issue of not being able to tell if there is some
unintended bias within the ML model. That does not make it impossible to make a fake
news ML classifier, you just have to accept an unknown amount of bias. This is not always
ideal.

OpenAI’s ChatGPT is a commercially available service showcasing the latest iteration of the
Generative Pre-trained Transformer (GPT) [26]. GPT is a Large Language Model (LLM)
that performs NLP tasks in the form of predicting the next token, step by step. ChatGPT is
a GPT in combination with system instructions so it can be interacted with like a chatbot.
It has been theorized that a LLM such as ChatGPT can be used to interpret classifications
provided by other ML models. ChatGPT appears to be capable of performing such tasks,
however, there are some concerns of bias, mostly stemming from its closed nature.

A TM is a fundamentally different approach from a NN, while still being within the Deep
Learning field. A TM works by applying automata functions to matrices [17]. The Tsetlin
Automaton (TA) learns by applying rewards or penalties based on its current state. In a
TM a TA represents a simple building block, also known as a clause. Each clause has two
actions it can end up in, Action 1 and Action 2. The action decided upon is dependant on
the previous rewards or penalties given based on the overall outcome.

While the description of the TM may seem more complex than NNs, the simplicity lies in
how the architecture allows for addition and subtraction operations, as opposed to multipli-
cation operations found in NNs. Multiplication operations are notoriously more expensive
to execute. While general purpose hardware can perform quite competently on this task, the
architecture allows for a TM to be represented by logic gates, which is suited for purpose
built hardware.

A feature of this architecture allows one to directly interpret the decision making through
a discrete set of conjunctive expressions in propositional logic. These are inherently easy to
parse, especially when compared to NNs. This is a direct solution to the otherwise black
box nature of NN models. There are however some drawbacks with TMs which makes it
unsuitable for some ML tasks. NLP is however one of the tasks the TM especially excels
in [37].

1.2 Fake News

While fake news can be classified through a AI models, that is not the only approach that
is available. We will explore past, current, and future methods of classifying fake news. We
expect research within this field to be more prevalent in recent years, due to the rise of social
media and the spread they enable. This directly benefits us in the sense that we may provide
improvements within the field in general, while also benefiting from previous research within
the domain.

Fake news comes in many forms, and there are adjacent fields we can draw parallels from.
From the simplest form, which we will focus on in this paper, is binary classification. Sadly
not everything is black and white, which is where multi-class AI models come in. We will
put this into consideration when looking at related work.

2



Unlike more general NLP tasks, we see a general trend of classifying a piece of news as fake
or real as insufficient. This comes from the general distrust placed on fake news classifiers
in the first place. This requires additional work around providing a chain of logic that gives
additional authority to the initial classification.

Let us take a step back and look at an earlier iteration of fake news detection. Before the
prevalence of the internet, news were inherently more difficult to distribute. Distribution
methods include; word of mouth, newspapers, radio, TV broadcast, among others. The
common point between all these is the relatively limited reach and cost associated with
distribution. This allowed established news agencies to proliferate news across their audience.
This alone is not directly a surefire way to distinguish fake news from real news, rather it
put accountability behind news distribution.

Once the internet was made more readily available to the public at large, news started being
available through the medium as well as an alternate distribution platform. The reach of
the internet was however larger than all other forms of distribution. Coupling this together
with the lower cost associated with spreading news, we saw a natural rise in terms of fake
news. It was no longer readily apparent which entities were trustworthy, and accountability
was less of an important indicator.

Now, in such an environment, we can fall back to the chain of trust established through
referrals. If one directory listing links to a news source in a authoritative manner, we can at
least consider the linked resource as trustworthy. This is not a scalable approach. Which is
where we see fact checking websites establishing themselves as authorities on a large variety
of fake and real news.

This works well on a lower scale, but becomes difficult to maintain once the volume of fake
news increases. This is what we see with the rise of social media, which enables spread of
news in all shapes and sizes, without much authority behind the news pieces. Which is fine
for fact checking websites as long as the volume is low, but alas, it was not meant to be.

It was clear another approach was sorely needed to combat fake news in all shapes and
sizes. The natural evolution of detection revolve around heuristics based on intuition. These
approaches are hard to fine-tune, hard to generalize, and easy to sidestep once the adversary
is aware of the detection method. In later times this has been further extended to the use
of ML models. This comes from a combination of available research and more powerful
hardware.

It is clear that the spread of fake news will in broad strokes always be prevalent. This only
highlights the importance of more efficient fake news detection tools. For the detection tools
to be effective, it is imperative that the results themselves are explained. Regardless of what
tool is used, manual fact checkers, heuristics, or ML models. All of these classifications
hinges on showing a rational reasoning behind them.

We will explore the next step, namely using TMs for the classification and explanation tasks.
Since TMs show promising results for NLP tasks, and explainability is a large concern when
it comes to fake news detection, we find it worthwhile to look into.

1.3 Goal

The goal of this thesis is to improve speed and accuracy of fake news detection, in addition
to providing a framework to more easily work with NLP related tasks. We also showcase the
interpretability of TMs, especially in combination with the max-literals variant of TM. We
explore how to make a reasonable representation of how the TM executes on its inference.

3



Our framework would be responsible for preprocessing, training, postprocessing, and hyper-
parameter tuning.

1.4 Problem Statement

1.4.1 Research Questions

Here we specify what areas this paper explores. These questions will be used as a guiding
principle throughout the paper, and are crafted to encourage exploration in the research
process. Aligning with these questions allows us to clarify how the smaller details connect
to the bigger picture.

• Are Tsetlin Machines more accurate at detecting fake news than other machine learning
models?

• Does the Drop-clause Tsetlin Machine variant provide improvments within the fake
news detection domain?

• Does the Clause Size Constrained Tsetlin Machine variant provide improvments within
the fake news detection domain?

1.4.2 Hypotheses

In this subsection we list out our hypotheses, which we will reflect upon throughout this
paper.

• A Tsetlin Machine can outperform traditional machine learning models on the same
fake news dataset.

• With Tsetlin Machine’s interpretability, it is possible to present how it classifies fake
news in a meaningful way.

1.5 Assumptions and Limitations

1.5.1 Assumptions

• We have enough computational power to optimize our models for each dataset.

1.5.2 Limitations

• When comparing performance against other ML models we do not have the luxury of
running the same preprocessing steps.

• Interpretability may be difficult to present accurately.

• The binary bag-of-words representation is not very memory efficient, which limit the
dataset sizes we can use.

1.6 Report Outline

This section gives a brief overview of the structure of this paper. A brief summary accom-
panies each chapter.

• Chapter 2: Related Work around TA and Fake News detection.

4



• Chapter 3: System design, how everything is arranged.

• Chapter 4: Results and how these can be understood.

• Chapter 5: Discussion about what did not work properly.

• Chapter 6: Conclusion, overall, limitations, and future work.

5



Chapter 2

Related Work

2.1 Tsetlin Machine

2.1.1 Standard Tsetlin Machine

A TM mainly consists of TAs, a methodology invented by Ole-Kristoffer Granmo on how
to implement Michael Lvovitch Tsetlin’s description on how to apply automata functions
to matrices [17]. The TA learns by applying rewards and penalties based on its current
environment. In a TM, each TA can be considered a building block. In the TM these are
also known as clauses, these can be seen in Figure 2.3, which we will go into more detail
later. Each clause has two actions it can perform, Action 1 and Action 2. In Figure 2.1,
we can see the two actions, the output given from a clause is the action itself and this is
derived from the accumulation of rewards and penalties gathered. The overall outcome does
not flip-flop based on a single reward or penalty, but rather an abundance of rewards or
penalties will be able to switch the state of each clause.

Figure 2.1: “A Tsetlin Automaton for two-action environments” [17].

Figure 2.2 gives an overview for the inference system present in the TM [17]. The input vector
consisting of propositional variables is evaluated through multiple conjunctive clauses. The
clause size is user-defined, these arer further split into two types of clauses. Clauses with
positive polarity and clauses with negative polarity. The figure denotes this with either a
“+” or “-” sign. These clauses are used to find sub-patterns in the input data. We also allow
clauses without literals, these clauses output 1 during the learning process and 0 during
classification. This approach allows these clauses to be updated during the learning phrase,
while being deactivated during inference. The majority vote, which gives the output in the
figure, is decided upon by having the positive clauses vote for 1 and the negative clauses
vote for 0.

6



Figure 2.2: “The Tsetlin Machine inference structure, introducing clause polarity, a summation
operator collecting ”votes”[sic], and a threshold function arbitrating the final output.” [17].

We can see a lower level representation of a set of positive and negative clauses in Fig-
ure 2.3 [17]. These two clauses have their own set of TA, where each TA has the two actions
as mentioned previously in Figure 2.1. Here we name those two actions “Include” and “Ex-
clude”, which is decided upon by the state of each TA. Here, each TA has six states. Both
of these clauses have four literals, x1, x2, x1, and x2. In the positive clause we note that x1

is in state 4, x2 is in state 3, x1 is in state 2, and x2 is in state 4. Since we have a total of
six states, the lower half is excluded and the other half is included. With this, we end up
with the effective literals being x1x2. Similarly, for the negative clause, we follow the same
process, x1 is in state 5, x2 is in state 4, x1 is in state 2, and x2 is in state 3. From this we
see that the TAs that fall into the include category result in x1x2.

More generally, we see that Learning Automata has been shown to produce the optimal action
in unknown stochastic environments with noisy data[17]. These environments are however
limited to small-scale pattern recognition tasks. Outside of previous Learning Automata
designs, the TA provides additional improvements within the field; decentralized control,
searching on the line, equi-partitioning, streaming sampling for social activity networks,
faulty dichotomous search, learning in deceptive environments, and routing in telecommuni-
cation networks.

For a TA you need to keep track of a single integer, this decides which action will be taken.
By combining multiple TAs you can solve increasingly complex problems through pattern
recognition. The rewards and penalties are applied to the integer as either plus one, or minus
one. This design is well suited for hardware implementation, as the design lends itself to
logic gates [49, 50]. This also carries over the general compute hardware to a lesser degree.
Because of this simplicity, we can consider a TA to be a type of Finite State Machine (FSM),
which gives us a decent reference point.

This design does however present some challenges, the most prominent one being how data
should be represented when taken as input to the TM model. This is of course not a challenge
unique for TMs, but still of note because the TM only accepts binary data as input. For
NLP tasks the encoding is relatively simple, each word is either in a piece of text or not [36].
Image classification is also possible, but this relies on setting an appropriate threshold to
either set each desired feature to a binary value [18].

While challenges are bound to crop up, we do have some advantages from going with TMs.
Other NNs approaches will typically run into issues with overfitting, which we can see by
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Figure 2.3: “Two Tsetlin Automatons teams, each producing a conjunctive clause. The overall
output is based on majority voting” [17].

the model performing extremely well over the training set, while underperforming on the
testing set [52]. For the TM we can observe the same suspiciously decent performance over
the training set, but still get performance indicative of overfitting. What gives? With high
scores over the training set we can instead consider the model “done”, rather than actively
getting worse [17]. In other words, we can say that the model has extracted everything useful
from the training set, and additional training will not yield better results. This does however
imply that the model was either provided a simple dataset, or that the hyper-parameters
were ill-defined.

Outside of the classification given from the TM, we can peek at the current state of the
model. By looking at the clause bank, we have the ability to interpret the reasoning behind
a classification [7, 24]. This is a major feature of the TM, and is a clear improvement when
compared to other AI models [25]. While there are techniques to get a sense of reasoning
from these AI models, the TM is unique in the way it provides reasoning with causation
instead of correlation [31, 28, 32]. This has been a major issue for AI, where the model
learns the wrong thing [22]. Not only is this important for explainability, but ultimately the
overall trustworthiness and reliability is put into question [28].

2.1.2 Drop-clause

In an effort to reduce overfitting and improve the overall performance, as in the AI field, we
look to the Dropout technique for inspiration [45]. In a NN, Dropout will at random drop
units along with their connections, this is done to reduce co-adaption between units. The
drop-clause TM variant proposes implementing a similar technique, where instead of units,
it will drop clauses [2]. Same as with Dropout, this is done with a user defined probability.
This approach introduces additional stochasticity in the learning phase. While it may not
be immediately obvious, we actually increase accuracy while decreasing the training speed.
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The increase in accuracy is derived from the remaining clauses being made more robust. For
the training speed, the speedup comes from the fact that we overall do less work with fewer
clauses.

By the nature of generalizing the clauses the model ends up being more interpretable as a
result. This is a highly desirable trait, as it leads to independent logic, which is inherently
easier to parse [22]. This is of course more important depending on how the interpretability
will be presented to the user, highly dependant on the post-processing steps. Fake news
is, among others, one of the domains that massively benefit from interpretability. We can
present the literals directly [7], or we can further process it to better show what influences
the classification given. Further, reviewing these clauses would allow us to remove unwanted
bias or basing its output on some irrelevant, malicious, redundant, or otherwise undesirable
hidden patterns.

When compared to ML in NLP tasks, algorithms such as Support Vector Machine, Ran-
dom Forest, K-Nearest Neighbours and XGBoost shows that the drop-clause variant of TM
outperforms them all by a wide margin [40]. When compared to deep learning algorithms
such as CNN, LSTM, BERT, and S2GC it shows the drop-clause model is comparable in
accuracy. This is despite the drop-clause model solely relying on bag-of-words encoding, as
opposed to the more advanced representations otherwise seen in NNs, such as Word2Vec,
Glove, or BERT features.

2.1.3 Clause Size Constrained

TMs natively output as conjunctive expressions in propositional logic. These expressions are
directly interpretable. Problems do however occur when the clause bank size is unrestrained,
which quickly make the clauses end up being too long to be useful for easy interpretabil-
ity [2]. Clause Size Constrained TMs implement a soft size limit for the amount of literals
that can be used. More specifically once the limit has been reached, “exclude” actions are
reinforced. In experiments, this approach reduces the computational complexity, while main-
taining comparable accuracy. In empirical experiments, the authors achieves up to +10%
increase in accuracy and two to four times faster learning when compared with the standard
TM.

The Clause Size Constrained TM variant changes how Type I Feedback is calculated. Type
II Feedback is left unchanged. The change requires the clause size to be less than a given
constant as a conjunctive condition, and when this condition is not met only the “exclude”
is reinforced. As a result, clauses are expelled when it is oversized.

This does not always provide better results overall. If the pattern, or sub-pattern can not
be expressed with the amount of clauses given the Clause Size Constrained Tsetlin Machine
will fail to learn the patterns in the data. As an example, with a clause limit of 1 it will not
learn the XOR pattern as it requires 2 literals, Ci

j = ¬x1 ∧ x2, which the standard TM is
able to learn. With a limit of 2 literals it is however possible for the Clasue Size Constrained
Tsetlin Machine to learn XOR. OR is another pattern the Clause Size Constrained TM can
learn. Here the minimal amount of literals required is 1, as we can use multiple clauses to
represent the sub-pattern, with the help of the hyper-parameter T . The two clauses would
be C = x1 and C = x2.

Regarding the soft limit, this may be transiently exceeded. This depends on the training
data, the authors mentions how this can occur for the OR operator: “[...] the length of a
clause may be over the budget when the system is blocked. Consider an extreme case for
OR operator when T clauses have x1 and T − 1 clauses follow x2. In this situation, due to
the randomness, a clause may become ¬x1 ∧ x2 based on a single training sample. In this
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situation, the system is blocked by T and it will not be updated any longer”. This is further
said to have a low probability of occurring, but it is possible. Another source for the soft
limit being exceeded is because of the Type II Feedback. As previously mentioned, Type II
Feedback has not been modified to constrain the size of literals.

2.1.4 Coalesced

Normally, a single TM produces a single output. To get multiple outputs at the same time
we can string multiple TMs together. This comes with the obvious disadvantage that all the
clauses are limited to their own instance of the TM, which creates a lot of duplicate work if
there are sub-patterns shared with the outputs. With the coalesced TM, we use Stochastic
Searching on the Line along with TAs teams [16]. This allows the clauses to be shared, or in
a way merging the different TMs. As for empirical results significantly higher accuracy has
been achieved, for example accuracy goes from 71.99% to 89.66% on the Fashion-MNIST
dataset with 50 clauses and 22kB of memory usage. This variant also performs well when
classes are not balanced.

2.1.5 Convolutional

The major drawbacks of using Convolutional Neural Networks (CNNs) fall into two buckets;
high computational cost, and being a black box. The Convolutional TM variant addresses
this by instead of employing each clause once, using each clause as a convolutional filter [18].
The Convolutional TM mostly operates on images, as such the images are augmented with
coordinate offsets to make it location-aware. With that said, other types of datasets may
be encoded as images for this variant. The authors show this is possible with the 2D Noisy
XOR Problem, where they encode the data as a 3x3 image.

2.1.6 Regression

The Regression TM addresses the issue of how continuous data can be encoded in a TM,
both as input and output [11]. Continuous data is encoded as a set of bits based on thresh-
olds. Empirical results show that the Regression TM is either equal or superior to existing
regression techniques over the 5 datasets that were evaluated against. The conversion from
continuous input to binary representation is lossless, and the standard TM was modified to
sum up the votes from clauses. A modified feedback scheme is also present, to allow for
regression. The feedback changes reduces the error margin of the output.

2.1.7 Weighted

This paper introduces the Integer Weighted TM, which aims to reduce the amount of clauses
that are required while keeping the same performance [1]. The basic IWTM algorithm works
by weakening inaccurate clauses and strengthening accurate clauses. For empirical results,
the IWTM uses 6.5 times fewer literals than the standard TM, and 120 times fewer literals
than the standard TM when using real-valued weights. This variant also outperforms various
algorithms, such as Decision Trees, SVM, KNN, Random Forest, XGBoost, EBM, both in
terms of memory usage, but also F1-score.

2.1.8 Relational

Understanding the inherent structure behind data is what the Relational TM builds upon [38].
This brings beneficial results in empirical tests, showing an increase in accuracy from 94.83%
to 99.48%. This is because it learns relational patterns in the form of horn clauses. The
Relational TM also shows a ten times saving the size of large-scale strucutred knowledge
bases.
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2.2 Fake News

Fake news are news that are untrue or misleading in the given context[3]. There are a variety
of reasons why these exists and what they intend to do. Fake news is commonly stem from;
politics, economic gain, psyops, pranks, or satire. Humans shockingly bad at discerning fake
news from real news, in a meta-analysis of more than 200 experiments it was found that
humans were 4% better at detecting fake news over chance [8]. This shows a clear need for
better detection methods, which we have seen an up-tick around fake news in relation to
the 2016 US election [9], where 25% of the news shared on twitter the preceding 5 months
before election day were deemed to be fake news.

Fake news is not a new concept [19], in essence, fake news encompasses any kind of mis-
information, disinformation, or the spread of otherwise false information regardless of the
purpose. One of the areas you would otherwise not associate with fake news is probably
around pranks or satire. While the intent behind these are clear, it is nevertheless some-
thing to be worried about. The infamous “Apple Wave” feature, where you could microwave
your iPhone to charge is a pretty infamous example [14]. It got to the point that a spokesper-
son from Apple had to issue a statement, urging people to not microwave their iPhones. As
for misleading, you have the video titled “Ending Women’s Suffrage” where the adversary
gets people to sign a petition on ending Women’s suffrage. This is intentionally misleading
as the adversary does not sufficiently explain what suffrage is. Instead preying on the fact
that the victim assumes it means the same as the word “suffering”.

There are of course more sinister applications of fake news, most prominent ones being
around politics. These fake news are used to spread fear or further diverge opinions between
people. Depending on the person, they may be more susceptible to fake news than others [8],
and further the goals of the one manufacturing the fake news in the first place. For the sake of
the TM we ultimately do not need to care about the underlying type of text for classification.

2.2.1 Apparent Indicators

There is a variety of indicators if news are fake or not. Some indicators may include metadata;
title, date, image retweets, comments. As for other indicators we can look at how the news are
spread, timing of events, grammar, sentiment, emotionally charged, what’s the origin, and
is the actual contents true or false. We see a lot of these indicators depend on mostly easily
manipulable indicators which are easy to spot. There has been some work removing these
indicators and for both rule and neural network detection methods accuracy was significantly
reduced [20]. This is definitely not easy to necessarily protect against depending on the
approach. There has been some promising results when the fake news detection algorithm
is aware and mitigates this kind of adversary [20]. Some indicators are multifaceted and
need to be aligned for it to indicate anything meaningful, or a hidden pattern if you will.
There are a lot of minute details that goes into each indicator, let us consider a few readily
available indicators that we may wish to use for detection.

A lot of sites have user generated content, with these sites we can consider the profile of
the user posting. Fake profiles have some low-hanging indicators such as; join date, activity,
profile picture, followers, follows. If these are available they could be good indicators unless
the adversary deliberately went out of their way to mask this to avoid detection. There are
harder to detect and are more prone to false positives, but one possible indicator, is gap in
activity and sudden activity along with similar looking profiles. This may indicate the profile
was either sold or stolen. While some fake profiles are easy to distinguish manually, when
automating detection we should instead consider stronger indicators. These are inherently
easier to follow.
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Another strong indicator would be the domain, especially when the content is mostly origi-
nating from the editorial staff and not user generated content. While the publishing platform
may be a weak indicator, we should not exclusively look at this for classifying the content.
The moderation policies also plays a role in how this is evaluated. Some platforms have
different federations, so the indicator has to be subdivided into multiple pieces. Segments
may be; front page, opinion piece, user-generated news, forum subpage. These should be
treated differently as they convey a different kind of approval from the overall website. The
specific author and profile can also be analyzed, if available. A weak indicator, the date, can
also be considered. This is a multifaceted indicator which does not mean much by itself.
As an example, the news article “Queen Elizabeth II has died” was true as of 10 September
2022, but the same can not be said if the date was 10 August 2022. There is of course
some overlap where there is some ambiguity, which can be better corroborated with other
stronger indicators [41]. An excessive spread of news could mean it is either very prominent,
or appearing to be so. This indicator is somewhat ambiguous and is hard to explain unless
the evidence disproving it is very strong.

2.2.2 Detection with Neural Networks

There are multiple nuances to detection fake news, as such there are multiple sites providing
fact-checking services. The most prevalent and purpose-built ones include Snopes, PolitiFact,
Poynter, and GossipCop. These are not the only sites contributing to fact-checking of news,
some news sites have a section dedicated to fact-checking. For example, Entertainment
Weekly, People Magazine, RadarOnline. The major downside to this kind of fake news
detection is the ambiguity around having to produce an answer, when often it is more
complicated than that [48]. Even when interpretable results are present, it often paints a
detrimentally simplistic view of whatever that is being fact-checked. The authority of these
sites hinges mostly on the accuracy of their reporting [15].

There is still some value in these sites, they provide a source-of-truth from a variety of experts
within their domain. It is both useful for end-users, and for training ML models. although
present in all fake news detection methodologies, bias is a concern for fact checking websites.
Out of 267 statements fact-checked by Washington Post, made by presidental contenders in
the 2012 running, only 7 were deemed fully true [48]. That is 3%, which is shockingly small,
to the point that the evaluation is put into question. These fact-checking sites do in any
case produce useful data for use withing NNs, which is more and more important with the
ever expanding rise in user generated content [33, 10].

While building on top of manual fact checking gives a high accuracy score, this is not always
the most practical approach. Rule based fake news detection relies on heuristics set up by
the tool author. These may work very well, but requires constant fine tuning as adversaries
adjust their behavior to avoid detection [20]. Manually updating these rules are a cat-and-
mouse game, which lasts as long until one party gives up. These rule based approaches
do however provide the advantage interpretability, since they are naturally built on top of
logical rules. This can be considered a stop-gap solution until something better comes along,
but while fake news detection is lacking, this is a decent compromise given the limitations
are known.

Outside of manually maintaining either a large corpus of fact-checking articles, or an increas-
ingly complex set of rules, we can use the prior art found in these approaches and apply them
to ML. The detection models derived from the available datasets is in any case an useful
resource for end-users, furthering ML algorithms, and journalists. For journalists specifi-
cally they use these models for rapid fake news detection, in conjunction with traditional
journalistic research [10]. Not all NNs are suited for processing these datasets, the main
concern here is the limited size of the dataset. While it is possible for a NN to learn with
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few-shot, or one-shot learning, this is not prevalent through every ML model [47]. The norm
is rather that NNs require a lot of data to produce useful results. It is not uncommon that
fake news datasets are limited to the tune of less than 10.000 datapoints [43, 39, 34, 4, 46].
In some cases the NN models otherwise weak averse to few-shot or one-shot learning may
be able to overcome some of these limitations with some data augmentation [47]. Some also
experiment with transfer learning, where you have a pretrained model that was trained on a
related task, and transfer that knowledge to the fake news domain [35]. The type of NN used
is somewhat important to the final accuracy results, in the sense that with a decent dataset
models would perform within the same ballpark, while still distinguishing themselves enough
so we can say they are outside the margin of error. Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) have shown results for fake news detection.

With regards to understanding the reasoning behind a classification, we need to compare
our results to In a user study [21] the authors compare the accuracy between humans and
a NLP classifier. The underlying NLP classifier is not important, but of note the model
was more accurate than humans when tested in isolation. When humans had access to the
model’s classification and highlighted weight on words humans were in general overconfident
in their own ability to discern fake reviews from real reviews. The model itself ultimately
far outperformed the human counterpart. While reviews and news are not exactly the same,
both are NLP tasks which are reasonably similar to draw the same conclusion. This does
however tell us more work needs to be done on explainability and lift the credibility of the
models for these to be effective tools.

2.2.3 Detection with TM

While the TM is based on propositional logic (rule-based) [17], it does not require manually
set up of the heuristics, instead this task is left to the training stage where a set of rules
are made. This approach has the advantage of being interpretable [5], the same feature
gathered from rule-based approaches without the additional manual labor. TMs has a very
low inference time [51], and have the ability to work with noisy and generally incomplete
data [17], which is very prevalent for all types of news.

Fake news detection is however a largely unexplored area in connection with TMs. How-
ever, with the research that is available, we see a significant 5% increase in accuracy when
compared to previously published baselines [6]. When compared against BERT and XL-Net
the TM implementation does however achieve a slightly lower accuracy score. Despite these
results, for TMs we can lean on interpretability, which is a decent contribution within the
fake news detection field.

Of importance in the prior art, we must take special care to not misconstrue what the
interpretable literals convey. An example that is brought up is the literal “¬trump”, this
is not an indicator that all content with this literal is fake news. This is instead a useful
enough descriptor/discriminator for the model to make its classification.

2.3 Datasets

There is an abundance of fake news datasets, so we can be picky in what exactly we chose.
Our goals include; using a well-know dataset for easier comparison, a variety of sizes, a
variety of sources, a variety of formats, English datasets. These criteria allow us to evaluate
the TM itself, and not the quality of the dataset. We look at the performance trends to
evaluate if we met these goals.

For all these datasets, we will define what each entity is responsible for as to not add to
the confusion. The article is the actual article being classified. The fact-checking article
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classifies the article. In some cases we also have the referenced fact-checking article, which
is used when the fact-checking article outsources their classification to a third party. We
will expand these definitions with adjectives as appropriate, while making what entity we
are talking about clear.

2.3.1 FakeNewsNet

The FakeNewsNet dataset is provided as a collection of Comma Separated Values (CSV)
files [43]. This dataset is based on scraped data gathered from PolitiFact and GossipCop.
PolitiFact links directly to the relevant news article, or in the case of GossipCop the articles
are correlated from a web search as the source is not directly provided. The authors also
observed that 90% of the GossipCop ground truths were scored 5 or below, so additional
news were scraped and added to the dataset to balance it out. The authors provide a general
overview of the dataset, as seen in Section 2.3.1.

The data is provided in the same format for both PolitiFact and GossipCop; id, news_url,
title, and tweet_ids. The id attribute consists of a prefix followed by multiple numer-
als. The prefix is either “politifact” or “gossipcop-”, the number appears to have no direct
relation to its origin. The news_url attribute contains a URL linking directly to the target
article. The title attribute is the headline as presented from the target article. Lastly, the
tweet_ids contains a space separated list of tweet IDs that link to the target article.

We take note of a general trend of separating the dataset into PolitiFact and GossipCop and
gathering metrics in isolation [43, 30, 44], with the minority of research combining these [12].
We see this as a positive by the fact that there are more points to compare against.

Category Features PolitiFact GossipCop
Fake Real Fake Real

News
Content

Linguistic # News articles 432 624 5,323 16,817
# News articles with text 420 528 4,947 16,694

Visual # News articles with images 336 447 1,650 16,767

Social
Context

User

# Users posting tweets 95,553 249,887 265,155 80,137
# Users involved in likes 113,473 401,363 348,852 145,078
# Users involved in retweets 106,195 346,459 239,483 118,894
# Users involved in replies 40,585 18,6675[sic] 106,325 50,799

Post # Tweets posting news 164,892 399,237 519,581 876,967

Response
# Tweets with replies 11,975 41,852 39,717 11,912
# Tweets with likes 31692[sic] 93,839 96,906 41,889
# Tweets with retweets 23,489 67,035 56,552 24,995

Network

# Followers 405,509,460 1,012,218,640 630,231,413 293,001,487
# Followees 449,463,557 1,071,492,603 619,207,586 308,428,225
Average # followers 1299.98 982.67 1020.99 933.64
Average # followees 1440.89 1040.21 1003.14 982.80

Spatio-
temporal
Information

Spatial # User profiles with locations 217,379 719,331 429,547 220,264
# Tweets with locations 3,337 12,692 12,286 2,451

Temporal # Timestamps for news pieces 296 167 3,558 9,119
# Timestamps for response 171,301 669,641 381,600 200,531

Table 2.1: Overview of data available from the FakeNewsNet dataset [43].

2.3.2 FakeCovid

The FakeCovid dataset is provided as a single CSV file [39]. The dataset is a collection of
fact-checked articles and multiple related attributes as seen in Table 2.3. These articles all
relate to the SARS-CoV-2 virus, and are gathered from Poynter and Snopes. The article
contents were scraped directly from the article as linked from the referenced fact-checking
article. Article titles are gathered from the article, along with the article contents. The
publishing date, class, and related social media posts are gathered from the fact-checking
article. The social media posts are further augmented by finding related posts, such as by

14



using keywords and regular expressions for filtering. A general overview of the datase can
be found in Table 2.2a. Attributes and their use case can be seen in Table 2.3, and the inter
coder reliability of the category attribute can be seen in Table 2.2b.

Element Count
Fact checked article 5182
class of fact check article 23
Fact check Category 11
Fact checking website 92
Country 105
Language 40

(a) Dataset details.

Annotator English Hindi German
1st 2116 – 47
2nd – 114 23
3rd 100 46 –
ICR 91% 96% 94%

(b) Inter-coder reliability.

Table 2.2: Overview of the FakeCovid dataset [39].

Attribute Description
ID Incrementing ID with no connection to the article.
ref_category_title Title from fact-checking article with class prefix, if known.
ref_url URL of the fact-checking article.
pageid URL of the page linking to the fact-checking article, if known.
verifiedby Name of the referenced fact-checking article.
country Country of the referenced fact-checking article, if known.
class Classification by the fact-checking article.
title Title from fact-checking article.
published_date Published data from fact-checking article.
country1 Same as country, if known.
country2 Country 2, if known.
country3 Country 3, if known.
country4 Country 4, if known.
article_source Referenced fact-checking article.
ref_source Name of the fact-checking site.
source_title Title from referenced fact-checking article.
content_text Contents from referenced fact-checking article.
category Annotated category, if known.
lang Language of the referenced fact-checking article, if known.

Table 2.3: Attributes used in the FakeCovid dataset [39].

2.3.3 HateXPlain

The HateXPlain dataset is provided as a JavaScript Object Notation (JSON) file [27]. The
data originates from the social networks Twitter and Gab, while the annotation is provided
via Amazon Mechanical Turk, which is a service that provides data entry at scale.

Since this dataset is formatted as a JSON file, it can and is stored in a more complex
hierarchy than would otherwise be possible with CSV. The JSON file contains one object,
this object is not entirely semantically correct JSON, which could result in issues, depending
on the parsing library. Each key in the root object consists of a numerical ID with the
postfix “_twitter” or “_gab”. This object contains; post_id, annotators, rationales, and
post_tokens. We will go over these one by one.

post_id is the same as the key of this object. The annotators is a list, the objects contains
the key label, annotator_id, and target. label is a string that can be used as a clas-
sification. annotator_id is the numerical id of the annotator providing the label. Finally
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target is a list of targets the label is directed at. For example, the label can be “hatespeech”,
“offensive”, “normal”, etc. The target can be “Asian”, “Caucasian”, “Women”, etc.

The rationales and post_tokens lists are tighly connected. rationales consists of one
list per annotator, of which consist of integers that are either 1 or 0 depending on if the
annotator finds the respective token from post_tokens in the post. The size of each anno-
tators rationales is the same as the post_tokens list, which is a list of tokens in the form of
strings.

2.3.4 Other Datasets

The FakeNewsAMT dataset is provided as multiple text files, one file per post [34]. The
class is derived from the file path. The news are categorized into the domains: “technol-
ogy, education, business, sports, politics, and entertainment. The file names indicate the
news domain: business (biz), education (edu), entertainment (entmt), politics (polit), sports
(sports) and technology (tech)” [34]. These domains are encoded into the filename alongside
the classification. Each file consist of the article title on line 1, and the article contents from
line 3 until the end of the file.

The news were scraped from well-known news sites, mainly within the US. The sites include,
but not limited to: “ABCNews, CNN, USAToday, NewYorkTimes, FoxNews, Bloomberg,
and CNET” [34]. Classification of news was done by assuming the news only contained
real news, while the fake news were derived from those. The fake news were produced with
manual labor though Amazon Mechanical Turk.

Class Entries Av. Words/Sentences Total Words
Fake 240 132/5 31,990
Legitimate 240 139/5 33,378

Table 2.4: Class and word distribution for the FakeNewsAMT dataset [34].

The Celebrity dataset is provided as multiple text files, one per post [34]. The class is
derived from the file path. These news are scraped from mainstream news sites, but lim-
ited to the entertainment industry. Additional real news were gathered from entertainment
magazine websites. Fake news were gathered from “gossip websites such as Entertainment
Weekly, People Magazine, RadarOnline, and other tabloid and entertainment-oriented pub-
lications” [34].

After roughly dividing news into two classes, the authors manually verified the classification
through fact-checking websites such as GossipCop, and cross-referenced against other news
sources. The different

Class Entries Av. Words/Sentences Total Words
Fake 250 399/17 39,440
Legitimate 250 700/33 70,975

Table 2.5: Class and word distribution for the Celebrity dataset [34].

The Election Day dataset is provided as a single XSLX file [4]. This dataset can be used as
both for binary classification and multiclass classification. This is a collection of viral tweets
gathered on 8 November 2016, the US election day. Viral tweets are defined as any tweet
receiving 1,000 or more retweets. The tweets were gathered from Twitter by using the search
terms #MyVote2016, #ElectionDay, #electionnight, @realDonaldTrump and @HillaryClin-
ton. A lot of attributes are provided, for a variety of use cases, such as is_fake_news,
fake_news_category, tweet_id, created_at, retweet_count, text, user_screen_name,
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user_verified, user_friends_count, user_followers_count, user_favourites_count,
tweet_source, geo_coordinates, num_hashtags, num_mentions, num_urls, and num_media.

The FakeNewsChallenge dataset is provided as multiple CSV files1. This dataset provides
multiple classes, and consists of 49,972 records. Fields used for this dataset is limited to
headline, body, and stance.

The FakeNewsCorpus dataset is provided as a single CSV file [46]. In this dataset, we are
provided the fields id, domain, type, url, content, scraped_at, inserted_at, updated_at,
title, authors, keywords, meta_keywords, meta_description, tags, summary, source.
The data is sourced from the website OpenSources, which describes itself as a “Professionally
curated lists of online sources, available free for public use.” [29]. The authors of the Fake-
NewsCorpus dataset used the classification gathered from this website, along with scraping
the linked articles over the 1001 domains present. Because of the unbalanced dataset, namely
a lot of fake news, the dataset was augmented with news from NYTimes and WebHose En-
glish News Articles. The dataset is still a work in progress, so the datasets are versioned.
The version described herein is version 1.0 of the public dataset. This dataset is limited to
9,408,908 articles (745 out of 1001 domains).

1From http://www.fakenewschallenge.org/
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Chapter 3

System design and configuration

Unit CPU GPU RAM
Local Intel Core i7-5960X (16) @ 3.00GHz GeForce GTX 980 32 GiB
UiA 1 Intel Xeon Platinum 8168 CPU (96) @ 2.70GHz Tesla V100-SXM3-32GB 1.5 TiB
UiA 2 Intel Xeon Platinum 8168 CPU (96) @ 2.70GHz Tesla A100 1.5 TiB

Table 3.1: Hardware configuration details.

3.1 Overview

All training for this paper has been carried out in the systems outlined in table 3.1. The
remote systems are provided by UiA, are assigned at random, and has been the main systems
for training the ML models. Due to some workflow issues with the remote systems, the local
system provided by the authors has been used for parts of training.

We can see the general workflow in fig. 3.1. We can pick between starting with matrix_search.py
or main.py. matrix_search.py consist of repeatedly running main.py in the search for
the optimal hyper-parameters given a dataset. If we decide to run a single set of hyper-
parameters, we start with running main.py. This script is split into 2 stages, preprocessing
and training. Preprocessing includes creating a vocabulary for the given dataset and filtering
out undesirable words. Training consists of advancing the TM step-by-step one epoch at a
time, while calculating the performance.

In the postprocessing stage we are trying to understand the data produced in the previous
stages. This is an interactive workflow, and used to draw conclusions and comparing against
other models. In plot.py we produce graphs in the form of interactive graphs and tables
we can directly embed in LATEX. These can be seen in the results section. In explain.py
we extract the state of the previously trained model, together with the accompanying vo-
cabulary. With this we can evaluate the interpretability of the model. To properly present
how the model classifies, we take proper scaling and color choices into consideration. The
complete text is either shown through a browser with HTML, or PDF, depending on the
target use case.

3.2 Preprocessing

Preprocessing consists of making the datset consistent regardless of source, creating a vocab-
ulary given the dataset, filtering out words that were not used at least 3 times, and discard the
least common words until the vocabulary reaches the vocabulary limit. Sorting for the most
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Figure 3.1: Process flow diagram.

common words is deterministic as it uses a set pseudorandom number generator (PRNG)
seed.

To make the dataset consistent we have defined a mapping for for each dataset we support.
Each dataset has their own method of being parsed, but in broad strokes we load the dataset
into a pandas DataFrame, which initially has their own unique schema, which we standardize
for code reuse purposes. Not all datasets are straight-forward to parse, such as with the
HateXPlain dataset, which is read from a JSON file. Minor semantic differences are ignored
by the necessity of loading different datasets.

For all the datasets other than HateXPlain it has been relatively more simple. We get a flat
structure, in either CSV or Excel format. The pandas library reads both of these filetypes,
which is what we use to load the respective files into a DataFrame. For some slightly more
complex datasets we have multiple files, in which case we combine the DataFrame’s together.
For some datasets the class is given in the file path, while some have these directly available
in the file contents. We account for all these cases, as instead of using a generic parser we
use purpose built parsers for each dataset. This is done to cut down on complexity.

Since the HateXPlain dataset is not straight forward to parse, we will go over this in a bit
more detail. The JSON file consists of an array containing objects that represent one post
each. The contents of each post is represented as a list of tokens. For consistency with other
datasets we undo these tokens so it can later be tokenized under the same rules. There can
be multiple labels affixed to each post. There can be multiple labels, one per annotator.
Inside of each label it signifies the target group, which can be for example “Asian”, “Women”,
“Caucasian”, etc. If there are no labels set, we set the class to “None”. If there are multiple
targets, we count how many unique targets are present. If we have more than one unique
target we set the class to “Multi”. Otherwise, we set the class to the most common label,
of which there should only be one. This design allows us to more easily make changes in
the future, due to the variety of interpretations here. Since there are multiple classes for
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the HateXPlain dataset, we have a flag to 2 classes, or a boolean if you will. We use this
for explainability. We are aware that throw away a lot of context by doing this, but a goal
of loading HateXPlain was not to make a good hate-speech classifier, but rather make it
comparable to the other datasets.

We limit ourselves to creating the vocabulary over the training set only, the test set is not
looked at all in this stage. This is done to prevent “cheating”, as otherwise the accuracy
score would be artificially boosted when in the real world we do not have access to this data.
We took data augmentation with external data into consideration, but ultimately decided
against it to make the results more plainly comparable for other projects.

When tokenizing the dataset for the vocabulary, we start with removing English stop words as
defined in the Natural Language Toolkit (NLTK) library. Words are split by the str.split()
function1. Each word is sent through the same process. While simple to implement, this
is also simple to compare results directly. Tokeninzing using n-gram was considered, but
ultimately decided against due to concerns of collision on the binary bag-of-words represen-
tation.

1. Lowercase the word

2. If found in cache: return cached processed word

3. Remove punctuation as defined in Python’s implementation of “string.punctuation”2,
except for the single quote character

4. Strip all consecutive single quote characters at the start and end of the word

5. Lemmatize the word with NLTK’s WordNetLemmatizer

6. Discard the word if the length of the word is less than 3

7. Discard the word if the word entirely consists of number characters

8. Save the word to the cache

9. Return the modified word

We encode the train and test sets into a format the TM can understand. We considered
splitting into a validation set as well, but decided against it as some of the datasets are
comically small. For textual content we represent this as a binary bag-of-words matrix. This
also applies to other features such as the domain name, and tweet IDs as the underlying
structure is the same, regardless of the misnomer bag-of-words. It would be more accurate
to name it bag-of-features, but this is not widely used within ML. The binary bag-of-words
is represented as a dense matrix, where each feature is initially set to 0, but set to 1 if
that feature is present in the input. It should be noted that them major downside of this
approach is that word order is lost.

Finally we encode the classification using sklearn’s LabelEncoder. This is mostly a conve-
nience function that works for any amount of classes. We take care to not fit over the test
dataset, and instead just encode this part so no new knowledge is acquired from new classes
present in the test set, but not the train set. This is somewhat more important when we do
not have a validation set, which is the case.

1Default behavior is defined as “[...] runs of consecutive whitespace are regarded as a single separator, and the
result will contain no empty strings at the start or end if the string has leading or trailing whitespace”

2Defined as “ASCII characters which are considered punctuation characters in the C locale”
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3.3 Training

Before training we go through some sanity checks, such as making sure the input is in
the proper shape. the Tsetlin Machine Unified (TMU) library does not properly catch such
issues, and it’s behavior in these cases results in undefined behavior. While this is not strictly
necessary, it has been useful during development of the preprocessing stage. Additionally
we check if there exist a previously fully trained model as to not duplicate work when it is
not necessary.

When training a TM we do have a lot of overlapping terminology with NNs. The model is
“fit” over the training set, once per epoch. While fitting, we measure metrics that is useful
for comparing our model against others. In order, we perform the steps; fit over training
set, predict over training set, predict over testing set. We note down the time spent on
each of these steps. Fitting is essential, but predicting over the sets is purely for calculating
the model’s performance. At this point we have the predicted output in an array, we use
this for comparing against the ground truth. We use the sklearn library to calculate the
metrics; accuracy, precision, recall, and F1 score. These metrics along with time spent is
output in standard output of the program. This is either parsed directly, as it is human
readable, or through the matrix search script the standard output is saved to file for future
postprocessing. Regardless, we save the model to file once it has gone through all the 150
epochs.

We have considered skipping metrics, and ultimately found that is was not worth it. The
metrics are necessary for both presenting our findings and more easily find the optimal
hyperparameters. We can selectively skip inference based on what epoch we are on, but
this is not optimal as graphs would have gaps where we do not test for metrics. If it was
important enough we could save each state of the TM and calculate the metrics out of order.
With the current design each epoch requires approximately 630 MiB of disk space, or 80
MiB when compressed, this is for a relatively small dataset of 500 entities and 4922 tokens
as vocabulary.

The TMU library allows us to set up the TM with multiple variants at once. For simplicity
sake we will go over how each variant changes the training stage in one way or another.
As we know, the drop-clause TM variant drops clauses randomly given a percentage. The
drop-clause variant significantly improves the performance [40], both in terms of speed and
accuracy. The speed comes from doing less work, and accuracy is improved by the resilience
the remaining clauses. This depends on the task at hand, but has shown promising results for
NLP tasks in general which is exactly the use case we are working with here. It is in any case
important variant to explore, as it seemingly only have positive traits. For experimentation
with this, the percentage of clauses to drop is configurable.

Since we put explainability in focus, we need a way to present this in a reasonable manner.
The standard TM does not support culling the amount of clauses that should be used. With
the max-clause TM variant we can however do exactly that [2]. For this purpose we made
this a configurable hyperparameter. Since both the drop-clause and max-clause TM variants
are implemented in the TMU library, we simply pass the hyperparameter supplied from
the command line to the TMU library. There are little to no other considerations that are
required here.

3.4 Postprocessing

In the postprocessing stage we have a fork in the road on how we want to process it. Present-
ing the model performance in the form of graphs and tables is the most straight forward one,

21



which we will start with. This allows for evaluating the model across the set hyperparame-
ters, but also against completely different ML models as long as they use the same dataset
and a reasonably similar preprocessing stage. We do not put much weight on other models
preprocessing stage unless the TM ends up vastly underperforming in terms of accuracy.

To make present the model both as a graph, and as a table, we parse the previously produced
log files. The log files are directly human readable, and must be parsed before the information
can directly be mangled by Python again. We chose to use a regular expression for this, as
the pattern was strictly regular. There are other approaches, but this is the most straight
forward one without having to make another log format, that is intended to be read directly
by Python.

While making the table and graph are completely different tasks code wise, for simplicity we
make these at the same time as to not accidentally compare out of sync data. For the graphs,
we chose to make interactive graphs. We found the plotly library had a decent interface for
making such graphs. In addition it could export to Scalable Vector Graphics (SVG) files,
which are easy enough to integrate into LATEX, an example can be seen in Figure 3.2. While
most of the metrics can be made out, other graphs are not as easy to parse. From the top
left dropdown menu you can pick one trace, which will be the only one shown. Not visible
in Figure 3.2 is that the dropbox shows the mean for each trace.

While the mean provided in the interfactive graph is an estimate, we have a more complete
overview in the table we write out. This table is again made to be easy to integrate into
LATEX. Examples of Figure 3.2 represented as a table can be seen in Table 3.3
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Figure 3.2: Example graph, showing metrics.

3.5 Reproducibility

While presenting usable results is a goal, it is equally as important as being able to achieve
the same results at a later date. The hard part about reproducibility is adding it after the
fact. Being a concern from day 1, we took this into consideration in each stage, and made
sure the same code produced the same output. The only nondeterministic part of the code
currently resides in the TMU library. Sadly, the TMU library (v0.8.1) does not support
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Table 3.2: Metrics

Metric Epoch 1 Epoch 150 ∆% last Max ∆% max Std Dev
Train Accuracy 59.80 72.41 21.09 73.27 22.53 01.53
Test Accuracy 59.44 71.48 20.26 72.11 21.32 01.49
Train Precision 60.64 68.17 12.42 68.65 13.21 01.00
Test Precision 60.84 67.53 11.00 67.86 11.54 00.98
Train Recall 64.56 74.00 14.62 74.52 15.43 01.22
Test Recall 64.77 73.25 13.09 73.74 13.85 01.24
Train F1 57.26 68.47 19.58 69.15 20.76 01.40
Test F1 57.12 67.62 18.38 68.13 19.28 01.36

Table 3.3: Example table, showing discrete values.

seeding the PRNG or otherwise making the underlying TM deterministic. With that in
mind, we still found it an important feature to consider.

From the beginning we started off with the Poetry package and dependency manager. Po-
etry allows us to use a virtual environment, where we control all the dependencies to a high
degree. With Python’s standard pip and requirements.txt approach, you have by default
very lax version pinning. If you pin the version of direct dependencies in requirements.txt
you are still not making reproducible builds. The problem lies in the dependencies of your
dependencies. These are not pinned, but rather defined by your direct dependencies what
version ranges they support. Poetry solves this mess by providing creating a lock file spec-
ifying each dependency, their version, and their SHA256 hash. This ensures reproducible
builds. When it comes time to update dependencies Poetry has some workflows that makes
it easier to work with there as well.

While reproducibility is in most cases a desirable trait, the command line interface allows
for setting the PRNG seed if the output produces highly abnormal results, and you need
to check if it is a fluke by picking another seed. This is also a pitfall that you may run
into, that you optimize your hyperparameters for a specific seed, instead of optimizing it
for the typical output. Of note we have a total of two random state consumers. The first
one is when splitting the dataset into a training and testing set. The other is when calling
tm.fit(). The former behaves as expected, the same input produces the same output. The
latter does not like to behave, and needs to be accounted for in the TMU library.

3.6 Dataset

A few datasets are handled on how they should be loaded into the software pipeline. The
varying datasets are mostly made available over various git repositories, and commands are
provided to gather the corresponding datasets. The datasets chosen here provides different
methods of loading the data, which is why they are a good fit to show how a variety of
datasets can be loaded, independent of the dataset structure.

3.6.1 FakeNewsNet

We use all the attributes we are provided, except for the id, which does not provide any
useful information.
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3.7 Hyper-parameter tuning

All the hyper-parameters can be changed. A script is also provided to do a matrix search
over the different hyper-parameters in a search for the optimal set. As always, with larger
datasets and a lot of hyper-parameters to check, it may be practically infeasible to find the
optimal set of hyper-parameters.

The available parameters include the following;

• num-clauses: TMU param, clauses used

• T: TMU param, threshold

• s: TMU param

• epochs: How many epochs to run for

• device: Either “CPU” or “GPU”

• seed: Seed used for PRNG for reproducability

• dataset: Dataset used for training

• feature: Input to the Tsetlin Machine

• test-size: What fraction of the dataset is used for test metrics

• malformed: how to handle invalid data in the dataset. Either fix or drop

• max-vocab: How many features should be set up for vocabulary

• max-domain: How many features should be set up for domain names

• max-tweet: How many features should be set up for tweet IDs

• preprocessor: What preprocessor to use. Use v2

• drop-p: Fraction of clauses to randomly drop

• max-literals: Soft-limit of literals, used for explanability

• dry: Just show info about the dataset and execution plan

Not all of the available parameters are used for the matrix search, such as epochs, device,
seed, test-size, malformed, and preprocessor. These should stay the same to make a rea-
sonable comparison between the chosen parameters. Using these parameters with matrix
search results in undefined behavior. As part of hyper-parameter tuning, we run several pro-
cesses at once to speed up the operation. We use Python’s built-in multiprocessing library
to achieve the desired result. For each run, we directly execute the CLI interface of the main
script. This is to ensure we are using the exact same code path as when invoking the script
manually. The alternative would be importing the main script as a library, but this could
end up with subtle differences from the differences in how the script is invoked.

When scaling up to training multiple models at once, we expect to see a decrease in the time
required. The batch size is configurable to allow for experimentation to find the optimal size
given the hardware.
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3.8 Explainability

Since TMs are natively interpretable, which we can use to explain the reasoning behind any
classification, it would be amiss to disregard this feature, which is more-or-less provided for
free. When we use the weighted TM variant, which we do, we use the weight to measure
the intensity it gives for each clause. Although not directly gathered from the weight, we
know what clauses are used for inclusion or exclusion in the TM model. With this we apply
negation to the weights as appropriate.

For each clause we gather the literals used to build up the conjunctive expressions in propo-
sitional logic. We take note of the max-literals hyper-parameter being able to temporary
exceed the limit [2]. As such, we take this into consideration so we do not incorrectly
represent the influence of each literal.

Overall, to represent this we produce both HTML and LATEX as output. The visual of both
outputs are overall similar. We use the HTML output to more rapidly iterate, while the
LATEX output is used within this paper. The intensity and direction of each words influence
is conveyed by the colors red and green, and everything between.

Since there are some differences between the input and what is actually seen by the TM
model, we tokenize the input using the same method as when training the model. We do
this mainly since we do not want to reimplement the lemmatizer. Additionally, we make a
dictionary of all the words and point to where in the input text this is present.

For simplicity sake we use the character offset, as it makes it easier to color in later. A
word can map to multiple areas in the input text, this is a side effect of using the binary
bag-of-words representation, which discards the word order. Our dictionary accounts for this
by being formatted as the type Dict[str, Set[Tuple[int, int]]].

To populate our dictionary we; loop over each word, tokenize it, add the start and end offset.
We do not need to care if the word exists already, as we parse the input text sequentially.
We also do not care about maintaining the order of where the word offsets are, so we use a
set as it has the lowest memory footprint.

When we read out the state of the TM, we can see what literals, or rather what words we
should colorize and to what degree. We scale these colors so they are contained within the
red to green gradient. With this approach we do not have disproportionately use colors at
the edges, but rather uniformly distribute over the whole gradient range.

We colorize each word in the previously created dictionary, but make sure to distribute the
intensity of each offset equally to not misrepresent how much a word actually contributes.
As an example, in the extreme case of having two unique words, the first one repeated 50
times, and the second word only occurring once. It would be misleading to not weaken the
color of the first word, as in the end it takes more area to display the 50 words. All stop
words, special characters, and otherwise filtered words are left alone with no color applied,
the exact same process as when tokenizing for training. On the other hand it would also
be misleading to spread the color so thin it is no longer visible, even though that one word
majorly contributes to the classification of the input text. We have considered this and left
this to future work, for now we accept the inherent risk in this approach.

An example on how we present the explainable part of a TM can be seen in Figure 3.3.
This is not a part of the results, but rather a visual on how we will present the results,
along with a color gradient showing the intensity of each color, and what direction it sways
the classification. This only represents interpretable results from a model with two classes.
You may also notice that some words are not fully colored uniformly, this is an intentional
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design decision as to not mistakenly color parts of the word which has not been considered.
The highlighted part is the cleaned part of the word, especially important here is ignoring
special characters and using the lemmatizer. The darkest red sways the classification the
most towards 0, or fake news, while the darkest green sways the classification towards 1, or
real news. The color gets lighter the further away it gets from the extremes, until it switches
over to grey, which is considered neutral, then to the opposite color.

The grey color is an edge case, and is actually possible to hit. We limit our colors to the
colors defined in LATEX, the name of colors are “green” and “red”, the range is limited to 1-100
inclusive, without any decimals. The hidden design detail is that we limit our previously
calculated real value to 2 significant digits. With this design it is possible to hit the neutral
color, which we assign no value to other than saying it sways the classification in no direction.
In reality there might be a slight bias, but the representation in Figure 3.3 is not made to
be 100% accurate, rather an alternative way to view the state of the TM model making the
classification, and limiting it to the words being classified here. Obsessing over details here
would be detrimental to the otherwise gut-feeling given from the colors. You can also see
how the same words are colorized the same in the figure. “metre”, “oxygen”, and “mountain”.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

“When you picture mountain climbers scaling Mount Everest, what
probably come s to mind are team s of climbers with Sherpa guide s
leading them to the summit, equipped with oxygen masks, supplies and
tents. And in most cases you’d be right, as 97 per cent of climbers use
oxygen to ascend to Everest’s summit at 8,850 metre s above sea level .
The thin air at high altitude s makes most people breathless at 3,500
metre s, and the vast majority of climbers use oxygen past 7,000 metre s.
A typical climbing group will have 8–15 people in it, with an almost equal
number of guide s, and they’ll spend weeks to get to the top after reaching
Base Camp. But ultra-distance and mountain runner Kilian Jornet
Burgada ascended the mountain in May 2017 alone , without an oxygen
mask or fixed ropes for climbing” [23].

Figure 3.3: Example explainability with weighted coloring. Text is a direct quote [23].

26



Chapter 4

Results

In this chapter we will go over our numerical results. The implication of every single output
is not readily apparent, so we will parse and explain the significance of the results we get.
We will bring up considerations made in terms of trade-offs to make it clear when one should
worry or when it is safe to ignore.

4.1 Comparing our Results

We want to compare our results against results found in other papers. We will note the
differences in terms of preprocessing and postprocessing, and how significant these differences
are. We will not compare speed, as these depend highly on the hardware, how many tasks
are run in parallel, and the lack of comparable results. We will however take note of relative
speed changes, if there is a significant difference. We have omitted some datasets as they do
not convey anything useful not covered by the other datasets.

As a baseline, we will consider the performance we see after optimizing for hyper-parameters
in Table 4.1. Due to hardware limitations we have not optimized the hyper-parameters
for some models, thus omitted them from the table. We found a significant variance in
performance when using sub-optimal hyper-parameters. On average, we saw a difference of
11.0% when comparing the worst case with the best case for accuracy scores. Of the results
seen in Table 4.1, we found the optimal hyper-parameters as seen in Table 4.2.

Model PolitiFact GossipCop
Acc Prec Rec F1 Acc Prec Rec F1

TM+Text 0.802 0.819 0.812 0.788 0.745 0.688 0.740 0.698
TM+Domain 0.859 0.860 0.843 0.846 0.839 0.848 0.708 0.730
TM+Text+Domain 0.863 0.852 0.865 0.853 0.818 0.754 0.744 0.742

Table 4.1: Performance of TM with optimized hyper-parameters. Bold denotes largest in column.

Dataset Features T s
PolitiFact text 150 15
GossipCop text 250 15
PolitiFact domain 250 5
GossipCop domain 250 5
PolitiFact text, domain 200 15
GossipCop text, domain 200 15

Table 4.2: Overview of hyper-parameters used for Table 4.1.
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For both the PolitiFact and GossipCop datasets, we note that just looking at the domain is
a 6.7%− 11.2% improvement in accuracy, and a 4.4%− 6.7% improvement in F1 score when
compared to just using text as input. This tells us that the origin is much more important
than the content itself. When combining both the text and domain features, we see a slight
but measurable increase in F1 score, 1.2%. We see a noticeable dip of 2.5% in accuracy
for the GossipCop dataset. We speculate this is explained by the inbalance in the dataset
used, as the F1 score actually shows an improvement over just using the domain to classify.
We will use “TM+Text+Domain” when comparing both datasets against other papers. Not
all the papers have all metrics available, but we will put focus on accuracy and the F1
score. We drop 0 records from PolitiFact, and 725 records from GossipCop, due to filtering
rules outlined in the system chapter. We are not again not particularly worried about class
imbalance, as we also consider the F1 score when it is available.

4.1.1 FakeNewsNet

In the FakeNewsNet paper, we are provided a set of metrics [43], seen in Table 4.3. For
these we consider see the dataset PolitiFact performs best with “Social Article Fusion”, and
the dataset GossipCop performs best with “Logic regression”. When comparing this against
our own results we outperform their results significantly in PolitiFact (17.2%− 19.9%), and
get beat by a decent margin in GossipCop for the F1 score (5.8%), but we beat the SAF in
terms of accuracy (2.7%). We do not put much weight on the “win” in terms of accuracy, as
the F1 score is more representative of the actual performance.

There are not many details around the preprocessing steps performed over the dataset, which
is somewhat expected with the goal of the paper being providing the dataset, and not fine-
tuning any kind of model. We do however expect that the process is reasonable enough for
the results to be somewhat comparable to to other papers. The authors do mention that
they have a 80/20 split on training and testing set. There are no specific details on if some
records were left out while preprocessing, but we can safely assume none were removed as
this is the paper that introduces the dataset.

Model PolitiFact GossipCop
Acc Prec Rec F1 Acc Prec Rec F1

SVM 0.580 0.611 0.717 0.659 0.470 0.462 0.451 0.456
Logic regression 0.642 0.757 0.543 0.633 0.822 0.897 0.722 0.799
Naive Bayes 0.617 0.674 0.630 0.651 0.704 0.735 0.765 0.798
CNN 0.629 0.807 0.456 0.583 0.703 0.789 0.623 0.699
Social Article Fusion /S 0.654 0.600 0.789 0.681 0.741 0.709 0.761 0.734
Social Article Fusion /A 0.667 0.667 0.579 0.619 0.796 0.782 0.743 0.762
Social Article Fusion 0.691 0.638 0.789 0.706 0.796 0.820 0.753 0.785

Table 4.3: Performance from FakeNewsNet paper [43]. Bold denotes largest in column.

4.1.2 N-gram, Word Embedding and Topic Models

In this paper [30], we get a different set of metrics to compare against, along with a more
complete description of the preprocessing stage, which we will put into perspective of the
results we get. We can see the metrics as presented in Table 4.4. Overall, the “N-gram” model
performs admirably for both PolitiFact and GossipCop in terms of accuracy and F1 score.
“LogReg” does however outperform our proposal over the GossipCop dataset (0.24%−7.8%).
When compared against the TM model with domain and text features, we see “N-gram” being
bested by a significant margin for PolitiFact (7.3%−8.6%), and beat by a measurable margin
for GossipCop (0.24%− 3.8%).

28



Here they use a 80/20 training and testing split. As for preprocessing they use tokenize, low-
ercase, use stemming, removal of; duplicates, punctuation, special characters and symbols,
hash from hashtags, and stop words. This is a reasonable set of actions for preprocessing.
After preprocessing they ended up removing 70 records from PolitiFact and 2069 records
from GossipCop. While this compares nicely with our preprocessing steps, we do have con-
cerns around the records removed from the GossipCop dataset, and would preferably rerun
these tests to confirm the results.

Model PolitiFact GossipCop
Acc Prec Rec F1 Acc Prec Rec F1

LogReg 0.64 0.76 0.54 0.63 0.82 0.90 0.72 0.80
Social Article Fusion 0.69 0.64 0.79 0.71 0.80 0.82 0.75 0.79
N-gram 0.80 0.79 0.78 0.78 0.82 0.75 0.79 0.77
Topic 0.60 0.55 0.53 0.51 0.51 0.51 0.51 0.47
Word2Vec 0.73 0.73 0.74 0.73 0.78 0.71 0.76 0.72
N-gram + Topic 0.77 0.76 0.76 0.76 0.82 0.75 0.78 0.76
N-gram + Word2Vec 0.72 0.72 0.73 0.72 0.78 0.71 0.76 0.72
Topic + Word2Vec 0.42 0.49 0.49 0.39 0.63 0.60 0.64 0.60
N-gram + Topic + Word2Vec 0.40 0.45 0.48 0.36 0.58 0.57 0.60 0.54

Table 4.4: Performance from N-gram paper [30]. Bold denotes largest in column.

4.1.3 SpotFake+

SpotFake+ is a multimodal model, meaning it in addition to NLP, it also another form of
input. SpotFake+ specifically takes images as input [44]. We can still use this for comparison,
both results from a variety of single-modal modals and multi-modal are present, which we
will compare our results again. First off, let us consider the text-only models in Table 4.5.
This paper only provides the accuracy metric, so we will solely use that for our comparison.
For the PolitiFact dataset the TM model significantly outperforms “XLNet + dense layer”
by 14.3%, and for the GossipCop dataset “XLNet + CNN” beats out our TM model by
2.7%. The authors did not go into significant detail for the preprocessing stage, but from
the achieved accuracy scores we can consider them reasonable enough for comparing against
our own model.

Going further, we can compare the the results found in the multimodal models. Even if this
is not a fair comparison for the TM models, as the multimodal model is augmented with
images, while the TM model only has access to the article content and domain. In Table 4.6
we again see the achieved accuracy from the different models presented in the paper. Even
with the additional detail available to this model, our TM outperforms “SpotFake+” by a
decent margin for PolitiFact, 2.0%. As for GossipCop, we see the “EANN” model take the
lead by a decent margin over TM, 5.1%.

The paper provides a brief overview of the steps taken during preprocessing of the multimodal
model. There is a lack of details around the text only models, but this is to be expected
when the paper mostly focuses on multimodal models. We can still use the text models in
our comparison, even if the particular steps are missing. Preprocessing steps for the image
models are laid out, although brief; logos were removed, and samples without images were
dropped. After preprocessing they ended up removing 571 records from PolitiFact and 9300
records from GossipCop. This is a substantial amount of articles that were removed, which
may skew the results more than expected, but we can not say for certain since only the
accuracy score is available.
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Model PolitiFact GossipCop
Acc Acc

SVM 0.58 0.497
Logistic Regression 0.642 0.648
Naive Bayes 0.617 0.624
CNN 0.629 0.723
SAF 0.691 0.689
XLNet + dense layer 0.74 0.836
XLNet + CNN 0.721 0.84
XLNet + LSTM 0.721 0.807

Table 4.5: Performance from SpotFake+ pa-
per, text model [44]. Bold denotes largest in
column.

Model PolitiFact GossipCop
Acc Acc

EANN 0.74 0.86
MVAE 0.673 0.775
SpotFake 0.721 0.807
SpotFake+ 0.846 0.856

Table 4.6: Performance from SpotFake+ pa-
per, multimodal model [44]. Bold denotes
largest in column.

4.1.4 Heuristic-driven Uncertainty

In the paper [12] we see an approach which achieves better overall performance, 91.56%
overall in both accuracy and F1 score. We speculate this significantly higher accuracy is
achieved through a better preprocessing method specifically tuned for the FakeNewsNet
dataset, along with augmenting the dataset with externally scraped data. The dataset was
split into 80% training, 10% testing, and 10% validation.

The Python library “tweet-preprocessor” was used to clean, tokenize, and parsing of tweets.
This includes URLs, hashtags, mentions, reserved words, emojis, and smileys. This requires
additional data not present in the standard FakeNewsNet dataset, such as scraping all the
referenced tweets. A set of different state-of-the-art tokenizers available from HuggingFace1

was used. Outside of tweets, articles were filtered for usernames, and URLs, the specifically
mentioned ones include Instagram, Facebook, and Twitter, but others may also be filtered
out. The vocabulary was trained from external knowledge, specifically mentioned sources
include GLUE, wikitext-103, and CommonCrawl. Transfer learning was used for a variety
of pre-trained language models. Additional prediction vectors were augmented the dataset
with NewsBERT, by using the article body.

The heuristic part of the paper refers to the final step in the overall process. With that
said, the combination of all these methods make this paper not directly comparable due
to the sheer amount of new and external data which is not available even indirectly from
FakeNewsNet. While this heuristic-driven model outperforms all other models presented for
comparison, it is no longer a direct comparison of models working with the FakeNewsNet
dataset. Here the goal is rather to make a more accurate model, we can see the appeal of
this, but this is not well suited for comparing models directly, rather, the paper may be used
as a way to improve the preprocesing stage, but this is out of scope of this paper.

Model Acc Prec Rec F1
FakeFlow 0.82 0.82 0.82 0.82
One-Hot LR 0.7670 0.7670 0.7670 0.7670
FakeNewsTracker 0.7186 0.7186 0.7186 0.7186
Ensemble Model + Heuristic Post-Processing 0.9007 0.9007 0.9007 0.9007
SFFN (with MCDropout) + Heuristic Post-Processing 0.9156 0.9156 0.9156 0.9156

Table 4.7: Performance from the Heuristic-driven Uncertainty paper [12]. Bold denotes largest in
column.

1https://github.com/huggingface/tokenizers
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Model p=.25 acc p=.75 acc p=.25 f1 p=.75 f1
Election Day 0.7782 0.8759 0.6089 0.6758
FakeNewsAMT∗ 0.4688 0.5000 0.4588 0.4891
Celebrity∗ 0.7200 0.7300 0.7182 0.7238

Table 4.8: Comparing drop-clause on TM with hyperparameters T = 200, s = 15, clauses = 10000.

4.2 Effects of Drop-Clause TM Variant

From Table 4.8 we see a clear trend regardless of dataset in terms of accuracy and F1
score. For “Election Day” we see a significant increase in both accuracy and F1 score when
increasing the amount of dropped clauses from 25% to 75%. While we expected an increase
in performance [40], we did not expect such a significant increase. As for comparison sake, we
include 2 additional datasets, FakeNewsAMT∗, and Celebrity∗. The differentiating factor
for these two is that the TM parameters are optimized for the “Election Day” dataset.
While these hyper-parameters works decently, we use this as an example to demonstrate the
significance of searching for the correct hyper-parameters.

*Hyper-parameters for these models were not tuned. This is to show that the drop-clause
feature is not dependant on whether the models were optimized for the given dataset or not.

Outside of accuracy improvements, we can see a significant speed improvement when training
the model. This is true for all the tested datasets, and is an expected outcome by increasing
the drop clause percentage from 25% to 75% [40]. It should be noted that we do not see
any disadvantages of implementing the drop-clause TM variant. From the observed results
we only see positives of this approach. We will consider degradation of explainability in the
explainability section, we do not expect this change to affect it, but we found it important
to highlight as a part that has been considered.

4.3 Effects of Max-Literals TM Variant

From the A model in Table 4.9 we see a small but measurable decrease in both accuracy and
F1 score. This decrease is to be expected [2], as we operate with much simpler propositional
logic which is a desirable feature for explainability. In the extreme case of limiting to 3
literals we see a more significant decrease in accuracy. However, when shifting our focus to
the F1 score we see this is not much of a concern, and more of an unfortunate run resulting
in the fall in accuracy. This is mostly caused by the small size of the dataset, as larger
datasets do not have this much variance. With the F1 score we see a steady decrease.

While it may sound contradictory, lowering the max-literals is not always desirable, even
if we disregard the accuracy penalty. We only want lower max-literals when presenting
the propositional logic directly. On the other side, if we want to parse out and quantify
the significance of each token in the form of a color gradient, we want as many literals
as possible. This is to have more granular shades to colorize the text, highlighting which
words contribute towards each classification. We go into further details around this in the
explainability section.

The “Election Day” dataset consists of approximately 1300 rows. Additionally, from the B
model in Table 4.9 we see a more steady score progression. In this case when using a different
set of hyper-parameters we actually see the opposite extreme in terms of accuracy. With the
max-literals set to 32 we see a significant jump in accuracy.
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Model Accuracy Precision Recall F1
“A” Election Day max-literals=3 0.7932 0.6005 0.6878 0.6149
“A” Election Day max-literals=8 0.8346 0.6198 0.6780 0.6381
“A” Election Day max-literals=16 0.8459 0.6104 0.6350 0.6204
“A” Election Day max-literals=32 0.8459 0.6250 0.6678 0.6407
“B” Election Day max-literals=3 0.8346 0.6198 0.6780 0.6381
“B” Election Day max-literals=8 0.8459 0.6315 0.6843 0.6499
“B” Election Day max-literals=16 0.8496 0.6294 0.6699 0.6448
“B” Election Day max-literals=32 0.8835 0.6677 0.6395 0.6516

Table 4.9: Metrics given TM with hyper-parameters;
A: T = 150, s = 10, clauses = 5000,
B: T = 200, s = 15, clauses = 10000.

4.4 Explainability

As a large part of the TM, we can use the internal state to represent a classification outside of
the output itself. One such example is in Figure 4.1, where the colors red and green are used
to show the weight of each word. The more intense a word is, the more it sways the word
towards that classification. It is largely impossible to evaluate if the explanation is right or
wrong, but this gives some insight into what influeses the model the most. One thing that
may be lost in translation is the distribution of weight across repeated words, for headlines
like in Figure 4.1 this is not an issue, but for article bodies it may. The TM itself does not
distinguish if some input contains one instance of the word, or 200. For the explanaibility
color view we must handle it differently, as we are trying to represent repeated words weaker
overall, as they take up more area as text than when in a bag-of-words representation. As
such, the colors may become much weaker for longer texts.

In any case, in the figure we see two words swaying the classification towards real news,
and 3 words swaying the classification towards fake news. The other words are either stop
words or not part of the vocabulary. For the word “Video”, we see it sway the classification
towards real news, with an intensity of 32%, this seems reasonable. The second word, “shows”
only has part of the word colorized. This is caused by the lemmatizer, and is represented
as such to not cause confusion to what part was evaluated, and overlaps better with the
actual vocabulary used. The word shows as a 15% red, which by gut feeling seems correct,
considering all the “Study shows” articles which are fake. “Nancy” shows as 16% green.
“Pelosi” is however 9% red, the conclusion we can gather from this is that the dataset either
contained a lot of references to “Nancy” which did not map up to the same person as “Pelosi”,
or that fake news tend to only use “Pelosi”. Lastly, “arrested” shows as 55% red. This is a
simple aggregate representation of the TM, which does not properly convey the sub patterns
that it may have learned and are present here.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
fake news <–> real news

Video show s Rep. Nancy Pelosi being arrested .

Figure 4.1: Example explainability taken from TM model.
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Chapter 5

Discussion

In this chapter we will go over the things that were planned, but for some reason or another
did not work out as expected. We will also cover work that was done, but ultimately did
ultimately not benefit this thesis in a meaningful manner.

5.1 Limitations

In the preprocessing stage we assume the dataset is in English. Dependants of this include
the tokenizer, stop words, and lemmatizer. The tokenizer expects spaces to separate words,
so CJK or similar languages would not tokenize correctly under the current configuration.
This is an intentional design decision to limit work into areas which we are not too familiar
with. Additionally, we expect the additional work going into adding multilingual support
would not hold back our results in a meaningful way.

The TMU library (v0.8.1) does not support seeding the PRNG which results in the training
stage to not be reproducible. We expect CPU training is possible to be made fully deter-
ministic, given the same hardware. This is mostly due to hardware differences, such as with
floating point precision and double floating point precision. We also have concerns about
differences due to platform or driver specific quirks. GPU vendors have been notoriously
known for cheating in video game benchmarks, which we fear might transfer over to ML. We
are aware of the randomness introduced by the shuffle argument to TMU’s fit function, this
is already accounted for by seeding NumPy. The randomness we can not seed is however
expected to be related to the drop-clause TM variant.

The current code does not support online learning, as it was considered of little to no use
when we only compare models at a fixed epoch. We need stable points to compare against,
otherwise we would have to train the model to exhaustion, which necessitates additional
hardware. This also introduces an additional variable, exactly when is a model “done”?

5.2 GPU

The system as described assumed the host machine has an Nvidia GPU. This is a limitation
carried over from the TMU library. The provided code has no limitations on the Graphics
Processing Unit (GPU), so if TMU adds support for AMD’s ROCm or Intel’s oneAPI, it
should have no issues running under those environments. Guarantees can however not be
made around the deterministic nature of the code. Adding an additional abstraction layer
may not behave exactly the same down to the implementation details, especially across
vendors. If support for ROCm was added, this would add support for AMD cards. If
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support for oneAPI was added, we expect support for Intel, AMD, and Nvidia to be available
through this framework. With this we expect a lower probability of deterministic behavior
being possible for TMU.

5.3 Authority

With the target domain in mind, fake news, trusting the classification of the model is equally
as important, if not even more. When a user study was carried out in a related domain,
fake reviews[21], it was found that users will largely not trust both the classification and the
reasoning behind the classification over their own conclusion. Since this study was based on
fake reviews, we can consider it as politically neutral and not something to be concerned
about in this regard. This tells us the main issue is distrust in the model or presentation
overall, and not an issue with distrust derived from the source, but rather the technology
itself. The study also pointed out that users did not stray away from their initial decision to
a measurable degree when the output of the model, and the accompanying explanation was
made available. In combination with the fact that humans have a tendency to only be 4%
better at distinguishing fake from real news [8], it is somewhat shocking that the underlying
distrust in the model or it’s explanation is still present.

5.4 Saving the state of TM

Saving the state of the TM model was a planned feature. After implementing the feature
we saw a huge drawback to just picking the TM model. Picking is a Python term to save a
Python object to disk, it does not work on every object, but TMU had to specifically add
support for picking the TM model. When picking the model we found that for a dataset of
500 entries and 4922 features resulted in a 630 MiB file. This was further compressed to 80
MiB, but the overall size was too large to be feasible. This is a relatively small dataset, so
the size would only grow from here.

If we were to save every state of the TM we would add significant overhead, and have no
practical way to easily distribute the model. Take the hyper-parameter tuning as an example,
here we run 100s of tests over 150 epochs each. This would end up with 200×150×630MiB ≈
18TiB. While we can choose to just overwrite the file for each epoch, we would run into
other issues, such as write speed, SSD wear, and HDD corruption. For an SSD this would
consume 3% of the total possible writes, assuming a consumer level SSD. While HDDs do
not have the same wear concerns, at these sizes we need to consider Mean Time Between
Failure (MTBF), which in terms of HDDs is how many bytes needs to be written before a
bit is flipped. For consumer HDDs this is in the 1000s of GiB, which is low.

5.5 Trainining on More Features

A lot of the datasets included references to source tweets by their ID, such as the FakeNews-
Net dataset. Loading and training on this ID was attempted, but ended up not affecting
the results at all. This was mistakenly interpreted as being the user ID, and not the tweet
ID. Since tweet IDs are unique we neither gained or lost any accuracy from adding these
as additional features. To benefit from training on anything related to the tweet ID, we
would have to request the corresponding user ID for each tweet, assuming the tweets are still
available. This is unlikely to be something useful to expand on, as fake news are more likely
to be removed, skewing the class balance. Using the relationship between users and what
articles they share, if available in full, is expected to contribute to a better model. Because
of how the tweet IDs were formatted, and there was an abundance of IDs it increased the
time in the preprocessing stage by approximately 20% on the FakeNewsNet dataset.
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Chapter 6

Conclusion

We set out to improve the accuracy of fake news detection with the help of TM, with partic-
ular focus on recent improvement such as with the drop-clause and max-literals features. In
large parts we have achieved this goal, with a measurable improvement with the drop-clause
and max-literals features. We tested the drop-clause feature with the amount of dropped
clauses set to 25% and 75%, the standard TM in comparison would be equivalent to 0%.
Over multiple datasets we found the F1-score increased between 0.78% to 10.99% with the
mean of 6.12%. The max-literals feature was also tested with the parameters 32, 16, 8, and
3. This gives us the F1-scores 65.2% 64.5%, 65.0%, and 63.8% respectively. From this we
note that there is a clear trend of decreasing accuracy, which mirror the findings found in
the original proposal for the max-literals feature.

A focus on deterministic code was set early on, as such both preprocessing and postprocessing
are fully deterministic. Sadly, due to the way the TMU works it is not possible to properly
seed this part of the process. There was also a focus on explainability. As it has been shown
time and time again, humans are laughably bad at distinguishing fake from real news, barely
4% better than chance. As such, we felt it was important to properly convey the reasoning
behind the classification given. This comes in the form of colorized text, where the color
represents the intensity and sway of each word.

6.1 Future Work

Our results are directly compared against results presented in other papers. Ideally we would
reimplement these ML models, as to guarantee the preprocessing stays the same. While the
description of the preprocessing stage seems reasonable, we would like to compare the models
rather than the quality of the preprocessing. We have noted down the differences and how
these may affect the performance of the model, in the results chapter. While this may
ultimately not matter, we believe it would be a decent addition for reducing uncertainty.
We put a focus on using well-known fake news datasets, this was decided upon because we
decided against reimplementing the different ML models. With more niche datasets at our
disposal, we may find different results, which would be interesting to explore. Currently the
datasets we use are limited to English fake news, but branching out, while it might present
different challenges, the TM would have more to work with if we use the same parameters.
Another area we did not explore was other languages. If we want to expand this to other
languages we need to reconsider parts of the code, as some assumptions were made. The
preprocessing stage relies on English stop words and an English lemmatizer, and a tokenizer
splitting on spaces. This is an effective combination when solely working on English content,
but not so much outside of that. The tokenizer will have issues with CJK languages, as
they do not contain spaces. Since we are not familiar or had any focus on any of the CJK
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languages we are unaware of any libraries that can assist in tokenizing in the same manner
as we use here. A possible remedy would be using a n-gram tokenizer, which can work on
individual characters, instead of whole words.

We have walled off our research to the fake news domain. While this is a subdomain of
the larger NLP field, we believe the findings presented herein applies to other NLP tasks as
well. Not only limited to adjacent domains, such as fake reviews or spam detection, but any
NLP task that may benefit from the reason behind the classification. Of course, we have
also shown increase in accuracy over state of the art, and TM could be beneficial for this
alone. The explainable part could also use some work to make it more intuitive. While the
presentation described in this thesis is an approach, there is more work to make it overall
more accessible. The simplest approach is resolving each literal and presenting this to the
user, which would rely heavily on the max-literals TM feature, as to not make the expressions
overwhelming. Something more advanced would be further processing these words, such as
shown in this thesis, or turn the logical expressions into full sentences. Explainability is a
complex thing to represent in a meaningful manner, so more research into this area always
desirable. Particularly, complexity is harder to interpret than simple repetition [22]. We
would like to work further on how to colorize the text, such as with longer texts. Here we
would like to overcome parts of the bag-of-words representation the TM is limited to. We
can aggregate the classification over each sentence, or a rolling window of tokens. Since
inference is cheap, this may give a better understanding of what parts are more likely to be
fake news, and which parts are benign. This could also help give a more granular overall
classification.
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