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Abstract

Climate change poses significant uncertainties for the future of hydropower, both in terms
of challenges and opportunities. This study uses an educational version of the HBV model
to investigate climate change impact on the hydropower potential in Agder County over the
next century. The results show that the model tends to overestimate the observed values, but
results in a Nash-Sutcliffe efficiency of 73.4% for calibration and 77.7% for validation with a
correlation of 89.0%. This indicates that the model’s simplicity does not surpass its accuracy.

For annual discharge the study found that the RCP4.5 scenario predicted a 9% increase close
to 2100. The RCP8.5 scenario projected a more significant increase, starting around 2040
and reaching a projection of 18% increase. Analysis of monthly discharge patterns revealed
significant changes. There is a significant increase in the winter (November to April) for
RCP4.5 and RCP8.5. The summer months (May to October) will have reduced discharge
for both scenarios. RCP8.5 will have a more significant change than RCP4.5 in all months.
The discrepancies between mid- and late-century were particularly pronounced from January
to April, indicating a substantial increase in discharge over the century. This suggests a shift
towards warmer and wetter winters in Agder County, leading to reduced snow accumulation.

The observed trends in future discharge patterns underline the challenges and opportunities
associated with hydropower production in the face of climate change. During periods of re-
duced discharge, it is crucial for Agder County to have sufficient water stored in reservoirs to
meet the power demand. The increasing discharge during winter can also present opportu-
nities for hydropower production. By optimizing existing power plants, consider expansions
of waterways and aggregates, as well as increased generator performance, it will be achieved
increased production and better utilization of the increasing winter discharge.

v



vi



Sammendrag

Klimaendringene medfører betydelig usikkerhet for fremtiden til vannkraft, både når det
gjelder utfordringer og muligheter. Denne studien undersøker klimaendringenes innvirkning
på vannkraftpotensialet i Agder fylke i løpet av det neste århundret ved hjelp av en versjon
av HBV modellen ment for utdanningsformål. Resultatene viser at modellen har en tendens
til å overestimere de observerte verdiene, men resulterer i en Nash-Sutcliffe effektivitet på
73,4% for kalibrering og 77,7% for validering med en korrelasjon på 89,0%. Dette indikerer
at modellens forenklinger ikke går på bekostning av nøyaktigheten.

For årlig vannføring viser resultatene at RCP4.5-scenarioet vil ha en økning på 9% mot slut-
ten av århundret. RCP8.5-scenarioet anslår en mer betydelig økning, som starter rundt 2040
og når 18% rundt 2100. Resultatene for månedlig vannføring viste større endringer. Det vil
bli en betydelig økning i vintermånedene (november til april) for både RCP4.5 og RCP8.5.
Sommermånedene (mai til oktober) vil ha redusert vannføring for begge scenariene. RCP8.5
vil ha en mer betydelig endring enn RCP4.5 i alle måneder. Avvikene mellom midten og
sent i århundret er betydelige fra januar til april, noe som indikerer en betydelig økning i
vannføring gjennom århundret. Dette tyder på at det blir varmere og våtere vintre i Agder
fylke, med mindre snømengder.

De observerte trendene i fremtidig vannføring understreker utfordringene og mulighetene
knyttet til vannkraftproduksjon i møte med klimaendringene. I tider med redusert van-
nføring er det avgjørende for Agder fylke å ha lagret nok vann i magasinene for å møte
etterspørselen etter kraft. Den økende vannføringen på vinteren kan også åpne opp for mu-
ligheter innen vannkraftproduksjon. Ved å optimalisere driften av eksisterende kraftverk,
vurdere utvidelser av vannvei, aggregat, samt økt generatorytelse, vil det oppnås økt pro-
duksjon og bedre utnyttelse av den økende vintervannføringen.
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Chapter 1

Introduction

Today, climate change is the greatest challenge in all parts of the world. It is widely acknowl-
edged that the rise in human-induced greenhouse gas emissions is a major contributor to
the increase in global temperature, alterations in precipitation and weather patterns. These
changes have already impacted life on Earth and will continue to have significant conse-
quences in the future.

One of the most obvious effects of climate change is the increase in global temperature.
Figure 1.1 shows the yearly global surface temperature compared to the average from 1880
to 2022. Since the 1800s, the Earth has warmed by an average of 1 °C, and it is expected to
increase even more [1]. Increased temperatures lead to the melting of glaciers and ice caps,
which in turn leads to rising sea levels and an increased risk of flooding in coastal areas.
Changes in precipitation patterns are also a consequence of climate change. While some
areas may experience increased rainfall, others may experience drought and water scarcity,
as observed in Italy this year and in previous years [2]. Changes in precipitation can lead to
flooding, soil erosion, crop failure and food shortages. In some areas, changes in precipitation
can also affect the availability of clean water. The water supply is critical for many big cities
worldwide, thereby having implications for health and well-being. Johannesburg in South
Africa is a well-known example of this [3].

Figure 1.1: Global average surface temperature [1]
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As the effects of climate change become more apparent, people around the world are facing
a variety of challenges. Climate change is causing the melting of the ice in the polar areas,
Greenland and the enormous glaciers in different parts of the globe. The sea level is already
rising, and some small islands in the Pacific Ocean and the Indian Sea are about to be
overflooded [4]. Densely overpopulated areas like the Benelux and Bangladesh will be unin-
habitable [5] [6]. This will add to the migration of people to the already increasing migration
of people. One group that is particularly vulnerable to the effects of climate change is the
Inuit people of Greenland [7]. Ice melting is causing changes in ocean currents, affecting fish
populations and making it more difficult for the Inuit people to catch the fish and whales
they rely on for food. The Inuit people also have a deep connection to the land and the
environment, and their traditional way of life is intimately tied to the natural world. As
climate change alters the landscape and disrupts traditional patterns of life, the Inuit people
risk losing a fundamental part of their cultural heritage. They share this loss with millions
of people worldwide who are affected by climate change in one way or another.

Taking action on climate change is necessary for the world to achieve its climate goals.
Reducing greenhouse gas emissions is essential to achieve these goals. Utilizing renewable
energy, improving energy efficiency, capturing and storing carbon dioxide, and changing pro-
duction and consumption patterns are some ways to limit these emissions. Adapting to the
changes that have already occurred and strengthening resilience to extreme weather events
and natural disasters are equally important. Several agreements have been made worldwide
to achieve various climate goals for the future. One is the Paris Agreement developed by
The United Nations in 2015 [8]. The agreement consists of all countries being obliged to
cut greenhouse gases and adapt to climate change, and that the temperature on Earth must
not rise by more than two degrees Celcius before the end of the century. All countries must
also have a clear plan for managing this. The United Nations also has several Sustainable
Development Goals, where the 7th goal reads as follows: Ensure access to affordable, reliable,
sustainable and modern energy for all [9]. Clean energy refers to energy generated from a
natural source that is continually renewed. Climate agreements are crucial in mitigating
climate change, which is urgently needed. Taking part in these agreements contributes to
reducing greenhouse gas emissions, adapting to climate change and transitioning to a low-
carbon economy. As such, these agreements represent a critical effort to protect our planet
and ensure a more sustainable future for generations to come.

Hydropower is the most commonly used form of renewable energy in several countries, in-
cluding Norway. It represents about 17% of global electricity production. In Norway, hy-
dropower is the primary source of electricity, accounting for about 90% of the country’s
electricity production [10]. This makes Norway one of the most hydro-dependent nations
globally. However, this high dependency raises an interesting question about climate change’s
impact on future hydropower production. Increased temperatures can cause increased evap-
oration, while changes in precipitation patterns can lead to drought periods that reduce
water availability. This can result in reduced power production and increased pressure on
water resources. Increased precipitation can also cause flooding due to heavy rainfall. This
can lead to the destruction of infrastructure and equipment used in hydropower plants, as
well as reduced access to water resources.

Agder County is the southernmost county in Norway, formed by merging the two former
counties of Aust-Agder and Vest-Agder in 2020. The county is known for the sunniest and
warmest climate in the country. According to The Norwegian Water Resources and Energy
Directorate’s (NVE’s) overview of power plants in Norway, total hydropower production in
Agder County is about 14.6 TWh referred to the inflow period 1991-2020, which amounts
to 10.66% of total Norwegian hydropower production referred to the same inflow series [11].
There are plans for several new hydropower projects in this area. Based on currently avail-
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able information, a combination of larger projects, potential upgrades and expansions of
existing larger hydropower plants, small-scale hydropower development and environmentally
sound design of waterways could result in an estimated increase in production of approxi-
mately 500-700 GWh/year in Agder County [12]. This includes the Fennefoss power plant,
Syrtveit power plant, Øygard and Kvernevatn power plants, Knaben-Solliåna, Mandalselva
and various small-scale private power plant developments.

The significant increase in temperature and precipitation around the world has led to changes
in the hydrological cycle, affecting the hydropower potential. This has raised concerns about
the long-term viability of this energy source, and therefore, it is essential to evaluate the
potential impact of climate change on hydropower production. Numerous studies have been
conducted worldwide, both on a global scale and in different countries and regions. Hisdal
et al. (2010) and Wilson et al. (2010) studied how the streamflow has changed over the
last century in the Nordic countries. They both conclude that temperature and precipita-
tion changes are why the streamflow has changed. Holmqvist (2014) studied the Norwegian
water balance and concluded that the changes in streamflow also apply to Norway. Roald
et al. (2006) investigated the impact of climate change on streamflow in Norway from 1971
to 2100, while Hanssen-Bauer et al. (2015) examined the hydrology over the next century.
Both conclude that climate change will significantly impact the years ahead. Hydrological
modeling is a crucial tool for assessing hydropower’s future potential. Various hydrological
models are available, each with its advantages and disadvantages. The choice of model de-
pends on the challenges in the area being investigated and the available data. Hydrologiska
Byråns Vattenbalansavdelning-modellen (HBV) is the hydrological model most used for sim-
ulations in Norway. Several versions of the HBV model have been developed in addition to
the original, some with simplifications for easier understanding.
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1.1 Research Question

In recent years there has been increased attention to hydropower due to its ability to miti-
gate climate change. The impact of climate change on hydropower remains uncertain, with
different regions experiencing different risks and benefits. Agder County is home to several
hydropower plants and is expected to be particularly vulnerable to climate change impacts,
including rising temperatures, changes in precipitation patterns and increased frequency and
intensity of extreme weather events. As temperatures continue to increase, there will be a
reduction in the amount of snowfall during winter, leading to a gradual release of the nat-
ural snow reservoir during spring. This thesis’s main objective is to assess climate change’s
impact on hydropower potential in Agder County over the next century. Specifically, this
thesis aims to answer the following research question:

How will hydropower potential in Agder County be affected by
climate change over the next century?

To address this research question, an educational version of HBV will be used with future
weather data obtained from global and regional climate models under different emission
scenarios as input to estimate the future change in streamflow conditions. This thesis will
also investigate the effectiveness of the educational version of HBV as a tool for addressing the
research question. This will be addressed by comparing the model outputs with the observed
discharge data from the study area. The results will provide insights into the capability of
the educational version of HBV under different emission scenarios. The findings of this study
will contribute to a better understanding of the potential risks and opportunities associated
with hydropower production in the face of climate change during the next century.

1.2 Structure

The thesis is organized into several chapters, each with a specific focus. Chapter 2 provides
an overview of the theoretical background related to the topic. Chapter 3 reviews previ-
ous publications related to hydrological conditions and hydrological modeling. Chapter 4
presents the methodology for deriving the data and describes how the hydrological modeling
has been conducted. Chapter 5 presents the results and discusses the uncertainties, limita-
tions and contributions to the literature. A conclusion is drawn in Chapter 6, summarizing
the main findings and their significance. Chapter 7 provides recommendations to further
work related to the study.
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Chapter 2

Theory

This chapter explains the theory mentioned throughout the thesis. The presented theory
provides the basis for several preconditions.

2.1 Potential Hydropower

Hydropower potential can be divided into three categories: gross theoretical potential, tech-
nical potential and economically feasible potential. Gross theoretical potential refers to the
theoretical maximum amount of energy that can be produced by using all available water
resources in a region [13]. Technical potential refers to the hydropower capacity that is at-
tractive and easily accessible with current technology. The economically feasible potential
of a site is the amount of hydropower generating capacity that can be built after evaluating
the site’s feasibility at current prices. [14] The power that a stream can generate depends
on two factors [15]:

• The height difference between the water level at the upstream reservoir and the water
level at the discharge, measured in meters (m), is called the gross head (see Figure 2.1).
The greater the head, the more powerful the stream.

• The discharge (m3/s) represents the volume of water that passes by a fixed point in
one second.

Figure 2.1: Simplified schematic of a hydroelectric power plant [16]
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The gross theoretical potential is typically used in studies because it estimates the maximum
energy that could be generated from water resources, without considering limitations and
constraints that may affect a project’s technical and economic feasibility. The gross potential
hydropower can be calculated using Equation 2.1:

P = Q ·H · ρ · g (2.1)

where P is the hydropower capacity (W), Q is the discharge (m3/s), H is the gross head
(m), ρ is the density of water (1000 kg/m3) and g is the gravitational acceleration (9.81 m/s2).

2.2 Thiessen Polygon Method

The Thiessen Polygon Method divides a geographic area into smaller sections based on the
proximity of a set of known points, such as rain gauges. This method is helpful for hydrologic
studies because precipitation is typically measured at specific points. The goal is often to
evaluate precipitation over a larger area, like a catchment or drainage basin. [17]

To begin the Thiessen Polygon Method, rain gauges inside or near the catchment area must
be identified. On a map, the locations of each rain gauge are plotted along with the amount
of precipitation measured. Each rain gauge is then connected to its nearest neighbors with
straight lines, creating a series of triangles. Each line is bisected perpendicularly until it
intersects with another bisected line, creating an irregular polygon. The polygons represent
the influence area for a specific rain gauge, with precipitation within each polygon represent-
ing the amount measured at the gauge. The total precipitation over a catchment area can
be estimated by calculating a weighted average of the precipitation measured at each rain
gauge. [18]

Even though the Thiessen Polygon Method assumes that each point within its polygon is
equally influential and that its boundaries are not affected by environmental conditions, it
is still widely used in GIS (geographic information system) analysis because it can be used
to estimate the spatial distribution of a variable over a large area simply and efficiently. [19]

Figure 2.2: An example of Thiessen Polygon Method usage [18]
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2.3 Hydrological Models

Hydrological models are crucial for evaluating future hydropower potential by providing
valuable insights into water availability, runoff and overall energy potential. These models
are designed to achieve one of two primary objectives: to study system operation or to
predict system behavior. Various hydrological processes, such as precipitation, snowmelt,
evapotranspiration and infiltration, are incorporated into representations of the hydrological
cycle. Hydrological models can determine how much energy can be generated by hydropower
at a particular location based on the amount of water available. [20]

A hydrological model is essential for assessing future streamflow conditions in reservoirs and
evaluating the effects of climate and land-use change on watersheds. The use of these models
is critical to making informed hydropower development decisions when there is little data
available or when hydrological systems are complicated. Hydrological models must consider
several factors, including climate change, to evaluate future hydropower potential. With
changes in precipitation patterns and increased temperatures, climate change will signifi-
cantly impact water availability and hydropower potential.

Hydrological models are typically divided into three categories: empirical models, conceptual
models and physically based models, which are explained in the following sub-sections. Data
availability, watershed complexity, heterogeneity and model application are all factors that
influence which approach is selected [20].

2.3.1 Empirical Models

Empirical models, also known as statistical models, describe data based on the observations
made without the need for theoretical frameworks or assumptions about the underlying sys-
tem. They aim to use past observations to predict future outcomes reliably. The primary
advantage of empirical models is their simplicity, which makes them applicable in ungauged
catchments without hydrological data. Empirical models can be applied in these catchments
through regional analysis, which links model properties to the physical and climatic charac-
teristics of the catchment. Therefore, empirical models are useful in areas with limited or
no hydrological data. [20]

Empirical models are statistical models that focus on input-output relationships [21]. In the
context of hydrology, these models use data on streamflow, temperature and precipitation
to establish relationships between them. Despite being straightforward and user-friendly,
the accuracy of these models can vary based on the conditions being modeled. Predictions
generated by these models are simple and efficient, which is one of their main advantages.
However, they may not always capture the complexity of the underlying hydrological system.
In order to ensure their reliability, empirical models should be evaluated against observed
data before being used for prediction purposes. [20]
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2.3.2 Conceptual Models

Conceptual models are a type of hydrological model that provide a more comprehensive
understanding of the underlying processes that influence streamflow. In conceptual models,
watersheds are represented mathematically as interconnected storage reservoirs, which in-
corporate various components of hydrological processes. These models require a substantial
amount of data to represent the system properly. Hence, their accuracy and availability
depend on the input data. [20]

Conceptual models offer several benefits despite their complexity. When data is limited or
hydropower potential has to be assessed quickly, it can be used to estimate water availability
and runoff. These models can also be useful for decision-making processes where information
about the hydrological system is limited or little knowledge exists. [22]

Conceptual models provide a more detailed view of the hydrological system, but assumptions
and simplifications in constructing the model can limit their accuracy. Specifically, the
lumped configuration of these models ignores spatial variation in parameter values across
the entire watershed. Additionally, the models’ accuracy heavily depends on the quality of
the observed data used to calibrate them. [20]

2.3.3 Physically Based Models

A physically based hydrological model simulates precipitation, evaporation, infiltration and
runoff using physical principles. Simulations of the hydrological system are based on differen-
tial equations that describe the laws of mass, energy and momentum conservation [20]. The
runoff can be continuously simulated in physically based models by considering the spatial
variability of land use and soil. [23] [21]

Physically based models provide a more detailed understanding of the hydrological system,
but require significant input data and computational resources. They are especially useful
for studying complex hydrological systems and can be applied to various spatial scales, from
small catchments to large river basins [24]. The accuracy of physically based models depends
heavily on the quality of the input data used, such as climate data, soil properties and land
use characteristics. Furthermore, the models can be computationally demanding and require
significant time and resources.
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2.4 Representative Concentration Pathways

The Representative Concentration Pathways (RCPs) presented in the fifth assessment report
of the Intergovernmental Panel on Climate Change (IPCC) are essential for predicting the
potential impact of greenhouse gas emissions on the Earth’s climate system. These scenarios
are based on assumptions about future population growth, economic development, energy
use and technological advances. The RCPs are used to explore possible futures and assess
the potential impacts of different emissions paths on the Earth’s climate system. [25] The
emission scenarios presented by IPCC are listed and explained in Table 2.1.

Table 2.1: Representative concentration pathways explanation [25]

Scenario Explanation

RCP2.6
This scenario assumes that the world’s emissions peak around 2020 and then rapidly
decline, leading to a global temperature rise of 1.0 °C (0.3-1.7 °C) by the end of the
21st century.

RCP4.5 This scenario assumes that emissions peak around 2040 and then decline gradually,
leading to a global temperature rise of 1.8 °C (1.1-2.6 °C) by the end of the 21st
century.

RCP6.0
This scenario assumes that emissions continue to rise throughout the 21st century
before peaking in the mid- to late- century, leading to a global temperature rise of
2.2 °C (1.4-3.1 °C) by the end of the century.

RCP8.5
This scenario assumes that emissions continue to rise throughout the 21st century
without any significant mitigation efforts, leading to a global temperature rise of
3.7 °C (2.6-4.8 °C) by the end of the century.

The RCPs are often used as inputs for climate and hydrological models. By running models
with different RCPs, one can gain insights into how the Earth’s climate will likely evolve
and assess the potential risks and impacts of climate change. The RCPs are an important
tool for researchers in assessing climate change’s potential risks and impacts and identifying
strategies to mitigate and adapt to its effects. They provide a framework for exploring dif-
ferent emissions scenarios, assessing their potential impacts on the Earth’s climate system,
and guiding decision-making in the years ahead.

The two most widely used scenarios in climate research are RCP4.5 and RCP8.5. RCP4.5 is
an intermediate emissions scenario. As a result of this scenario, the radiative forcing should
stabilize shortly after 2100, making it necessary to reduce emissions dramatically. RCP4.5 is
defined by lower energy intensity, reforestation programs, and decreased use of croplands and
grasslands due to yield increases and dietary changes. In addition, it assumes that aggressive
climate policies will be implemented and methane emissions will be stabilized. CO2 emissions
only increase slightly before declining around 2040. RCP8.5 is a high-emission scenario, also
called the "worst-case scenario". This scenario assumes no policy changes will be made to
reduce greenhouse gas emissions. A future with increasing greenhouse gas emissions and
high concentrations is predicted by RCP8.5. The scenario predicts three times today’s CO2

emissions by 2100, a rapid increase in methane emissions and increased use of croplands and
grasslands driven by population growth. By 2100, it is estimated in this scenario that the
world’s population will be 12 billion. [26]
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Figure 2.3 shows the global average surface temperature change relative to 1986-2005. There
are two scenarios plotted, RCP 2.6 (blue) and RCP8.5 (red). The shaded areas indicate
the level of uncertainty. This is a common way of presenting different scenarios for the
future. Additionally, colored vertical bars for four scenarios indicate the mean and associated
uncertainties in the period 2081-2100. [25]

Figure 2.3: Global average surface temperature change (relative to 1986-2005) for different RCP
scenarios [25]
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Chapter 3

Previous Studies

3.1 Climate in Norway

Multiple studies have been conducted on whether climate change is advancing in Norway
and how it will affect the future. This sub-chapter presents various studies on how Norway’s
climate has evolved and how it is likely to change in the next century. Climate change
affects weather conditions, such as temperature and precipitation, affecting streamflow. The
hydropower potential is significantly affected by this.

3.1.1 Historical

For the historical climate, Hisdal et al. (2010) investigated how the streamflow has changed
in the Nordic countries in the last century. The study found that the streamflow during
winter months has increased due to warmer temperatures and increased precipitation levels.
Additionally, the streamflow has also increased in the springtime due to an earlier spring
flood, which is evident in areas with both snowmelt and rain floods during spring. However,
in summer, the streamflow has reduced, and more severe droughts have increased due to
earlier snowmelt and increased evaporation from higher temperatures. The study acknowl-
edges that the period analyzed and the selection of stations influenced the regional patterns
found. However, trends toward increased streamflow dominated annual values and the win-
ter and spring seasons. Trends in summer flow highly depended on the period analyzed, and
no trend was found for the autumn season. The study also found a signal towards earlier
snowmelt floods and a tendency toward more severe summer droughts in southern Norway.
[27]

Wilson et al. (2010) have analyzed the trends in streamflow in the Nordic countries. The
study found that the increase in streamflow during the winter and spring seasons was rela-
tively higher than the increase in annual flows, indicating the influence of temperature on
the timing of snowmelt and the seasonal distribution of flows. Changes in the timing of
spring floods, except in Iceland, were also observed due to changes in snowmelt timing. In
addition, the study found a tendency towards more severe summer droughts in southern and
western Norway. The observed changes in streamflow in the Nordic countries are consistent
with the estimated consequences of a projected temperature increase. The trends in annual
and seasonal streamflow, floods, and droughts resulting from the changes in temperature and
precipitation were found to depend on the period analyzed. However, they concluded that
the streamflow in the Nordic countries has changed. These changes result from temperature-
induced influences that have affected the timing of snowmelt and the seasonal distribution of
flows. [28] Through Holmqvist’s (2014) study regarding Norway’s water balance from 1958
to 2012, he concludes that this trend also applies to Norway. [29]
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3.1.2 Future

For future climate and hydrology, Roald et al. (2006) conducted a study to investigate the
potential impacts of climate change on streamflow in Norway from 2071 to 2100. The study
utilized a hydrological model that used data from three adjacent climate stations to assign
daily time series of daily temperature and precipitation to each 1 x 1 km2 grid cell. The study
found that there would be moderate changes in the annual streamflow, with some basins in
East Norway experiencing a decline in some scenarios and an increase in most basins ex-
posed to westerly winds. There would be significant changes in the seasonal distribution of
streamflow. The winter season would experience an increase in streamflow throughout the
country. The spring season would see an increase in mountainous basins in North Norway
and a moderate decline in low-lying basins in the South and Mid-Norway. In the summer
season, there would be a decrease in streamflow throughout the country. Given the moderate
scenario, almost the entire country would experience an increase in streamflow in autumn.
However, low-lying basins in the east and south would see a decrease in streamflow given
the more extreme scenario. [30]

Hanssen-Bauer et al. (2015) investigated the impact of two climate scenarios, RCP4.5 and
RCP8.5, on hydrology in Norway. The degree of change in hydrological conditions depends
on the level of greenhouse gas emissions and subsequent atmospheric temperature increases.
Under scenario RCP4.5, an increase of 1.8°C is predicted within 2031-2060, while scenario
RCP8.5 will lead to an increase of 2.4°C in the same period. The increased temperature will
also lead to more evaporation, which will offset the effect of increased precipitation on runoff
values. Across the country, average temperatures are expected to increase, with northern
regions experiencing the highest increase in temperature. Winters will become milder, sum-
mers warmer, and heat waves more frequent and intense. However, extreme cold events
may still occur, particularly inland. Precipitation patterns are also likely to change, with
an overall increase in most areas. Both scenarios will result in an increase in precipitation
for all seasons, but RCP8.5 will cause a more significant increase than RCP4.5. The timing
and intensity of precipitation changes may affect water availability for agriculture by causing
increased flooding and decreased soil moisture. Runoff projections indicate a 3% increase for
RCP4.5 and a 7% increase for RCP8.5. The report notes that extreme weather events such
as heavy rainfall, storms and floods will likely become more frequent and intense, posing
risks to infrastructure and settlements. Sea level rise is projected to continue, exacerbating
coastal flooding and erosion. The report also discusses the impact of climate change on
different sectors in Norway. The energy sector may be affected by changes in hydropower
generation due to changes in water availability and snowmelt patterns. [31]

Based on Hanssen-Bauer et al. (2015), the Norwegian Climate Services Center presented
a climate report for Agder County. The climate profile stated, among other things, that
"Climate change will particularly lead to the need for adaptation to heavy precipitation
and increased problems with surface water in Agder" [32]. The average annual tempera-
ture in Agder is estimated to increase by approximately 4.0 °C, with the greatest increase
in winter. Annual precipitation in Agder is estimated to increase by approximately 10%. [32]

Koestler et al. (2019) investigated the impact of climate change on the inflow of hydropower
in Norway. The study found that the inflow has increased faster in recent decades than
climate projections, and this increase applies to the whole country. On average, more inflow
occurs in winter, but there is more variation from year to year. In contrast, there is less inflow
during the summer, and the inflow from glacier melt will be significantly reduced towards
the end of the century. However, the study also expects that the inflow will continue to
increase in the future. In the RCP8.5 emission scenario, the inflow is projected to increase
by about 7% by the end of the century due to increased temperature and precipitation, and
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the south of Norway is expected to experience an inflow increase of over 10%. There is also
variability in inflow from year to year, with the difference in inflow between Norway’s driest
and wettest winters being 26 TWh today, compared to 46 TWh at the turn of the century.
[33]

3.2 Hydrological Modelling for Potential Hydropower

Over the past few decades, researchers from around the world have developed various effec-
tive methods for hydrological modeling. This sub-chapter provides an overview of some key
findings and insights from previous studies using different hydrological models.

In Wang et al.’s (2018) study, a model-based approach was used to evaluate the effects of
climate change on hydropower potential in China’s Nanliujiang River Basin. They used
the Variable Infiltration Capacity (VIC) hydrological model, calibrated and validated 1000
times. They found that it could simulate runoff well, but had greater uncertainty in low
and high-flow simulations. Five climate models were employed, and the study analyzed the
future spatial and temporal distributions of water resources. The findings revealed that
changes in river discharge and water resource distributions are expected by 2100, resulting
in an increase of 7.7% to 15.6% in hydropower potential under different RCP scenarios (2.6,
4.5, and 8.5). [34]

A study by Kouadio et al. (2022) examined the hydropower potential of the White Bandama
Watershed in northern Côte d’Ivoire (West Africa). The hydrological model Soil and Wa-
ter Assessment Tool (SWAT) was combined with Quantum Geographic Information System
(QGIS) to evaluate water resource availability, hydropower potential and identify potential
sites for future hydropower development. According to the results, the physical-based model
had a good performance and is suited for future studies. However, during calibration and
validation, the model underestimated peak flows at the hydrometric stations. In Ethiopia, a
similar study was conducted by Dilnesa (2022) to identify potential hydropower sites in the
Temcha watershed. Results agreed with Kouadio et al. (2022) that the use of the SWAT
model in conjunction with a GIS tool was an effective method for identifying suitable sites
for hydropower plants [35].

Rodric et al. (2021) aimed to investigate climate change’s impact on the Lagdo dam’s hy-
dropower potential in the Benue River Basin, Northern Cameroon. The study used the
HBV-Light hydrological model to simulate streamflow and compute hydropower potential
based on the regional climate model’s dynamically downscaled temperature and precipita-
tion data. The data were obtained using the boundary conditions of two general circulation
models (GCMs) and three Representative Concentrations Pathways (RCP2.6, RCP4.5, and
RCP8.5). The results showed that hydropower potential in the Lagdo dam would be nega-
tively affected under climate change scenarios, with a combination of decreased precipitation
and streamflow and increased PET. The study concluded that climate change would decrease
the hydropower potential of the Lagdo Dam in the future. The HBV-Light model was found
to be highly performing during the calibration and validation stage, and the study used
optimized model parameters. [36]

Bhattarai et al. (2017) used the HBV-Light model to estimate runoff and analyze changes in
catchment hydrology and future flood magnitude due to climate change in the Narayani River
Basin in Nepal, a snow-fed basin. The model was calibrated for 1995-2005 and validated
for 2006-2008, with satisfactory results. The Nash-Sutcliffe coefficient during calibration
ranged from 75.2% to 82.6%, and during validation ranged from 56.3% to 87.2% for all four
sub-basins. The coefficient of determination (R2) during calibration was between 0.789 and
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0.844, and during validation was between 0.629 and 0.893. However, the model’s structural
complexity underestimated low flows, and some sharp peaks due to isolated precipitation
events needed to be accurately estimated. The model showed an overall increase in monthly
stream flow from January to June (34% to 51%) and November-December (10% to 15%)
with the output of HADCM3 GCM, A1B scenario. Additionally, the sensitivity analysis
indicated that global warming leading to an increase in average basin temperature would
significantly increase the contribution to runoff from snowmelt. The model’s performance is
highly sensitive to the choice of parameter sets. Different parameters can provide the same
efficiency, leading to ambiguity in determining the best parameter set. Therefore, generating
a large number of parameter sets using the Monte Carlo method can prioritize important
parameters to be used during calibration. [37]

The above studies are only a selection of the studies carried out in the field. There have
been many studies regarding hydropower in various countries and worldwide. The choice of
model may depend on the specific challenges in a given region or country, and what data are
available to support the modelling.

3.3 PEST Parameter Estimation

Lawrence et al. (2009) studied the calibration of HBV hydrological models using PEST
parameter estimation. They calibrated five best-fit models for each catchment based on
observed streamflow and used the Nash-Sutcliffe criteria and volumetric bias as objective
functions for model optimization. Fifteen HBV parameters were calibrated during the pro-
cess. In their study, Lawrence et al. (2009) discovered that 90 catchments had model fits
with N-S values greater than 0.70 for daily runoff, and 113 catchments had model fits with
N-S values greater than 0.70 for weekly runoff. Additionally, the volumetric bias of the model
was found to be less than ±5% in 105 catchments and less than ±2% in 56 catchments. The
sensitivity analysis showed that the precipitation (rainfall) correction factor (PKORR) was
the most sensitive parameter in 100 catchments. The second most sensitive parameter was
found to be the precipitation (snowfall) correction factor (SKORR). These findings high-
light the importance of high-quality precipitation input data. They also found that model
calibrations with poorer fits were associated with smaller catchments in Norway’s western
and southwestern regions. The study showed that PEST parameter estimation effectively
identified best-fit parameter sets for the HBV hydrological model. [38]

3.4 Different Versions of the HBV Model

Hanssen-Bauer et al. (2015) used a Norwegian-adapted version of the Swedish HBV model,
developed at the Svenska Meteorologiska och Hydrologiska Institut (Bergström, 1976). HBV
is the hydrological model most used for simulations and forecasts for streamflow in Norway
[39]. Both Rodric et al. (2021) and Bhattarai et al. (2017) used HBV-light as a hydrological
model when they explored the impact of climate change on the hydropower potential in their
studies. There are many different versions of the HBV model software besides the original.
HBV-light corresponds in principle to the version described by Bergström with only slight
changes. In order to keep the software as simple as possible, several functions available in
the SMHI version have not been implemented into HBV-light. [40]
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An euducational version of the HBV model have also been developed. The HBV - Education
version, created by Amir AghaKouchak et al., is a hands-on tool that teaches the basics of
hydrologic processes, model calibration and validation. The simplified conceptual model
aims to provide an application-oriented learning environment that introduces hydrological
processes. Through using this model, one can gain insights into how hydrological processes
such as precipitation, snowmelt, soil moisture, evapotranspiration and runoff generation are
interconnected. The educational HBV model is available as a MATLAB Graphical User
Interface (GUI) or an Excel spreadsheet, making it accessible to many users [24] [41]. This
study transposes the code to a Python script. By doing so, a Generic Algorithm (GA) can
be used for calibration.
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Chapter 4

Methodology

In this chapter, the methodology that guided this study is presented. The study area, Agder
County, is profiled, and the processing of various datasets for use as input is described. Ad-
ditionally, the hydrological model, which will be utilized for the simulations, is explained.
First, a summary of the methodology is given for easier reading.

Summary of the Methodology

This study focuses on the Tovdalsvassdraget watershed in Agder County, Norway. A concep-
tual, educational version of the HBV model is used, which assumes that the area of interest
is a single unit and that the parameters do not vary spatially across the watershed. The
model uses temperature, precipitation and observed discharge as inputs to simulate the fu-
ture discharge by utilizing physical concepts such as infiltration, snowmelt, evaporation and
runoff. The model handles rainfall and snow based on temperature and evaluates how much
rainfall contributes to runoff and soil moisture storage. The model’s primary output is daily
discharge values until 2100.

The HBV model demands calibration. The observed discharge used for calibration was from
the station Flakksvann. The ranges for the model parameters are the ones recommended by
Lawrence et al. (2009) [38], while initial values were set based on recommendations from
Amir Aghakouchak, who created the educational version of HBV. The calibration period was
from September 1980 to August 2000. For the validation, two joint periods from September
1972 to August 1980 and September 2000 to August 2004, together with the optimal values
from the calibration were used.

The calibrated HBV model is simulated with precipitation and temperature data in a 1 km
x 1 km grid from Global Climate Models (GCMs) and Regional Climate Models (RCMs),
listed in Appendix A. These models are simulated during two climate scenarios; RCP4.5 and
RCP8.5. The simulation output was simulated discharge converted to potential hydropower
using Equation 2.1 in Chapter 2.1. This conversion allowed the estimation of the energy per
net head that could be generated by a hydropower plant.
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4.1 Study Area

This study focuses on Agder county, which is located in southern Norway. Agder county is
known for its rugged terrain, abundance of rivers and lakes, and the country’s sunniest and
warmest climate. The county extends from the southern coastline to the northern moun-
tainous regions of Bykle and Tokke, while the intermediate areas between the coast and the
mountains are known for their woodland areas.

The study focuses explicitly on Tovdalsvassdraget, which can be found in area 4 of Figure
4.1. Tovdalsvassdraget was granted protected status in 1986 under the Verneplan III for wa-
tercourses (except for Uldalsvassdraget). This means that hydrological data can be studied
without hydropower regulation.

For this study, Tovdalsvassdraget will be viewed as representative of Agder County. Tov-
dalsvassdraget spans a long distance from the northernmost region of the county to the south.
Agder County’s climate is characterized by temperate maritime conditions, resulting in mild
winters and warm summers. The county receives a substantial amount of precipitation
throughout the year. Due to the county’s mountainous terrain and high precipitation levels,
there is significant potential for hydropower. The county has a rich history of hydropower
development, with many rivers and waterfalls utilized for electricity production.

Figure 4.1: A map of Agder County divided into its various watersheds. The area of interest in this
study is area 4, Tovdalsvassdraget. [42]

18



4.2 Data

In the further, a description of the datasets used for the simulations in this study is de-
scribed. These datasets include observed data for temperature, precipitation, discharge and
evaporation, as well as simulated datasets for temperature and precipitation. These data
sets are necessary for the simulation and calibration of the hydrological model.

4.2.1 Data for Temperature and Precipitation

The data for temperature and precipitation in the simulations was obtained from the Nor-
wegian Centre for Climate Service, a downloading page in collaboration with the NVE. The
dataset used in this study consisted of temperature and precipitation values from 1971 to
2100 from ten different climate models (see Appendix A). The data were based on two cli-
mate scenarios, RCP4.5 and RCP8.5, specifically for Agder County. The downloaded dataset
included a simulated historical period from 1971 to 2005 and a simulated future period from
2006 to 2100.

Data Construction

The dataset is used in several different studies. The first step of the data construction was
done in “Climate in Norway 2100” by Hanssen-Bauer et al. (2015). The data was obtained
from the Coordinated Regional Climate Downscaling Experiment (CORDEX), an interna-
tional project to provide climate studies with data. The datasets were originally generated
from simulations using Global Climate Models (GCMs) and had a gridded resolution of
100x100 km2. The Euro-CORDEX subproject downscaled this data to a resolution of 12x12
km2 using Regional Climate Models (RCMs). This utilized ten outputs with a resolution of
12x12 km2 for RCP4.5 and RCP8.5, which were applied in the report “Climate in Norway
2100”. [31][43] [44]

Regional Climate Modelling (RCM) and empirical statistical downscaling (ESD) were ap-
plied to downscale the data to smaller grids. RCMs have smaller grids than GCMs, but
are constructed similarly. Simulation results from GCMs were used in the RCM as input
variables. Systematic biases often occur during dynamical downscaling, so the dataset was
de-trended and bias-corrected using an empirical quantile mapping method (EQM) based
on ’seNorge’ precipitation and temperature gridded data as the ’observed’ data. In order to
downscale the data from 12.5x12.5 km2 to 1x1 km2, the data were re-gridded and re-scaled
using the simple nearest neighbor method. Quality control was then performed to ensure
that "hot spots" did not occur, and wet-day correction was carried out as RCM simulations
often predict too high precipitation levels. [31]

The resulting bias-corrected and downscaled data was then processed in the HBV model
using temperature and precipitation as input variables to generate hydrological variables
[43]. Calibration of the model was necessary to achieve output variables that were as close
to observational values as possible. [31] These temperature and precipitation data (from
their simulations) are downloaded and used for this study.
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Delineation of the Dataset

The dataset contains hydrological data associated with coordinates presented in netCDF
format files for the catchment. A Python script was developed with help from Joao Leal to
retrieve data for the desired area, see Appendix B. For simplicity, the selected region was
defined by a rectangular shape in the script. The catchment is not a rectangle, but average
values will be similar for the rectangle and the catchment. The rectangle was used to simplify
the coordinate referencing without losing accuracy. The rectangle is shown in Figure 4.2,
and was delimited by the coordinates listed in Table 4.1. The script extracts temperature
and precipitation data for each model and scenario run and converts it into an Excel format.

Table 4.1: Coordinates used to limit the dataset to the desired area

Min longitude 8.09
Max longitude 8.4
Min latitude 58.3
Max latitude 59.15

Figure 4.2: Representation of the desired area. The red highlighted clipping area represents Tov-
dalsvassdraget in this study
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4.2.2 Data for Observed Temperature and Precipitation

To calibrate and validate the model, observed historical data for temperature and precip-
itation was downloaded from Seklima.no, a website that provides access to real data from
various measuring stations. [45]. Actual observed temperature and precipitation data were
utilized to obtain the most accurate representation of the resulting discharge.

For temperature, the mean temperature for each day from the station Byglandsfjord-Solbakken
was used. The station can be seen in Figure 4.3. This station was used since it is the only
station that measures air temperature nearby the desired area. The downloaded period
was from January 1971 to December 2005, during which data was missing for nine days.
These days were spread throughout the period, and therefore, interpolated values were used
for those days. There were so few missing days in such a large time frame, so they were
considered representative and not affecting the overall accuracy. A monthly average was
calculated from the observed temperature data for the given period, which was required in
the simulations. These average values were utilized in the simulations for the calibration,
validation and historical period.

Nearby the catchment, four stations measured daily precipitation during the given period:
Tovdal, Mykland, Dovland, and Herefoss. Figure 4.4 shows the four stations in a dark green
color. To ensure the most representative results with four stations, only the years 1972 to
2004 were considered suitable for further use. There was too much missing data in 1971
and 2005 for one or more of the stations to allow for interpolation. The Thiessen polygon
method (described in Chapter 2.2) was used to determine a value for each day in the area.

Figure 4.3: The station Byglandsfjord-
Solbakken represent the observed temperature
for the area.

Figure 4.4: Stations Tovdal, Mykland, Dov-
land and Herefoss (dark green) represent the
observed precipitation in the area.
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4.2.3 Data for Observed Discharge

The observed discharge data was downloaded from Sildre, a source of current and historical
hydrological information [46]. The Flakksvann station was selected as the representative
for the entire area, and data were collected from January 1971 to December 2005. The
Flakksvann station is located in Tovdalsvassdraget, meaning it does not have hydropower
regulation.

Figure 4.5: The Flakksvann station (marked in red) represent the observed discharge for the area.

4.2.4 Data for Evaporation

The data for long-term mean monthly potential evapotranspiration is obtained from Climate
Engine. This tool uses Google Earth Engine for on-demand processing of satellite and climate
data on a web browser [47]. The website allows the user to clip out the desired area for data.
For this study, the entire Agder County was chosen. Mean evaporation was used from
January 1971 to December 2005. After extracting the data, the average of each month for
all years was used in the model.
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4.3 Hydrological Modelling

In the further, a detailed overview of the hydrological model used in this study is provided.
This includes its structure, parameterization, calibration and validation. The assumptions
described reduce the number of parameters required for hydrological modeling.

4.3.1 HBV

This study used a conceptual model based on the HBV model due to its simplifications and
easy implementation into a Python script. The educational version of the HBV model was
used [24], initially available as an educational Excel spreadsheet or a Matlab script, but has
been converted to a Python script for this study. The Python script was initially developed
by Joao Leal as part of the process for this master’s thesis, with subsequent modifications and
completion by the author. The study uses a simplified spatially-lumped version of the model,
which assumes that the area of interest is a single unit (zone) and that the parameters do
not vary spatially across the watershed [24]. In Figure 4.6, the processes of the educational
version of the HBV model are described.

Figure 4.6: General processes of educational version of HBV model [24]

HBV is a hydrological model developed by the Swedish Meteorological and Hydrological
Institute to simulate the hydrological cycle in a river basin. The HBV model is a concep-
tual model, as described in Chapter 2.3. The model uses temperature, precipitation and
observed discharge as inputs to simulate the discharge by utilizing physical concepts such as
infiltration, evaporation, snowmelt and runoff. As explained in Figure 4.6, the model han-
dles rainfall and snow based on temperature, and evaluates how much rainfall contributes
to runoff and soil moisture storage. The model’s primary output is discharge at the water-
shed’s outlet. The following sections provide descriptions of each module of the model and
are implemented in the Python script in Appendix C.
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Snowmelt and Snow Accumulation

The first step in the model is to separate precipitation into rainfall and snow, which requires
an assumption. This study assumes that if the temperature is at or below the threshold
temperature, all precipitation falls as snow. If the temperature is above the threshold, all
precipitation falls as rainfall. This is expressed in the following equation:

Precipitation =

{
Snow if Ti ≤ Tt

Rainfall if Ti > Tt

(4.1)

where Ti is the mean daily air temperature and Tt is the threshold temperature. In this
study, the threshold temperature is one of the parameters estimated during calibration us-
ing ranges described in Chapter 4.4. Another important assumption is required regarding
snowfall. If precipitation falls as snow, the assumption is that there will be neither infiltra-
tion nor direct runoff. This means that the precipitation will not immediately translate to
runoff, but rather it will accumulate as snow until it melts. However, if the precipitation
falls in the form of liquid water, the infiltration and direct runoff need to be calculated.

When snowfall occurs, it is essential to track snow accumulation and snowmelt. The model
assumes that if the temperature remains below the threshold temperature, there will be
no snowmelt. Once the temperature rises above the threshold temperature, snowmelt will
begin. It is also assumed that if the accumulated snow is 0, there is no snowmelt, whatever
is the temperature. This is expressed in Equation 4.2.

Smi
= DD · (Ti − Tt) (4.2)

where Smi
is the snowmelt rate water equivalent and DD is degree-day correction factor.

The degree-day factor describes how much snow can melt per degree per day and is one of the
parameters being optimized. Snow accumulation refers to the amount of snow accumulated
on the ground, while snowpack is the total amount of snow accumulated on the ground over
time. The snowpack is described as:

SPi =

{
SPi−1 + Pi if Ti < Tt

max[SPi−1 − Smi
, 0] if Ti ≥ Tt

(4.3)

where SPi is the snowpack, SPi−1 is the snowpack the previous day, Pi is the precipitation.

Liquid Water, Effective Precipitation and Soil Moisture

The next step is to calculate the amount of liquid water in the system. In this study, liquid
water refers to all available water in liquid form; rainfall and snowmelt. It is assumed that
if the temperature is below the threshold temperature, the liquid water content is zero,
indicating that everything is frozen. Conversely, if the temperature is above the threshold
temperature, precipitation falls in the form of rain and snowmelt. If there is accumulated
snow, snowmelt also adds. This is represented by the following equation:

LWi =

{
0 if Ti < Tt

Pi +min[SPi−1, Smi
] if Ti ≥ Tt

(4.4)

where LWi is the liquid water.
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The effective precipitation is illustrated in Figure 4.7. The field capacity (FC) represents
the watershed’s maximum soil moisture storage capacity. The soil moisture level can range
from zero to the maximum field capacity. Hence, the field capacity serves as the upper limit
for soil moisture. As the soil moisture level increases, the capacity for infiltration decreases
and more liquid water contributes to direct runoff or effective precipitation. Equation 4.5
calculates the effective precipitation.

Figure 4.7: The process of modelling the effective precipitation [48]

Peffi = (
SMi−1

FC
)βLWi (4.5)

where Peffi is effective precipitation, SMi−1 is actual soil moisture the previous day and β
is a model parameter (shape coefficient).

A water budget approach is employed for modeling the soil moisture module. The subsurface
is conceptualized as a bucket where liquid water is an input. A proportion of the liquid water
contributes to soil moisture, while the remaining contributes to direct runoff. The actual
evapotranspiration represents a loss from the system as water evaporates from the soil and
results in a decrease in soil moisture content. The process is illustrated in Figure 4.8 and
the soil moisture is calculated using Equation 4.6.

Figure 4.8: The process of modelling soil moisture [48]
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SMi = SMi−1 + LWi − Peffi − Eai (4.6)

where SMi is the soil moisture and Eai is the actual evapotranspiration.

Figure 4.9 shows the relationship between soil moisture, field capacity, shape coefficient and
runoff coefficient. By plotting the runoff coefficient against soil moisture, the role of beta
(β) can be explored. The x-axis represents soil moisture, which ranges from zero to the field
capacity. The runoff coefficient is generally less than 1. When β equals 1, the resulting line
is linear, as the black dotted line shows. However, the graph exhibits non-linear behavior
for higher values of β, such as 2 or 3. For a fixed amount of soil moisture represented by
the vertical line, increasing β results in a decrease in the runoff coefficient. The parameter
β controls the proportion of liquid water that contributes to runoff, allowing for adjustment
of the amount of effective precipitation.

Figure 4.9: Relationship between soil moisture, field capacity, runoff coefficient and β [24]

Evapotranspiration

When calculating evapotranspiration, adjusted potential evapotranspiration is first deter-
mined. Potential evapotranspiration refers to the amount of water that can potentially
evaporate, given sufficient water in the system and energy for evapotranspiration. Actual
evapotranspiration, on the other hand, represents what actually happens. While the calcu-
lation is based on potential evapotranspiration, adjustments are made based on daily tem-
peratures. The underlying assumption is that the long-term potential evapotranspiration is
primarily influenced by long-term temperatures. Adjusted evapotranspiration is calculated
using Equation 4.7:

PEai = (1 + C(Ti − Tmi
)) · PEmi

(4.7)

where PEai is adjusted potential evapotranspiration, Tmi
is long term mean monthly tem-

perature, PEmi
is long term mean monthly potential evaportranspiration and C is model

parameter. The parameter C helps improve the model’s performance when the daily tem-
perature significantly differs from its long-term average.
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Once the adjusted potential evapotranspiration is calculated, the actual evapotranspiration
must be determined. Water availability in the system is a crucial factor in this regard.
When sufficient water is available, the actual evapotranspiration is assumed to be equal to
the potential evapotranspiration. However, if there is a scarcity of water in the system,
the actual evapotranspiration needs to be estimated using a model parameter known as the
permanent wilting point (PWP). The PWP serves as a threshold, and soil moisture below
this point indicates water limitation. This is explained in the following equations:

Eai =

PEai(
SMi−1

PWP
) if SMi−1 < PWP

PEai if SMi−1 ≥ PWP
(4.8)

The graphical representation of the equations is shown in Figure 4.10, where the x-axis de-
notes soil moisture, and the y-axis represents actual evapotranspiration divided by adjusted
potential evapotranspiration. If soil moisture exceeds the permanent wilting point, actual
evapotranspiration equals adjusted potential evapotranspiration, resulting in a ratio of 1,
represented by the horizontal line in the graph. On the other hand, if soil moisture falls
below the permanent wilting point, the ratio changes linearly, as indicated by the upward
slope of the line in the graph.

Figure 4.10: Relationship between the actual evaportranspiration and PWP [24]
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Runoff Response

To calculate runoff, a bucket model approach is utilized, as it is a commonly used technique
in conceptual hydrological modeling. Two separate buckets represent near-surface and sub-
surface processes. The aim is to simulate the contributions of surface flow, interflow and base
flow to the total runoff. A schematic representation in Figure 4.11 shows that the system
comprises two conceptual reservoirs arranged vertically with one above the other. Q0i refers
to the immediate and rapid contribution to runoff. When there is space for storage, water
remains in the basin until it reaches a certain threshold, contributing to the overall runoff.
However, the water will directly contribute to the runoff if the storage is already full.

Figure 4.11: Conceptual reservoirs used to estimate runoff response [24]

The mass balance equations for the upper and lower reservoir is given by Equation 4.9 and
Equation 4.10.

S1i = S1i−1 + Peffi −Q0i −Q1i −Qperci (4.9)

S2i = S2i−1 +Qperci −Q2i (4.10)

where S1i is the upper reservoir water level, S1i−1 is the upper reservoir water level the
previous day, S2i is the lower reservoir water level, S2i−1 is the lower reservoir water level
the previous day, Q0i is the near surface flow, Q1i is the interflow, Q2i is the baseflow and
Qperci is the percolation. Equations 4.11 to 4.14 are utilized to estimate outflows from the
two conceptual reservoirs. The percolation equation connects the two reservoirs, while the
remaining three equations will contribute to the calculation of overall runoff. Outflow is a
function of storage, and if there is no storage, it is assumed that there will be no contribution
to runoff. However, if water is present, a portion of it will contribute to the overall runoff.

Q0i =

{
K0(S1i−1 − L) · A if S1i−1 > L

0 if S1i−1 ≤ L
(4.11)

Q1i = K1 · S1i−1 · A (4.12)

Qperci = Kperc · S1i−1 · A (4.13)

Q2i = K2 · S2i−1 · A (4.14)

where K0 is near surface flow storage coefficient, K1 is interflow storage coefficient, Kperc is
percolation storage coefficient, L is threshold water level and A is watershred area.
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The total simulated discharge, Qsi , can be calculated by adding together the outflows from
the first and second reservoirs, as Equation 4.15 shows:

Qsi = Q0i +Q1i +Q2i (4.15)

4.4 Model Parameters

For the model to run, model parameters and initial values were needed. In Table 4.2 the
ranges of the HBV parameters used in this study are listed. The parameters’ ranges are the
ones recommended in PEST optimization [38]. There is a requirement that PWP ≤ FC is
met during calibration.

Table 4.2: HBV parameters with ranges concidered in the model

HBV Parameter Description Range considered
Tt Threshold temperature -1.0 - 2.0
DD Degree day correction factor 1.0 - 5.0
FC Field capacity 50.0 - 500.0
BETA Shape coefficient 1.0 - 4.0
C Model parameter for the adjusted potential evapotranspiration 0.01 - 0.1
K0 Near surface flow storage coefficient 0.1 - 1.0
L Threshold water level 10.0 - 100.0
K1 Interflow storage coefficient 0.1 - 1.0
K2 Groundwater storage coefficient 0.001 - 1.0
Kperc Percolation storage coefficient 0.001 - 1.0
PWP Soil permanent wilting point, defined as the minimum 50.0 - 250.0

amount of water in the soil that the plant requires
not to wilt (mm)

The initial values are listed in Table 4.3. These initial values are recommended by Amir
Aghakouchak [48], the creator of the educational version of HBV. During the calibration
and validation process, the simulation started in September, so the snowpack (SP) was set
to 0. For simulations conducted afterward in January, SP was set to 25. This is a reasonable
assumption since it is not unlikely that there would be some snow on the ground during this
time of year.

Table 4.3: Initial values for running the model

Parameter Description Value
SP Snowpack (mm) 0, 25
SMi Soil moisture (mm) 100
S1 Storage upper reservoir (fast response runoff) (mm) 2
S2 Storage lower reservoir (slow response runoff) (mm) 200
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4.5 Model Calibration and Validation

Model calibration is a critical step in hydrological modeling to ensure accurate simulation
results. The process involves adjusting model parameters to minimize the difference between
observed and simulated hydrological data. For this model, the goal is to minimize the
difference between observed and simulated discharge. To find the optimized parameters,
Nash-Sutcliffe efficiency was evaluated:

RNS = 1−

n∑
t=1

(Qt
si
−Qt

oi
)2

n∑
t=1

(Qt
oi
− Q̄oi)

2

(4.16)

where RNS is the Nash-Sutcliffe coefficient, Qsi is the simulated discharge, Qoi is the ob-
served discharge, Q̄oi is the mean observed discharge and n is the number of time steps. The
Nash-Sutcliffe efficiency ranges from negative infinity to 1, where values closer to 1 indicate
greater model accuracy.

To calibrate the model, data for temperature and precipitation described in Chapter 4.2.2
were used and compared to the observed discharge. September 1980 to August 2000 was
used as the calibration period. The Python script in Appendix D is used for this process.
This script uses GA to find the optimized parameters corresponding to the maximum Nash-
Sutcliffe and saves the optimal results in CSV files. The model’s performance is evaluated
using Table 4.4.

Table 4.4: Nash-Sutcliffe efficiency [49]

Performance evaluation Nash-Sutcliffe efficiency
Very good 0.75 < RNS ≤ 1.00
Good 0.65 < RNS < 0.75
Satisfactory 0.5 < RNS < 0.65
Unsatisfactory RNS ≤ 0.5

For the validation, two joint periods from September 1972 to August 1980 and September
2000 to August 2004, together with the optimal values from the calibration, was used in
the Python-script in Appendix E. For validation, both Nash-Sutcliffe efficiency and Pearson
correlation coefficient are evaluated. The Pearson correlation coefficient is given by Equation
4.17 and the performance is evaluated by Table 4.5.
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2

(4.17)

where RP is Pearson correlation coefficient and Q̄si is mean simulated discharge. Pearson
correlation coefficients range from -1 to 1, with 1 indicating perfect linear agreement.
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Table 4.5: Pearson correlation coefficient [50]

Correlation Scale
Very high 0.8 ≤ r ≤ 1.00
High 0.6 ≤ r ≤ 0.79
Moderate 0.4 ≤ r ≤ 0.59
Low 0.2 ≤ r ≤ 0.39
Very low 0 < r ≤ 0.19

4.6 Discharge to Potential Hydropower

The modeling process to estimate potential hydropower involved running simulations using
different climate models and scenarios. The climate models used for simulation are listed
in Appendix A, while the historical, RCP4.5 and RCP8.5 were the periods and scenarios
used. The simulations were executed using the Python script in Appendix F, which must be
manually adjusted for each climate model and scenario. The output of the simulations was
a .csv file that contained the simulated discharge for each day in the period simulated.

To estimate the potential hydropower, the discharge data was converted using Equation 2.1
in Chapter 2.1, which calculates the energy that can be produced by a hydropower plant
per unit of net head. This conversion allowed for the estimation of the energy that could be
generated by a hydropower plant using the simulated discharge data.

4.7 Sources of Errors

Sources of error in this study can arise from various factors, some of which include:

• Data errors: It is possible that mistakes were made when the data were manually
entered. Since this study involves human interaction, this is likely to occur.

• Data extraction: Inaccuracies can have occurred if the parameters are not correctly
set up when extracting them from the database. This can have led to incorrect inputs
being used.

• Shortcomings in the understanding of the climate system: Hydrological modeling is
heavily dependent on the accuracy of climate data, and uncertainties in understanding
the climate system can lead to errors in modeling results.

• Coding errors: When translating the educational version of the HBV model into a
Python script, errors may have appeared.
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Chapter 5

Results and Discussion

This chapter presents the study’s results concerning the potential impacts of climate change
on hydropower production in Agder County, Norway. To assess the potential impacts of cli-
mate change on hydropower production, an educational version of HBV was used to simulate
the impact of changes in precipitation and temperature under different climate scenarios. In
this chapter, the simulation results are given and the usability of the hydrological model is
evaluated, with strengths and weaknesses.

The findings of this study can contribute for Agder County to better plan its energy future
and adaptation to climate change. By providing insights into the potential impacts of cli-
mate change on hydropower production, the results can inform decisions related to energy
infrastructure investments, renewable energy targets and climate adaptation strategies.

5.1 Model Calibration and Validation

Hydrological models are essential tools for understanding the behavior of watersheds and
predicting the effects of different scenarios on their hydrological response. However, the
accuracy of these models depends heavily on the calibration process, in which the model
parameters are adjusted to best match the observed data. The available data was divided
into two: a calibration period and a validation period. This study used the period from
September 1980 to August 2000 as the calibration period. After calibration, the model was
validated using two joint periods: September 1972 to August 1980 and September 2000 to
August 2004, together with the optimal parameter values from the calibration period.

Figure 5.1 shows observed and simulated discharge before calibration, while Figure 5.2 shows
the same data after calibration, specifically for 1996. In Figure 5.1, it is evident that the
simulated discharge does not follow the trends of the observed discharge. In Figure 5.2, the
correlation between simulated and observed discharge is considerably improved. After cal-
ibration, the simulated discharge follows the trends of the observed discharge more closely,
but there are still some areas where the model struggles to replicate the observed discharge.
Specifically, it appears that the model tends to overestimate the observed discharge. Despite
the improvement, some differences between the two remain.

Some possible factors that can contribute to the remaining discrepancies include errors in
the input data, limitations of the model structure or complexity and uncertainties in the
calibration procedure itself. For a simulated model, day-to-day observations are unreliable
due to uncertainties in the input data and model assumptions. Hydrological models are
inherently simplified representations of complex natural systems. Therefore some level of
uncertainty and discrepancy between the model outputs and observed data is expected for
day-to-day discharge.
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Figure 5.1: Comparison of simulated and observed daily discharge for the year 1996 before cali-
bration. The red line represent the simulated discharge while the blue line represent the observed
discharge.

Figure 5.2: Comparison of simulated and observed daily discharge for the year 1996 after calibration.
The red line represent the simulated discharge while the blue line represent the observed discharge.
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The overestimation of the calibrated model is significant in May and June. The temperature
(Figure 5.3), precipitation (Figure 5.4), snowpack (Figure 5.5), soil moisture (Figure 5.6),
storage for upper (Figure 5.7) and lower (Figure 5.8) reservoir, actual evapotranspiration
(Figure 5.9) and effective precipitation (Figure 5.10) is plotted for the year 1996 to try to
understand which process is not being modeled so accurately.

In the simulated period shown in Figure 5.3 - 5.10, the month of May starts approximately
on day 120. Around this time, both precipitation and effective precipitation indicate a sig-
nificant amount of rainfall. According to the snowpack data, all the snow has melted by this
time. As a result of increasing precipitation, the storage for the upper and lower reservoirs
starts to fill up. The soil moisture also shows a slight increase during this period, which is
expected, before gradually decreasing due to rising temperatures. One possible explanation
for the overestimation could be the fluctuations observed in actual evapotranspiration dur-
ing this time. Other than this, there is no clear explanation for this overestimation. The
overestimation suggests that the model may need further refinement to predict simulated
discharge better.

Figure 5.3: Daily temperature year 1996 Figure 5.4: Daily precipitation year 1996

Figure 5.5: Snowpack year 1996 Figure 5.6: Soil moisture year 1996
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Figure 5.7: Storage upper reservoir year 1996 Figure 5.8: Storage lower reservoir year 1996

Figure 5.9: Actual evapotranspiration year 1996 Figure 5.10: Effective precipitation year 1996

The calibration process involved running a Python script to determine the optimal param-
eters. Despite the overestimation, the calibration resulted in a Nash-Sutcliffe efficiency of
73.4%. According to Table 4.4, this indicates a good model performance and the calibration
was deemed successful. The model was then validated using an independent dataset, result-
ing in a Nash-Sutcliffe efficiency of 77.7% and a Pearson correlation of 89.0%. According
to Table 4.4 and Table 4.5 this indicates a very good model performance with a very high
correlation. These high values suggest that the model is reliable and can accurately predict
discharge values in the region. Figure 5.11 shows simulated and observed discharge for the
validation period. The red line represents the simulated values, while the blue line repre-
sents the observed values. From the figure, it is evident that the model captures the trends
quite well. However, the model appears to struggle to predict some high values accurately.
Despite these differences, the high values of Nash-Sutcliffe efficiency and Pearson correlation
indicate that the model is performing well and producing good results. This suggests that
it is a reliable and accurate model. Hydrological modeling is complex, and there will always
be some errors in the model predictions.
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Figure 5.11: Comparison of simulated and observed daily discharge for the validation period. The
red line represent the simulated discharge while the blue line represent the observed discharge.

This study’s calibration and validation results are consistent with previous research on the
calibration of HBV hydrological models in the area. Lawrence et al. (2009) investigated
the calibration of HBV models in Norway using PEST parameter estimation. Some of the
catchments investigated were nearby the Tovdal catchment. The results of their study were
quite similar to those found in this study. Specifically, they found Nash-Sutcliffe values
for each catchment model, calculated from daily observed versus simulated discharge. The
Nash-Sutcliffe values ranged from 0.70 to 0.84 for daily values in the catchments near Tovdal.
Some of the catchments achieved values of 0.85 to 0.95 for weekly values, although this study
did not investigate weekly values.

A potential limitation of this study is that the Tovdal catchment is much larger than the
catchments investigated by Lawrence et al. (2009) nearby Tovdal. This difference in catch-
ment size may have an impact on the results. In Lawrence et al.’s (2009) study, the larger
catchments had daily Nash-Sutcliffe values ranging from 0.85 to 0.92. This suggests that
the simplified model used in this study performs worse than the "Nordic" HBV model used
by Lawrence et al. (2009). This is not a surprise since the "Nordic" HBV model considers
the elevation, i.e., it uses different parameters for different ranges of elevations, which gives
much more flexibility to the parameters’ tuning. However, the fact that the results are sim-
ilar in daily values indicates that the educational version performs well, given its simplified
assumptions.

Figure 5.12 shows a scatter plot where simulated and observed discharge values are plot-
ted against each other. The black dashed line drawn in the figure is a reference line that
represents an ideal relationship between the observed and simulated values. The line has
a 45-degree angle and goes through the origin (0,0). This means that if the observed and
simulated values were the same, all the points in the figure would lie on this line.
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Figure 5.12: Scatter plot showing the relationship between observed and simulated discharge values,
with a linear regression line (red) and a reference line (black dotted) representing an ideal relation-
ship

The red linear regression line is often included in figures to assess how well the simulated
values correspond to the observed values. The closer the red line is to the black line, the
better the correspondence is between the observed and simulated values. If the points are
scattered around the figure, it may indicate that the model does not accurately simulate the
observed values. In this figure, the red line is below the black dashed line. This indicates
that more points are below the 45-degree line, suggesting that the model overestimates the
observed values. The points representing high discharge values are both above and below
the black line, indicating that high values occur in both observed and simulated values.
Therefore, the model does not simulate more extreme events than what has been observed.

In this case, the model tends to overestimate the observed values, which could be due to
various factors, such as inadequate parameterization or input data. However, the model
used in this study is an educational version with simplifications. It is possible to improve
the model further, which may be necessary. The main purpose of this study is not to predict
the discharge accurately, but to evaluate the change in discharge between different scenarios.
Therefore, it is reasonable to expect that in all scenarios, the model will slightly overestimate
the discharge. However, their difference will not have the same overestimation (since the er-
rors will tend to cancel out). Overall, the hydrological model used in this study is considered
reliable and helpful in predicting future discharge values in Agder County. The results show
that the optimized parameters improved the model predictions’ accuracy, providing a more
reliable tool for hydrological analysis.
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5.2 Optimized Parameters

The calibration script in Python (Appendix D) saves the optimized parameters in a file.
These parameters are obtained through GA in the Python script. Table 5.1 presents the
resulting optimized parameters and their corresponding ranges given from Table 4.2 [38].
All optimized parameter values are within their respective ranges.

Furthermore, the optimized parameters meet the requirement PWP ≤ FC. The calibration
process has successfully identified parameter values that allow the HBV model to effectively
simulate the observed discharge values. These optimized parameters were then used in
further simulations to investigate the impacts of climate change on hydropower potential in
Agder County.

Table 5.1: Optimized parameters and their respective ranges

HBV Parameter Optimized Value Range Considered
Tt 1.2427 -1.0 - 2.0
DD 1.5025 1.0 - 5.0
FC 75.4551 50.0 - 500.0
BETA 1.2566 1.0 - 4.0
C 0.0796 0.01 - 0.1
K0 0.1374 0.1 - 1.0
L 53.1932 10.0 - 100.0
K1 0.1406 0.1 - 1.0
K2 0.0122 0.001 - 1.0
Kperc 0.0236 0.001 - 1.0
PWP 67.2816 50 - 250
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5.3 Temperature and Precipitation

The model takes temperature and precipitation as the main inputs. The data for these vari-
ables have been obtained from the Norwegian Centre for Climate Service, as described in
Chapter 4.2.1. The figures have been generated to visualize how temperature and precipita-
tion are expected to change over the next century. Both temperature and precipitation have
a significant impact on discharge, as increased temperatures can lead to increased evapora-
tion, while changes in precipitation patterns can result in drought periods that reduce water
availability. These changes can lead to reduced power production and increased pressure
on water resources. Increased precipitation can also cause flooding due to heavy rainfall,
leading to infrastructure and equipment damage and reduced access to water resources.

Agder County is known for its sunny and warm climate, and it is expected to be vulnerable to
the impacts of climate change. Figure 5.13 shows the temperature change in Agder County,
with the median of climate models displayed and smoothed to remove short-term variability.
The blue line represents the RCP4.5 scenario, while the red line represents the RCP8.5
scenario. As seen from the figure, the temperature is projected to increase throughout the
upcoming century for both scenarios, with RCP8.5 showing a more significant increase. The
average annual temperature is expected to be just below 10 °C by the end of the century,
representing an increase of approximately 4 °C from the reference period 1971-2000. In
RCP4.5, this increase is projected to be around 2.5 °C.

Figure 5.13: Yearly average temperature in Agder County displayed as the median of the climate
models. The graphs are smoothed. The blue line represents the RCP4.5 scenario, while the red line
represents the RCP8.5 scenario.
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Figure 5.14 displays the projected percentage change in yearly average precipitation for the
next century relative to the reference period of 1971-2000. The graph depicts the median of
all models and the graphs have been smoothed to remove short-term variability. The blue
line represents the RCP4.5 scenario, while the red line represents the RCP8.5 scenario. The
figure suggests that, under RCP4.5, the increase in precipitation will not be significant until
after 2080. From 2080, the increase will range from around 3% to slightly over 10%. Under
RCP8.5, precipitation will increase until 2040 before stabilizing until around 2070. After
2070, there will be a substantial increase, with precipitation reaching almost 15% above the
reference period of 1971-2000 towards the end of the century.

Figure 5.14: Projected percentage change in yearly average precipitation from 1971-2000 reference
period for Agder County. The graphs are smoothed and shows the median of the climate models.
Blue line represents RCP4.5 scenario while red line represents RCP8.5.

This study’s temperature and precipitation predictions are based on simulations from differ-
ent climate models, as described in Chapter 4.2.1. It is important to note that inherent un-
certainty is associated with these predictions. Hydrological models are generally not reliable
for day-to-day simulations. Therefore it is impossible to use temperature and precipitation
data to predict the weather for a given day in the future. However, these predictions can
provide valuable insights into trends and changes over a period of time.
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5.4 Annual Discharge

The main output of the hydrological model is the estimated discharge for each day during
the simulation period. In Figure 5.15, the total annual discharge is presented as a percentage
change from the reference period 1971-2000. The lines represent the median values. The
graphs are smoothed to remove short-term variability, and the shaded areas behind represent
the variations among different climate models.

The graph shows that in the moderate scenario (RCP4.5), there is little change in the
discharge until the end of the century. The median projection indicates an increase in annual
runoff of 9% in RCP4.5. The worst-case scenario (RCP8.5) shows an increase starting around
2040, and the median projection indicates an increase of 18% by the end of the century.

Figure 5.15: Estimated total annual discharge as a percentage change from the reference period
of 1971-2000. The median of the climate models is used and smoothing is applied to the graphs
to remove short-term variability. The shaded areas behind the lines represent variations among
different climate models.

The uncertainty in the projections of annual discharge over the simulation period is primar-
ily driven by the variability in the different climate models used in the study. As shown in
Figure 5.15, the shaded areas behind the median lines indicate the spread of the different
climate models. The larger the shaded area, the greater the spread of the climate models,
increasing the uncertainty level in the projections.

To further illustrate this point, Figure 5.16 and Figure 5.17 show the different climate models
used in the RCP4.5 and RCP8.5 scenarios, respectively. It can be seen that there is a wide
range of projected changes in annual discharge among the different models. The spread in
the model projections can be attributed to several factors, including differences in the model
structure, input data and assumptions about future greenhouse gas emissions and climate
change impacts.
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Figure 5.16: Different climate models used in the RCP4.5 scenario are shown as percentage changes
from the reference period 1971-2100. The graph illustrates the wide range of projected changes in
annual discharge among the different models. Smoothness is applied to remove short-term variabil-
ity.

Figure 5.17: Different climate models used in the RCP8.5 scenario are shown as percentage changes
from the reference period 1971-2100. The graph illustrates the wide range of projected changes in
annual discharge among the different models. Smoothness is applied to remove short-term variabil-
ity.
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Hanssen-Bauer’s et al. (2015) study projected an increase in annual discharge for Norway,
with a 3% increase for RCP4.5 and a 7% increase for RCP8.5. Their study also had a large
spread in the results of different climate models. [31] For the Agder region, the Norwegian
Centre for Climate Services forecast said that the average annual discharge is expected to
remain approximately unchanged, despite an expected increase in precipitation [32]. This
is because the increased temperature will also lead to increased evapotranspiration, which
offsets the effect of increased precipitation.

There are some differences between the findings of this study and those of Hanssen-Bauer et
al. (2015). This study projected an increase in discharge of 9% (RCP4.5) and 18% (RCP8.5).
When looking more closely at the changes in temperature and precipitation, it is expected
that Agder County will have a lower temperature increase than the rest of Norway, with an
increase of 2.4 °C for Agder County compared to 2.7 °C for Norway (RCP4.5) and 3.9 °C
for Agder County compared to 4.5 °C for Norway (RCP8.5). This should result in a smaller
increase in evapotranspiration and therefore a greater change in discharge for Agder County.
The expected increase in precipitation for Agder County is 10% compared to 8% for Norway
(RCP4.5), and 15% for Agder County and 18% for Norway (RCP8.5). With a lower tem-
perature increase and higher precipitation increase for the RCP4.5 scenario, it is reasonable
to assume that the discharge will increase, as this study shows. For the RCP8.5 scenario,
temperature and precipitation are expected to be lower for Agder County than for Norway.
However, with a smaller increase in temperature, there will be less evapotranspiration and
more of the rain will become discharge. This could be one explanation for why the results of
this study differ from those of Hanssen-Bauer et al. (2015) and the forecasts for the Agder
region by the Norwegian Centre for Climate Services. [31]

The study conducted by Koestler et al. (2019) on inflow to Norwegian hydropower plants
found that, under the RCP8.5 emission scenario, inflow is expected to increase by around
7% by the end of the century for Norway, with a greater increase of over 10% in the southern
part of the country. [33] These results are more consistent with the findings of this study.
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5.5 Monthly Discharge

The projected changes in monthly discharge are expected to be considerably larger than for
annual discharge due to the combined effect of changes in temperature and precipitation.
Warmer temperatures result in increased evaporation rates, which can cause a reduction in
discharge during drier months. Conversely, higher precipitation levels can lead to increased
discharge during wetter months and changes in snow and snowmelt regimes. These changes
in temperature and precipitation can have a more significant impact on monthly discharge
than on annual discharge, as they are more pronounced during certain months of the year.

Figure 5.18 shows the monthly discharge for the mid-century period, with blue and red
bars representing the RCP4.5 and RCP8.5 scenarios, respectively. The percentages indicate
the change compared to the reference period of 1971-2000. Figure 5.19 shows the same
data for the late-century period. Both figures show that the most remarkable changes in
monthly discharge occur during winter (November through April). Winter months will
experience significantly greater discharge, while summer months (May through October)
will experience reduced discharge, resulting in negative percentage changes. During the mid
and late centuries, there will be less discharge in the summer and more in winter. Figure
5.18 indicates that the largest differences between the RCP4.5 and RCP8.5 scenarios occur
during the winter, with more minor differences during the summer months. Figure 5.19
shows similar trends, but with higher percentage changes.

Figure 5.18: Monthly discharge changes from the reference period (1971-2000) for the mid-century
period (2036-2065) under the RCP4.5 and RCP8.5 scenarios. The median of the climate models is
used.
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Figure 5.19: Monthly discharge changes from the reference period (1971-2000) for the late-century
period (2071-2100) under the RCP4.5 and RCP8.5 scenarios. The median of the climate models is
used.

The big changes in winter are primarily due to increased precipitation and a shift from snow
to rain as temperatures rise. This leads to increased water flowing into rivers and lakes,
resulting in higher winter discharge. On the other hand, the big changes in summer months
are due to earlier snowmelt caused by rising temperatures and higher evaporation losses due
to increased temperatures. This leads to a decrease in the amount of water stored in snow
and ice during winter, leading to lower summer discharge. Therefore, the effects of climate
change on temperature and precipitation patterns significantly impact the seasonal changes
in discharge. This higher variability between seasons is a challenge for hydropower produc-
tion. On one hand the hydropower potential increases, on the other it is more variable across
the year, which makes its exploitation more demanding.

To compare the changes from mid- to late-century, Figure 5.20 and Figure 5.21 are plotted.
Figure 5.18 shows the monthly discharge for RCP4.5 for mid- and late-century. Mid-century
(2036-2065) is represented by the blue line, and the red line represents late-century (2071-
2100). Figure 5.19 shows the monthly discharge for RCP8.5 for mid- and late-century,
with the same color scheme and percentage change reference period. In Figure 5.20, which
corresponds to emission scenario 4.5, the most significant difference between the two periods
is observed from January to April. This indicates that the increase in discharge will be greater
during these months over the century. There are more minor differences throughout the rest
of the year, which means that the changes in these early months significantly contribute to
the increase in annual discharge over the century. These trends are even more visible in
Figure 5.21, representing emission scenario 8.5.
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Figure 5.20: Monthly discharge for RCP4.5 for mid and late-century. The blue line represents the
mid-century, and the red line represents the late-century. The graphs show the percentage change
from the reference period 1971-2000. The median of the climate models is used, and smoothing is
applied to the graphs to remove short-term variability.

Figure 5.21: Monthly discharge for RCP8.5 for mid and late-century. The blue line represents the
mid-century, and the red line represents the late-century. The graphs show the percentage change
from the reference period 1971-2000. The median of the climate models is used, and smoothing is
applied to the graphs to remove short-term variability.
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In Roald et al.’s (2006) study, the results showed moderate changes in annual streamflow,
but more significant alterations in the seasonal distribution of streamflow. In the winter
season, the study projected an increase in streamflow, like this study. However, during
spring, they found a moderate decrease in streamflow in the southern regions of Norway.
This study predicts an increase in March and April, while a decrease in May. Furthermore,
both studies indicated a decrease in streamflow during the summer season. In the autumn,
the moderate scenario by Roald et al. (2006) predicted an increase in streamflow, while the
extreme scenario suggested a decrease in low-lying basins in the country’s southern parts. In
this study, there is a decrease in September and October, while an increase in November for
both scenarios. The results of Roald et al.’s (2006) study and the findings presented in this
study are therefore consistent in some aspects but differ in others. Both studies identified
an increase in winter streamflow, indicating a potential response to climate change. This
suggests a common understanding that winter discharge may become more pronounced in
the future. Both studies align in projecting a decrease in discharge during the summer,
indicating a potential water resource challenge.

The increasing discharge during the early months of the year indicates that winters in Agder
County are becoming warmer and wetter, leading to less snow accumulation. This can be
attributed to rising temperatures in the region, as well as an increase in precipitation. With
temperatures no longer below freezing, snow will not accumulate, and most precipitation
will occur as rain instead. As the level of discharge increases, it can cause flooding, erosion
and sediment transport, which can impact the ecosystem, water quality and infrastructure.
Changes in the timing and magnitude of discharge can also impact hydropower generation
and water availability for irrigation and other uses. Good river and waterway management
strategies may be required to mitigate the potential negative consequences of increased dis-
charge. This can include measures such as reservoir expansion, expansions of waterways and
floodplain zoning to accommodate higher water volumes during extreme rainfall events.

During the summer months, it is crucial for Agder County to have sufficient water stored in
reservoirs to meet the power demand. The summers are expected to become increasingly dry,
which amplifies the need for greater capacity in the reservoirs. Without this, Agder County
will become even more reliant on importing electricity from abroad, resulting in higher
electricity prices. However, the increasing winter discharge also presents opportunities for
hydropower in Agder County. By optimizing existing power plants, considering expansions
of waterways and aggregates, as well as enhancing generator performance, it is possible to
achieve increased production and better utilization of the increasing winter discharge. This
can result in sufficient reservoir storage to meet the year-round demand.
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5.6 Using the HBV Educational Version for Hydrological Modeling

The educational version of the HBV model has been successfully used as a hydrological model
to assess the impact of climate change on potential hydropower in Agder County. Despite its
simplified assumptions, the calibration process improved the model’s performance in predict-
ing discharge values, resulting in a good Nash-Sutcliffe efficiency and Pearson correlation.
The calibration of hydrological models can be challenging, as it requires balancing the need
for accurate predictions with a model that is simple enough. However, the results of this
study indicate that the simplified educational version of the HBV model used was able to
produce reasonably accurate results, despite its simplifications. The Nash-Sutcliffe efficiency
values obtained in this study were similar to those obtained by Lawrence et al. (2009) for
daily values in the same area as the Tovdal catchment, indicating that the model’s simplicity
does not surpass its accuracy. These findings demonstrate the potential of the HBV educa-
tional version as a valuable tool for teaching and learning hydrological modeling concepts in
a simplified and accessible way.

The HBV educational version was initially available in Excel spreadsheet and MATLAB code,
but has now been translated to Python, makes it more accessible to a broader audience. The
Python code’s simplicity, ease of use, and relatively short simulation times make it a valuable
tool for hydrological modeling. It is important to note that users should have some prior
knowledge of hydrology and relevant processes to use the model effectively.

5.7 Uncertainties

Uncertainty is a central concept in hydrological modeling, as it relates to the degree of con-
fidence that can be placed in the results of a model.

One source of uncertainty in this study is related to using an educational version of the
HBV model, which has simplified components compared to the full version. This may have
led to an insecurity of the variability of the simulated hydrological variables, such as dis-
charge and evapotranspiration. Additionally, the simplified model components may affect
the calibration of the model, which could lead to biased results. Parameter uncertainty is
a significant source of uncertainty in the calibration process of hydrological models. The
calibrated parameters are only estimates of the actual values, and there is always some un-
certainty associated with them.

Parameter uncertainty can arise from various sources, including errors in measurement, in-
complete understanding of the hydrological processes and inadequacy of the model structure.
For example, different combinations of parameters can produce equally good model fits, mak-
ing it challenging to determine the optimal set of parameters. Furthermore, the selection of
parameter values can be influenced by the range and distribution of the observed data used
in the calibration process. Sensitivity analysis can also be performed to assess the impact
of each parameter on the model output and identify the most influential ones. This is not
done in this study.

There are also uncertainties related to future greenhouse gas emissions and the resulting
climate scenarios. The RCP4.5 and RCP8.5 scenarios used in this study are based on
assumptions about future emissions, which are subject to uncertainties related to economic,
technological and societal developments. Moreover, the global climate system is complex and
involves many feedback mechanisms, which can amplify or dampen the effects of greenhouse
gas emissions. As a result, uncertainty in the magnitude and timing of future climate changes
can affect the simulation results.
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5.8 Limitations Related to the Datasets

The quality and reliability of the data used in a study can significantly impact the accuracy
and validity of its findings. Further, the limitations related to the datasets used in this study
and their impact are discussed.

The dataset used for temperature and precipitation in this study is simulated values pro-
vided by the Norwegian Centre for Climate Service in collaboration with NVE. Due to model
simplifications and insufficient knowledge of the physical processes in the earth system, the
model results may not correspond perfectly with observed values. Hanssen-Bauer et al.
(2015) acknowledged uncertainties associated with climate projections, including future an-
thropogenic emissions, natural climate variations and climate models. Uncertainties related
to future anthropogenic emissions stem from various factors such as economics, population
growth, and energy sources, which are driven by political decisions. Although emission sce-
narios such as RCP4.5 and RCP8.5 are widely accepted and used in scientific reports, there
are still significant uncertainties related to the possible outcomes. Uncertainties related to
natural climate variations are largely simulated by climate models, and the use of multiple
models provides an estimate of the uncertainty. Model uncertainty is also due to limitations
in understanding the climate system and the limited ability to implement this understand-
ing in a numerical mathematical framework. [31] When using the dataset of the results of
Hanssen-Bauer et al. (2015), these uncertainties propagate to the present study.

For the observed temperature, some data were missing in the dataset. These missing tem-
perature data were obtained through interpolation, which is a commonly used method for
estimating temperatures at locations where no measurements have been taken. Only nine
days were missing from January 1971 to December 2005. Its therefore assumed that this has
little impact on the results.

For observed precipitation data, the Thiessen Polygon Method was used for four stations
nearby the catchment. This is widely used to estimate the amount of precipitation in a given
area. This method has limitations, as it assumes that the amount of precipitation within a
polygon is uniform. However, this should not significantly impact the results, as the mea-
suring stations are relatively close and should measure precipitation in similar amounts over
a given period.
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5.9 Strengths and Weaknesses

To provide a comprehensive evaluation of the findings, the strengths and weaknesses of the
study are evaluated in the further.

A strength of the study is the use of parameter optimization based on GA optimization. This
technique has not been used in the original educational version of HBV, making this study
unique. This optimization can improve the accuracy of hydrological modeling by optimizing
model parameters to fit observed data. By using this, the study improved the calibration
of the model, resulting in more accurate simulations of the hydrological system in Agder
County. GA optimization also enhances the credibility of the study results, as it provides a
more precise approach to parameter estimation. By optimizing the model parameters based
on GA optimization, the study was able to reduce uncertainty and increase confidence in
the simulation results. This study also employed parameter ranges provided by Lawrence
et al. (2009) to mitigate uncertainty and enhance confidence in the obtained results. By
incorporating these parameter ranges, the potential variability in the outcomes was reduced
and improved the reliability of the findings.

A weakness of the study is the data for long-term mean monthly potential evapotranspira-
tion, which was not adjusted during the simulation period from 2006 to 2100. The data used
for long-term mean monthly potential evapotranspiration in this study were derived from
the mean evaporation from January 1971 to December 2005. However, the mean monthly
potential evapotranspiration is expected to change over time, as long-term temperatures
primarily influence it. Therefore, using this data set is considered a limitation of the study.

This limitation could affect the results’ accuracy since evapotranspiration plays a crucial role
in the water balance of a hydrological system. However, the adjusted evapotranspiration is
calculated from Equation 4.7, meaning that adjustments are made based on daily temper-
atures during simulation. Therefore, the impact of the limitation on the accuracy of the
results may be mitigated.
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5.10 Contribution to the Literature

This study examines the impact of climate change on the potential hydropower in Agder
County, Norway. Similar studies have been conducted in the past, but several aspects dif-
ferentiate this study from others in the field. As for how this study contributes to the
literature, it may provide new insights and data on the specific impacts of climate change
on hydropower potential in Agder County, which could be useful for policymakers in the
region. Additionally, the methodology and approach used in this study may interest other
researchers studying climate change’s impacts on potential hydropower in other regions.

This study uses an educational version of the HBV model, which to the author’s knowledge,
has yet to be utilized in previous research in Norway. While this version has some limita-
tions and simplifications compared to the more advanced versions, the results of this study
show that it can still provide valuable insights into the potential hydropower in the region.
The HBV educational version has been translated to Python, which makes it accessible to
a broader audience who prefer Python as an open-source programming tool. The scripts
provide a straightforward and not time-consuming approach. There is important that the
users of the scripts have some prior knowledge of hydrology and relevant processes to use
the model effectively. The results of this study demonstrate that the educational version of
HBV is a valuable tool for hydrological modeling in a simplified and accessible way.

GA parameter estimation was used during the calibration to estimate the optimal model pa-
rameters. GA parameter estimation can increase the credibility and reliability of the results
by minimizing the difference between simulated and observed values. This allows for more
confident conclusions to be drawn from the results of the study. The educational version of
HBV did not use this approach in the Excel spreadsheet or MATLAB script.

Tovdalsvassdraget was granted protected status in 1986 and therefore, hydrological data can
be studied without hydropower regulation. The Tovdal catchment spans a long distance from
the northernmost region of the county to the south, making this catchment representative
of Agder County. This catchment is not found used in similar studies in the field.

52



Chapter 6

Conclusions

Climate change has become a topic of increasing concern in recent years. Norway is one of
the most hydro-dependent nations in the world. This dependency raises a question about
climate change impact on future hydropower production. The specific effects of climate
change on hydropower potential vary across regions, and it is crucial to understand the risks
and opportunities associated with this renewable energy source. This thesis aims to assess
how climate change will affect hydropower potential in Agder County over the next century.

To address this research question, an educational version of the HBV model was utilized,
using future weather data from global and regional climate models under different emission
scenarios as input. The model’s effectiveness and capability to address the research question
were also evaluated. As a result of the research question, the following conclusions can be
drawn:

• The results of the study indicate that the educational version of the HBV model, despite
its simplified assumptions, exhibited good overall performance. After calibration, the
model tended to overestimate simulated discharge values but achieved a Nash-Sutcliffe
efficiency of 73.4%. The validation phase further demonstrated the model’s reliability,
with a Nash-Sutcliffe efficiency of 77.7% and a high Pearson correlation of 89.0%.
These findings highlight the potential of the educational version of the HBV model as
a valuable tool for assessing hydropower potential and that the model’s simplicity does
not surpass its accuracy.

• Regarding annual discharge, the study found that the RCP4.5 scenario predicts a rel-
atively small change throughout the century, with an increase of 9% by the end of the
century. The RCP8.5 scenario projects a more substantial increase, starting around
2040 and reaching 18% by the end of the century.

• Examining the monthly discharge patterns, it becomes evident that the most significant
changes occur during the winter (November to April). Winter experiences a notable
increase in discharge, while the summer months (May to October) exhibit reduced
discharge. The disparities between the RCP4.5 and RCP8.5 scenarios are particularly
pronounced during winter, primarily driven by increased precipitation and a shift from
snow to rain as temperatures rise. Notably, the early months from January to April
show the most significant difference between the mid- and late-century, suggesting a
greater increase in discharge during these months over the century. This indicates that
winters in Agder County are becoming warmer and wetter, resulting in reduced snow
accumulation.

The observed trends in future discharge patterns pose both challenges and opportunities for
hydropower production in Agder County. During periods of reduced discharge, the county’s
reservoirs must have the capacity to store water from periods of increased discharge to meet
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the power demand. If not, Agder County will be more dependent on the import of electricity
from abroad, affecting electricity prices. Additionally, the increasing discharge in winter ne-
cessitates additional capacity in rivers and waterways to accommodate the higher discharge.
This increasing discharge during winter can present opportunities for hydropower produc-
tion in the future. By optimizing existing power plants, consider expansions of waterways
and aggregates, as well as increased generator performance, it will be achieved increased
production and better utilization of the increasing winter discharge.
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Chapter 7

Further Work

While this study has provided valuable insights into the ease of use of the educational version
of the HBV model and climate change impacts on the hydropower potential in Agder County,
it would be worthwhile to investigate the following:

• To enhance the results, future studies should incorporate varying datasets for long-term
mean monthly potential evapotranspiration from the simulation period; one for climate
scenario RCP4.5 and one for RCP8.5. These datasets would be based on simulations,
but this would provide a more realistic representation of evaporation processes and
potentially improve the accuracy of the model’s outcomes.

• Conducting a sensitivity analysis would be beneficial to assess the model’s sensitivity to
different parameters. A deeper understanding of the model’s behavior and identifying
the most influential factors would be gained by systematically varying the parameters
and evaluating the corresponding changes in the model’s output.

• This study only investigates the Tovdal catchment. Further research could explore
the model’s performance in different catchments beyond Agder County. Investigat-
ing if similar results are obtained in other regions or areas with different hydrological
characteristics and climate conditions would contribute to a more comprehensive un-
derstanding of the model’s capabilities and limitations.

• In order to address the uncertainty associated with climate change, it would be inter-
esting to investigate additional climate scenarios such as RCP2.6 and RCP6.0.

• The results of this study have indicated that changing discharge patterns highlight the
challenges associated with small waterways, it is evident that in the future, expanding
these waterways and increased generator performance will become necessary. This
could lead to the development of larger hydropower plants, where more of the discharge
can be channeled through the hydropower plant, generating electricity instead of being
bypassed during periods of high discharge. As further work, it would be interesting
to conduct a cost-benefit analysis to assess the economic feasibility of expanding the
waterways and enhancing generator performance.
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Appendix A

Climate Models

Table A.1: Overview of GCM/RCM combinations used from EURO-CORDEX [43]

Global
climate
model

Ensemble
member

Regional
climate
model

Time period Institution

CNRM-
CERFACS-
CM5

r1i1p1 CCLM4-8-17 1971-2100 Climate Limited-area
Modelling Community

CNRM-
CERFACS-
CM5

r1i1p1 RCA4 1971-2100 Swedish Meteorological
and Hydrological Insti-
tute

ICHEC-
EC-
EARTH

r12i1p1 CCLM4-8-17 1971-2100 Climate Limited-area
Modelling Community

ICHEC-
EC-
EARTH

r3i1p1 HIRHAM5 1971-2100 Danish Meteorological
Institute

ICHEC-
EC-
EARTH

r1i1p1 RACMO22E 1971-2100 Royal Netherlands Me-
teorological Institute

ICHEC-
EC-
EARTH

r12i1p1 RCA4 1971-2100 Swedish Meteorological
and Hydrological Insti-
tute

MOHC-
HadGEM2-
ES

r12i1p1 RCA4 1971-2100 Swedish Meteorological
and Hydrological Insti-
tute

IPSL-
CM5A-MR

r1i1p1 RCA4 1971-2100 Swedish Meteorological
and Hydrological Insti-
tute

MPI-ESM-
LR

r1i1p1 CCLM4-8-17 1971-2100 Climate Limited-area
Modelling Community

MPI-ESM-
LR

r1i1p1 RCA4 1971-2100 Swedish Meteorological
and Hydrological Insti-
tute
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Appendix B

Extracting Data - Python Script

This code extracts the data from netCDF files for the catchment and converts it to an Excel
file.

from netCDF4 import Dataset
import numpy as np
import pandas as pd
import datetime

path_main_folder=(r’/Volumes/LaCie/Master_thisis/DataV1/KSSData/’) #change path to folder
min_lon = 8.09
max_lon = 8.4
min_lat = 58.3
max_lat = 59.15

scenario = ’hist’
#scenario = ’rcp45’
#scenario = ’rcp85’

if scenario == ’hist’:
start_year = 1971
end_year = 2005

else:
start_year = 2006
end_year = 2100

MODELS=[’CNRM_CCLM’] #Change climate model here
#[’CNRM_CCLM’, ’CNRM_RCA’, ’EC-EARTH_CCLM’, ’EC-EARTH_HIRHAM’, ’EC-EARTH_RACMO’,
#’EC-EARTH_RCA’, ’HADGEM_RCA’, ’IPSL_RCA’, ’MPI_CCLM’, ’MPI_RCA’]

for model in MODELS:
precip_folder = model+’_RR_DAY’
temp_folder = model+’_TM_DAY’

xls_data=pd.DataFrame(columns=[’Date’,’Month ID’,’Temp. (C)’,’Preci. (mm)’])

for year in range(start_year,end_year+1):
filename_precip = scenario + ’_’ + model + ’_RR_daily_mm_’ + str(year) +’.nc’
data_precip = Dataset(path_main_folder + ’//’ + precip_folder + ’//’ + filename_precip)
filename_temp = scenario + ’_’ + model + ’_TM_daily_K_’ + str(year) +’.nc’
data_temp = Dataset(path_main_folder + ’//’ + temp_folder + ’//’ + filename_temp)

time = np.array(data_precip.variables[’time’][:])
date=datetime.datetime(year,1,1)

long = np.array(data_precip.variables[’lon’][:])
lat = np.array(data_precip.variables[’lat’][:])

#### Comment in the right scenario

# HISTORICAL
for i in range(len(time)):

precip = np.array(data_precip.variables[’precipitation__map_hist_daily’][i,:])*.1
precip = np.where(precip<=3000., precip, np.nan)
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precip = np.where(long>=min_lon, precip, np.nan)
precip = np.where(long<=max_lon, precip, np.nan)
precip = np.where(lat>=min_lat, precip, np.nan)
precip = np.where(lat<=max_lat, precip, np.nan)
precipitation_avg = np.mean(precip[~np.isnan(precip)])

temp = np.array(data_temp.variables[’air_temperature__map_hist_daily’][i,:])*.1-273.15
temp = np.where(temp<=3000., temp, np.nan)
temp = np.where(long>=min_lon, temp, np.nan)
temp = np.where(long<=max_lon, temp, np.nan)
temp = np.where(lat>=min_lat, temp, np.nan)
temp = np.where(lat<=max_lat, temp, np.nan)
temperature_avg = np.mean(temp[~np.isnan(temp)])

# RCP 4.5
# for i in range(len(time)):
# precip = np.array(data_precip.variables[’precipitation__map_rcp45_daily’][i,:])*.1
# precip = np.where(precip<=3000., precip, np.nan)
# precip = np.where(long>=min_lon, precip, np.nan)
# precip = np.where(long<=max_lon, precip, np.nan)
# precip = np.where(lat>=min_lat, precip, np.nan)
# precip = np.where(lat<=max_lat, precip, np.nan)
# precipitation_avg = np.mean(precip[~np.isnan(precip)])

# temp = np.array(data_temp.variables[’air_temperature__map_rcp45_daily’][i,:])*.1-273.15
# temp = np.where(temp<=3000., temp, np.nan)
# temp = np.where(long>=min_lon, temp, np.nan)
# temp = np.where(long<=max_lon, temp, np.nan)
# temp = np.where(lat>=min_lat, temp, np.nan)
# temp = np.where(lat<=max_lat, temp, np.nan)
# temperature_avg = np.mean(temp[~np.isnan(temp)])

# RCP 8.5
# for i in range(len(time)):
# precip = np.array(data_precip.variables[’precipitation__map_rcp85_daily’][i,:])*.1
# precip = np.where(precip<=3000., precip, np.nan)
# precip = np.where(long>=min_lon, precip, np.nan)
# precip = np.where(long<=max_lon, precip, np.nan)
# precip = np.where(lat>=min_lat, precip, np.nan)
# precip = np.where(lat<=max_lat, precip, np.nan)
# precipitation_avg = np.mean(precip[~np.isnan(precip)])

# temp = np.array(data_temp.variables[’air_temperature__map_rcp85_daily’][i,:])*.1-273.15
# temp = np.where(temp<=3000., temp, np.nan)
# temp = np.where(long>=min_lon, temp, np.nan)
# temp = np.where(long<=max_lon, temp, np.nan)
# temp = np.where(lat>=min_lat, temp, np.nan)
# temp = np.where(lat<=max_lat, temp, np.nan)
# temperature_avg = np.mean(temp[~np.isnan(temp)])

data_dict = {’Date’: [date.strftime(’%d/%m/%Y’)],’Month ID’: [date.month],
’Temp. (C)’: [temperature_avg],’Preci. (mm)’: [precipitation_avg]}

xls_data=pd.concat([xls_data, pd.DataFrame.from_dict(data_dict)], ignore_index=True)
date += datetime.timedelta(days=1)

file_results = scenario + ’_’ + model + ’_data.csv’
xls_data.to_csv(path_main_folder + ’//’ + file_results, index=False)
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Appendix C

HBV Model - Python Script

This code is the function HBV that runs the HBV model.

Inputs:
ca = catchment area (km2)
ndays = number of days to be simulated params = array with the 11 parameters of HBV in
the folowing order [Ttresh, d, fc, beta, c, k0, l, k1, k2, kp, pwp]
airtemp = array with the timeseries (length ndays) of the daily-averaged air temperature (°C)
precip = array with the timeseries (length ndays) of the daily-accumulated precipitation (mm)
dpem = array with the daily potential evapotranspiration in each month (length 12 months)
(mm/day)
Output:
qm = array with the timeseries (length ndays) of the simultated daily-averaged flow rate
(m3/s)

import numpy as np

def HBV(ca, n_days, params, month, air_temp, prec, monthly, dpem):

#Set parameters with reconizable names
Tsnow_thresh = params[0] #treshold temperature for snow, generally equal to 0.0 (oC)
d = params[1] #degree-day factor indicating the decrease of the water-content in

#the snow cover caused by 1 oC above the freezing threshold in one day
fc = params[2] #FC maximum soil storage capacity (mm)
beta = params[3] #beta shape coefficient, which is a model parameter (-)
c = params[4] #model parameter for the adjusted potential evapotranspiration (oC**–1)
k0 = params[5] #K0 near surface flow storage coefficient (day**-1)
l = params[6] #L threshold of the upper reservoir
k1 = params[7] #K1 interflow storage coefficient (day**-1)
k2 = params[8] #K2 groundwater storage coefficient (day**-1)
kp = params[9] #Kperc percolation storage coefficient (day**-1)
pwp = params[10] #PWP soil permanent wilting point, defined as the minimum amount

#of water in the soil that the plant requires not to wilt (mm)

#Initialize arrays for the simulation
snow = np.zeros(air_temp.size) #SP Snow Pack (mm)
liq_water = np.zeros(air_temp.size) #LW Liquid Water (mm)
pe = np.zeros(air_temp.size) #PEa adjusted potential evapotranspiration (mm)
soil = np.zeros(air_temp.size) #SM Soild Misture (mm)
ea = np.zeros(air_temp.size) #Ea actual evapotranspiration (mm/day)
dq = np.zeros(air_temp.size) #Peff effective precipitation (mm/day)
s1 = np.zeros(air_temp.size) #SU storage upper reservoir (fast response runoff) (mm)
s2 = np.zeros(air_temp.size) #SL storage lower reservoir (slow response runoff) (mm)
q = np.zeros(air_temp.size) #Qtot total flow rate (mm/day)
qm = np.zeros(air_temp.size) #Qtot total flow rate (m3/s)

#Initiating the reservoirs
snow[0] = 0. #SP Snow Pack (mm), the simulation should start 1st September,

#ensuring that the SP = 0 at the beginning
soil[0] = 100. #SM Soild Misture (mm)
s1[0] = 2. #SU storage upper reservoir (fast response runoff) (mm)
s2[0] = 200. #SL storage lower reservoir (slow response runoff) (mm)

#Loop that runs through all days
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for i_day in range(1,n_days):

if air_temp[i_day] <= Tsnow_thresh: #if the temperature is bellow or equal to the treshold
#Precip adds to the snow pack

snow[i_day] = snow[i_day-1] + prec[i_day]
#Too cold, no liquid water

liq_water[i_day] = 0.0
#Adjust potential ET base on difference between mean daily temp
#and long-term mean monthly temp

pe[i_day] = (1.+ c*(air_temp[i_day]-monthly[int(month[i_day])]))*dpem[int(month[i_day])]
#Check soil moisture and calculate actual evapotranspiration
if soil[i_day-1] >= pwp:

ea[i_day] = pe[i_day]
else:

#Reduced ET_actual by fraction of permanent wilting point
ea[i_day] = pe[i_day]*soil[i_day-1]/pwp

#Check soil moisture and calculate actual evapotranspiration
dq[i_day] = liq_water[i_day]*(soil[i_day-1]/fc)**beta

#Check soil moisture and calculate actual evapotranspiration
soil[i_day] = soil[i_day-1] + liq_water[i_day] - dq[i_day] - ea[i_day]

#Upper reservoir water level
s1[i_day] = s1[i_day-1] + dq[i_day] - max(0,s1[i_day-1]-l)*k0 - s1[i_day-1]*k1 - s1[i_day-1]*kp

#Lower reservoir water level
s2[i_day] = s2[i_day-1] + s1[i_day-1]*kp - s2[i_day-1]*k2

#Run-off is total from upper (fast/slow) and lower reservoirs
q[i_day] = max(0,s1[i_day]-l)*k0 + s1[i_day]*k1 + s2[i_day]*k2

#Resulting Q
qm[i_day] = (q[i_day]*ca*1000.)/(24.*3600.)

else: #if the temperature is above the treshold
#There is snow melting SP decreases or maintains a value 0
snow[i_day] = max(snow[i_day-1]-d*(air_temp[i_day]-Tsnow_thresh),0.)

#LW is precipitation plus snow melt
liq_water[i_day] = prec[i_day]+min(snow[i_day-1],d*(air_temp[i_day]-Tsnow_thresh))

#Adjust potential ET base on difference between mean daily temp
#and long-term mean monthly temp

pe[i_day] = (1.+ c*(air_temp[i_day]-monthly[int(month[i_day])]))*dpem[int(month[i_day])]

#Check soil moisture and calculate actual evapotranspiration
if soil[i_day-1] >= pwp:

ea[i_day] = pe[i_day]
else:

ea[i_day] = pe[i_day]*soil[i_day-1]/pwp

#Effective precip (portion that contributes to runoff)
if soil[i_day-1] > fc:

dq[i_day] = liq_water[i_day]
else:

dq[i_day] = liq_water[i_day]*((soil[i_day-1]/fc))**beta

#Soil moisture = previous days SM + liquid water - Direct Runoff - Actual ET
soil[i_day] = soil[i_day-1] + liq_water[i_day] - dq[i_day] - ea[i_day]

#Upper reservoir water level
s1[i_day] = s1[i_day-1] + dq[i_day] - max(0,s1[i_day-1]-l)*k0 - s1[i_day-1]*k1 - s1[i_day-1]*kp

#Lower reservoir water level
s2[i_day] = s2[i_day-1] + s1[i_day-1]*kp - s2[i_day-1]*k2

#Run-off is total from upper (fast/slow) and lower reservoirs
q[i_day] = max(0,s1[i_day]-l)*k0 + s1[i_day]*k1 + s2[i_day]*k2

#Resulting Q
qm[i_day] = (q[i_day]*ca*1000.)/(24.*3600.)

#End of simulation
return qm
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Appendix D

HBV Model Calibration - Python Script

This code runs the calibration of the HBV model. The script saves the optimal results in
.csv files for later use. The code prints the Nash Sutcliffe efficiency.

import numpy as np
import pandas as pd
from geneticalgorithm import geneticalgorithm as ga
from HBV_python import HBV

ca = 1780.66 #catchment area (km2)

#reading the daily potential evapotranspiration for each month
monthly, dpem = np.genfromtxt(’inputMonthlyTempEvap2.txt’, unpack=True, usecols=[0,2])

#reading the observed flow rate (NVE station)
data_NVE_station = pd.read_csv(’Flakksvann.csv’,sep = ";",decimal=’,’,header=1,usecols=[0,1])
data_NVE_station = data_NVE_station.rename(columns={data_NVE_station.columns[0]: "TimeStamp",

data_NVE_station.columns[1]: "Q_obs"})
data_NVE_station[’TimeStamp’] = pd.to_datetime(data_NVE_station[’TimeStamp’])
data_NVE_station = data_NVE_station.set_index([’TimeStamp’]) #put the index as a timestamp

#reading the observed temperature and precipitation (area-averaged from MET stations)
data_MET_stations = pd.read_csv(’inputPrecipTemp2.csv’)
data_MET_stations = data_MET_stations.rename(columns={data_MET_stations.columns[0]: ’TimeStamp’,

data_MET_stations.columns[2]: ’temp’,
data_MET_stations.columns[3]: ’precip’})

data_MET_stations[’TimeStamp’] = pd.to_datetime(data_MET_stations[’TimeStamp’],format=’%d/%m/%Y’)
data_MET_stations = data_MET_stations.set_index([’TimeStamp’]) #put the index as a timestamp

############################ CALIBRATION ######################################
#creating the timeseries arrays for calibrating the HBV
start = ’1981-09-01’ #starting date of the calibration
end = ’2000-08-31’ #ending date of the calibration
month = data_MET_stations[start:end][’Month ID’].to_numpy(dtype=float)
temp = data_MET_stations[start:end][’temp’].to_numpy()
precip = data_MET_stations[start:end][’precip’].to_numpy()
q_obs = data_NVE_station[start:end].to_numpy().reshape(-1,)

#Inserts an extra NaN element in some arrays so that the index in HBV can start at 1
month = np.insert(month,0,np.nan)
temp = np.insert(temp,0,np.nan)
precip = np.insert(precip,0,np.nan)

#Objective function to be minimized by GA
def f(X):

q_sim = HBV(ca, len(temp), X, month, temp, precip, monthly, dpem) #computes the flow rate by HBV
q_sim = q_sim[1:] #removing the NaN in the first element
# computes the Nash Sutcliff
nse = 1.0 - (np.sum((q_obs - q_sim)**2.))/(np.sum((q_obs - np.mean(q_obs))**2.))

#constraint PWP<=FC introduced as a penalty
pen = 0
if X[10]>X[2]:

pen = 2 + 1*(X[10]-X[2]) #penalty to verify the constraint PWP<=FC
return 1-nse+pen #objective funcion to be minimized with penalty

#return -1.*nse #objective function (-nse) to be minimized, it corresponds
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#to maximize nse

#ranges of the parameters Tsnow_tresh, d, fc, beta, c, k0, l, k1, k2, kp, pwp
varbound=np.array([[-1,2],\

[1,5],\
[50,500],\
[1,4],\
[0.01,0.1],\
[0.1,1],\
[10,100],\
[0.1,1],\
[0.001,.1],\
[0.001,.1],\
[50,250]])

#parameters of the GA algorithm
algorithm_param = {’max_num_iteration’: 200,\

’population_size’:100,\
’mutation_probability’:0.1,\
’elit_ratio’: 0.01,\
’crossover_probability’: 0.5,\
’parents_portion’: 0.3,\
’crossover_type’:’uniform’,\
’max_iteration_without_improv’:20}

model=ga(function=f,\
dimension=11,\
variable_type=’real’,\
variable_boundaries=varbound,\
algorithm_parameters=algorithm_param)

model.run()

param_opt = model.best_variable #get the optimal parameters
opt_nse = 1-model.best_function #get the maximum Nash Sutcliff
print(’NSE training = ’, opt_nse)
GA_report = 1-np.array(model.report) #get a list with all the Nash Sutcliff

#values troughout the GA iterations
#saving in csv files the optimal results that can be used afterwards
pd.DataFrame(param_opt).to_csv("optimal_parameters.csv", header=None, index=None)
pd.DataFrame(np.array(opt_nse).reshape(-1,)).to_csv("optimal_nse.csv", header=None, index=None)
pd.DataFrame(GA_report).to_csv("GA_report.csv", header=None, index=None)
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Appendix E

HBV Model Validation - Python Script
This is the calibrated code that runs the validation. The code prints the Nash Sutcliffe
efficiency and Pearson correlation coefficient.

import numpy as np
import pandas as pd
from geneticalgorithm import geneticalgorithm as ga
from HBV_python import HBV

ca = 1780.66 #catchment area (km2)

#reading the optimal parameters obtained in the calibration
param_opt = pd.read_csv(’optimal_parameters.csv’,header=None).to_numpy().reshape(-1,)

#reading the daily potential evapotranspiration for each month
monthly, dpem = np.genfromtxt(’inputMonthlyTempEvap2.txt’, unpack=True, usecols=[0,2])

#reading the observed flow rate (NVE station)
data_NVE_station = pd.read_csv(’Flakksvann.csv’,sep = ";",decimal=’,’,header=1,usecols=[0,1])
data_NVE_station = data_NVE_station.rename(columns={data_NVE_station.columns[0]: "TimeStamp",

data_NVE_station.columns[1]: "Q_obs"})
data_NVE_station[’TimeStamp’] = pd.to_datetime(data_NVE_station[’TimeStamp’])
data_NVE_station = data_NVE_station.set_index([’TimeStamp’]) #put the index as a timestamp

#reading the observed temperature and precipitation (area-averaged from MET stations)
data_MET_stations = pd.read_csv(’inputPrecipTemp2.csv’)
data_MET_stations = data_MET_stations.rename(columns={data_MET_stations.columns[0]: ’TimeStamp’,

data_MET_stations.columns[2]: ’temp’,
data_MET_stations.columns[3]: ’precip’})

data_MET_stations[’TimeStamp’] = pd.to_datetime(data_MET_stations[’TimeStamp’],format=’%d/%m/%Y’)
data_MET_stations = data_MET_stations.set_index([’TimeStamp’]) #put the index as a timestamp

############################ VALIDATION ######################################
#creating the timeseries arrays for validation the HBV (joining two periods)
start1 = ’1972-09-01’ #start date of 1st period of validation
end1 = ’1981-08-31’ #end date of 1st period of validation
start2 = ’2000-09-01’ #start date of 2nd period of validation
end2 = ’2004-08-31’ #end date of 2nd period of validation
month = np.concatenate((data_MET_stations[start1:end1][’Month ID’].to_numpy(dtype=float),

data_MET_stations[start2:end2][’Month ID’].to_numpy(dtype=float)))
temp = np.concatenate((data_MET_stations[start1:end1][’temp’].to_numpy(),

data_MET_stations[start2:end2][’temp’].to_numpy()))
precip = np.concatenate((data_MET_stations[start1:end1][’precip’].to_numpy(),

data_MET_stations[start2:end2][’precip’].to_numpy()))
q_obs = np.concatenate((data_NVE_station[start1:end1].to_numpy().reshape(-1,),

data_NVE_station[start2:end2].to_numpy().reshape(-1,)))

#Inserts an extra NaN element in some arrays so that the index in HBV can start at 1
month = np.insert(month,0,np.nan)
temp = np.insert(temp,0,np.nan)
precip = np.insert(precip,0,np.nan)

#computes the flow rate by HBV
q_sim = HBV(ca, len(temp), param_opt, month, temp, precip, monthly, dpem)
q_sim = q_sim[1:] #removing the NaN in the first element
# computes the Nash Sutcliff
nse = 1.0 - (np.sum((q_obs - q_sim)**2.))/(np.sum((q_obs - np.mean(q_obs))**2.))
print(’NSE validation = ’, nse)

r = np.corrcoef(q_obs, q_sim)
print(r[1,0])
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Appendix F

HBV Model Simulated Discharge -
Python Script

These scripts must be run for each individual model with the associated time period or sce-
nario. The output is an array with the timeseries of the simulated daily-averaged flow rate.

The script for the historical period (1971-2005):

import numpy as np
import pandas as pd
from geneticalgorithm import geneticalgorithm as ga
from HBV_python import HBV

ca = 1780.66 #catchment area (km2)

#reading the optimal parameters obtained in the calibration
param_opt = pd.read_csv(’optimal_parameters.csv’,header=None).to_numpy().reshape(-1,)

#reading the daily potential evapotranspiration for each month
monthly, dpem = np.genfromtxt(’inputMonthlyTempEvap2.txt’, unpack=True, usecols=[0,2])

#reading the observed temperature and precipitation
data_MET_stations = pd.read_csv(’’) #Change the climate model here for each run
data_MET_stations = data_MET_stations.rename(columns={data_MET_stations.columns[0]: ’TimeStamp’,

data_MET_stations.columns[2]: ’temp’,
data_MET_stations.columns[3]: ’precip’})

data_MET_stations[’TimeStamp’] = pd.to_datetime(data_MET_stations[’TimeStamp’],format=’%d/%m/%Y’)
data_MET_stations = data_MET_stations.set_index([’TimeStamp’]) #put the index as a timestamp

#creating the timeseries arrays
start1 = ’1971-01-01’ #start date of 1st period of validation
end1 = ’2005-12-31’ #end date of 1st period of validation
month = data_MET_stations[start1:end1][’Month ID’].to_numpy(dtype=float)
temp = data_MET_stations[start1:end1][’temp’].to_numpy()
precip = data_MET_stations[start1:end1][’precip’].to_numpy()

#computes the flow rate by HBV
q_sim = HBV(ca, len(temp), param_opt, month, temp, precip, monthly, dpem)
q_sim = q_sim[1:] #removing the NaN in the first element

np.savetxt(’q_sim.csv’, q_sim, delimiter=’,’, fmt=’%.6f’)

The script for climate scenario RCP4.5:

import numpy as np
import pandas as pd
from geneticalgorithm import geneticalgorithm as ga
from HBV_python import HBV

ca = 1780.66 #catchment area (km2)

#reading the optimal parameters obtained in the calibration
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param_opt = pd.read_csv(’optimal_parameters.csv’,header=None).to_numpy().reshape(-1,)

#reading the daily potential evapotranspiration for each month
monthly, dpem = np.genfromtxt(’inputMonthlyTempEva_rcp4.5.txt’, unpack=True, usecols=[0,2])

#reading the observed temperature and precipitation
data_MET_stations = pd.read_csv(’’) #Change the climate model here for each run
data_MET_stations = data_MET_stations.rename(columns={data_MET_stations.columns[0]: ’TimeStamp’,

data_MET_stations.columns[2]: ’temp’,
data_MET_stations.columns[3]: ’precip’})

data_MET_stations[’TimeStamp’] = pd.to_datetime(data_MET_stations[’TimeStamp’],format=’%d/%m/%Y’)
data_MET_stations = data_MET_stations.set_index([’TimeStamp’]) #put the index as a timestamp

#creating the timeseries arrays
start1 = ’2006-01-01’ #start date of 1st period of validation
end1 = ’2100-12-31’ #end date of 1st period of validation
month = data_MET_stations[start1:end1][’Month ID’].to_numpy(dtype=float)
temp = data_MET_stations[start1:end1][’temp’].to_numpy()
precip = data_MET_stations[start1:end1][’precip’].to_numpy()

#computes the flow rate by HBV
q_sim = HBV(ca, len(temp), param_opt, month, temp, precip, monthly, dpem)
q_sim = q_sim[1:] #removing the NaN in the first element

np.savetxt(’q_sim.csv’, q_sim, delimiter=’,’, fmt=’%.6f’)

The script for climate scenario RCP8.5:
import numpy as np
import pandas as pd
from geneticalgorithm import geneticalgorithm as ga
from HBV_python import HBV

ca = 1780.66 #catchment area (km2)

#reading the optimal parameters obtained in the calibration
param_opt = pd.read_csv(’optimal_parameters.csv’,header=None).to_numpy().reshape(-1,)

#reading the daily potential evapotranspiration for each month
monthly, dpem = np.genfromtxt(’inputMonthlyTempEva_rcp8.5.txt’, unpack=True, usecols=[0,2])

#reading the observed temperature and precipitation
data_MET_stations = pd.read_csv(’’) #Change the climate model here for each run
data_MET_stations = data_MET_stations.rename(columns={data_MET_stations.columns[0]: ’TimeStamp’,

data_MET_stations.columns[2]: ’temp’,
data_MET_stations.columns[3]: ’precip’})

data_MET_stations[’TimeStamp’] = pd.to_datetime(data_MET_stations[’TimeStamp’],format=’%d/%m/%Y’)
data_MET_stations = data_MET_stations.set_index([’TimeStamp’]) #put the index as a timestamp

#creating the timeseries arrays
start1 = ’2006-01-01’ #start date of 1st period of validation
end1 = ’2100-12-31’ #end date of 1st period of validation
month = data_MET_stations[start1:end1][’Month ID’].to_numpy(dtype=float)
temp = data_MET_stations[start1:end1][’temp’].to_numpy()
precip = data_MET_stations[start1:end1][’precip’].to_numpy()

#computes the flow rate by HBV
q_sim = HBV(ca, len(temp), param_opt, month, temp, precip, monthly, dpem)
q_sim = q_sim[1:] #removing the NaN in the first element

np.savetxt(’q_sim.csv’, q_sim, delimiter=’,’, fmt=’%.6f’)
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