
Analyzing the performance of trans-
formers for streamflow prediction

JONATAN HERTZBERG HINDERSLAND

SUPERVISOR
Per-Arne Andersen
Lei Jiao

University of Agder, 2023
Faculty of Engineering and Science
Department of Engineering and Sciences

Obligatorisk gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslinjer for
bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene på deres ansvar og hvilke
konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar.

1. Vi erklærer herved at vår besvarelse er vårt eget arbeid, og at vi ikke har
brukt andre kilder eller har mottatt annen hjelp enn det som er nevnt i
besvarelsen.

Ja

2. Vi erklærer videre at denne besvarelsen:

• Ikke har vært brukt til annen eksamen ved annen avdeling/univer-
sitet/høgskole innenlands eller utenlands.

• Ikke refererer til andres arbeid uten at det er oppgitt.

• Ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• Har alle referansene oppgitt i litteraturlisten.

• Ikke er en kopi, duplikat eller avskrift av andres arbeid eller
besvarelse.

Ja

3. Vi er kjent med at brudd på ovennevnte er å betrakte som fusk og kan med-
føre annullering av eksamen og utestengelse fra universiteter og høgskoler i
Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8 og Forskrift om ek-
samen §§ 31.

Ja

4. Vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert. Ja
5. Vi er kjent med at Universitetet i Agder vil behandle alle saker hvor det

forligger mistanke om fusk etter høgskolens retningslinjer for behandling av
saker om fusk.

Ja

6. Vi har satt oss inn i regler og retningslinjer i bruk av kilder og referanser
på biblioteket sine nettsider.

Ja

7. Vi har i flertall blitt enige om at innsatsen innad i gruppen er merkbart
forskjellig og ønsker dermed å vurderes individuelt. Ordinært vurderes alle
deltakere i prosjektet samlet.

Nei

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant
annet enerett til å gjøre verket tilgjengelig for allmennheten (Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli publisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre oppgaven tilgjengelig
for elektronisk publisering:

Ja

Er oppgaven båndlagt (konfidensiell)? Nei
Er oppgaven unntatt offentlighet? Nei

Acknowledgements

I would like to express gratitude and appreciation to my supervisors Per-Arne Andersen and
Lei Jiao for their valuable guidance and insights throughout this project.

I would like to thank Bernt Viggo Matheussen and Å Energi (previously Agder Energi)
for introducing the basis of this project idea.

I would like to thank the Neuralhydrology team for creating the library upon which this
project is built.

Finally, I would like to thank the University of Agder for providing the resources neces-
sary to more efficiently train the models created for this project.

ii

Abstract

Within the field of hydrology, there is a vital need to be able to predict streamflow values
from hydrological basins. This has traditionally been done through physics and mathematics-
based models, where measured data are combined with physics-based formulas to estimate
output values. Nowadays, machine learning has been introduced as a potential way to im-
prove the performance of these predictions. One of the classical methods for time-series
prediction has been the Long Short Term Memory (LSTM) model, but the transformer
model has also shown its ability to be proficient at solving these kinds of problems. The
purpose of this paper is to implement a transformer model within an existing model library
for streamflow prediction and analyze its performance, both in terms of how it is affected
by various hyperparameters and how it compares to other models. The findings from these
tests indicate that the transformer encoder is capable of achieving comparable results to the
LSTM, while the full transformer model performs noticeably worse. In addition, the paper
also finds that the cumulative distribution of the full transformer is significantly different
than the other models, performing worse on most basins, but significantly better on the top
20%. This indicates the model is better at specializing on certain basin groupings, at the
cost of generalization. Lack of generalization is a detriment, however, if the model or the
data processing could be adapted to exploit the model’s ability to specialize, then it may
achieve better results. This could be done by, for instance, adding an explicit categorization
dimension to the model. To summarize, the transformer model does not currently outper-
form the state-of-the-art LSTM models, but it expresses interesting behavior that should be
studied further.

iii

Contents

Acknowledgements ii

Abstract iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Problem . 1

1.1.1 Difficulties . 1
1.1.2 Solution . 1

1.2 Motivation . 2
1.3 Field of research . 2
1.4 Thesis definition . 2
1.5 Contribution . 2
1.6 Thesis Outline . 2

2 Theory 3
2.1 Neuralhydrology . 3

2.1.1 CudaLSTM . 3
2.1.2 ARLSTM . 3
2.1.3 EA-LSTM . 4
2.1.4 MC-LSTM . 5
2.1.5 MTS-LSTM . 5
2.1.6 ODE-LSTM . 5
2.1.7 GRU . 6
2.1.8 Transformer . 6

2.2 Transformers . 6
2.2.1 Model types . 6
2.2.2 Hydrological implementation . 9

2.3 Physical hydrology models . 10
2.3.1 SAC-SMA . 10
2.3.2 VIC . 10
2.3.3 mHM . 10

2.4 Metrics . 10
2.4.1 NSE . 10
2.4.2 Alpha NSE decomposition . 10
2.4.3 Beta NSE decomposition . 11
2.4.4 KGE . 11
2.4.5 Beta KGE . 11

2.5 CAMELS . 11

iv

3 Practical implementation 12
3.1 Data . 12

3.1.1 Dataset . 12
3.1.2 Dataloading . 13

3.2 Preprocessing . 14
3.2.1 Input shifting . 14
3.2.2 Embedding . 14
3.2.3 Positional Encoding . 14
3.2.4 Masking . 14

3.3 Model . 15
3.3.1 Transformer . 15
3.3.2 Model head . 15

3.4 Loss . 15
3.5 Optimizer . 16

4 Results 17
4.1 Parameter testing . 17

4.1.1 Loss calculation . 17
4.1.2 Hyperparameters . 18

4.2 Large dataset testing . 20
4.2.1 Model comparisons . 21
4.2.2 Change over time . 22
4.2.3 Longer training . 23
4.2.4 Longer input sequence . 23
4.2.5 Changed target preprocessing . 24
4.2.6 Mask removal . 24
4.2.7 Reset parameters . 26

5 Discussion and Future work 28
5.1 Basin grouping . 28
5.2 EA-Transformer . 29

6 Conclusion 30

A Models and results 31

Bibliography 32

v

List of Figures

2.1 LSTM . 4
2.2 EA-LSTM . 4
2.3 MC-LSTM . 5
2.4 GRU . 6
2.5 Transformer . 7
2.6 Attention . 8

3.1 Masks . 15
3.2 Full Transformer . 16

4.1 Comparison between different hydrology models. 22
4.2 NSE scores for models trained different numbers of epochs. 22
4.3 Comparison of transformer models trained for longer. 23
4.4 Comparison of transformer models trained different sequence lengths. 24
4.5 Comparison of transformer models trained different methods for expanding

the target sequence. 25
4.6 Comparison of transformer models trained different masking options. 25
4.7 Comparison of transformer models that reset or don’t reset starting parameters. 26
4.8 2nd comparison of transformer models that reset or don’t reset starting pa-

rameters. 26

5.1 Streamflow for different basins . 28

vi

List of Tables

4.1 NSE Scores with different loss calculations over 100 basins. 17
4.2 NSE scores with different batch sizes. 18
4.3 NSE scores with different epoch numbers. 19
4.4 NSE scores with different hiddens. 19
4.5 NSE scores with different sequence lengths. 19
4.6 NSE scores with different transformer feedforward dimensions. 20
4.7 NSE scores with different numbers of transformer heads 20
4.8 NSE scores with different numbers of transformer layers. 20
4.9 NSE scores with different dropout values. 21
4.10 Comparison between different hydrology models. 21
4.11 NSE scores for models trained different numbers of epochs. 22
4.12 Comparison of transformer models trained for longer. 23
4.13 Comparison of transformer models trained different sequence lengths. 23
4.14 Comparison of transformer models trained different methods for expanding

the target sequence. 24
4.15 Comparison of transformer models trained different masking options. 25
4.16 Comparison of transformer models that reset or don’t reset starting parameters. 26
4.17 2nd comparison of transformer models that reset or don’t reset starting pa-

rameters. 26

vii

Chapter 1

Introduction

This section will attempt to explain the area of research and its inherent challenges. It will
also detail the stated goal of this paper.

1.1 Problem

Streamflow prediction is a very important area of study in the field of hydrology. Being
able to predict the water output for a water basin is vital to predicting how much power
can be generated, which in turn is vital for both electricity usage and electricity pricing. A
hydropower company with a good method for streamflow prediction will likely be able to
out-compete other companies by being able to provide buyers with more reliable promises.
Traditionally the methods used for this purpose are physics-based prediction models. These
rely on various laws of physics to interpret the input data in a way that can predict streamflow
to a relatively high degree of accuracy. However, these methods are still not perfect, so the
search for better prediction models is still ongoing.

1.1.1 Difficulties

Streamflow prediction is a difficult field of study due to the large amounts of variables that
can impact the results. There can also be massive differences between basins. This is why
physics-based models need to be calibrated to each basin individually. Doing this does of
course increase the accuracy, but it also means the models cannot be effectively generalized.
The result of this is that physical models are unsuited for predictions of ungauged basins.
In other words, the models cannot make accurate predictions for basins where streamflow
data is unavailable or limited.

1.1.2 Solution

Machine learning is a method that has a high potential for being able to outperform physics-
based models. Machine learning would also potentially be able to bypass some of the issues
with physical models by creating models that can be generalized, even to ungauged basins.
This potential has been demonstrated by the research group Neuralhydrology by Frederik
Kratzert, Daniel Klotz, Martin Gauch and Grey Nearing [13]. This research group has
primarily focused on using LSTM (Long Short-Term Memory) models and have achieved
good results. The team has experimented with a large variety of LSTM models, by for
example introducing physics-based rules to the model. The goal of this thesis is to expand
on the work done by the Neuralhydrology team by focusing more heavily on transformers.
The reason for this is that transformers have shown potential for time series prediction, even
within hydrology specifically [2][22] and this warrants further study.

1

1.2 Motivation

The basis for this thesis is a research project at a summer job for Å Energi (Previously
Agder Energi). The purpose of that research project was to adapt the Neuralhydrology
framework for Norwegian data to verify if such an approach would be viable. This thesis is
an expansion on that project with a reduced focus on the dataset and a bigger focus on the
models themselves.

1.3 Field of research

The field of hydrology is very active. Many different models have been invented for the sake of
streamflow prediction. These include the Sacramento Soil Moisture Accounting model (SAC-
SMA), the Variable Infiltration Capacity model (ViC), the mesoscale Hydrologic Model
(mHM), and the Hydrologiska Byråns Vattenbalansavdelning model (HBV). In recent years
the newest addition to the field of hydrology has been machine learning. Various machine
learning models have been tested for this purpose, however, the one that seems to provide
the best results is the LSTM model [11].

1.4 Thesis definition

The purpose of this project is specifically to examine the use of transformers for streamflow
prediction. Some studies have indicated the potential of transformers within the field of
hydrology [2][22]. The point of this paper is to try to verify the results of these studies, and
more importantly, analyze the differences in behavior between the transformer model and
the more traditional LSTM.

1.5 Contribution

The contributions of this paper are as follows: Firstly there is the implementation of a
full transformer model within the Neuralhydrology framework [13]. In practice, this means
a transformer model using the CAMELS US dataset. Yin et al (2022) [22] claims to have
implemented such a model, however, the cited code repository is empty, and as such could not
be the basis for this project. Secondly, the model parameters will be examined thoroughly
to determine their effects on the model. Thirdly the performance of the model will be
compared not just to the standard LSTM but also to other models implemented within the
Neuralhydrology library, as well as physical models. Fourthly the behavior of the transformer
model will be examined compared to the LSTM models.

1.6 Thesis Outline

This thesis is structured in the following manner. Chapter 2 will discuss the background the-
ory necessary to understand this paper, including introducing the Neuralhydrology library,
the transformer model and variations of it, physical hydrology models currently in use, met-
rics used to determine the quality of hydrological models, and finally the dataset used in this
paper. Chapter 3 will talk about how the transformer model has been implemented in this
paper, as well as pre-and post-processing. Chapter 4 will introduce the various experiments
conducted in this paper and showcase their results. Chapter 5 will analyze the performance
of the transformer model and discuss ideas for further improvement to the model. Finally,
chapter 6 will summarize the findings of this paper.

2

Chapter 2

Theory

This chapter will focus on machine learning methods within hydrology, as well as discuss
the general concepts of transformers. The first area of interest will be the Neuralhydrology
library [13] and the models implemented therein. The paper will then go into further detail
on transformers specifically, and then discuss transformers within the field of hydrology. Also
included in this section is a basic overview of some physical models used in hydrology and a
basic overview of some metrics used to examine the accuracy of hydrology models. Finally,
there is a short overview of the dataset used in this paper.

2.1 Neuralhydrology

The Neuralhydrology library [13] is a state-of-the-art model repository focused on hydrology
predictions. The main focus is on Long Short-Term Memory (LSMT) models, as they are
indicated to be the machine learning models best designed for streamflow prediction. A
large focus of the research group is designed to modify the traditional LSTM models in an
attempt to create better results. The reason this section is important is twofold. Firstly we
need to establish what the Neuralhydrology framework is and how it works. Secondly, it is
important to recognize which methods have been attempted, specifically on the CAMELS
dataset.

2.1.1 CudaLSTM

The CudaLSTM (see figure 2.1) is the standard implementation of the LSTM model. It
relies on the base implementation present in PyTorch. The model contains a cell state and
a hidden state. Input data is divided into sequences where each step of the input sequence
is used to modify the cell state which is in turn used to modify the hidden state. The model
can then output a prediction at each time step as well as recognize continuous patterns over
time. This model implementation was first described in "Rainfall–runoff modeling using Long
Short-Term Memory (LSTM) networks" (Kratzert et al, 2018) [11]. The study demonstrates
that the LSTM model is able to provide comparable results to the widely used Sacramento
Soil Moisture Accounting Model (SAC-SMA), or specifically SAC-SMA + Snow-17.

2.1.2 ARLSTM

The AutoRegressive LSTM is an LSTM model where one of the inputs is a time-lagged
version of the output, in other words, the streamflow. The standard LSTM is in a way
able to do this as well, as the hidden state is supposed to represent the previous streamflow
value. However this is an estimated value, and so the AR-LSTM instead provides a mea-
sured value. The model is described in the paper "Technical note: Data assimilation and
autoregression for using near-real-time streamflow observations in long short-term memory

3

Figure 2.1: Standard Long Short-Term Memory (LSTM) model. Consists of a cell state and a
hidden state, as well as three gates, the input gate, the output gate and the forget gate. The hidden
state and the input are together used to update the cell which is in turn used to determine the
output and the next hidden state [11][5].

networks" (Nearing et al, 2022), and the results of the study indicate that the AR-LSTM
performs better than the standard LSTM model [18].

2.1.3 EA-LSTM

The Entity-Aware LSTM model (see figure 2.2) is an LSTM model where the static inputs
are separated from the dynamic inputs. The static inputs are used for the input gate acti-
vation while the dynamic inputs are used for the other gates. This is an attempt to adapt
the standard LSTM model to be more in line with hydrological theory by separating the
catchment attributes into a separate feature layer. This model is described in the paper
"Towards learning universal, regional, and local hydrological behaviors via machine learning
applied to large-sample datasets" (Kratzert et al, 2019) and the results of the study indicate
that the model performs slightly worse than the standard LSTM with static inputs, though
it still outperforms the physical models Variable Infiltration Capacity (VIC) and mesoscale
Hydrologic model (mHm) [12].

Figure 2.2:
a) Standard LSTM, same as Fig. 2.1.
b) Entity Aware LSTM (EA-LSTM) is an LSTM model where the static attributes are separated
from the dynamic attributes. The static inputs are used as activation for the input gate, whereas
the dynamic inputs are used as activation for the forget and output gates [12].

4

2.1.4 MC-LSTM

The Mass-Conserving LSTM (see figure 2.3) is a model designed to account for the physical
law of conservation of mass. The idea is that mass inputs are separated from the auxiliary
inputs so that the model can better account for mass conservation, where the mass inputs
are fed directly into the input gate, whereas the auxiliary inputs are used to determine the
activation for the three gates, forget, input and output. Unlike standard LSTM models,
this model does not contain a hidden state. When using the CAMELS data set the mass
inputs would be the precipitation whereas the auxiliary inputs would be the rest of the
inputs. The MC-LSTM model was described in the paper "MC-LSTM: Mass-Conserving
LSTM" (Hoedt et al, 2021) [9] and the results of the study indicate that the MC-LSTM
model is not necessarily better than the standard LSTM for streamflow prediction, but it
still showed better results than other mass conserving models. The MC-LSTM is also able
to solve mathematical problems that the standard LSTM cannot, and thus while it may not
be directly better for streamflow prediction it can still prove superior in certain use cases.

Figure 2.3: Mass Conserving LSTM (MC-LSTM): An LSTM model for the mass inputs (ie precipi-
tation) are separated from the auxiliary inputs. The mass inputs are fed directly through the input
gate where the other inputs are used as activation for the three gates. Unlike other LSTM models,
this model does not contain a hidden state [9].

2.1.5 MTS-LSTM

The Multi-Timescale LSTM is a model designed to account for time-series data of multiple
temporal resolutions, for instance daily and hourly. It is of course possible to simply train an
LSTM model on an hourly timescale, but this can be computationally inefficient and so the
MTS-LSTM model was suggested. This model allows long-past inputs to be processed at a
different temporal resolution than more recent inputs. The model can also calculate different
variables at different timescales. The model was described in the paper "Rainfall–runoff pre-
diction at multiple timescales with a single Long Short-Term Memory network" (Gauch et al,
2021) [7] and shows that the MTS-LSTM performs very similarly to the naive LSTM, where
the MTS-LSTM performs slightly worse and the shared Multi-TimeScale LSTM (sMTS-
LSTM) performs slightly better. However, both models outperform the National Water
Model (NWM).

2.1.6 ODE-LSTM

The Ordinary Differential Equation LSTM is a model designed to handle irregularly sampled
time-series data [14]. The model uses Ordinary Differential Equations (ODE) to represent
the hidden state of the model. The way this model is implemented in the Neuralhydrology

5

framework is that it simulates the data irregularity by "aggregating parts of the input se-
quence to random frequencies" [13]. No study describing the results of this implementation
could be found for this paper. One reason for this could be that the concepts implemented
by the ODE-LSTM became the basis for the MTS-LSTM, though this is speculation.

2.1.7 GRU

The Gated Recurrent Unit (GRU) [4] (see fig 2.4) is a recurrent machine learning model
quite similar to the LSTM model. Both models are based heavily on the concepts of gates,
but while the LSTM has three gates, the forget gate, the input gate, and the output gate,
the GRU model only has two, the reset gate and the update gate. Additionally, the GRU
model does not use the hidden and cell states present in the LSTM model and instead relies
only on the hidden state. The reset gate determines which part of the previous hidden state
should be forgotten for the input. The update gate determines both which inputs should
be remembered and which past information should be forgotten for the output. To compare
with the LSTM model the update gate is a combination of the forget and input gates for the
next state, whereas the reset gate is in a sense the forget gate for the previous state. The
GRU model in the Neuralhydrology framework uses the standard PyTorch implementation
and seems to exist as an example of how to add new models, and as such there does not
seem to be any paper describing the results of the model.

Figure 2.4: Gated Recurrent Unit (GRU) is a recurrent machine learning model that uses two gates,
the reset gate and the update gate. The reset gate removes data from the previous hidden state
input, and the update gate both determines what input should be added and what data in the
hidden state should be kept for the output [4].

2.1.8 Transformer

The transformer implemented in Neuralhydrology uses the default PyTorch transformer en-
coder implementation. A more detailed look at this model will be included in the transformer
section.

2.2 Transformers

2.2.1 Model types

Basic transformer

The original transformer model was described in the 2017 paper "Attention is all you
need" [21]. The central principle of the model is that it relies entirely on the concept of
attention.
To properly describe the transformer model we must first discuss the pre-processing required
by the model. Most machine learning models use the model input to predict the output

6

Figure 2.5: Transformer model. The output is shifted right to remove the value to be predicted. The
input and shifted outputs are then embedded and given positional encoding. The input is passed
through the encoder layer and then both the shifted output and the output from the encoder are
passed into the decoder. The decoder output is then passed through the model head to get the
result [21].

whereas the true output is only used to calculate loss for back-propagation. The transformer
model is based on attention and is thus also able to take the true output as an input in
order to better understand the relationship between the input and the output. Since the last
element of the true output is never supposed to be visible to the model the entire output is
shifted to the right, effectively removing the last element. The input and output values are
then embedded to the right format and dimensions for the model. After this both values
are assigned positional encoding to give them an explicit time dimension. The positional
encoding in the original paper [21] is described as such:

PE(pos,2i) = sin(pos/100002i/dmodel), (2.1)

PE(pos,2i+1) = cos
(
pos/100002i/dmodel

)
. (2.2)

After this the source input is fed into the transformer encoder and the target input is fed
into the transformer decoder. The first part of the transformer model itself is the multi-head
attention layer. This layer consists of multiple parallel scaled dot-product attention layers,
depending on the number of transformer heads (see figure 2.6). For each scaled dot-product
attention the input is duplicated three times and passed through a linear layer. This then
creates the matrices Queries, Keys, and Values (Q, K, and V). The Q and K matrices are
multiplied together and scaled. The result can then be masked depending on the requirement
of the model. For the decoder this is generally recommended, but for the encoder it can vary.
The masked result is then passed through a softmax and is multiplied by the V matrix. This
essentially means that the Q and K matrices create a gate for the V matrix. These operations
are done for all transformer heads in the multi-head attention, after which the outputs are
concatenated and passed through a linear layer to return to the original dimensions.
After the multi-head attention, or masked multi-head attention, we then have a layer that
adds together the output of the attention layer with the original input and normalizes the
value. This adding and normalizing happens after every layer in the transformer. For the

7

Figure 2.6: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel. The inputs are Query, Key and Value [21].

encoder, we then move on to the feed-forward layer. This layer consists of two fully con-
nected layers with a ReLu activation between them.

For the next layer of the decoder, we have another attention layer. This functions me-
chanically the same as the first, except for the inputs themselves. Instead of Q, K, and V
matrices derived from the previous decoder attention layer, we take the Q matrix from the
decoder attention and the V and K matrices from the encoder output. The output from
this decoder attention layer is then added and normalized with the output from the previous
decoder attention layer. Finally, there is a feed-forward layer similar to the encoder section.
Multiple encoder and decoder layers can be used in conjunction.

After the transformer model itself, there is the model head. This can vary wildly based
on the particular use case, but a typical solution is a linear layer. For the transformer model
shown in figure 2.5 the head consists of a linear layer and a softmax activation function.

BERT

The Bidirectional Encoder Representation from Transformers (BERT) model is a type of
transformer model focused specifically on the encoder section [6]. Instead of containing an
encoder and a decoder section, the BERT model is simply a stack of transformer encoder
layers. As the name implies BERT is a bidirectional model, as opposed to the unidirectional
approach of the standard masked transformer model. This means that instead of only
having access to previous inputs the model has access to both previous and future inputs.
The methods to train BERT are twofold. The first is Masked Language Modeling (MLM)
which means that random tokens of the inputs are masked and the model is tasked with
predicting the masked tokens, using both earlier and later tokens to learn the context. The
second method is Next Sentence Prediction (NSP) where the model is given two sequences
and is tasked with predicting whether they are consecutive. These two methods together
help the model get a good understanding of context and correlation in time series data.

GPT

The Generative Pre-trained Transformer (GPT) model is a transformer model based specifi-
cally on the decoder architecture. Instead of containing an encoder and a decoder section the
GPT model is simply a stack of transformer decoder layers. This means that each decoder
layer contains a masked self-attention layer and a feed forward layer. The attention layer
in the standard transformer model that takes input from the encoder layer is not present in
GPT as it does not contain an encoder.

8

2.2.2 Hydrological implementation

This section will detail the transformers implemented in the field of hydrology.

Neuralhydrology

The transformer model implemented in the Neuralhydrology framework [13] is most closely
based on the GPT architecture. It utilizes a transformer encoder from the PyTorch library
with an upper triangular (sequential) mask. This means that, like GPT, only previous values
are visible while future values are masked. The reason the model is classified as an encoder
is that while GPT receives the target sequence as input, the input in the Neuralhydrology
transformer is the source sequence, whereas the target sequence is never visible to the model.
When it comes to results for this model there does not seem to be any published papers
discussing such findings, at least not that could be acquired for this paper. An attempt was
made to contact the development team to see if any such data was available, but no response
has been received at the time of writing.

Apalachicola River

The paper "Hydrological Drought Forecasting Using a Deep Transformer Model" (Amanambu
et al) [2] is a study conducted on the Apalachicola River in Florida, where data from two
gauging stations were used to test the comparative performance of transformer versus LSTM
models. The findings are that the transformer model performs better than the LSTM model
on all timescales. The findings of this study are very valuable for this paper as it suggests the
potential for the transformer model to outperform the LSTM, however, since the dataset is
rather limited it is valuable to compare performance over a wider number of basins/gauging
stations.

RR-Former

The Rainfall-Runoff Transformer (RR-Former) is a transformer model described in the paper
"RR-Former: Rainfall-runoff modeling based on Transformer" (Yin et al, 2022) [22]. The
paper describes implementing a basic transformer model on the CAMELS dataset. This
model differs somewhat from the implementation that will be described later in this paper.
For one the model does not employ a mask for the encoder section, only for the decoder.
This is more accurate to the original transformer model described by Vaswani et al [21]
however such an implementation is not necessarily realistic in the field of hydrology. The
RR-Former allows the prediction of streamflow values based on all dynamic attributes, both
past and future, but for practical implementation, any future values would be estimated and
thus less accurate. The mask employed for the decoder is also different. The decoder for
the RR-Former simply masks the final elements of the sequence, the ones that should be
predicted, whereas the other elements are unmasked. This is different from the transformer
described in this paper which uses an upper triangular mask for both the encoder and the
decoder. Additionally, it seems that for the RR-Former this decoder mask is used instead of
the right shift described by Vaswani et al [21], meaning instead of the values to be predicted
being removed from the sequence they are simply masked.

The conclusion by the authors is that the RR-Former outperforms the LSTM models used
for bench-marking. The paper goes into detail about the effects of pretraining and finetun-
ing and, as expected, indicate both are important. The paper also compares these adjusted
models with the LSTMs, however it does not explain whether the LSTM models are also
pretrained or finetuned, and as such the comparison is slightly vague. Listed in the paper is
a link to a code repository, however this repository is empty and as such the results of this
study could not be independantly verified.

9

2.3 Physical hydrology models

This section will give a basic overview of some physical models used in hydrology. These
are models that rely on the laws of physics and mathematics to estimate streamflow values,
rather than machine learning. This section is included because values from these models are
used for comparison in chapter 4.

2.3.1 SAC-SMA

The Sacramento Soil Moisture Accounting (SAC-SMA) model is a hydrological model first
suggested by Burnash et al, 1973 [3]. The model is focused on calculating the moisture
condition of the soil.

2.3.2 VIC

The Variable Infiltration Capacity (VIC) is a hydrological model developed by Liang et al,
1994 [15] at the University of Washington. The model separates the land surface into a grid
and calculates the capacity for water to enter the soil.

2.3.3 mHM

The Mesoscale Hydrologic Model (mHM) is a hydrological model developed by Samaniego et
al, 2010 [20]. The main principle of the model is to divide regions into grids on a mesoscale.

2.4 Metrics

This section will detail the different metrics that will be used in chapter 4

2.4.1 NSE

The Nash-Sutcliffe model Efficiency coefficient (NSE) [17] is an equation used to calculate
the efficiency of hydrological models. NSE has a value range from -∞ to 1, where values close
to 1 are desirable and 0 represents the average for the sequence. The metric is described in
Eq. (2.3):

NSE = 1− ΣT
t=1(Q

t
o −Qt

m)
2

ΣT
t=1(Q

t
o −Qo)

2
, (2.3)

where Q is is discharge, o is observed, m is modelled and t is time.

2.4.2 Alpha NSE decomposition

The alpha NSE decomposition [8] is a metric that calculates the fraction between standard
deviations between simulated and observed data. The range of possible values is from 0 to
∞ where values closer to 1 are desirable. The metric is described in Eq (2.4):

α =
σs

σo

, (2.4)

where σ is the standard deviation, s is simulated and o is observed.

10

2.4.3 Beta NSE decomposition

The beta NSE decomposition [8] is a metric that calculates the difference in means between
the simulated and observed values over the standard deviation. The value range of the
equation is from -∞ to ∞ where values closer to 0 are desirable. The metric is described in
Eq. (2.5)

β =
µs − µo

σo

, (2.5)

where µ is the mean, σ is the standard deviation, s is simulated and o is observed.

2.4.4 KGE

The Kling-Gupta Efficiency [8] is a model metric that attempts to improve upon NSE by
combining attributes in a more balanced way. Similarly to NSE, KGE has a value range
from -∞ to 1, where values closer to 1 are desirable. The metric is described in Eq. (2.6):

KGE = 1−
√

[sr(r − 1)]2 + [sσ(σ − 1)]2 + [Sβ(βKGE − 1)2], (2.6)

where r is the correlation coefficient, α is the alpha NSE (Eq. (2.4)), βKGE is the beta KGE
(Eq. (2.7)) and sr, sα and sβ are the corresponing weights.

2.4.5 Beta KGE

The beta KGE [8] is a metric that calculates the fraction of the means between the simulated
and observed values. The value range is between −∞ and ∞, where values closer to 1 are
desirable. The metric is described in Eq. (2.7)

βKGE =
µs

µo

, (2.7)

where µ is the mean, s is simulated and o is observed

2.5 CAMELS

The Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) dataset
is a dataset created by Newman et al, 2015 [19], and Addor et al, 2017 [1]. The dataset
contains forcing and hydrologic response data for 671 hydrologic basins in the USA. The
data is gathered from a period between 1980 and 2010.

11

Chapter 3

Practical implementation

The focus of this paper will be the implementation of a full transformer model. The preexist-
ing Neuralhydrology framework does contain a transformer model, however, this model only
contains the encoder section. This paper will therefore try to implement a full transformer
model, with both an encoder and a decoder. The theoretical basis for this is that a full
transformer model will have access to more data than the transformer encoder, and could
thus potentially find patterns that the encoder could not. Both this full transformer model
and the transformer encoder will be used for testing, however, since the encoder model is
already implemented this chapter will focus on the full transformer.

This model will be implemented within the Neuralhydrology library. This is because the
library has implemented useful tools for data loading, training, testing, and evaluation.
Some of the elements in this section, such as the dataset and the optimizer, are unchanged
from the Neuralhydrology studies this paper is based on. There are two main reasons for
this. The first is that changing too many variables at once invalidates comparisons to other
papers. The second is that changing these values is simply outside the scope of this paper.
There is a near-infinite number of changes that could potentially be made to this framework,
but this paper will focus primarily on the model itself and the preprocessing required for the
model to run.

3.1 Data

3.1.1 Dataset

The dataset used for this project is the CAMELS US hydrology dataset. This is a large
dataset well suited for training hydrological models, and it has been used in many other
studies. This dataset is split into basins that each contain static and dynamic measure-
ments. The static variables are data points for each basin that provide an overview of the
basin itself, such as topography, vegetation, soil, geology, and climate. The dynamic vari-
ables are the regularly measured values. These exist both as daily and hourly values, but for
this project, only the daily values will be used. Finally, there is the target variable, which
is streamflow. Like the dynamic variables, these values are also daily measurements. The
dataset will be split into training, validation, and testing sets, where the training set contains
data from 1999 to 2008, the validation set contains data from 1980 to 1989, and the testing
set contains data from 1989 to 1999. The attributes used in this paper are as follows [1]:

Dynamic attributes

• Precipitation

• Solar radiation

• Max temperature

12

• Min temperature

• Vapor pressure

Static attributes

• Mean precipitation

• Mean Potential EvapoTranspiration (PET)

• Aridity

• Precipitation seasonality

• Snow fraction

• Frequency of high precipitation

• Duration of high precipitation

• Frequence of low precipitation

• Duration of low precipitation

• Mean elevation

• Mean slope

• Catchment area

• Forest fraction

• Maximum Leaf Area Index (LAI)

• Difference between maximum and minimum Leaf Area Index

• Maximum Green Vegetation Fraction (GVF)

• Difference between maximum and minimum Green Vegetation Fraction

• Depth to bedrock

• Soil depth

• Soil porosity

• Soil hydraulic conductivity

• Max water content

• Sand fraction

• Silt fraction

• Clay fraction

• Carbonate rocks fraction

• Surface permeability

3.1.2 Dataloading

When loading the data, the static, dynamic, and target values are selected from a config-
uration file. The configuration file also determines the period from which the data should
be loaded. The specific basins used are determined by a text file listing all basin ids. The
three variable categories; static, dynamic, and target variables, are all loaded as separate
tensors and kept as a dictionary. The static and dynamic variables remain separate until
the preprocessing. This is because some of the models in the Neuralhydrology library use
dynamic and static variables as separate inputs, but for the transformer model they will be
combined, similarly to the standard LSTM.

13

3.2 Preprocessing

The main parts of the preprocessing pipeline are the embeddings, positional encoding, and
masks.

3.2.1 Input shifting

For the prediction to be accurate, we need to shift the inputs provided to the model. First,
we perform a right shift on the target (streamflow) input. This is done by removing the final
element from the input tensor. The purpose of this is to indicate that the last element is the
target of the prediction, and thus should not be included as part of the input. For example,
if we use 99 days of streamflow data to predict the 100th day, then there is no reason for
that final day to ever be sent into the model.

3.2.2 Embedding

The next section of preprocessing is the embedding. This embedding serves two purposes.
The first is to combine the dynamic and static variables. The dynamic inputs are in the
shape [batch size, sequence length, number of variables], whereas the static inputs are in the
shape [batch size, number of variables]. This means that to combine the two tensors the
dynamic inputs are transposed to contain the sequence length first and the static inputs are
repeated to the sequence length. When the tensors are the same shape they are concate-
nated. The reason why the two tensors are combined is that the transformer encoder only
accepts a single input tensor.

The second purpose of the embedding is to increase the size of the inputs to the correct
shape for the final model. This is especially important for the transformer model as the
input value needs to be divisible by the number of transformer heads. This is done through
a fully connected layer. The method is applied to both the source and target tensors, and
ensures that both have the same size. The reason they need to have the same size is that
the scaled dot-product attention requires them to be multiplied.

3.2.3 Positional Encoding

The positional encoding is similar for both the source and target inputs, and is based on the
formula described in the paper "Attention is all you need" (Vaswani et al, 2017) [21], shown
in equations 2.1 and 2.2

The positional encoding serves the purpose of adding an explicit time dimension to the
input values useful for attention. This means the model will be better able to determine
where in the sequence a value belongs. The positional encoding allows the model to better
understand the relationships between elements.

3.2.4 Masking

Masking is an important part of this transformer model. To ensure the model is not able to
view future values in the time series those values need to be masked. This is achieved with
a PyTorch triu mask where all future values are masked with ’-inf’ and all unmasked entries
are indicated with 0. This mask is applied to both the source and target inputs, however,
for the source inputs, we also shift the mask one position to the right. If we did not perform
this right shift it would mean that if the model was trying to predict target values for day
2 it would use target and source inputs from day 1. This is a perfectly functional model
and may be the most realistic for real-world applications because it does not need to rely

14

on estimated values. However, the LSTM models use source inputs to estimate same-day
target outputs, so for comparison it is useful for the transformer to also have access to those
values. With the mask shifted to the right it means that for predicting day 2 target outputs
the model will have access to day 1 target inputs as well as source inputs for both day 1 and
day 2. The masks can be seen in 3.1

Figure 3.1: (left) Encoder mask. (right) Decoder mask.

3.3 Model

3.3.1 Transformer

The model itself utilizes the standard PyTorch transformer implementation. All of the model
parameters, such as model dimensions, number of transformer heads, number of layers,
feedforward dimensions, and dropout, are defined in the configuration file. Testing with all
these parameters will be detailed in the chapter 4. The main difference to the transformer
implementation described by Vashwani et al, 2017 [21], is that both the encoder and decoder
use Masked Multi-Head attention. This is because for both the source and target inputs it
does not make sense to have access to future values. For instance, it would not make sense
to predict the streamflow values for one day using the precipitation from the following day.
The implemented transformer model can be seen in figure 3.2

3.3.2 Model head

The Neuralhydrology framework supports several model heads, but for this project, only
the standard regression head will be used. This is a simple linear layer that converts the
transformer model output back into the target format.

3.4 Loss

The loss metric for this project is the Nash–Sutcliffe model efficiency coefficient (NSE), shown
in Eq. (2.3). Using NSE for loss calculation seems to be the standard for Neuralhydrology
studies. The Loss calculation in this paper has been attempted in two different ways. The
first method attempted was based on a tutorial by Samuel Lynn-Evans [16] which said that
the loss should be calculated over the entire sequence length. For instance, with a sequence
length of 100, the loss would be calculated over all 100 elements, not just the elements being
predicted. This method proved to make the model very unstable, and as such a different loss
calculation was implemented, calculating loss over only the predicted parts of the sequence.
The hypothesis of why did result occurred will be detailed in chapter 4.

15

Figure 3.2: Slightly modified transformer model

3.5 Optimizer

The optimizer part of the Neuralhydrology framework has not been changed for this project.
As such the used optimizer is Adam, which is currently the only optimizer implemented in
the Neuralhydrology library.

16

Chapter 4

Results

The results chapter will detail two main sections. The first is hyperparameter testing, where
models were trained with different hyperparameters, and their results will be presented and
compared. The second section is a comparison of the transformer model with other existing
models, both those included in the Neuralhydrology library and physical models like SAC
and ViC. This also includes attempting to make changes to the model to see if performance
can be improved. All model code, configuration files, and results are available through
appendix A.

4.1 Parameter testing

4.1.1 Loss calculation

The initial attempt to test parameters was done on a dataset of 100 basins. The model
implementation was based on a tutorial by Samuel Lynn-Evans [16] which claimed that the
correct way to determine loss during training is to calculate the loss over the entire sequence,
rather than just the elements to be predicted. This proved to make the results wildly unsta-
ble, causing massive swings in accuracy. This unpredictability was found to be significantly
reduced when the loss was only calculated for the predicted values. However, since this
issue was discovered rather late in the project, time limitations meant that repeating the
experiments with the new loss calculation would be impractical. As such the experiment
was redone but reduced to 10 basins.

For a demonstration of the difference between the two methods table 4.1 shows their relative
NSE scores. Included in the table are results from a standard LSTM model with the same
two loss calculation methods. This indicates that the reduction in accuracy happens for both
methods, though the results seem less severe for the LSTM model. Calculating loss over the
entire output sequence is a method that is based on the assumption that the input sequence
could be of different lengths. This is reasonable to assume for text prediction, but in this
study, the sequence length is fixed. As such it makes sense that the method of calculating
loss only over the predicted elements would be the better alternative. All models are trained
at 100 basins.

Model Loss over all elements Loss over only predicted elements
Transformer 0.165 0.543

LSTM 0.659 0.723

Table 4.1: NSE Scores with different loss calculations over 100 basins.

17

4.1.2 Hyperparameters

The hyperparameters examined in these tests are:

• Batch size: Size of batches passed through the model

• Epochs: Number of training iterations

• Hiddens: Size of the embedding layer for static and dynamic variables

• Seq len: The sequence length used to predict future values, includes both known and
unknown values, ie a sequence length of 100 when predicting 1 value means 99 known
values.

• Transformer dim feedforward: The internal dimension inside the transformer model
used during the feedforward section.

• Transformer nheads: The number of transformer heads used during the attention mech-
anism

• Transformer nlayers: The number of transformer layers, ie the number of encoders and
decoders stacked on top of each other

• Output dropout: Dropout value applied after the main model

• Transformer dropout: Dropout applied inside the transformer model

• Transformer positional dropout: Dropout applied to the positional encoding for the
transformer

This section will contain tables for each variable, containing data from both the experiments
on 100 basins and the ones on 10 basins. However, as mentioned in section 4.1.1, due to
variations in loss calculations, the experiments on 100 basins provide significantly less reli-
able results, and this should be kept in mind. Some values from the 100 basin experiments
are also missing, this is because they were deprioritized when it was seen that the method
was faulty. The tables will also show what values caused the model to become too large to
run, indicated by OOM (Out of Memory).

Batch size

As seen in table 4.2 higher batch sizes generally provide better results, but this does come
at the cost of performance and it seems the advantage somewhat plateaus around 128 -
256. This is logical as smaller batch sizes mean that each model weight needs to be able to
account for more basin values.

Basins 4 8 16 32 64 128 256 512 +512
10 -0.247 -0.257 -0.245 -0.076 0.335 0.612 0.640 0.647 OOM
100 0.450 -0.448 0.355 0.340 0.377 0.329 0.285 OOM

Table 4.2: NSE scores with different batch sizes.

Epochs

Table 4.3 perfectly demonstrates the unpredictability of the 100 basin experiments, seeing
as how longer training does not seem to provide better results. However the 10 basin exper-
iments do seem to align with known machine learning theory, that the model increases in
accuracy but eventually starts to over-fit.

18

Basins 10 20 30 40 50 60 70 80 90 100
10 0.606 0.642 0.643 0.627 0.612 0.632 0.643 0.597 0.611 0.620
100 0.441 0.368 0.373 0.229 -1.149 0.118 -0.077 0.184 -0.319

Table 4.3: NSE scores with different epoch numbers.

Hiddens

The results from table 4.4 indicate that the size of the hiddens for the input embeddings
does not make too much of a difference unless it becomes too large, at which point accuracy
drops significantly. This result makes sense because of the size of the input variables, shown
in section 3.1.1. Expanding the input variables too much, creating too much of an increase
in the dimension, would logically muddle the values.

Basins 8 16 32 64 128 256 +256
10 0.642 0.648 0.642 0.646 -0.128 0.115 OOM
100 0.383 0.293 0.382 -0.867 -0.447 -0.029 OOM

Table 4.4: NSE scores with different hiddens.

Sequence Length

Table 4.5 indicates that shorter sequence lengths generally perform better. This result is
interesting since some papers from the Neuralhydrology team [12] indicate a slightly higher
sequence length, such as 270, is ideal. The logic behind a longer sequence length is that the
streamflow values can fluctuate quite a bit depending on the season, and thus including a
significant part of the year can help the model determine which part it is looking at. However,
the results of this test seem to indicate that such a long sequence may not be necessary.

Basins 50 100 150 200 250 300 350 400 450 500 550 600
10 0.661 0.660 0.642 0.645 0.643 0.636 0.635 0.639 0.648 0.642 0.637 0.633
100 0.542 0.437 0.358 0.070 0.359 0.327 0.006 0.289 0.291 0.115 -0.096 0.185

Table 4.5: NSE scores with different sequence lengths.

Feedforward

As seen in table 4.6 it seems the dimension of the transformer feedforward does not play
a massive part in the overall accuracy. The main focus of the transformer model is the
attention mechanism. It is this mechanism that contributes the most to the model accuracy,
not the following feedforward section. The results seem to validate this theory.

Transformer heads

The results of table 4.7 show that the number of transformer heads does not have a large
impact on accuracy, however, it does have a decent impact on performance. This result may
be because the basin set is limited, but it does indicate that increased transformer heads
are more of insurance in case one or more model heads behave unpredictably, rather than a
direct benefit to accuracy.

Transformer layers

Table 4.8 indicates that between 1 and 5 layers show negligible differences, but higher values
reduce accuracy significantly. The logic behind this might be that too many layers cause the

19

Basins 32 64 128 256 512 1024
10 0.644 0.638 0.628 0.641 0.651 0.637
100 0.152 -1.841 -0.387 0.340 0.237 0.199

Table 4.6: NSE scores with different transformer feedforward dimensions.

Basins 1 2 4 8 +8
10 0.645 0. 643 0.645 0.647 OOM
100 0.378 0.323 0.146 0.259 OOM

Table 4.7: NSE scores with different numbers of transformer heads

results to become muddled

Basins 1 2 3 4 5 6 7 8 9 10
10 0.649 0.647 0.640 0.635 0.644 0.157 -0.231 0.056 -0.231 -0.239
100 0.339 -1.904 -0.052 0.234 0.313 -0.447 -0.447 -0.100 -0.447

Table 4.8: NSE scores with different numbers of transformer layers.

Dropout

Table 4.9 details the effect of changing the dropout values. As seen from the output dropout
and positional encoding dropout we can see that the values are mostly within the natural
fluctuations of the model, although they do drop slightly when the dropout becomes excep-
tionally high. However, the most interesting results are from the transformer dropout, where
it seems the accuracy drops quickly and significantly when the dropout value is increased.
One reason the transformer dropout has such an increased impact might be because it is
applied in both sections of the encoder, as well as all three sections of the decoder. This
means that in practice the transformer dropout values are significantly higher than the oth-
ers. This underlines the idea that stacking multiple dropout values on top of each other is
bad for accuracy, and as such it would likely be best to either use output, transformer, or
positional encoding dropout, not multiple of them.

4.2 Large dataset testing

This section will detail the tests conducted on a larger section of the CAMELS dataset, 531
basins as opposed to 10 and 100 from the hyperparameter testing. The hyperparameters
for all models are identical if not otherwise stated. This is to better analyze the reason for
changing results.

Hyperparameters

• Batch size: 256

• Epochs: 100

• Hiddens: 32

• Sequence length: 100

• Learning rate: Epoch 0 - 0.001, Epoch 30 - 0.0005, Epoch 60 - 0.0001

• Transformer feedforward dimension: 256

• Number of transformer heads: 4

20

Dropout Basins 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Output 10 0.638 0.635 0.638 0.615 0.637 0.632 0.645 0.640 0.634 0.590
100 0.411 -0.012 0.380 0.357

Transformer 10 0.638 0.619 0.604 0.530 0.404 0.325 0.080 -1.577 -0.244 -0.239
100 0.130 0.448 -1.492 -3.998 -0.447

Positional
Encoding

10 0.639 0.644 0.645 0.638 0.639 0.626 0.636 0.622 0.583 0.481
100 0.337 0.285 0.241 0.381 0.007 0.416 0.361 -0.114

Table 4.9: NSE scores with different dropout values.

• Number of transformer layers: 4

• Output dropout: 0.4

• Transformer dropout: 0.0

• Transformer positional dropout: 0.0

4.2.1 Model comparisons

We start with a basic test of the performance of both the full transformer model, as well as
the transformer encoder included in the Neuralhydrology library, against other hydrological
models. The LSTM was trained manually as part of this paper, however, the results from the
other models listed are taken from reports from the Neuralhydrology team. Worth noting is
that these reports achieve different results for the base LSTM model. The LSTM results most
comparable to those achieved in this report are those from the EA-LSTM [12]. This table
also includes values from physically based models as a comparison with the non-machine
learning methods currently employed in the field of hydrology.

Mean NSE Median NSE KGE Beta NSE No. Basins with NSE ≤ 0
Full transformer 0.555 0.558 0.619 -0.027 1

Transformer Encoder 0.665 0.701 0.734 -0.013 4
LSTM 0.661 0.743 0.739 -0.037 2

EA− LSTMa 0.67 0.71 3
MC − LSTM b 0.744 -0.020
AR− LSTM c 0.879 0.896 −0.007
SAC − SMAb 0.603 -0.066

V ICb 0.551 -0.018
mHM b 0.666 -0.040

Table 4.10: Comparison between different hydrology models.
a: Taken from Kratzert et al, 2019 [12]. Of note is that the LSTM model described in the cited
paper performs roughly the same as the model described in this paper
b: Taken from Hoedt et al, 2021 [9]. Of note is that the LSTM model described in the cited paper
performs slightly better than the model described in this paper.
c: Taken from Nearing et al, 2022 [18]. Of note is that the LSTM model described in the cited
paper performs significantly better than the model described in this paper.

As seen in table 4.10 and figure 4.1, the full transformer performs a bit worse than both the
LSTM and the transformer encoder. The encoder however does achieve very similar results
to the LSTM, which is exemplified well in the cumulative density graph. This graph also
showcases very interesting results for the full transformer, in that its distribution is very
different from other models. Other models showcased by the Neuralhydrology team also
seem to follow a similar curve to the LSTM and transformer encoder [10]. The fact that the
full transformer performs better than the other models for the last 20% seems to indicate
that the model becomes specialized in a smaller group of basins, and thus less generalized.

21

Figure 4.1: Comparison between different hydrology models.

Also worth noting is that the full transformer performs slightly better at the lower end of
the curve, having fewer basins with NSE ≤ 0.

4.2.2 Change over time

This section will look at how the three models, the full transformer, transformer encoder,
and LSTM, develop over time with different numbers of training epochs. The reason for this
is to look for differences in the way the models learn over time.

25 50 75 100
Full Transformer 0.527 0.548 0.560 0.555

Transformer Encoder 0.640 0.606 0.649 0.665
LSTM 0.656 0.644 0.659 0.661

Table 4.11: NSE scores for models trained different numbers of epochs.

Figure 4.2: NSE scores for models trained different numbers of epochs.

As seen in table 4.11 and figure 4.2, the difference between 25 epochs and 100 is not massive,
but there are some interesting findings. The LSTM seems to settle on certain values relatively
quickly, whereas the encoder takes some time to settle on top of the LSTM. The difference
for the full transformer seems minimal, although it does increase accuracy slightly.

22

4.2.3 Longer training

This test is to see if a longer training period can increase the performance of the full trans-
former. The reasoning behind this is that this transformer receives more data than the other
two models and may thus require more training.

Mean NSE Median NSE KGE Beta NSE Basins with NSE ≤ 0
Transformer 100 Epochs 0.568 0.565 0.616 -0.028 1
Transformer 200 Epochs 0.565 0.566 0.633 -0.015 1
Transformer 300 Epochs 0.540 0.548 0.627 −0.012 7

Encoder 100 Epochs 0.665 0.701 0.734 -0.013 4
LSTM 0.661 0.743 0.739 -0.037 2

Table 4.12: Comparison of transformer models trained for longer.

Figure 4.3: Comparison of transformer models trained for longer.

The results of table 4.12 and figure 4.3 show that longer training is not particularly helpful.
The model becomes even more specialized and thus performs worse on most basins, without
a particularly noticeable improvement on the basins it specializes on. This is useful for future
research because it shows that the key to improving accuracy lies in improving the model
itself, not training it for longer.

4.2.4 Longer input sequence

This test is to see if a longer input sequence results in better performance for the full
transformer model. The reasoning behind this is that reports from the Neuralhydrology
team [12] indicate that a longer input sequence, around 250, results in better performance.
The hyperparameter testing in section 4.1 indicates that a shorter sequence, around 100, is
better, but this result might be affected by the fact the test was not conducted on the full
531 basin set.

Mean NSE Median NSE KGE Beta NSE Basins with NSE ≤ 0
Transformer 100 seq length 0.555 0.558 0.619 -0.027 1
Transformer 250 seq length 0.553 0.548 0.590 -0.031 1

Encoder 100 seq length 0.665 0.701 0.734 −0.013 4
LSTM 100 seq length 0.661 0.743 0.739 -0.037 2

Table 4.13: Comparison of transformer models trained different sequence lengths.

Table 4.13 and figure 4.4 confirms the hyperparameter testing, that the longer sequence
length does not increase accuracy, and in fact, makes it marginally worse. The longer

23

Figure 4.4: Comparison of transformer models trained different sequence lengths.

sequence does slightly increase performance on the lower part of the density graph, but the
reduced performance on the rest of the basins makes the overall performance worse. The
reason for this finding conflicting with previous research may be that the full transformer
model is, unlike the LSTM, more suited for shorter sequences. This may be because the
LSTM receives all inputs sequentially whereas the transformer has access to all previous
inputs at the same time.

4.2.5 Changed target preprocessing

The target input sequence for the transformer decoder has to be scaled up to the same
dimensions as the source input sequence for the two to be multiplied in the transformer
model. There are two main ways to do this, the first is to use a linear machine learning
layer, and the second is to manually duplicate the elements of the sequence to the correct
dimensions. The former is the default implementation of the full transformer model, and so
this test is based on the hypothesis that perhaps this linear layer adds unnecessary noise to
the model.

Mean NSE Median NSE KGE Beta NSE Basins with NSE ≤ 0
Transformer Linear Exp 0.555 0.558 0.619 -0.027 1
Transformer Manual Exp 0.562 0.561 0.621 -0.032 2

Transformer Encoder 0.665 0.701 0.734 −0.013 4
LSTM 0.661 0.743 0.739 -0.037 2

Table 4.14: Comparison of transformer models trained different methods for expanding the target
sequence.

The results of table 4.14 and figure 4.5 show that the performance of the model with a manual
expansion is slightly better than the model with a linear layer, however, the difference is not
large. This indicates that to some degree the hypothesis that the linear layer makes the data
more noisy may be true, but it does not account for the difference between the transformer
and the LSTM.

4.2.6 Mask removal

The performance of the full transformer model has thus far been shown to be noticeably
poorer than that of both the LSTM and the transformer encoder. This is in stark contrast
to the RR-Former by Yin et al, 2022 [22], which boasted a better performance than the LSTM
used for comparison, also on the CAMELS dataset. The main difference between the RR-
Former and the one used in this paper is in terms of masking, where the transformer encoder

24

Figure 4.5: Comparison of transformer models trained different methods for expanding the target
sequence.

used no masks and the mask for the transformer decoder was only applied to the predicted
elements. This test is to see if this masking method makes a difference in performance by
removing the mask for both the encoder and decoder. The reason why the mask is removed
from the decoder is because unlike the RR-Former the target input sequence is right-shifted
to remove the predicted elements entirely.

Mean NSE Median NSE KGE Beta NSE Basins with NSE ≤ 0
Masked Transformer 0.562 0.561 0.621 -0.032 2
No Mask Transformer 0.534 0.511 0.573 -0.014 2
Transformer Encoder 0.665 0.701 0.734 −0.013 4

LSTM 0.661 0.743 0.739 -0.037 2

Table 4.15: Comparison of transformer models trained different masking options.

Figure 4.6: Comparison of transformer models trained different masking options.

The results of table 4.15 and figure 4.6 once again contradict Yin et al, 2022 [22] since the
performance of the unmasked transformer is noticeably worse than the masked transformer
throughout the entire distribution. This is backed up theoretically by the fact that the model
having access to future values when predicting streamflow may simply add unnecessary noise
rather than useful data. Further testing on this topic would require access to the RR-Former
code which is not currently available.

25

4.2.7 Reset parameters

The transformer encoder created by the Neuralhydrology team contained a function to reset
the model parameters to initialize the weights and biases. When creating the full transformer
model this feature was accidentally omitted. This test is to see if resetting the parameters
when initializing the model makes a difference. Since this was the final test all models were
trained twice to verify that their relationships remain the same.

Mean NSE Median NSE KGE Beta NSE Basins with NSE ≤ 0
Transformer No Reset 0.555 0.558 0.619 -0.027 1

Transformer Reset 0.550 0.552 0.582 -0.024 2
Transformer Encoder 0.665 0.701 0.734 −0.013 4

LSTM 0.661 0.743 0.739 -0.037 2

Table 4.16: Comparison of transformer models that reset or don’t reset starting parameters.

Mean NSE Median NSE KGE Beta NSE Basins with NSE ≤ 0
Transformer No Reset 0.565 0.569 0.627 −0.020 2

Transformer Reset 0.551 0.550 0.613 -0.023 2
Transformer Encoder 0.632 0.699 0.740 -0.022 7

LSTM 0.665 0.702 0.720 -0.046 3

Table 4.17: 2nd comparison of transformer models that reset or don’t reset starting parameters.

Figure 4.7: Comparison of transformer models that reset or don’t reset starting parameters.

Figure 4.8: 2nd comparison of transformer models that reset or don’t reset starting parameters.

26

From table 4.16 and figure 4.7, we can see that resetting parameters does not improve
performance, in fact, the performance is slightly worse. Table 4.17 and figure 4.8 make this
even more clear with an even bigger difference between the two. This does not necessarily
prove that resetting the weights is a bad idea, but it does disprove the hypothesis that
resetting the weights is vital to model accuracy. The second model set also showcases a
slight shift in the relationship between the transformer encoder and the LSTM, with the
LSTM performing slightly better and the encoder performing slightly worse. This indicates
that the two models are close enough in accuracy that it may be a toss-up which one is more
accurate.

27

Chapter 5

Discussion and Future work

The results of this study are very interesting, and it is clear more testing is certainly required.
The transformer encoder performs very similarly to the LSTM model, even being able to
sometimes exceed it. The LSTM does perform better on a more consistent basis, but the
transformer encoder has the potential to be able to outperform the LSTM with the correct
model parameters.

The full transformer is a lot more complicated. The model is not able to beat the LSTM
model, or even really come within the margin of error, but the large differences shown in
the cumulative density graphs nonetheless show that this model can provide an interesting
field of study. The model seems to be significantly better than other models at specialization
while suffering when it comes to generalization. This does mean however that if there was a
way to adapt the model and/or data to play to this strength then the model may have the
potential to outperform the LSTM

5.1 Basin grouping

As discussed the full transformer model seems to be better at specialization. This could make
sense as there are noticeable different patterns within the streamflow data, as indicated by
figure 5.1.

Figure 5.1: Streamflow for different basins

28

All streamflow values are from the same period, and from figure 5.1 we can see that the
variations between basin streamflow patterns are significant. The models should in theory
be able to separate these different basin categories using the static attributes provided as
input, however, adding an explicit categorization dimension could benefit the full transformer
model, or maybe even the other models as well. This could be done either as part of the
preprocessing or as a part of the model itself.

5.2 EA-Transformer

One of the models created by the Neuralhydrology team is the Entity Aware LSTM (EA-
LSTM) [12]. The way this model works is by separating the static attributes of the input from
the dynamic attributes, and explicitly using the static attributes as the activation for the
input gate. This method may be replicated for the transformer scaled dot-product attention
mechanism by using the static attributes as the key matrix and the dynamic attributes
as the query and value matrices, creating an Entity Aware Transformer (EA-Transformer).
Worth noting is that the EA-LSTM did not outperform the standard LSTM model, however
attempting to create an EA-Transformer might still be a direction worth pursuing.

29

Chapter 6

Conclusion

The purpose of this paper was to implement a full transformer model inside the Neuralhy-
drology library. The study would then try to determine the effect of various hyperparameters
as well as evaluate the performance of both the full transformer model and the existing trans-
former encoder compared to other hydrology models.

The transformer model was implemented using PyTorch and the preprocessing was adapted
to suit this model. This involves right-shifting the target inputs, embedding the inputs, and
adding positional encoding. The hyperparameters were tested on a limited basin set, and
finally, the models were trained on a much larger dataset. This also included testing various
implementations of the models.

The results show that when it comes to hyperparameter testing, there are certain param-
eters, such as the size of the embedding hiddens and the number of transformer layers,
have a large impact on accuracy, whereas others, such as the feedforward dimension and
the sequence length, have only marginal effects. The results on the larger basin set with
multiple models show that the full transformer model performs worse than the LSTM and
transformer encoder, but the cumulative density graphs show that the full transformer has a
very different distribution than other models. It seems to perform better at the top 20% of
basins but worse at the rest. This indicates it becomes better at specialization at the cost of
generalization. The transformer encoder, however, seems to achieve very comparable results
to the LSTM.

These results show potential for future work within this field of research. The transformer
encoder is already very comparable to the LSTM, so further study should be carried out
to examine if different model configurations can bring the results to outperform the LSTM.
When it comes to the full transformer, the distance is larger for it to beat the state-of-the-art,
however, the seeming ability of the model to specialize might be an advantage. Attempting
to take advantage of this feature by adding an explicit categorization dimension might be a
meaningful direction of research.

30

Appendix A

Models and results

The model code, configuration files and results for this paper are available at the following
github location: https://github.com/JonatanHindersland/neuralhydrology

31

https://github.com/JonatanHindersland/neuralhydrology

Bibliography

[1] N. Addor et al. “The CAMELS data set: catchment attributes and meteorology for large-
sample studies.” In: Hydrology and Earth System Sciences 21.10 (2017), pp. 5293–5313. doi:
10.5194/hess-21-5293-2017. url: https://hess.copernicus.org/articles/21/5293/
2017/.

[2] Amobichukwu C. Amanambu, Joann Mossa, and Yin-Hsuen Chen. “Hydrological Drought
Forecasting Using a Deep Transformer Model.” In: Water 14.22 (2022). issn: 2073-4441. doi:
10.3390/w14223611. url: https://www.mdpi.com/2073-4441/14/22/3611.

[3] Robert JC Burnash and R Larry Ferral. A generalized streamflow simulation system: Concep-
tual modeling for digital computers. US Department of Commerce, National Weather Service,
and State of California . . ., 1973.

[4] Kyunghyun Cho et al. Learning Phrase Representations using RNN Encoder-Decoder for Sta-
tistical Machine Translation. 2014. arXiv: 1406.1078 [cs.CL].

[5] Wikimedia Commons. LSTM. File:LSTM Cell.svg. 2021. url: https://commons.wikimedia.
org/wiki/File:LSTM_Cell.svg.

[6] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[7] M. Gauch et al. “Rainfall–runoff prediction at multiple timescales with a single Long Short-
Term Memory network.” In: Hydrology and Earth System Sciences 25.4 (2021), pp. 2045–2062.
doi: 10.5194/hess-25-2045-2021. url: https://hess.copernicus.org/articles/25/
2045/2021/.

[8] Hoshin V. Gupta et al. “Decomposition of the mean squared error and NSE performance
criteria: Implications for improving hydrological modelling.” In: Journal of Hydrology 377.1
(2009), pp. 80–91. issn: 0022-1694. doi: https://doi.org/10.1016/j.jhydrol.2009.08.
003. url: https://www.sciencedirect.com/science/article/pii/S0022169409004843.

[9] Pieter-Jan Hoedt et al. “MC-LSTM: Mass-Conserving LSTM.” In: Proceedings of the 38th In-
ternational Conference on Machine Learning. Ed. by Marina Meila and Tong Zhang. Vol. 139.
Proceedings of Machine Learning Research. PMLR, 18–24 Jul 2021, pp. 4275–4286. url:
https://proceedings.mlr.press/v139/hoedt21a.html.

[10] F. Kratzert et al. “A note on leveraging synergy in multiple meteorological data sets with deep
learning for rainfall–runoff modeling.” In: Hydrology and Earth System Sciences 25.5 (2021),
pp. 2685–2703. doi: 10.5194/hess-25-2685-2021.

[11] F. Kratzert et al. “Rainfall–runoff modelling using Long Short-Term Memory (LSTM) net-
works.” In: Hydrology and Earth System Sciences 22.11 (2018), pp. 6005–6022. doi: 10.5194/
hess-22-6005-2018. url: https://hess.copernicus.org/articles/22/6005/2018/.

[12] F. Kratzert et al. “Towards learning universal, regional, and local hydrological behaviors via
machine learning applied to large-sample datasets.” In: Hydrology and Earth System Sciences
23.12 (2019), pp. 5089–5110. doi: 10.5194/hess-23-5089-2019. url: https://www.hydrol-
earth-syst-sci.net/23/5089/2019/.

[13] Frederik Kratzert et al. “NeuralHydrology — A Python library for Deep Learning research in
hydrology.” In: Journal of Open Source Software 7.71 (2022), p. 4050. doi: 10.21105/joss.
04050. url: https://doi.org/10.21105/joss.04050.

32

https://doi.org/10.5194/hess-21-5293-2017
https://hess.copernicus.org/articles/21/5293/2017/
https://hess.copernicus.org/articles/21/5293/2017/
https://doi.org/10.3390/w14223611
https://www.mdpi.com/2073-4441/14/22/3611
https://arxiv.org/abs/1406.1078
https://commons.wikimedia.org/wiki/File:LSTM_Cell.svg
https://commons.wikimedia.org/wiki/File:LSTM_Cell.svg
https://arxiv.org/abs/1810.04805
https://doi.org/10.5194/hess-25-2045-2021
https://hess.copernicus.org/articles/25/2045/2021/
https://hess.copernicus.org/articles/25/2045/2021/
https://doi.org/https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/https://doi.org/10.1016/j.jhydrol.2009.08.003
https://www.sciencedirect.com/science/article/pii/S0022169409004843
https://proceedings.mlr.press/v139/hoedt21a.html
https://doi.org/10.5194/hess-25-2685-2021
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.5194/hess-22-6005-2018
https://hess.copernicus.org/articles/22/6005/2018/
https://doi.org/10.5194/hess-23-5089-2019
https://www.hydrol-earth-syst-sci.net/23/5089/2019/
https://www.hydrol-earth-syst-sci.net/23/5089/2019/
https://doi.org/10.21105/joss.04050
https://doi.org/10.21105/joss.04050
https://doi.org/10.21105/joss.04050

[14] Mathias Lechner and Ramin M. Hasani. “Learning Long-Term Dependencies in Irregularly-
Sampled Time Series.” In: CoRR abs/2006.04418 (2020). arXiv: 2006.04418. url: https:
//arxiv.org/abs/2006.04418.

[15] Xu Liang et al. “A simple hydrologically based model of land surface water and energy fluxes
for general circulation models.” In: Journal of Geophysical Research: Atmospheres 99.D7
(1994), pp. 14415–14428. doi: https : / / doi . org / 10 . 1029 / 94JD00483. eprint: https :
/ / agupubs . onlinelibrary . wiley . com / doi / pdf / 10 . 1029 / 94JD00483. url: https :
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94JD00483.

[16] Samuel Lynn-Evans. How to code the Transformer in Pytorch. Oct. 2018. url: https://
towardsdatascience.com/how-to-code-the-transformer-in-pytorch-24db27c8f9ec.

[17] J.E. Nash and J.V. Sutcliffe. “River flow forecasting through conceptual models part I —
A discussion of principles.” In: Journal of Hydrology 10.3 (1970), pp. 282–290. issn: 0022-
1694. doi: https://doi.org/10.1016/0022- 1694(70)90255- 6. url: https://www.
sciencedirect.com/science/article/pii/0022169470902556.

[18] G. S. Nearing et al. “Technical note: Data assimilation and autoregression for using near-
real-time streamflow observations in long short-term memory networks.” In: Hydrology and
Earth System Sciences 26.21 (2022), pp. 5493–5513. doi: 10.5194/hess-26-5493-2022. url:
https://hess.copernicus.org/articles/26/5493/2022/.

[19] A. J. Newman et al. “Development of a large-sample watershed-scale hydrometeorological data
set for the contiguous USA: data set characteristics and assessment of regional variability in
hydrologic model performance.” In: Hydrology and Earth System Sciences 19.1 (2015), pp. 209–
223. doi: 10.5194/hess-19-209-2015. url: https://hess.copernicus.org/articles/19/
209/2015/.

[20] Luis Samaniego, Rohini Kumar, and Sabine Attinger. “Multiscale parameter regionalization
of a grid-based hydrologic model at the mesoscale.” In: Water Resources Research 46.5 (2010).
doi: https://doi.org/10.1029/2008WR007327. eprint: https://agupubs.onlinelibrary.
wiley.com/doi/pdf/10.1029/2008WR007327. url: https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1029/2008WR007327.

[21] Ashish Vaswani et al. Attention Is All You Need. 2017. arXiv: 1706.03762 [cs.CL].

[22] Hanlin Yin et al. “RR-Former: Rainfall-runoff modeling based on Transformer.” In: Journal
of Hydrology 609 (2022), p. 127781. issn: 0022-1694. doi: https://doi.org/10.1016/j.
jhydrol.2022.127781. url: https://www.sciencedirect.com/science/article/pii/
S0022169422003560.

33

https://arxiv.org/abs/2006.04418
https://arxiv.org/abs/2006.04418
https://arxiv.org/abs/2006.04418
https://doi.org/https://doi.org/10.1029/94JD00483
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/94JD00483
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/94JD00483
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94JD00483
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94JD00483
https://towardsdatascience.com/how-to-code-the-transformer-in-pytorch-24db27c8f9ec
https://towardsdatascience.com/how-to-code-the-transformer-in-pytorch-24db27c8f9ec
https://doi.org/https://doi.org/10.1016/0022-1694(70)90255-6
https://www.sciencedirect.com/science/article/pii/0022169470902556
https://www.sciencedirect.com/science/article/pii/0022169470902556
https://doi.org/10.5194/hess-26-5493-2022
https://hess.copernicus.org/articles/26/5493/2022/
https://doi.org/10.5194/hess-19-209-2015
https://hess.copernicus.org/articles/19/209/2015/
https://hess.copernicus.org/articles/19/209/2015/
https://doi.org/https://doi.org/10.1029/2008WR007327
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008WR007327
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008WR007327
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008WR007327
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008WR007327
https://arxiv.org/abs/1706.03762
https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.127781
https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.127781
https://www.sciencedirect.com/science/article/pii/S0022169422003560
https://www.sciencedirect.com/science/article/pii/S0022169422003560

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem
	Difficulties
	Solution

	Motivation
	Field of research
	Thesis definition
	Contribution
	Thesis Outline

	Theory
	Neuralhydrology
	CudaLSTM
	ARLSTM
	EA-LSTM
	MC-LSTM
	MTS-LSTM
	ODE-LSTM
	GRU
	Transformer

	Transformers
	Model types
	Hydrological implementation

	Physical hydrology models
	SAC-SMA
	VIC
	mHM

	Metrics
	NSE
	Alpha NSE decomposition
	Beta NSE decomposition
	KGE
	Beta KGE

	CAMELS

	Practical implementation
	Data
	Dataset
	Dataloading

	Preprocessing
	Input shifting
	Embedding
	Positional Encoding
	Masking

	Model
	Transformer
	Model head

	Loss
	Optimizer

	Results
	Parameter testing
	Loss calculation
	Hyperparameters

	Large dataset testing
	Model comparisons
	Change over time
	Longer training
	Longer input sequence
	Changed target preprocessing
	Mask removal
	Reset parameters

	Discussion and Future work
	Basin grouping
	EA-Transformer

	Conclusion
	Models and results
	Bibliography

