
The Potential and Limitations of the
Tsetlin Machine in Model-Free
Reinforcement Learning

DIDRIK KALLHOVD DRØSDAL and ANDREAS GRIMSMO

SUPERVISOR
Ole-Christoffer Granmo and Per-Arne Andersen

University of Agder, 2023
Faculty of Engineering and Science
Department of ICT

Obligatorisk gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslinjer for
bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene på deres ansvar og hvilke
konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar.

1. Vi erklærer herved at vår besvarelse er vårt eget arbeid, og at vi ikke har
brukt andre kilder eller har mottatt annen hjelp enn det som er nevnt i
besvarelsen.

Ja

2. Vi erklærer videre at denne besvarelsen:

• Ikke har vært brukt til annen eksamen ved annen avdeling/univer-
sitet/høgskole innenlands eller utenlands.

• Ikke refererer til andres arbeid uten at det er oppgitt.

• Ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• Har alle referansene oppgitt i litteraturlisten.

• Ikke er en kopi, duplikat eller avskrift av andres arbeid eller
besvarelse.

Ja

3. Vi er kjent med at brudd på ovennevnte er å betrakte som fusk og kan med-
føre annullering av eksamen og utestengelse fra universiteter og høgskoler i
Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8 og Forskrift om ek-
samen §§ 31.

Ja

4. Vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert. Ja
5. Vi er kjent med at Universitetet i Agder vil behandle alle saker hvor det

forligger mistanke om fusk etter høgskolens retningslinjer for behandling av
saker om fusk.

Ja

6. Vi har satt oss inn i regler og retningslinjer i bruk av kilder og referanser
på biblioteket sine nettsider.

Ja

7. Vi har i flertall blitt enige om at innsatsen innad i gruppen er merkbart
forskjellig og ønsker dermed å vurderes individuelt. Ordinært vurderes alle
deltakere i prosjektet samlet.

Nei

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant
annet enerett til å gjøre verket tilgjengelig for allmennheten (Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli publisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre oppgaven tilgjengelig
for elektronisk publisering:

Ja

Er oppgaven båndlagt (konfidensiell)? Nei
Er oppgaven unntatt offentlighet? Nei

Acknowledgements

We would like to express our deepest gratitude to our supervisor, associate professor Per-
Arne Andersen, for his guidance, encouragement, and insightful critiques during the course
of this research work. His knowledge and expertise in the field has been invaluable, and his
guidance and suggestions have improved the quality of our work substantially.

Our thanks also go to the University of Agder, which provided us with the resources to work
on this research. As well as provide us with guidance and help when we encountered chal-
lenges. We would especially like to thank professor Ole-Christoffer Granmo for his expertise
and assistance with the Tsetlin Machine and how it functions.

Finally, we would also love to express our gratitude to our friends and families for their
constant support and encouragement throughout our studies and this research work.

ii

Abstract

This paper aims to investigate the potential of model-free reinforcement learning using the
Tsetlin Machine by evaluating its performance in widely recognized benchmark environments
for reinforcement learning: Cartpole and Pong. Our study is divided into two primary
objectives. First, we analyze the effectiveness of the Tsetlin Machine in learning from the
actions of expert agents in the Cartpole environment. Second, we assess the ability of the
multiclass Tsetlin Machine to learn to play both Cartpole and Pong environments from
scratch.
Our findings indicate that the Tsetlin Machine can successfully learn and solve the Cart-
pole environment. Although the Pong environment remains unsolved, the Tsetlin Machine
demonstrates its learning capabilities by scoring several points in multiple test runs, even
managing to win in some of them. Through our empirical investigation, we conclude that
the Tsetlin Machine exhibits promise in the field of reinforcement learning. Nonetheless,
further research is needed to address the limitations observed in its performance in some of
the examined environments.

iii

Contents

Acknowledgements ii

Abstract iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Contribution . 1
1.2 Motivation . 2
1.3 Overview of paper . 2

2 Theory 3
2.1 Tsetlin Machine . 3

2.1.1 Tsetlin Automata . 3
2.1.2 Tsetlin Machine . 4
2.1.3 Tsetlin Machine’s learning process . 4
2.1.4 The feedback . 5
2.1.5 Binarizer process . 5
2.1.6 Multiclass classification . 6

2.2 Reinforcement learning . 6
2.2.1 ϵ-Greedy . 8
2.2.2 Deep Q-Network . 8
2.2.3 Proximal Policy Optimization . 9
2.2.4 Advantage Actor Critic . 9

2.3 Environments . 10
2.3.1 Cartpole . 10
2.3.2 Pong . 11

2.4 Related work . 12
2.4.1 Interpretable Reinforcement Learning with the Regression Tsetlin Ma-

chine . 12
2.4.2 Off-policy and on-policy reinforcement learning with the Tsetlin machine 12
2.4.3 Tsetlin machine limited research . 12

3 Model-Free Reinforcement Learning using Tsetlin Machines 13
3.1 Data Preprocessing and Reward Functions 13
3.2 Hyperparameter Selection . 14
3.3 Study 1: Imitation Learning . 14
3.4 Study 2: Model-free Learning . 15

iv

4 Results 18
4.1 Study 1: Imitation Learning . 18
4.2 Study 2: Model-free Learning . 19
4.3 Pong . 23

5 Discussion 25
5.1 Cartpole . 25
5.2 Pong . 26

6 Conclusions 27
6.1 Future Work . 27

A Strategy 5: Sequential Batch Experiment 29
A.1 Epsilon Greedy off . 29
A.2 Epsilon Greedy on . 30

Bibliography 31

v

List of Figures

2.1 Illustration on the Tsetlin automata behavior [7] 3
2.2 Tsetlin machine block [7] . 4
2.3 Multiclass classification [7] . 6
2.4 Reinforcement learning diagram of a Markov decision process[mar]. 7
2.5 Figure comparing Q-Learning with Deep Q-Learning[1] 8
2.6 Illustration of the advantage actor critic algorithm [15] 10
2.7 Graphical representation of the cartpole environment[5] 11
2.8 RGB representation of the Pong environment[13] 11

4.1 The reward-performance of Tsetlin Machine while imitating PPO and Math.
We compare the results to Deep Q Networks, Advantage Actor Critic and
normal Proximal Policy Optimization. DQN, A2C and PPO all have the
same score of 500, hence only one line is shown. Each model was tested for
100 runs and the findings shown are the average from all the runs combined 19

4.3 Comparison of the average learning of different s values. Reward calculated by
running the experiments used for figure 4.2 10 times and adding the average
for each episode to the graph. 22

4.2 Comparison of the learning of different s values. Reward calculated by training
for one episode and then validating for 10 and adding the mean to the graph. 22

4.4 Graphs showing the rewards from Pong being learnt from scratch, with 3000
clauses. After one episode of training, 10 episodes of validation is run, saving
the highest reward and mean reward in separate graphs. 24

4.5 Graphs showing the rewards from Pong being learnt from scratch, with 10 000
clauses. After one episode of training, 10 episodes of validation is run, saving
the highest reward and mean reward in separate graphs. 24

vi

List of Tables

2.1 Observation space for cartpole [4] . 10
2.2 Action and observation space for cartpole [4] 11

4.1 PPO (Both Normal and Demo version) & Math, DQN, A2C etc... on cartpole 18
4.2 Comparison between the TM emulating Demo & Normal PPO vs emulating

Math . 19
4.3 Test runs of step-by-step strategy . 20
4.4 Double Tsetlin test run . 20
4.5 The five best batch runs with corresponding parameters 21
4.6 The five worst batch runs with corresponding parameters 21
4.7 Parameters for the first and second versions of the Pong strategy. 23
4.8 Rewards per episode for the first and second versions of the Pong strategy

and random agent. 23

vii

Chapter 1

Introduction

Rapid advancements in reinforcement learning (RL) have led to remarkable success in var-
ious video game environments, including StarCraft, Chess, Go, and Dota II, among others
[17]. These environments serve as critical benchmarks for assessing and evaluating the per-
formance of AI agents. Reinforcement learning research enables intriguing capabilities, such
as fine-tuning the ChatGPT algorithm using reinforcement learning with human feedback[9].
One of the key advantages of RL is the ability to learn complex, non-linear decision-making
processes that may be challenging or impossible to model using supervised learning, much
due to the limited availability of data. Through continuous interaction with the user-defined
environment, these learning machines progressively improve their performance over time.

The Tsetlin Machine (TM) is an emerging approach in machine learning that utilizes sim-
ple and interpretable rules to solve complex problems, demonstrating high computational
efficiency and the ability to perform training and inference on-device. This paper aims to
explore the potential of Tsetlin Machines in the context of model-free reinforcement learn-
ing (RL), an area where the TM has not yet been extensively studied. By combining the
strengths of reinforcement learning with the unique capabilities of Tsetlin machines, we hope
to advance the field of artificial intelligence and contribute to developing efficient, powerful,
and portable learning algorithms. This study focuses on two well-known RL benchmarks,
CartPole and Pong. Although these environments have simple state and action spaces, solv-
ing them in a fully model-free setting with TMs remains an open question, which we aim to
address.

1.1 Contribution

To systematically evaluate the performance of Tsetlin machines, our study employs a two-
step approach. First, we train Tsetlin machines to imitate established deep-learning-based
agents, providing insight into TM’s capacity to learn complex policies. Second, we explore
the potential of Tsetlin machines to learn functional policies from scratch, enabling them to
devise novel strategies and solutions in the selected game environments. Through our em-
pirical study, identify the strengths and weaknesses of Tsetlin machines in dynamic scenarios
and uncover any limitations in their clause formation and retention capabilities. Ultimately,
this research contributes to a deeper understanding of Tsetlin machines’ applicability in
reinforcement learning tasks and helps to determine their viability as an alternative to state-
of-the-art techniques. The objective of this paper is to introduce reinforcement learning to
the Tsetlin Machine and empirically evaluate its effectiveness, offering valuable insights into
TM’s performance in such model-free RL settings1. All our work will be uploaded and added

1Part of this Master’s thesis was submitted as a paper to the ISTM 2023 conference in Spring 2023. [6]

1

to the TMU GitHub2. Currently, it can be found on our own GitHub.3

1.2 Motivation

The key motivation behind this work is threefold. First, reinforcement learning (RL) has
proven to be an exceptionally powerful technique, serving as the foundation for some of the
most successful algorithms in the literature, such as ChatGPT. Second, there has been very
limited work exploring TM-driven RL approaches, and no prior research has successfully
developed a model-free RL mechanism using TMs. Third, the Tsetlin machine is rapidly
advancing, showcasing significant improvements in computational efficiency, enabling algo-
rithms to perform training and inference on-device[10]. This is a considerable advantage
compared to the resource-intensive nature of Neural Networks and traditional machine-
learning methods. By combining the strengths of reinforcement learning with the unique
capabilities of Tsetlin machines, we aim to progress one step closer towards a groundbreak-
ing RL approach that can, with the help of the Tsetlin machine, revolutionize the field of
artificial intelligence and contribute to the development of efficient, powerful, and portable
learning algorithms.

1.3 Overview of paper

The rest of the paper is organized as follows. Section 2 provides an overview of the
relevant background information pertaining to the Tsetlin machine and the theory essential
for this study. Section 2.4 discusses the foundations of our work and highlights other related
research that informed our approach. Section 3 describes the proposed approach to imitation
and model-free TM-based RL. Section 4 highlights our findings and results from the exper-
iments included in this study. Section 5 presents a comprehensive analysis and theoretical
discussion of our proposed strategies, explaining the motivations behind their performance
and behaviour. Finally, we conclude the paper in Section 6, where we summarize our con-
tributions and the significance of our proposed approach. Lastly, in Section 6.1, we outline
a roadmap for future research directions that may build upon the findings of this study.

2TMU GitHub URL: https://github.com/cair/tmu, to be added soon
3GitHub URL: https://github.com/AndreasGRIMSMO/Tsetlin-Reinforcement

2

Chapter 2

Theory

2.1 Tsetlin Machine

2.1.1 Tsetlin Automata

The Tsetlin Automaton [7] is a type of finite-state automaton that was originally proposed
as a mathematical model of learning and decision-making processes. A Tsetlin Automaton
has a finite number of states, each representing a different action or policy. It learns by
receiving feedback in the form of penalties or rewards and adjusts its state accordingly.
The original Tsetlin Automaton consists of the following components:

• A set of N states, S = {s1, s2, . . . , sN}, where each state si represents an action or
policy.

• A learning parameter, p, which controls the rate of learning.

• A reward function, R(si), which provides feedback based on the chosen action.

• A penalty function, P (si), which also provides feedback based on the chosen action.

The state transition rules are defined as follows:

• If the automaton is in state si and receives a reward, it moves to state si+1 with
probability p, and remains in state si with probability 1− p.

si = si + I(reward) ∗ (rand() < p)

• If the automaton is in state si and receives a penalty, it moves to state si−1 with
probability p, and remains in state si with probability 1− p.

si = si − I(penalty) ∗ (rand() < p)

Figure 2.1: Illustration on the Tsetlin automata behavior [7]

The Tsetlin Automaton learns by adjusting its state based on the received feedback until it
converges to an optimal state.

3

2.1.2 Tsetlin Machine

The Tsetlin Machine extends the Tsetlin Automaton concept to a multi-agent system, where
each agent represents a feature or a pattern in the input data. The Tsetlin Machine is
capable of performing classification and regression tasks by learning conjunctive clauses that
represent relationships between input features and output labels.
The Tsetlin Machine consists of the following components:

• A set of M Tsetlin Automata, A = {A1, A2, . . . , AM}, where each automaton Ai learns
to represent a feature or a pattern.

• An action space, C, which is a set of clauses that capture relationships between input
features and output labels.

• A learning parameter, p, which controls the rate of learning for all automata.

• A reward function, R(Ai, si), and a penalty function, P (Ai, si), which provide feedback
to each automaton based on the chosen action and the ground truth label.

Figure 2.2: Tsetlin machine block [7]

Each Tsetlin Automaton in the Tsetlin Machine operates independently and follows the
same state transition rules as the original Tsetlin Automaton. The Tsetlin Machine learns
by adjusting the states of its automata based on the received feedback until it converges to
an optimal set of clauses that can accurately predict the output labels.
The decision function of the Tsetlin Machine is a summation of the learned clauses:

y(x) =
M∑
i=1

c(xi) ∗ wi

where y(x) is the predicted output, xi is an input feature, c(xi) is a learned clause, and wi

is the weight associated with the clause.

2.1.3 Tsetlin Machine’s learning process

The Tsetlin Machine’s learning process can be described as a three-step procedure:

Initialization
The Tsetlin Automata are initialized with random states. The weights for each clause, wi,
are initialized to zero.

4

Learning
The Tsetlin Machine iteratively processes the input data, receiving feedback from the reward
and penalty functions. For each example in the input data, the Tsetlin Machine performs
the following steps:

1. Each Tsetlin Automaton selects a clause based on its current state.

2. The decision function computes the predicted output, y(x), based on the selected
clauses and their weights.

3. The reward and penalty functions provide feedback to each Tsetlin Automaton based
on the correctness of the prediction. The automata adjust their states according to the
state transition rules and learning parameter p.

4. The weights of the clauses, wi, are updated based on the prediction error and a user-
defined learning rate.

wi = wi + learning_rate ∗ (ytrue − y(x)) ∗ c(xi)

Convergence
The learning process continues until a stopping criterion is met, such as a maximum number
of iterations or a minimum error threshold. The Tsetlin Machine’s final output is a set of
learned clauses and their weights, which can be used to make predictions on new input data.
The Tsetlin Machine’s transparent structure and simple learning process make it an attractive
alternative to more complex models like neural networks, particularly in applications where
interpretability is crucial. Its game-theoretic foundation enables it to learn optimal patterns
and relationships in the input data, allowing it to perform well in various classification and
regression tasks.

2.1.4 The feedback

The Tsetlin Machine uses two types of feedback to guide learning:

Type-I Feedback (Reward): This feedback is given when the automaton makes a correct
decision. The purpose of the reward is to reinforce the current action. That means, if the
current action has led to a correct decision, the probability of selecting the same action in
the future should be increased. In the context of the Tsetlin Machine, a correct decision
could be the correct inclusion or exclusion of a literal in a clause.

Type-II Feedback (Penalty): This feedback is given when the automaton makes an incor-
rect decision. The purpose of the penalty is to discourage the current action. That means,
if the current action has led to an incorrect decision, the probability of selecting the same
action in the future should be decreased. In the context of the Tsetlin Machine, an incorrect
decision could be the incorrect inclusion or exclusion of a literal in a clause.

The balance between these two types of feedback allows the Tsetlin Machine to gradually
learn the best combination of literals for each clause, and therefore the best decision-making
model for the given task. By using this approach, the Tsetlin Machine can create inter-
pretable models that perform comparably to other machine learning methods on a variety
of tasks.

2.1.5 Binarizer process

The binarization process constitutes a vital pre-processing technique in TMs, transforming
numerical data into binary values through a threshold value. Values exceeding the threshold

5

are assigned 1, while those equal to or below receive 0. This process proves advantageous for
logistic-based machine learning models that necessitate binary outputs. Conventionally, the
user determines the threshold; however, alternative approaches, such as utilizing a fitting
function for input array processing, can establish this value. This method identifies unique
feature values, downsampling them if they exceed the maximum bit limit. Consequently,
the binarizer processes input data, generating binary representations for each unique feature
value, resulting a representation that is compatible with the Tsetlin machine.

2.1.6 Multiclass classification

Tsetlin Machines can be employed for classification tasks by using an argmax function instead
of a threshold. The output of a Multi-Class Tsetlin Machine, as illustrated in Figure 2.3, is
given by:

ŷ = arg max
i=1,...,m

 n/2∑
j=1

Ci+j(X)−
n/2∑
j=1

Ci−j(X)

 (2.2)

In this equation, m represents the total number of distinct classes in the problem, while
the + and - symbols indicate the polarity of the clauses (including and excluding literals,
respectively).

Figure 2.3: Multiclass classification [7]

2.2 Reinforcement learning

Reinforcement learning (RL)[17] is a machine learning paradigm that involves training an
agent to make decisions by interacting with an environment. The core components of RL
are the agent, environment, states, actions, and rewards. Here’s a basic overview of rein-
forcement learning:
Agent: The agent is the decision-making entity that interacts with the environment. It can
be anything from a robot to a software program.
Environment: The environment is the context in which the agent operates. It provides the
agent with feedback in the form of rewards or penalties based on the agent’s actions.
States: A state represents the current situation or context in the environment. The agent
perceives the state and takes actions accordingly.
Actions: Actions are the set of possible moves or decisions the agent can make in a given
state. The agent selects actions based on its policy, which is a mapping of states to actions.
Rewards: Rewards are the feedback given to the agent by the environment based on the

6

agent’s actions. They can be positive (for desired actions) or negative (for undesired ac-
tions). The goal of the agent is to maximize the cumulative reward it receives over time.
Transition model: A probability distribution that represents the likelihood of transitioning
from one state to another given a particular action. It is represented as P (s′|s, a), where s
and s′ are states, and a is the action taken, it is defined as R(s, a) = E[rt+1|st = s, at = a].
γ: The discount factor, which controls the relative importance of immediate and future re-
wards.

The environment is typically modeled as a Markov Decision Process (MDP)[17] , which is
characterized by a tuple (S,A,P ,R, γ), where:

• S is a set of states

• A is a set of actions

• P is the state transition probability function, defined as P(s′|s, a) = Pr(st+1 = s′|st =
s, at = a)

• R is the reward function

• γ is the discount factor

At each time step, the agent observes the current state st, takes an action at according to
its policy π(at|st), and receives a reward rt from the environment. The goal of the agent is
to learn a policy that maximizes the expected cumulative reward over time, also known as
the return Rt =

∑∞
k=0 γ

krt+k.
In MDPs, the environment’s dynamics are assumed to satisfy the Markov property, which
states that the future state depends only on the current state and action, and not on the
history of past states and actions. This property simplifies the learning process by reducing
the problem to finding the optimal policy that considers only the current state.
Reinforcement learning problems can be formalized as MDPs, and various algorithms have
been developed to learn the optimal policy in this framework. Examples include Q-learning,
a value-based method that iteratively updates the action-value function to estimate the
optimal policy, and policy gradient methods, which directly optimize the policy based on
observed state transitions and rewards. By updating the policy or value function based on the
interactions with the environment, RL algorithms aim to improve the agent’s performance
in achieving its goal of maximizing the expected cumulative reward.

Figure 2.4: Reinforcement learning diagram of a Markov decision process[mar].

7

2.2.1 ϵ-Greedy

A central part of RL is the use of sampling techniques where one such technique is the
ϵ-greedy algorithm. With the ϵ-greedy approach, the agent selects a random action with
probability ϵ and the highest Q-value with probability 1−ϵ. The value of ϵ typically decreases
over time, allowing the agent to prioritize exploration during the early stages of learning and
gradually shift towards exploitation as it gains experience.

Algorithm 1: Epsilon-Greedy Algorithm
1: Generate a random number p between 0 and 1
2: if p < epsilon then
3: pull random action
4: else
5: pull best action
6: end if
7: observe reward of action

2.2.2 Deep Q-Network

Deep Q-Learning (DQL) is an advanced variant of the classical Q-Learning algorithm [11],
which is a model-free, value-based reinforcement learning method. Q-Learning aims to learn
the optimal action-value function Q∗(s, a), which represents the expected return when tak-
ing action a in state s and following the optimal policy thereafter. The core update rule
for Q-Learning is given by the Temporal Difference (TD) update: Q(st, at) ← Q(st, at) +
α (rt + γmaxa′ Q(st+1, a

′)−Q(st, at)), where α is the learning rate and γ is the discount
factor.

Figure 2.5: Figure comparing Q-Learning with Deep Q-Learning[1]

In DQL, deep neural networks are used to approximate the action-value function Q(s, a; θ),
enabling the algorithm to handle high-dimensional state spaces and complex tasks. How-
ever, learning with neural networks can be unstable and challenging due to issues such as

8

correlations between consecutive samples and overestimation of action-values. To address
these problems, DQL introduces two key techniques: experience replay and target networks.
Experience replay is a technique that maintains a memory buffer D to store past transitions
(st, at, rt, st+1). During training, instead of using online samples, the algorithm samples
random minibatches of transitions from the buffer D. This method breaks the correlations
between consecutive samples and promotes more stable learning.
Target networks, on the other hand, involve maintaining a separate network Q(s, a; θ−) that
is a slower, lagged copy of the main network. This auxiliary network is used to compute target
values for the loss function. Periodically, the parameters of the target network are updated
to match the main network. By decoupling the target values from the current network pa-
rameters, target networks help mitigate the overestimation bias that can arise in Q-Learning.

The DQL algorithm optimizes the following loss function:
L(θ) = E(st, at, rt, st+ 1) ∼ D

[
(rt + γmaxa′ Q(st+1, a

′; θ−)−Q(st, at; θ))
2
]
. By minimizing

this loss, the algorithm learns an approximation of the action-value function, enabling the
agent to make better decisions and achieve improved performance in various tasks.

2.2.3 Proximal Policy Optimization

Proximal Policy Optimization (PPO)[16] is a widely-used policy optimization algorithm in
reinforcement learning that adeptly balances exploration and exploitation. PPO achieves this
balance by incorporating the advantages of trust region methods and first-order optimization.
Trust region methods ensure that updates to the policy do not deviate too far from the
current policy, while first-order optimization techniques are computationally efficient.
In PPO, the objective is to maximize the surrogate objective function
L(θ) = E(st, at, rt) ∼ πold

[
πθ(at|st)

πθold (at|st)
Aπold(st, at)

]
, where Aπold(st, at) represents the advantage

function under the old policy. The advantage function quantifies the relative value of taking
a specific action compared to the expected value of following the current policy.
To prevent excessively large policy updates that could destabilize the learning process, PPO
introduces a clipping mechanism for the policy ratio πθ(at|st)

πθold (at|st)
. This ratio is clipped within a

predefined range [1− ϵ, 1+ ϵ], where ϵ is a hyperparameter controlling the allowed deviation
from the old policy. This clipping mechanism ensures that the new policy remains close to
the old policy, effectively constraining the policy update within a trust region.
With its combination of trust region constraints and first-order optimization, the PPO algo-
rithm is computationally efficient and exhibits stable performance across a broad spectrum of
tasks. The capacity to strike a balance between exploration and exploitation has popularized
its use in reinforcement learning contexts, from robotics to gaming scenarios.

2.2.4 Advantage Actor Critic

Advantage Actor-Critic (A2C)[12] is a model-free reinforcement learning algorithm that uni-
fies the strengths of policy gradient methods and value-based approaches. The central idea
of A2C is to learn both the policy and the state-value function simultaneously using two
separate neural networks, the actor and the critic.
The actor network, represented by π(a|s; θπ), is responsible for learning the policy, which
maps states to actions. It aims to maximize the expected return by selecting actions that
yield higher rewards in a given state. On the other hand, the critic network, represented by
V (s; θv), estimates the state-value function. The state-value function predicts the expected
return from a given state, assuming the actor follows its current policy. The purpose of
the critic is to evaluate the quality of the current policy and provide a baseline for policy
improvement.
To improve the policy, A2C computes the advantage function, A(st, at), which measures the

9

Figure 2.6: Illustration of the advantage actor critic algorithm [15]

relative value of taking action at in state st over following the policy’s average behavior. The
advantage function is defined as the difference between the observed return and the esti-
mated state-value: A(st, at) = rt + γV (st+1; θv)− V (st; θv). Intuitively, a positive advantage
indicates that the chosen action is better than the average action in the current state, while
a negative advantage suggests that the chosen action is worse.

The actor network updates its policy by performing gradient ascent on the expected return,
weighted by the advantage function. This encourages the actor to increase the probability
of actions with positive advantages while decreasing the probability of actions with negative
advantages. By using the advantage function as a baseline, the A2C algorithm reduces the
variance of policy gradient updates, leading to more stable learning and improved perfor-
mance.

2.3 Environments

In this part we discuss the environments used in our experiments.

2.3.1 Cartpole

The CartPole-v1 environment is one of the classic control problems in reinforcement learning
and is part of the OpenAI Gym environment suite. The goal of the environment is to balance
a pole attached by an un-actuated joint to a cart, which can only move horizontally along
a frictionless track. The pole starts upright position, and the cart can move left or right to
keep the pole from falling over[3]. The episode is terminated when the cart’s position gets

Table 2.1: Observation space for cartpole [4]
Num Observation Min Max
0 Cart Position -4.8 4.8
1 Cart Velocity -Inf Inf
2 Pole Angle ∼-0.418 rad (-24°) ∼0.418 rad (24°)
3 Pole Angular Velocity -Inf Inf

below -2.4 or above 2.4, as well as when the angle goes above 12 degrees or below -12 degrees.
An episode is truncated when the score gets to 500, in other words, when it goes 500 steps

10

without being terminated[4][5]. The cartpole problem is generally considered solved when
the agent gets an average reward of 195.0 over 100 episodes.

Figure 2.7: Graphical representation of the cartpole environment[5]

2.3.2 Pong

Pong is a simple two-player game where each player controls a paddle that can be moved up
or down to hit a ball back and forth. The game’s goal is to prevent the ball from passing the
player’s paddle while trying to get the ball past the opponent’s paddle. In the Pong-ram-v4
environment from the Gymnasium API[13], the game ends when one player reaches a score of
21 points, or after a certain number of game steps have been reached, meaning the smallest
possible reward throughout an episode is -21, and the highest is 21.

Figure 2.8: RGB representation of the Pong environment[13]

Table 2.2: Action and observation space for cartpole [4]
Action Space Discrete(2)
Observation Shape (4,)
Observation High [4.8 inf 0.42 inf]
Observation Low [-4.8 -inf -0.42 -inf]

11

2.4 Related work

2.4.1 Interpretable Reinforcement Learning with the Regression Tsetlin Ma-
chine

Interpretable Reinforcement Learning with the Regression Tsetlin Machine[18] is a Master’s
thesis authored by Varun Ravi Varma, which explores the application of the regression Tsetlin
machine (RTM)[2] in reinforcement learning. Varma employs RTM to simulate Q-learning
in Cartpole and mountain car environments. Although the CartPole agents’ rewards do not
surpass 200, the graphical representation of results exhibits a progressive reward increase
over time.

2.4.2 Off-policy and on-policy reinforcement learning with the Tsetlin machine

Off-policy and on-policy reinforcement learning with the Tsetlin machine[14] is a research
paper by Saeed Rahimi Gorji and Ole-Christoffer Granmo that investigates off-policy and
on-policy reinforcement learning methodologies using Tsetlin machines (TM). The authors
assess the performance of their approach in gridworld instances and utilize a multi-layer per-
ceptron (MLP) as a benchmark for comparison. The study’s results demonstrate the RTM’s
ability to effectively navigate a small grid world.

2.4.3 Tsetlin machine limited research

In TM-driven reinforcement learning, it is important to note that the existing body of
research remains limited. While the studies above have made significant strides in exploring
TM-based approaches for RL tasks, there is a notable gap in the literature concerning direct
policy learning in a model-free manner. This highlights the need for further investigation into
how Tsetlin machines can be utilized effectively for model-free reinforcement learning and
emphasizes the potential for novel contributions in this area. As such, we focus on developing
and evaluating model-free methodologies that leverage Tsetlin machines for learning policies
directly, thereby expanding our understanding of the capabilities and limitations of TM-
driven reinforcement learning approaches.

12

Chapter 3

Model-Free Reinforcement Learning
using Tsetlin Machines

In this section, we present a comprehensive exploration of Tsetlin Machines’ (TMs) poten-
tial in reinforcement learning. Our approach to this study is that of Design Science [8],
meaning that we seek to create an artifact and evaluate its performance to gain insight and
understanding. Our investigation encompasses two primary studies: (1) Imitation Learning,
where TMs acquire policies by emulating expert agents or optimal mathematical models, and
(2) Model-free Learning, where TMs develop policies from scratch through various strate-
gies. We address the challenges posed by continuous observation spaces in the CartPole and
Pong environments and outline the essential data preprocessing steps required to make these
environments compatible with TMs. Moreover, we introduce innovative learning strategies
tailored to uncover TMs’ capabilities in complex reinforcement learning tasks.

3.1 Data Preprocessing and Reward Functions

The CartPole environment features a continuous observation space, which the Tsetlin ma-
chine cannot process directly since it only supports binary data. Therefore, we first need to
convert the continuous observations into binary representations. To achieve this, we employ
a binarizer that preprocesses the game-state observations into binary state representations.
This binarizer is trained on a diverse set of actions, randomly generated to ensure a compre-
hensive range of different observations, which allows the Tsetlin machine to learn effectively
from the CartPole environment.

In cartpole the agent gets 1 point as reward for each step it is up and hasn’t been trun-
cated. The max episode length is 500, meaning that the max reward for an episode is
500[3][5]. The Pong environment provides two distinct types of data representation: visual
and RAM. The visual representation is an RGB image that emulates the view of a player
interacting with the Atari 2600 version of Pong. The RAM representation, on the other
hand, consists of memory values ranging from 0 to 255. For our experiments, we chose the
RAM representation due to its simplicity and more straightforward conversion to binary
format. To preprocess the RAM data for the Tsetlin machine, we transform each memory
value into an 8-bit binary representation, which effectively discretizes the continuous state
space and makes it compatible with the Tsetlin machine’s requirements.
In Pong the agent gets 1 point for each time it scores, and gets -1 point for each time the
opponent scores. One episode continues until either the agent has scored 21 points or the
opponent has. Meaning that the max reward for one episode is 21 and the minimum reward
is -21[13].

13

3.2 Hyperparameter Selection

Selecting appropriate hyperparameters is an essential aspect of constructing effective TM
models tailored to specific problems. In the current state-of-the-art, particularly within the
reinforcement learning context, it remains unclear which hyperparameters are most sensi-
tive and the extent to which they impact the final model’s performance. To investigate
these relationships, we conduct experiments in which up to four hyperparameters are var-
ied simultaneously, exploring their effects within a reinforcement learning framework. The
hyperparameter selection and with corresponding key search space and findings is as follows:

• Clauses: Our experiments span a range of clause numbers, from 100 to 5000.

• Specificity (s): Following initial tests, we determine that a specificity value of 2.7
consistently produces satisfactory results across various settings.

• Threshold (T): We consider several alternatives, such as T = 1 and T = (number of
clauses)/2, before ultimately selecting T = (number of clauses) ∗ 0.3, which were found
to yield the best results.

• Number of bits in the binarizer: We examine binarizer configurations with values
ranging from 2 to 20 bits.

For advanced solutions employing the Tsetlin machine from scratch, the increased complexity
of the algorithm necessitates the inclusion of additional hyperparameters. These parameters
are considered in conjunction with the aforementioned parameters:

• Batch size: We evaluate batch sizes varying from 10 to 20.

• Batch change: We explore batch changes within a range of 0 to 20.

We further detail these findings in Section 4.

3.3 Study 1: Imitation Learning

In this study, we explore the potential of Tsetlin Machines for learning policies by imple-
menting imitation learning techniques. Our research focuses on two distinct strategies that
aim to enable the Tsetlin Machine to effectively emulate the behavior of expert agents: (1)
utilizing a pre-trained model of a Proximal Policy Optimization (PPO) agent, a widely recog-
nized reinforcement learning algorithm, and (2) employing an optimal mathematical model
specifically designed to address the challenges posed by the CartPole Environment.

Strategy 1: PPO Imitation. The first strategy involves using experience samples from a
pre-trained PPO agent to investigate whether Tsetlin Machines can successfully learn poli-
cies through imitation. This approach requires a PPO agent to either (1) train and store
all experiences in a buffer or (2) sample from an already trained policy. Tsetlin Machines
then sample state-action pairs from this buffer, perform inference, and compare their output
with the label, which represents the action taken by the "expert" (in this case, the PPO
agent). By adopting this strategy, we can evaluate how often the Tsetlin Machine makes
decisions that align with those of the PPO agent, thereby providing an estimate of its abil-
ity to emulate similar behavior. This serves as a vital preliminary step towards developing
reinforcement learning driven by Tsetlin Machines.

Strategy 2: Perfect Model Imitation The second strategy involves employing an optimal
mathematical model, as presented in Algorithm 2, to address the CartPole Environment

14

Algorithm 2: Optimal policy for Cart Pole
Require: obs
1: θ, w ← obs[2 : 4]
2: if |θ| < 0.03 then
3: return 0 if w < 0 else 1
4: else
5: return 0 if θ < 0 else 1
6: end if

with the highest level of expertise. The policy works by analysing the angle and the angular
velocity of the pole. The angle of the pole is assigned to theta θ and the angular velocity to
omega ω, obtained from the environments observation space. The policy functions by first
evaluating whether the absolute value of the angle of the pole, θ, is less than 0.03, indicating
that the angle of the pole significantly deviates from the upright position. If this criterion
is met, the policy will return action 0 if the pole’s angular velocity, ω, is less than 0 or
action 1 if the angular velocity is greater. If this condition is not met, the policy will instead
attempt to stabilize the pole towards the most upright position. This works by checking
for the pole’s angle, θ, and outputting action 0 if the angle is less than 0, and action 1 if
the angle is greater than 0. This carefully crafted policy efficiently manages the cartpole’s
position and velocity, ensuring optimal behaviour within the environment.

3.4 Study 2: Model-free Learning

The second study is to learn Tsetlin Machines to play games from scratch model-free. We
propose three methods that facilitate efficient learning in the Cart Pole environment:

Strategy 3: ϵ-greedy. The first strategy uses ϵ-greedy to balance exploration and ex-
ploitation. The ϵ-greedy scheme is widely used in RL algorithm to balance exploration and
exploitation. The idea is that by finding a suitable balance to the exploration-exploitation
dilemma, one would efficiently learn policies, as observed in other algorithms, including Q-
Learning. As an alternative approach, we added tests to fully disable exploitation (e.g., set
epsilon to 1.0 without annealing enabled), ultimately forcing the Tsetlin Machine to learn
from only random sampling. The algorithm is as follows:

1. Initialize binarizer, MultiClassTsetlinMachine, gym environment, and variables such as
steps, exploration rate, and its rate of change.

2. For each step in the range of total steps:

(a) Process the current state of the cartpole and sample the absolute value of the
pole’s angle.

(b) Perform epsilon-greedy/random action and execute it on the cartpole.
(c) Sample the absolute value of the pole’s angle after performing the action.
(d) If the difference between the first and second angles is positive, fit the Tsetlin

Machine on the action and state. Otherwise, fit the Tsetlin Machine on the
opposite action and state.

The above depicts TMs set in a traditional RL loop, much like what is used for algorithms
like Q-Learning. We use the Multiclass version of TM where we predict actions based on
the observation at the current timestep. Contrary to conventional reinforcement learning
techniques, we craft a special reward signal. More specifically, we tune the reward signal to
give feedback if the pole angle deviates from the upright position, as opposed to giving sparse

15

rewards, i.e., positive rewards for each time step and negative ones for terminal states. In
essence, we train the TM on actions that minimize the deviation of the pole’s angle from the
optimal 90-degree angle. In certain situations where the pole’s angle deviates in an increasing
pattern, the TM is trained on the opposite action to encourage an attempt at recovering from
a catastrophic state. As mentioned, we test this algorithm using both annealing ϵ-greedy,
and a static ϵ for fully random sampling of actions.
However, during empirical evaluations, we found this approach to have substantial instabil-
ities in learning, resulting in (1) unreliable convergence, and (2) inadequate performance.

Strategy 4: Double TM-Learning. In order to address the instability issues encountered
in Strategy 3, we propose an advanced approach, dubbed Double TM-Learning, which is in-
spired by the well-established double Q-Learning techniques. This novel modification, akin
to double Q-Learning, utilizes a pair of Tsetlin Machines: one dedicated to predicting the
agent’s actions and another for training based on actions considered favourable according
to the performance of the primary Tsetlin Machine. Following a user-defined Nth step, the
second Tsetlin Machine’s learned parameters are transferred to and overwritten the param-
eters of the first Tsetlin Machine, effectively facilitating periodic updates.

Strategy 5: Batching. In our pursuit to enhance the previous designs, we developed Strat-
egy 5, which uses a sequential batch technique to prioritize which samples the TM should
learn from:

1. Initialize the binarizer, MultiClassTsetlinMachine, and gym environment.

2. Initialize variables, such as the total number of steps, exploration rate, and the rate of
change for exploration, as well as arrays for storing actions and observations.

3. Initialize variables for batch size, batch counter, and batch change.

4. For each step within the specified range:

(a) Determine whether the batch size should be increased. If so, increase the batch
size by the batch change.

(b) Process the current state of the cartpole.
(c) Apply the ϵ-greedy algorithm or choose a random action.
(d) Perform the chosen action on the cartpole.
(e) Increment the batch counter.
(f) If the episode is terminated; either by the pole falling, moving to far to the side

or reaching the maximum amount of steps, reset the observation and action arrays
as well as the batch counter.

(g) If the batch counter reaches the batch size, fit the Tsetlin Machine on the obser-
vation and action arrays, and reset them along with the batch counter.

This method determines the selection of batches based on the model’s ability to maintain
the pole in an upright position for a predefined X number of steps. The Tsetlin Machine
is subsequently trained on the recorded observations and actions for all the steps. A key
feature of this strategy is the batch-change mechanism, predetermined points in the training
the batch size is increased by the value of the batch change variable. The intuition is that
as the algorithm becomes better, we must increase the difficulty, much like in curriculum
learning. In this context, we set a constraint that the algorithm must perform a sequence
of good actions, where the sequence length increases as the algorithm learns. This ensures

16

that we prioritize samples that lead to successful policies.

During the learning process, we either apply the ϵ-greedy algorithm to sample an action or
select random actions. The observations and actions that meet the acceptable criteria for
keeping the pole upright are stored in an array. If the pole falls, the arrays are cleared; if
the specified number of steps is reached, the Tsetlin Machine trains on the dataset before
emptying the array. This approach is designed to prevent the machine from learning actions
that yield unfavourable outcomes.

The algorithm’s architecture exhibits considerable flexibility, allowing for easy adjustments
to the number of steps required before the TM initiates training. This adaptability enables
fine-tuning the learning process, promoting optimal performance in intricate reinforcement
learning tasks. We demonstrate this capability by detailing adjustments to the strategy
employed in the pong game.

Fine-tuning Strategy 5 for Pong. In adapting Strategy 5 for pong, we disable the ϵ-
greedy annealing mechanism by setting ϵ = 1.0. This modification ensures that the Tsetlin
machine is trained exclusively on random actions and states. The TM is responsible for
controlling the paddle’s vertical movement, either up or down. In this refined version of
Strategy 5, we introduce multi-batching: a technique that involves collecting batches of ex-
periences for TM training, subject to differing conditions. For the first batch, the TM trains
on N samples in the absence of negative rewards. For the second batch, the TM trains on
all samples occurring between the previous negative reward and the attainment of a positive
terminal state.

To investigate the efficacy of this fine-tuned strategy, we examined two variations. In the
first version, we trained the TM twice on samples that led to positive rewards. However,
subsequent experimentation revealed that training once, as is common in model-free RL,
also yielded satisfactory results when appropriate hyperparameters were used.

17

Chapter 4

Results

4.1 Study 1: Imitation Learning

In the first study, we investigated the performance of Tsetlin Machines (TMs) in learning
to imitate other models, specifically, the Proximal Policy Optimization (PPO) agent and
the Perfect Model (Algorithm 2). We maintained the same hyperparameters across both
approaches to ensure a fair comparison between the imitation learning strategies. Through
an extensive hyperparameter tuning process, we determined that the optimal configuration
consisted of 500 clauses, a specificity value of 2.6, a threshold set to N_CLAUSES × 0.3,
and a 4-bit binarizer. This configuration facilitated the best performance in the imitation
learning tasks for TMs.

We initially conducted a baseline evaluation for the expert algorithms, PPO and the Perfect
Model, which we will refer to as "Math" henceforth. We assessed the performance of both
PPO and Math agents in the CartPole environment over 100 episodes, and the results are
summarized in Table 4.1.

The PPO agent demonstrates considerable variability in its performance, as evidenced by
the standard deviation of 121.8. With a mean reward of 380.4, this indicates that the re-
ward for the PPO agent ranges between 160 and 500 during the episodes. In contrast, the
Math agent exhibits perfect performance, achieving a consistent mean reward of 500 with a
standard deviation of 0.0 across all episodes.

Figure 4.1 illustrates the outcomes of employing imitation strategies with Proximal Policy
Optimization (PPO) and the Math model. The primary objective is to investigate the extent
to which Tsetlin Machines (TMs) can successfully imitate expert algorithms, such as PPO
and the Math-based model. The experiment encompasses 100 episodes, with the y-axis in
the plot representing the total reward obtained for a specific episode. Each model was tested
for 100 runs, and the results gathered are the average over all the runs. The experiment on
the PPO model is two fold, one which is the normal PPO model and one which is a demo
version of the PPO model. Included in the illustration are three other RL based models,
added for comparison. These models are Double Q-Network, Advantage Actor Critic and
Proximal Policy Optimization, and all of these models were pre-trained on the environment
before running for the experiment.

Table 4.1: PPO (Both Normal and Demo version) & Math, DQN, A2C etc... on cartpole
Agent Mean reward Standard deviation
PPO Demo 380.4 121.8
PPO, Math, DQN, etc... 500 0.0

18

Figure 4.1: The reward-performance of Tsetlin Machine while imitating PPO and Math. We com-
pare the results to Deep Q Networks, Advantage Actor Critic and normal Proximal Policy Opti-
mization. DQN, A2C and PPO all have the same score of 500, hence only one line is shown. Each
model was tested for 100 runs and the findings shown are the average from all the runs combined

Table 4.2: Comparison between the TM emulating Demo & Normal PPO vs emulating Math

Agent Performance Metrics
Type Accuracy & Time Average reward Stda

Demo PPO 89.93% & 32.91s 344.53 161.15
Normal PPO 93.56 & 26.64s 266.18 178.89

Math 95.09% & 30.69s 114.58 47.12
aStandard Deviation

Analyzing the results, we see a considerable contrast in the performance of the Tsetlin Ma-
chine when imitating the PPO and Math models. The TM imitates the PPO agent and
exhibits a distribution of outcomes, with seemingly arbitrary rewards ranging between 280
to 400. In contrast, the TM emulating the Math agent demonstrates a more concentrated
distribution of results, albeit with overall lower rewards, spanning from 80 to 120.

Table 4.2 presents a comprehensive summary of these findings. It reveals that the PPO-based
Tsetlin Machine yields a higher average reward, but is accompanied by a greater standard
deviation. Conversely, the Math-based Tsetlin Machine proves to be more efficient in terms
of processing speed and attains superior accuracy.

4.2 Study 2: Model-free Learning

Strategy 3: ϵ-greedy. In the context of Strategy 3, we conduct a hyperparameter op-
timization experiment, focusing on the following parameters: Clauses (with values of 50,
100, 500, 1000, and 3000), Specificity (set to 3.9), Threshold (calculated as Clauses × 0.3),

19

Table 4.3: Test runs of step-by-step strategy
Run ϵ-greedy Clauses Mean reward Std
1 True 50 41.8 26.9
2 True 100 31.8 20.8
3 True 500 36.8 19.0
4 True 1000 30.8 16.4
5 True 3000 23.1 14.7
6 False 50 27.5 12.6
7 False 100 30.0 15.7
8 False 500 24.0 12.5
9 False 1000 27.9 17.5
10 False 3000 34.3 36.6

Table 4.4: Double Tsetlin test run
Clauses s Threshold Average reward Std
1000 3.9 clauses * 0.4 31.8 26.0

and the number of bits in the binarizer (fixed at 6). The experiment executes individual
configurations over 10 000 steps, repeating each configuration 10 times to obtain an average
performance. The results of this experiment are presented in Table 4.3. For the current
investigation, only the number of clauses is assessed, as the other parameters have been pre-
viously optimized. This decision is made to conserve computational resources and expedite
the final experimental run.

As indicated in Table 4.3, Strategy 3 exhibits suboptimal performance in the cartpole envi-
ronment. The average rewards consistently fall below 100, with no observable improvement
over time. Additionally, we perform the experiment with both ϵ-greedy set to True and
False to evaluate its potential impact on performance. However, this parameter proves to
be inconsequential for the outcomes observed.

Strategy 4: Double TM-Learning. Pertaining to the fourth strategy, which entails
using a double Tsetlin machine architecture, we did not find any benefits for this approach,
offering no visible advantages in our experiments. Strategy 4 did not improve compared to
Strategy 3; in some cases, it demonstrates inferior results. Table 4.4 summarises the subpar
performance and shows the hyperparameters evaluated for this strategy. We also perform
additional evaluations in seek of better hyperparameters, but no substantial improvements
are observed using the Double TM-Learning strategy.

Strategy 5: Batching. In the pursuit to find a Tsetlin Machine capable of solving complex
RL problems, we discover that Strategy 5 emerges as the most promising approach. This
technique consistently delivers average rewards between 300 and 400, a remarkable improve-
ment compared to previous strategies. We carry out a hyperparameter search to further
assess the effectiveness of this approach. The experiment focuses on the following param-
eters: Clauses, Specificity (s), Threshold (T), Number of bits in binarizer, Batch size, and
Batch change. We showcase the top five and bottom five configurations in Table 4.5 and
Table 4.6, respectively. The full hyperparameter search, which includes 60 distinct configu-
rations, can be found in the appendix A at the end. All 60 runs are conducted with s = 3.9,
T = clauses ∗ 0.4, and the number of bits in binarizer = 6.

The insights we present in both tables highlight that optimal performance is consistently
achieved with clause counts ranging between 1,000 and 3,000 when not employing the ϵ-

20

Table 4.5: The five best batch runs with corresponding parameters
Run ϵ-greedy Clauses B-size B-change M-reward Std
20 False 1000 10 10 474.9 38.5
27 False 3000 10 20 474.6 26.3
26 False 3000 10 10 474.3 30.0
28 False 3000 20 0 457.3 47.9
21 False 1000 10 20 454.5 56.0

Table 4.6: The five worst batch runs with corresponding parameters
Run ϵ-greedy Clauses B-size B-change M-reward Std
1 False 50 10 0 77.8 23.5
7 False 100 10 0 153.5 133.4
13 False 500 10 0 176.0 106.7
25 False 3000 10 0 180.9 117.4
31 True 50 10 0 195.0 50.7

greedy approach. Conversely, less successful runs tend to involve a batch size of 10 and an
absence of batch size modifications. Taking into account that some of the best-performing
runs achieve rewards close to 470, we can confidently conclude that the Tsetlin Machine is
effective in solving the Cart Pole problem.

It is important to note that there is still room for improvement, as the algorithm does not
consistently achieve a mean reward of 500. Despite exhibiting variability in performance, the
algorithm represents a significant advancement in the domain of model-free RL using Tsetlin
Machines. This breakthrough paves the way for further exploration and enhancement of
Tsetlin Machine capabilities within the realm of RL.

Strategy 5 learning graphs In order to better understand the learning process of strategy
5 and identify areas for improvement we ran some tests where the TM was trained over X
amount of episodes and after each training episode we ran 10 episodes for evaluation, and
added the mean reward to the graphs in figure 4.2. For this experiment we used the following
hyperparameters: Clauses: 3000, Threshold: Clauses * 0.3, Batch Size: 20, Batch Change:
0, and specificity from 3.7 to 20. The tests were ran without the epsilon-greedy algorithm.
The tests shows instability in the learning, and that a specificity of 3.7 is the best of the lot.
Due to the instability of the learning we ran each test 10 times and put the average reward
in the graphs seen in figure 4.3 to get a better understanding of the expected learning from
each set of hyperparameters. The experiment shows that a specificity of 3.9 gave the best
results.

21

Figure 4.3: Comparison of the average learning of different s values. Reward calculated by running
the experiments used for figure 4.2 10 times and adding the average for each episode to the graph.

Figure 4.2: Comparison of the learning of different s values. Reward calculated by training for one
episode and then validating for 10 and adding the mean to the graph.

22

Table 4.7: Parameters for the first and second versions of the Pong strategy.
Parameter First Version Second Version
Clauses 20,000 3,000
S 3.9 3.9
Threshold Clauses * 0.3 Clauses * 0.3
Episodes 2,000 500
N 30 30

Table 4.8: Rewards per episode for the first and second versions of the Pong strategy and random
agent.

Version 1 Version 2 Random Rewards

-19.0 -20.0 -21.0
-19.0 -19.0 -21.0
-20.0 -17.0 -21.0
-20.0 -21.0 -20.0
-19.0 -20.0 -20.0
-21.0 -18.0 -20.0
-19.0 -20.0 -21.0
-19.0 -20.0 -20.0
-19.0 -20.0 -20.0
-20.0 -21.0 -20.0

4.3 Pong

We present the results of TM agents trained on two different versions of the Pong strat-
egy. The agents were evaluated over 10 episodes, and their parameters and performance
are reported in two separate tables. Table 4.7 presents the hyperparameters used in the
experiment, while Table 4.8 displays the results of our preliminary study on learning Pong
from scratch. As can be seen from the table, TMs outperform random policies, indicating
that they indeed learn a policy containing information about how to play the game of Pong.
However, we are still far from mastering this game, and we further discuss these results in
Section 5.

In order to get a better overview over the learning process of the TM in the pong envi-
ronment we ran version 2 of the pong algorithm over 3000 episodes, and validated for 10
episodes after each training episode. The highest score and the mean score of the 10 valida-
tion episodes were added to figure 4.4. The frequency of high scores increases around 1500
episodes, showing that the model improved over time. The model produced varying results,
and the best ones are presented in the aforementioned tables.

Additionally we ran the same experiment with the same configuration as the previous run,
except this time we increased the clauses to 10 000. This run showcased better performance,
being able to achieve victories after much fewer episodes as shown in figure 4.5. As seen in
the figure, this new experiment showcased more stability with a higher frequency of better
results.

23

Figure 4.4: Graphs showing the rewards from Pong being learnt from scratch, with 3000 clauses.
After one episode of training, 10 episodes of validation is run, saving the highest reward and mean
reward in separate graphs.

Figure 4.5: Graphs showing the rewards from Pong being learnt from scratch, with 10 000 clauses.
After one episode of training, 10 episodes of validation is run, saving the highest reward and mean
reward in separate graphs.

24

Chapter 5

Discussion

5.1 Cartpole

The imitation study, consisting of Strategy 1 with PPO and Strategy 2 with Math model,
shows the Tsetlin Machine’s capacity to learn from a pre-trained agent in the Cartpole envi-
ronment. These results demonstrate that the Tsetlin Machine is capable of learning complex
behaviours from pre-trained models, hence it favours the idea that TMs can also learn poli-
cies in more complex environments, such as Chess.

We hypothesize that the Tsetlin Machine trained on the demo-PPO outperforms the TM
trained on the Math model and the perfect PPO model because their overly perfect nature
leads to a lack of data on edge cases and experience from catastrophic states. The key
problem is that with perfect expert knowledge, the TM makes trials, but no errors, which is
crucial to learn stable policies. As a result, the Tsetlin Machine is uncertain about the ap-
propriate actions in situations where it has deviated from perfect behaviour. When trained
on the PPO agent, the Tsetlin Machine achieves an average score in the range that considers
the Cartpole problem solved.

Moreover, both Strategy 3 (angle method) and Strategy 5 (sequential batch method) employ
the Epsilon-greedy algorithm in certain variations, as well as pure exploration in others. The
experiments utilizing the Epsilon-greedy algorithm exhibit inferior outcomes when compared
to their pure exploration counterparts. One potential explanation for this phenomenon is
that the TM lacks sufficient samples that enable feedback signals to penalize incorrect ac-
tions, thereby only allowing correct actions to be reinforced. This observation aligns with the
findings from Strategy 2 (Perfect Math Model). Consequently, the pure exploration method
generates a more extensive dataset for the TM’s training, resulting in a superior agent.

Based on the results from strategy 3 and strategy 5, we theorize that strategy 5 achieved
higher results due to the fact that strategy 3 was purely trained on actions which lead to
smaller angles. Meaning that it would completely disregard how the current angular velocity
would affect the angle. The effect of this would lead the TM to sacrifice the current stability
for a smaller angle. The TM also did not hold any regards to the current position of the
cart, considering that moving too much to either side would terminated the current episode.
We theorize that strategy 5 handled this problem better, as it was trained on data in which
the cartpole "survived" over time, meaning that it would learn to handle cases which was
not directly connected to the pole’s angle.

While observing the graphs in figure 4.2 which shows training over time using strategy 5, it
is clear that the training is unstable with sudden growths and declines in accuracy. It also
shows that the tests with S values of 3.7 and 5 reaches 500 multiple times. The model with
s: 20 also reaches 500, but not as frequent as the previously mentioned ones. Considering

25

the fact that our method is unstable, we chose to run the experiment 10 times. This was
done to get a better idea of what the expected learning rate would be. The results shows
that a specificity of 3.9 has a better average learning rate, and reaches higher scores towards
the end of the run. We theorize that introducing experience replay to the training could
improve the learning stability, as it improves the stability in deep Q learning. Another way
the stability could be improved would be to take backups of the state of the TM during
training, and revert back to the better performing version.

5.2 Pong

The comparison between the two methods used for pong suggests that the second version
performs better. Likely because training twice on certain observations lead to overfitting.
Further experimenting on the second method showed great potential, as seen in figure 4.4.
The figure shows that it is able to have a perfect game in certain episodes, scoring 21 points
and not letting the opponent score a single point. And overall the average reward over mul-
tiple episodes shows that in several cases it is able to score points before losing. As seen in
figure 4.5 the TM with 10 000 clauses is able to achieve victory quicker and more frequent
than the TM with only 3000 clauses, suggesting that 3000 is likely not enough to solve Pong.
While the TM is unable to consistently beat it’s opponent these results shows that it is able
to learn Atari environments by reading from the ram, as well as great potential for the TM
to learn more complex environments. The results from our experiments shows that the TM
trained on pong suffers from the same learning instability as the TM trained on the cartpole
environment.

One weakness of our pong methods is the fact that it was difficult to figure out how many
steps it should go without having points scored against it before it got trained, one potential
solution to this problem is listed in 6.1.

26

Chapter 6

Conclusions

In this paper, we investigate the Tsetlin Machine’s performance in various video game envi-
ronments, specifically assessing its capacity to imitate existing agents or learn from scratch.
Our experiments show that the Tsetlin machine is able to imitate a perfect mathematical
solution to the cartpole environment with a high accuracy. It is also able to learn from a
perfect PPO agent trained on PONG and an imperfect PPO agent. When the TM trained
on the existing agents played the cartpole environment, the TM trained on the imperfect
PPO achieved the best results. Further experiments exploring the TM’s capability to learn
game environments from scratch reveal that it can not only solve but also master the Cart-
pole environment, and while it isn’t able to solve the Pong environment it shows that the
TM is able to learn from it. The findings of our paper leads us to conclude that the Tsetlin
machine is able to learn from existing agents, and learn to play environments from scratch,
meaning that the TM shows great potential within reinforcement learning.

6.1 Future Work

Future research in this domain can be bifurcated into two primary directions. First, in-
vestigate the performance of the multiclass Tsetlin Machine in other commonly used bench-
marks for reinforcement learning by treating them as classification problems. Second, delving
deeper into the capabilities of the Regression Tsetlin Machine (RTM)[2] and exploring solu-
tions and methods more closely related to actual reinforcement learning, such as having the
RTM predict rewards for specific actions.

Going further, considering the current state-of-the-art in this field of research, there are
many areas to explore. Some interesting avenues to explore could include the following:

• Double TM policy could potentially stabilize training, as seen in Double Q-Learning.
In success of discovering such mechanism, TM could tackle far greater problems than
in current state-of-the art.

• Using Type-II feedback to penalize negative actions, to reinforce correct behavior.
Utilizing this might assist in addressing the challenges we faced in some of our strategies
that were unable to make use of incorrect actions.

• Use Regression Tsetlin Machine to make a model based solution. This involves
using the TM to predict the next state on the environments. Many RL based models
have this functionality, and adding this to the TM could benefit in its development.

• Attempt to fix the instability observed during the training of the CartPole agent,
as fixing the instability would also improve the results of other environments within
RL with the TM. This can be done by looking at experience replay, commonly used in
Q-Learning, or the backup method mentioned in chapter 5.

27

• Future work on the Pong algorithm could be to replace the requirement of max steps
being reached, into an algorithm which instead checks for contact between the ball and
the TM controlled paddle. This can be achieved by allowing the algorithm to read from
RAM and detect for contact between the ball and the TM controlled paddle, and then
train the TM on actions that lead to this contact.

28

Appendix A

Strategy 5: Sequential Batch Experiment

A.1 Epsilon Greedy off

Run Epsilon greedy Clauses Batch Size Batch Change Mean Reward Std
1 False 50 10 0 77.8 23.5
2 False 50 10 10 338.2 117.0
3 False 50 10 20 278.7 109.4
4 False 50 20 0 335.4 107.6
5 False 50 20 10 387.5 90.0
6 False 50 20 20 332.3 90.2
7 False 100 10 0 153.5 131.4
8 False 100 10 10 359.5 111.7
9 False 100 10 20 395.0 91.2
10 False 100 20 0 340.0 85.0
11 False 100 20 10 364.5 61.4
12 False 100 20 20 353.9 110.9
13 False 500 10 0 176.0 106.7
14 False 500 10 10 439.2 69.2
15 False 500 10 20 396.6 117.1
16 False 500 20 0 412.7 74.9
17 False 500 20 10 435.5 53.3
18 False 500 20 20 381.1 68.2
19 False 1000 10 0 204.5 153.4
20 False 1000 10 10 474.9 38.5
21 False 1000 10 20 454.5 56.0
22 False 1000 20 0 393.9 77.1
23 False 1000 20 10 392.0 76.3
24 False 1000 20 20 392.7 79.1
25 False 3000 10 0 180.9 117.4
26 False 3000 10 10 474.3 30.0
27 False 3000 10 20 474.6 26.3
28 False 3000 20 0 457.3 47.9
29 False 3000 20 10 394.5 33.3
30 False 3000 20 20 372.8 81.1

29

A.2 Epsilon Greedy on

Run Epsilon greedy Clauses Batch Size Batch Change Mean Reward Std
31 True 50 10 0 195.0 50.7
32 True 50 10 10 234.8 51.3
33 True 50 10 20 310.8 125.3
34 True 50 20 0 198.3 12.0
35 True 50 20 10 189.0 25.4
36 True 50 20 20 265.4 110.3
37 True 100 10 0 223.2 97.8
38 True 100 10 10 287.3 152.6
39 True 100 10 20 229.7 90.6
40 True 100 20 0 217.1 43.6
41 True 100 20 10 197.2 7.9
42 True 100 20 20 202.9 14.0
43 True 500 10 0 208.5 146.4
44 True 500 10 10 267.2 64.7
45 True 500 10 20 239.7 84.4
46 True 500 20 0 198.3 5.9
47 True 500 20 10 231.7 94.9
48 True 500 20 20 227.1 95.9
49 True 1000 10 0 218.0 58.6
50 True 1000 10 10 239.7 115.6
51 True 1000 10 20 262.0 88.4
52 True 1000 20 0 227.2 96.0
53 True 1000 20 10 199.0 5.9
54 True 1000 20 20 222.8 78.7
55 True 3000 10 0 202.8 81.0
56 True 3000 10 10 210.5 122.3
57 True 3000 10 20 244.7 100.3
58 True 3000 20 0 199.8 4.3
59 True 3000 20 10 196.4 5.1
60 True 3000 20 20 197.6 7.8

30

Bibliography

[1] A Deep Q-Learning based approach applied to the Snake game - Scientific Figure on Research-
Gate. Available from: https://www.researchgate.net/figure/Q-Learning-vs-Deep-Q-
Learning_fig1_351884746 [accessed 11 May, 2023]. Accessed on 11 May, 2023.

[2] K.D. Abeyrathna et al. “The regression Tsetlin Machine: A Tsetlin machine for continuous
output problems.” In: Progress in Artificial Intelligence. 2019, pp. 268–280. doi: 10.1007/978-
3-030-30244-3_23.

[3] A. G. Barto, R. S. Sutton, and C. W. Anderson. “Neuronlike adaptive elements that can solve
difficult learning control problems.” In: IEEE Transactions on Systems, Man, and Cybernetics
SMC-13.5 (1983), pp. 834–846. doi: 10.1109/TSMC.1983.6313077.

[4] Greg Brockman et al. Openai Gym. 2016. url: https://arxiv.org/abs/1606.01540 (visited
on 04/22/2023).

[5] Cart Pole - Gym Documentation. url: https://www.gymlibrary.dev/environments/
classic_control/cart_pole/.

[6] Didrik K. Drøsdal, Andreas Grimsmo, Per A. Andersen, Ole-Christoffer Granmo, and Morten.
Goodwin. “Exploring the Potential of Model-Free Reinforcement Learning in Tsetlin Ma-
chines.” Paper in submission. 2023.

[7] Ole-Christoffer Granmo. The Tsetlin Machine – A Game Theoretic Bandit Driven Approach
to Optimal Pattern Recognition with Propositional Logic. 2018. url: https://arxiv.org/
abs/1804.01508.

[8] A. Hevner et al. “Design Science in Information Systems Research.” In: MIS Quarterly 28.1
(2004), pp. 75–105.

[9] Yiheng Liu et al. Summary of ChatGPT/GPT-4 Research and Perspective Towards the Future
of Large Language Models. 2023. arXiv: 2304.01852 [cs.CL].

[10] S. M. et al. “REDRESS: An Embedded Machine Learning Methodology Using Tsetlin Ma-
chines.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. “Human-level control through deep
reinforcement learning.” In: Nature 518 (2015), pp. 529–533. doi: 10.1038/nature14236.

[12] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning.” In: CoRR
abs/1602.01783 (2016). arXiv: 1602.01783. url: http://arxiv.org/abs/1602.01783.

[13] Pong - Gymnasium Documentation. url: https://gymnasium.farama.org/environments/
atari/pong/.

[14] S. Rahimi Gorji and O.C. Granmo. “Off-policy and on-policy reinforcement learning with the
Tsetlin machine.” In: Applied Intelligence (2023). doi: 10.1007/s10489-022-04297-3.

[15] ResearchGate. The Actor-Critic Architecture. Available from: ResearchGate [accessed 11 May
2023]. ResearchGate. 2023. url: https://www.researchgate.net/figure/The-Actor-
Critic-Architecture_fig2_220696313.

[16] John Schulman et al. “Proximal Policy Optimization Algorithms.” In: CoRR abs/1707.06347
(2017). arXiv: 1707.06347. url: http://arxiv.org/abs/1707.06347.

[17] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

31

https://www.researchgate.net/figure/Q-Learning-vs-Deep-Q-Learning_fig1_351884746
https://www.researchgate.net/figure/Q-Learning-vs-Deep-Q-Learning_fig1_351884746
https://doi.org/10.1007/978-3-030-30244-3_23
https://doi.org/10.1007/978-3-030-30244-3_23
https://doi.org/10.1109/TSMC.1983.6313077
https://arxiv.org/abs/1606.01540
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://arxiv.org/abs/1804.01508
https://arxiv.org/abs/1804.01508
https://arxiv.org/abs/2304.01852
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://gymnasium.farama.org/environments/atari/pong/
https://gymnasium.farama.org/environments/atari/pong/
https://doi.org/10.1007/s10489-022-04297-3
https://www.researchgate.net/figure/The-Actor-Critic-Architecture_fig2_220696313
https://www.researchgate.net/figure/The-Actor-Critic-Architecture_fig2_220696313
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

[18] V. R. Varma. Interpretable Reinforcement Learning with the Regression Tsetlin Machine. 2022.
url: https://fse.studenttheses.ub.rug.nl/264831/Master_Thesis_VRVarma%5C%20(1)
.pdf (visited on 04/27/2023).

32

https://fse.studenttheses.ub.rug.nl/264831/Master_Thesis_VRVarma%5C%20(1).pdf
https://fse.studenttheses.ub.rug.nl/264831/Master_Thesis_VRVarma%5C%20(1).pdf

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Contribution
	Motivation
	Overview of paper

	Theory
	Tsetlin Machine
	Tsetlin Automata
	Tsetlin Machine
	Tsetlin Machine's learning process
	The feedback
	Binarizer process
	Multiclass classification

	Reinforcement learning
	-Greedy
	Deep Q-Network
	Proximal Policy Optimization
	Advantage Actor Critic

	Environments
	Cartpole
	Pong

	Related work
	Interpretable Reinforcement Learning with the Regression Tsetlin Machine
	Off-policy and on-policy reinforcement learning with the Tsetlin machine
	Tsetlin machine limited research

	Model-Free Reinforcement Learning using Tsetlin Machines
	Data Preprocessing and Reward Functions
	Hyperparameter Selection
	Study 1: Imitation Learning
	Study 2: Model-free Learning

	Results
	Study 1: Imitation Learning
	Study 2: Model-free Learning
	Pong

	Discussion
	Cartpole
	Pong

	Conclusions
	Future Work

	Strategy 5: Sequential Batch Experiment
	Epsilon Greedy off
	Epsilon Greedy on

	Bibliography

