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Abstract

This paper examines how recent advances in sequence modeling translate for machine learn-
ing assisted procedural level generation. We explore the use of Transformer based models like
DistilGPT-2 to generate platformer levels, specifically for the game Super Mario Bros., and
explore how we can use reinforcement learning to push the model towards a task like gen-
erating levels that are actually beatable. We found that large language models (LLMs) can
be used without any major modifications from the original NLP focused models to instead
generate levels for the aforementioned game.

However, the main focus of the research is connected to how advancement in the area of
NLP by the use of reinforcement learning (RL) algorithms, specifically PPO, translates to
the arena of procedural level generation in cases where the levels can be treated as token
sequences.

We did however not find any combinations of hyperparameters that allowed the PPO to reach
higher better results than our baseline model trained for next token prediction. Despite
it’s success in the area of NLP, we failed to find a combination of hyperparameters that
improved upon the level generation by applying an reward for the whole level. However
there are methods that we did not try yet, like finding specific parts of the level to reward
and penalize.
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Chapter 1

Introduction

Video games across various genres derive much of their gameplay appeal from the intricacies
and challenges offered by their level designs. Among these genres, platformer games specifi-
cally rely heavily on well-crafted and engaging layouts to deliver a satisfying experience. To
address the need for diverse and dynamic levels, game developers have increasingly turned to
procedural level generation and other types of procedural content generation (PCG), which
is the generation of characters, enemies, game rules, etc., all without human intervention.
Notable examples of effective use of procedural level generation in the genre of platformers
include Spelunky, Dead Cells and Rogue Legacy. The level generation greatly improves the
replayability and adds an element of surprise to each run.

Super Mario Bros.[6], one of the most iconic and influential platformer games, has served
as a captivating canvas for exploring the possibilities of procedural level generation. The
game’s rich history and enduring popularity have inspired researchers and enthusiasts to
delve into the realm of procedural level generation, leading to the establishment of notable
competitions such as the Mario AT Championship|12]| and the Platformer AI Competition[13].
These events have served as platforms for showcasing innovative algorithms and techniques
in generating Mario levels that can be traversed and conquered by both human players and

intelligent agents.

In this thesis we explore the possibilities in the realm of procedural level generation by using
techniques from another field of Al focused on generation, Natural Language Processing
(NLP). The idea is not new [16], but because the advancements in the area of large language
models (LLMs), it is worth looking at them and how they can be applied to procedural level

generation.

What sets our approach apart from previous proposed solutions is the training objective.
In many of the previous approaches mentioned in the Background section, the goal of the
training is simply to learn the patterns in existing levels by the means of techniques such as
sequence modelling in the form of next token prediction or GANs. However there has been
previous research in using evolutionary algorithms to maximize desired properties of GANs
based generators on arbitrary objectives by searching for a subset of the latent space. In
this thesis we will explore the use reinforcement learning (RL) algorithm PPO in order to
maximize desired properties in the case of sequence modelling.



1.1 Large Language Models

In recent years, there has been a notable advancement in the field of large language models
(LLMs). Notably ChatGPT, derived from InstructGPT[5], has emerged as a prominent
example. InstructGPT employs a reinforcement learning approach to fine-tune the GPT-3
model, which was initially trained on a large unlabeled dataset for the with for predicting
the next token in a token sequence.

The remarkable progress observed in LLM research can be largely attributed to the effective-
ness of scaling both the dataset and the model size in the case of transformer based model
architecture. The GPT-3 model, for instance, incorporates a variant with an estimated 175
billion parameters. Meanwhile, the technical details of GPT-4 are undisclosed as of May
2023 due to the model’s proprietary nature.

Inspired by the achievements of LLMs, this thesis aims to apply similar treatment to Super
Mario Bros.|6] levels by considering them as sequences of tokens, similar to how natural
language is processed. Each square in a Super Mario level can be regarded as a token,
enabling us to generate a Super Mario level in an autoregressive manner. Specifically, this
thesis will investigate the utilization of reinforcement learning methods to guide the model
in generating playable levels. The objective is to encourage the model to generate levels that
are feasible to complete.

This thesis will first examine the body of work making up the state of the art, in three parts.
First, the game in question and its representation chosen for this project is discussed. Sec-
ondly, several of the primary papers in the line of research will be discussed, with particular
regards to their methods used. Lastly, this project’s chosen technology will be described.
Following that, our method will be elaborated upon. Not only will we go in depth on our
chosen model and architecture, but also where we build upon the earlier work, as well as our
reasoning for these design choices.

The thesis then goes on to list notable results of the methods, including graphs of numerical
performance and examples of generated levels.

Following that, we discuss the results and what they mean for the project, ending on a
conclusion and suggestions for future work.



Chapter 2
Background

As we begun this project, it was first necessary to understand the state of the art, as is it
when understanding this project. This chapter will describe the preceding work for both
the problem we are addressing, Super Mario Bros. level generation; and the architecture
used to address it, a Generative Pre-trained Transformer (GPT) structurally inspired by
InstructGPT and its derivatives.

2.1 Super Mario Bros. Level Generation

Super Mario Bros., released by Nintendo in 1985 on the Nintendo Entertainment System|6],
is a 2D platformer game that served as the foundation for Nintendo’s long-running Mario
franchise. The game was chosen for this project in large part for its tile-based level design,
easy to represent and work with both for computers of the time and our machine learning
systems. Procedural level generation for Super Mario Bros. has gotten attention in recent
years through various PCG competitions|21], particularly alongside adjacent development in
Al agents playing the levels, Like the winner of the Mario Al competition ICE-GIC, A*!,
based on the pathfinding algorithm by the same name. This in particular has let projects
like this one test the playability of their generated levels with minimal effort.

2.1.1 The Video Game Level Corpus

Our project uses level transcriptions from the Video Game Level Corpus|17], containing
the levels from a variety of games for the NES/SNES consoles and other games of that era.
These transcriptions, released in 2016[17|, were made with machine-readability in mind. The
project’s abstract describes the need for accessible, usable training data in procedural level
generation using machine learning. Notably, of the levels from Super Mario Bros. and Super
Mario Bros. 2, the VGLC does not include levels set underwater or in castles. This is
presumed done because of the difference in level design between those and the remaining

levels.

"http://julian.togelius.com /mariocompetition2009/GIC2009Competition.pdf



Representation

In the Video Game Level Corpus, Super Mario Brothers levels are represented using text
files. The levels are considered as a grid of tiles, of size equal to that of the level. The text
file then codifies each tile as a character, the character used depending on the tile’s type
according to a JSON specification.

"solid","ground”],

"solid","breakable"],

“passable”, "empty"],

“solid","question block™, "full question block™],
"solid","question block™, "empty question block"],
“enemy" ,"damaging”,"hazard”, "moving"],
"solid","top-left pipe”,"pipe”],
"solid","top-right pipe","pipe"”],

"solid","left pipe","pipe”],

"solid","right pipe","pipe”],
“coin","collectable","passable”],
“Cannon top", "cannon”,"solid", "hazard"],

“Cannon bottom","cannon™,"solid"]

Figure 2.1: Which character the Video Game Level Corpus uses for each Super Mario Bros. tile.

[17]

Notably, the VGLC collapses some categories of tiles into a single character in their represen-
tation. Examples include impassable and unbreakable blocks like ground, large mushroom
caps and stairs all being represented with "X’, and every kind of enemy being represented
with "E’.

For solid blocks, this works well, as all the blocks behave the same way, only graphics
differing. However, some information is lost in regards to enemies, as several kinds of enemies
exist with unique behavior. Thus, when treating them as one for the purpose of annotating
levels, an Al model generating levels would place them as though the same kind of enemy.

Often, this is not a big problem, as which enemy type something is supposed to be is visible
from context. Pirhana Plants are always placed on pipes, Lakitus are the only enemies in

the air, and so on.|6]

2.2 State of the art

This project is built upon a history of work on the topic, which this section will detail.
Primarily, their approaches will be discussed, both in terms of model architecture and other
related facets of their approaches that are relevant to the subject.



2.2.1 Summerville and Mateas’ LSTM

The 2016 paper Super Mario as a String: Platformer Level Generation Via LSTMs|16] by
Summerville and Mateas explores level generation using an LSTM, or Long-Short Term
Memory, and discusses ways to represent the training data.

LSTMs are a subcategory of Recurrent Neural Networks (RNNs), which by sending the out-
put of certain nodes to other ones earlier in the network, can "remember" past inputs and de-
cisions.[14] LSTMs, specifically, were developed to solve the Vanishing Problem with RNNs,
where after 5-10 iterations, backpropagated error signals fluctuate wildly or vanish.[14] In
response, LSTMs use Constant Error Carousels, tightly regulating access to special cells,
thus maintaining a strict error flow and retaining the backpropagated information.

In their paper, Summerville and Mateas explore ways to encode the levels to make the
most sense to their LSTM, discussing snaking, A*’s pathing information, and an additional
character every couple columns indicating the progress into the level.[16]

Snaking is a technique used in encoding the level data for input.|16]| Instead of recording each
column from top to bottom, a snaking parser alternates between top to bottom and bottom
to top, even running over the same level twice by alternating which direction it starts on. In
this paper, snaking is used to keep pipes closer together in the encoded string.

Figure 2.2: Snaking contrasted with regular column-wise parsing.

Pipes are the only features of Super Mario Bros. levels spanning more than one tile. In
order to reliably fit the entire pipe in the LSTM’s short-term memory, snaking both ways is
used to keep both sections of the pipe close together in at least one dataset, separated only
by the ground rather than by several tiles of air.



A*is as mentioned a pathfinding algorithm developed in 1968 by Hart, Nilsson and Raphael|3],
though in this context the term refers to an agent by the same name by Baumgarten|12][19],
trained for efficiently navigating Super Mario Bros. levels. It allows developers to not only
verify whether generated levels are beatable, but the path it finds to be the most efficient
through the level can inform the level design of future iterations.

Summerville and Mateas encode depth information by adding a unique token to every five
columns. That is because they do not always begin training at the beginning of the level,
rather when training the LSTM they used strings 200 tokens which encode around 12
columns. The reasoning behind adding the current position in the level as an additional
encoding is how levels can sometimes change intensity based on how close the player is to
the end of the level.

The study ultimately concludes that using all three techniques result in significantly better
performance than any other combination of them, performance in this case being based on
the negative log-likelihood the LSTM had on existing levels that were in the test set from
a 70%-30% training-test split used for this project. The generated levels’ similarity to the
original ones was judged along several other metrics such as the ratio between blocks, enemies
and empty space; negative space; linearity of optimal path through; and amount of jumps
in that path.

2.2.2 DagstuhlGAN

Published in 2018, Fvolving Mario Levels in the Latent Space of a Deep Convolutional Gen-
erative Adversarial Network by Volz et. al.[21] describe their attempt to use a PyTorch

implementation of a Wasserstein GAN to generate levels for Super Mario Bros.

Their process is twofold. First, a generator with Gaussian noise and a discriminator compete
to produce levels that appear like the original levels, typical for a GAN. Secondly, treating the
generator /discriminator-pair as a mapping from an input vector to a tile-level description of
a generated level, they then use CMA-ES to explore the latent vector space of input-to-level
and categorizing them by several fitness functions.

CMA-ES, short for Covariance Matrix Adaptation Evolutionary Strategy|21], is a category
of evolutionary algorithms in which the problem space, expressed as a multivariable distribu-
tion, seeks to optimize the pairwise dependencies of those variables, expressed as a covariance

matrix.

When encoding the existing levels for their training set, they used two unique approaches.
Firstly, their training set is made from a single level, the first level from Super Mario Bros.
They write "By training on only a single level, we are able to show that even with a very
limited dataset, we can apply the presented approach successfully."[21] Due to the low size
of the dataset, even when using the additional levels from Super Mario Bros. 2, proving
their concept worked on limited data was crucial.

Secondly, they encoded the level as a series of screen-wide snapshots, 28 by 14 tiles, sliding
tile by tile across the level.
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Figure 2.3: The architecture of the GAN developed by Volz et. al.[21]

2.2.3 MarioGPT

MarioGPT is a similar project that released during this project. It uses a combination of
DistilGPT-2 and a BERT transformer to generate levels from a prompt. The BERT model
allows the user to type a prompt describing the level and the amount of pipes, enemies,
blocks and height variation it contains. Next, the latent encoding from the BERT model is
used for generating the level similar to previous LSTM based implementations.|[15]

Initial Tokenized Generated level
level
2,14,26,33,13,88, .

GPT Layers
Cross
attention

MarioGPT

Prompt
3 pipes, 1 enemy,
some blocks,
low elevation

Prediction
56,13,14,88, .

—

Frozen Text
Encoder

Figure 2.4: The architecture of the MarioGPT model.
[15]

Sudhakaran et. al. compare their work to previous projects, mentioning previous work using
A* to check for playability and for finding the optimal path through the level compared to
them instead using levels with the optimal path through annotated in advance to train.
They also handle the generation of levels in response to a prompt, contrasted with the work
of Volz et. al. preemptively generating the levels and then exploring their vector space for
suitable levels afterwards.



Unlike Super Mario as a String: Platformer Level Generation Via LSTMs by Summerville
and Mateas|16], they do not evaluate or mention the negative log-likelihood as a way to
tell which model is best. Instead they evaluate models based on how much different the
actual path taken by A* agents is from the path the neural network predicted and the
percentage of tiles the model guesses correctly. Despite the model performing worse than
the LSTM implementation when trained from scratch, the MarioGPT model from fine-tuning

a pretrained DistilGPT-2 model performs better in both tile accuracy and path accuracy.[15]

2.3 Transformers

Introduced in 2017 in the paper Attention Is All You Need by Ashish Vaswani et al.[20],
Transformers are a type of attention-based neural network showing superior performance
in the field of NLP. This architecture, unlike previous architectures like CNN or LSTM,
has a constant number of operations to relate signals from two arbitrary input or output
positions, making it easier for the model to relate two signals that are far away from each
other. Transformers do this by avoiding layers like LSTM and convolutions, instead opting for
the use of only attention. This is the reason for the papers title: Attention is all You Need,
the models for sequence modeling and transduction do not need convolutions and LSTM
on top of attention. Transformer based architectures have shown superior performance in
various NLP tasks such as machine translation [20], language understanding and question

answering. [1][4][8]

2.3.1 Multi-Headed Self Attention

Attention mechanisms, the paper describes, is a method for sequence description and trans-
duction, that used to be normally paired with convolution or an RNN. A variant, self-
attention, uses solely connections between positions in a single sequence. More specifically,
attention used in Attention Is All You Need by Ashish Vaswani et al.[20] is Multi-Headed
Self Attention.

T

: Q
Attention(Q, K, V') = softmax(
Vg

An head in the attention mechanism refers an an instance to scaled dot-product attention
defined by Equation 2.1[20]. Here Q stands for query, K stands for key and V stands for

value. Both keys and values represent tokens in the sequence and together they represent the

)14 (2.1)

attention between them. The value matrix stores information that can be retrieved based on
thee attention weights. The query represents the current position word Multiple instances
of scaled dot-product attention is used in parallel and the results concatenated to be used
by a following linear layer as shown in Equation 2.2. Running multiple attention instances
is called multi-head self attention. Figure 2.5 shows how the attention layers are used in the

original transformer architecture.

MultiHead(Q, K, V) = Concat(head, ..., heady) - W° (2.2)
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Figure 2.5: The architecture of Vaswani et. al.’s Transformer.[20]

2.3.2 GPT

The original GPT model, introduced by Radford et al. in Improving language understanding
by generative pre-training|7] marked a major milestone in NLP by demonstrating impressive
preformance on various language tasks. GPT builds upon the Transformer architecture (see
section 2.3) and by pretraining on a massive corpus of unannotated text data, GPT is able
to learn a rich representation of natural language.

GPT-2 is a subsequent iteration of the GPT series released in 2019(8]. The model has
a larger scale with up to 1.5 billion parameters and a bigger training dataset (went from
approximately 5GB to 40GB of text). It also introduces a "top-k" sampling to avoid sampling
very unlikely logits resulting in an nonsensical response. There exists an distilled version of
GPT-2 model based on the distillation method from DistilBERT9].

Generative, Pre-trained Transformers (GPT) are a series of transformer models released by
OpenAl|[7], based around generatively pre-training a transformer using a large corpus of
text, then later discriminatively fine-tuning it with text specific to the target domain. In its
introductory paper, GPT was tested on tasks like question answering and natural language
inference. Today, a variety of GPT-derived models exist, like BERT|1].

2.3.3 PPO

The vanilla Policy Gradient (PG) introduced in Policy gradient methods for reinforcement
learning with function approximation by Sutton et al.[18] In policy gradient methods learn a
policy function that maps states to actions. To do this we first collect trajectories, that is the
sequences of states, actions and rewards experienced by the agent. Next we compute policy
gradients and use them to update the parameters of our policy. The policy gradients are
the logarithm of the policy’s probability distribution multiplied by an estimated advantage



which is typically the returns we got for the actions we took with an estimated values function
subtracted from it. Some limitations of the Vanilla Policy Gradient methods are that they
only use samples from the environment one time leading to bad sample efficiency, and also
suffer from instability caused by the policy performing a big step that changes it significantly.

To address limitations of vanilla Policy Gradients John Schulman et al. instroduced in the
paper Trust Region Policy Optimization|l11] Trust Region Policy Optimization constraint
the update of the policy within a "trust region" based on KL divergence from the policy
before the step in order to avoid making the step too big.

PPO[10] was invented to be simpler than TRPO, but the authors found the additional
benefit of the sampling efficiency being empirically higher than that of TRPO. Like TRPO
and PG, PPO updates the policy based on the policy gradient, but instead of using a hard
KL-divergence constraint like in TRPO, it just keeps the policy somewhat in the proximity
of the previous policy. Two commonly used methods for keeping the policy in the proximity
of our old policy are clipping and a penalty (rather than a hard constraint) based on KL-
divergence from the old policy.

9k+1:argmgmx E [L(s,a,0,0)] (2.3)

s,ar~Tg,

L7 () =, | OB g (g s, o) (24
T0o1a (at|5t)

With Equation 2.3 in combination with Equation 2.4 we see how the policy gets updated
in KL-penalty based PPO implementation. 6 represents the current policy parameters, and
O.1q represents the previous policy parameters. s; denotes the state at time ¢, and a; denotes
the corresponding action. my(as|s;) represents the probability of taking action a, in state s;
under the current policy parameterized by 6. Similarly, 7y, (a:|s:) represents the probability
of taking action a; under the previous policy parameterized by 64.
The term A; represents the advantage estimate.
The last term in the objective function is the KL-divergence between the old and current
policies. The coefficient S controls the strength of the penalty. The penalty is often but
not always dynamically adjusted to reach a target KL-divergence, which helps stabilize the
training process.

By optimizing the PPO objective function, the policy parameters 6 are updated iteratively
to improve the policy’s performance in the reinforcement learning task.

mo(als)
ng(a|s)

mo(als)

ﬂ—ek(a|3)7

L(s,a,0k,0) = min ( A" (s,a), clip ( l—e 1+ 6) A% (s, a)) (2.5)

If we replace Equation 2.4 with Equation 2.5 we instead have the clipping implementation
of PPO. In this implementation instead of of the KL-penalty we keep the ratio between the

probabilities from the policies are within € of each other.

We can see the training loop for both clipping and KL-penalty PPO in Algorithm 1.

10



Algorithm 1 Proximal Policy Optimization (PPO)

1: Initialize policy parameters 0

2: Initialize old policy parameters 0,q < 6
3: for iteration = 1, 2, ... do

4: for actor =1, 2, ..., N do

5: Run policy mg,,, in the environment for T timesteps

6: Compute advantage estimates fll, ey Ar

7. end for

8 Optimize surrogate L wrt 6 using K epochs and minibatch size M < NT
9: Oo1q < 0

10: end for

Fine-Tuning Language Models from Human Preferences

The paper Fine-Tuning Language Models from Human Preferences|23] by Daniel M. Ziegler
et al. explores the usage of reinforcement learning to improve on auto-regressive models
previously trained only for text prediction to improve based on human feedback. This
way the model is trained for the actual objective instead of what text is most likely. By
training the GPT-2 model pre-trained for text prediction using PPO, the model would output
answers that were evaluated as better by humans, but also copy whole sentences from input.
One of the drawbacks was that to train the model this way the authors needed to collect
large amounts of labelled data, in the form of questions, answers, and how the answer was
evaluated by humans. Together, this is significantly harder to collect than unlabeled data.

InstructGPT

InstructGPT, as well as its more popular sister model ChatGPT, are based on the previous
research on fine-tuning language models from human preferences using PPO, but are doing
this on a much larger scale with the much bigger GPT-3 model.[5] By fine-tuning GPT-3
models from human feedback the models authors, OpenAl was able to align the GPT-3 model
better with what a chatbot is supposed to do, that is increasing the amount of thruthful
information the model responds with, making it less toxic, better at following instructions
and more. The reason for this is that InstructGPT was trained for these things specifically
in contrast to base GPT-3 which just tries to follow the likelihood present in the dataset.|5]
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Chapter 3

Method

3.1 Representation

The method used in this project consists of multiple parts. First we want the levels to be
represented as sequences of tokens. We decided that a good representation to try is to use
token being the same as a tile/block in a Super Mario Level. In NLP, byte pair encoding
is used by GPT. However, we avoided combining any tiles together into one token, instead
opting into using an tokenizer which outputs the same number of tokens as the number of
input tiles.

There are several reasons for our choice of not combining multiple tiles into single tokens.
The first one is making the transformer understand its current position. At the end of each
column we append a special token we call bottom token to signify that the transformer
reached the bottom of a column and now is generating the next column. When each tile
has its own token and each column is 16 tokens high including the bottom token at the end,
the model can learn to tell the vertical position of the tile it is getting the logits for without
learning how wide the tokens are. It can also look at the token with the position embedding
being 16 indices from the end to tell what tile is to the left independently of what tiles are
in-between, the tile will always have the same position embedding. We could say that the
position of the tokens is a kind of grammar for the levels.

Another reason is the size of the dataset being fairly small compared to the datasets used
to train transformers for NLP tasks. We only have a few levels from Super Mario Bros.
and Super Mario Bros.: The Lost Levels that we are using to fine-tune the model that is
pre-trained for NLP, with the tokens having completely different meaning and the grammar
being completely different. By combining multiple tiles into single tokens we have fewer
examples of how each of the tokens are used, and additionally, the tokenwise length of the
dataset becomes shorter.

A drawback to not using byte pair encoding is that if we train the model on samples of
up to 700 tokens, the model will only see the previous 700 tiles and forget everything that
happened before in the level. If the byte pair encoding based tokenizer produced token
sequences that are on average two times longer than the tile sequences, the tokenizer would
be able to remember around two times as many tiles.

To convert the two-dimensional level into a one dimensional sequence that we can treat as

a natural language, we read the columns from top to bottom with the previously mentioned
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bottom token at the end of the column, and then begin at the next column. The length of
the encoding used in this project is 700 tokens.

Figure 3.1: The textual representation of a generated level, compared with with the game’s textures.

3.2 Model

The model used for this task was DistilGPT-2, a variant of the generative pre-trained trans-
formers popular for generative NLP tasks. Despite the levels not being natural languages,
we theorized that as long as the levels could be represented as a sequence of tokens similarly
to natural language with a distinct grammar, the model could learn that as well. As seen in
the background section, similar approach to how GPT generates natural language was tried
before with a LSTM-based model.

The DistilGPT-2 implementation used in this project was the one present in the Hugging
Face library. Although the implementation used more memory than NanoGPT, at least in
our case, there is a bigger ecosystem around Hugging Face’s implementation with existing
implementations for reinforcement learning we can use to further fine-tune the model for a
specific task. The training process consisted of using the trainer class from Hugging Face’s
transformers library which is usually used for NLP, however our representation of the levels
as a sequence of tokens is similar to how NLP is represented as a sequence of tokens allowing
us to use training loop implementation.

The batch size for the model used is 32, with 5000 batches of training total. Initial learning
rate is 0.00003, with most of the other arguments being the default ones for the TrainingAr-
guments class from Hugging Face’s transformers library. We did not add weight decay to the
optimizer and we did not change the default probability of the dropout layers activating from
the default for the Hugging Face library that is 0.1. After 10 training iterations the model
was evaluated on 100 batches to test how if the negative log likelihood begins to increase for
levels that the model has never seen or not.

However, we do not know whether the assumption that having low negative log likelihood
on the evaluation dataset is a good thing is a valid one. One of the reasons that having the
same negative log probability on the training and evalutation dataset can be a bad thing is
because of how the probabilities of the blocks of levels are different of the different levels. For
example, if all levels depicting Bowser’s castle got placed inside of the evaluation dataset,
we would expect the the negative log-probability for the predictions of the model on this
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Figure 3.2: A sketch of our model architecture.

level to be worse. Additionally, if we deem the levels too unoriginal we could try to make
the predictions more erratic by increasing the sampling temperature.

The sampling process for both this model fine-tuned only on existing levels, as well as models
resulting from reinforcement learning, is mostly the normal process of sampling GP'T models
for NLP. We get the logits for the next token from the model, optionally apply a temperature
then softmax and sample from the predicted probabilities. In our work we did not apply a
temperature or k-top. A modification we made for the purpose of generating Super Mario
Bros. levels is related to the bottom token. After the last token in the column we append
bottom token to the list of generated tokens rather than sample the token from the model
since that’s the only valid token in that situation and sampling any other token in this
situation would result in the level having invalid syntax with the height of the columns
being inconsistent. Similarly when sampling any other tile, we ignore logits for the bottom
token to avoid making a column that is too short.

When it comes to reinforcement learning we label levels as being possible to finish or not by
using an A* agent. Despite the A* agent not being perfect and the possibility of a level that
is possible to finish being marked as being impossible, we assume that the reinforcement
learning algorithm has some tolerance to label noise. We are using Hugging Face’s TRL
library to reward the model for generating levels that are possible to complete according to
the A* agent as well as penalize impossible levels using PPO. This library is based on the
paper Fine-Tuning Language Models from Human Preferences by D. Ziegler et al. [23]. We
are however not generating natural language or training the model based on human feedback.
When processing the level as 15 tiles and a bottom token we add air tiles on top of or clip
tiles from levels that are too high or short. After parsing the levels we get the percentage of
tiles as shown in Table 3.1 in the training dataset.
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Tile | Percentage | Amount
— 86.824% 96922
< 00.177% 198
> 00.176% 197
? 00.090% 100
B 00.035% 39
E 00.550% 614
Q 00.214% 239
S 02.095% 2339
X 08.547% 9542

[ 00.427% 447
] 00.429% 449
b 00.022% 25

0 00.411% 459

Table 3.1: Percentage distribution of tiles ignoring bottom tokens

3.3 PPO

When fine-tuning the model using PPO, we have cycles of collecting advantage estimates and
improving our agent. We opted to use the TRL|22] library which provides an implementation
of the method described in Fine-Tuning Language Models from Human Preferences by Daniel
M. Ziegler et al.[23]. This implementation of the PPO algorithm is the one based on KL-
divergence with and adaptive KL-penalty. Before an iteration we collect 1000 using the
current model and the A* agent. We used simple SDG optimizer with learning rate of
1.0 x 107°. The default target KL-divergence for the trl library is 6, however in the paper
the repository is based on a much lower target KL-divergence of 0.1 is mentioned. The
results of using them is mentioned in the results chapter. We use batch size of 10 and
iterate over the samples we collected. The way KL-divergence is implemented in trl library
when a PPOTrainer is instantiated it takes a reference model to which to calculate the
KL-diveregence so we are not updating the reference model every batch and keep training
the model on samples which the reference model generated. We also tried to use the latest
version of the model to generate all the batches, however it was yielding similar results
despite being much slower as we now need to run A* on separate levels rather than allowing
us to run PPO on the levels we previously generated for evaluation.
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Chapter 4
Experimental Results

When excluding a level from training, the evaluation loss for predicting the next token seem
to plateau after 1 000 steps, however even after training for 5 000 steps we do not observe
results of overfitting and the evaluation loss rising. This was against our expectation given
the size of the model compared to the dataset, however when looking at MarioGPT it looks
like that model was trained for 10 times at many batches. Suspected culprits are that the
complexity and the size of the dataset actually poses a challenge for a model of the size of
DistilGPT2. Another thing that could prevent overfitting is the regularization in the form
of 10% dropout chance which is the default value for the Hugging Face library. When we
increased the amount of training steps to 50 000 we began observing overfitting. Negative
log-likelihood for training with both 5 000 and 50 000 steps is shown in Figure 4.2.
Negative Log-Likelihood however does not tell us directly how good level the model is going
to generate, rather it tells us how well the model predicts the level and is dependent on how
much information the model has about the level. Further discussion in section 5.2.

When generating levels we generate 100 columns which equals 1600 tiles including the bottom
tokens for positions. We found that the initial success rate for the A* agent was only 65%
win rate. It is worth mentioning MarioGPT[15], a similar approach to ours in terms of also
using DistilGPT-2 reached 88.33% valid 100 column level chunks after 50 000 training steps.
MarioGPT research paper does not mention negative log-likelihood the model got and instead
measures the model performance in the amount of tiles the model guesses (tile accuracy)
and how similiar the generated paths are to paths taken by A* agent (path accuracy).[15]
We did not measure the amount of valid level for our 50 000 training step models since we
assumed the model be overfitting based on evaluation negative log-likelihood. Novelty score
implemented in MarioGPT[15] could be considered in future work in to check whether the
model actually begins to generate unoriginal levels or just loses it’s ability to predict levels
it has never seen before.

While generating 65% is not great in and of itself, it provides a good balance to check
whenther we can improve our model using a reinforcement learning approach like PPO,
rather than sequence modelling approach. The next step of our training is to use RL in the
form of PPO in order to try to align the model with the goal of generating actual valid levels
similarly to how we can align an NLP oriented model to generate text that align with what

humans want and not only with what the probability distribution of the training dataset is.
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Figure 4.1: DistilGPT-2 model fine-tuned for sequences of Super Mario Bros. tiles with no rein-
forcement learning. The first 2 columns is the prompt, telling the model that the level begins with

ground at the lowest elevation

o
w
~

Training for 5000 steps

T T
—— Training

e
w
=

=]
w
et

—— Evaluation |

e
N
=)

e
)
w

e
N
[N

0.19

0.16

Negative Log-Likelihood

0.52

Training for 50 000 steps

T
—— Training |

ET

4
\ Z 513 i
g 013 .
0.10
\ 0.04
0.07 0.01
—
[
0.04 0 10000 20000 30000 40000
Step
[} 1000 2000 3000 4000 5000

- (b) Training and evaluation scores when fine-

tuning DistilGPT-2 model for Super Mario Bros.
sequence modelling with ten times as much steps
causing overfitting.

(a) Training and evaluation scores when fine-tuning
DistilGPT-2 model for Super Mario Bros. sequence
modelling

Figure 4.2: Training and evaluation negative log-likelihoods.

4.1 Reinforcement Learning

We found that training with the KL-divergence target of 6 shifts the probability distribution
way too much off the original causing the generated level to be unbeatable. By taking a look
at the generated levels to see what actually is wrong, the generated levels generally seem
to contain a lot of empty space with gaps impossible to jump over. An actually beatable
level can be seen in Figure 4.3, showing how a lot of empty space is generated after one step
with too high KL-divergence target. An explanation for this behaviour we had was that in
the levels we generated before PPO fine-tuning many of the unbeatable levels had obstacles
that the agent could not get around, however after running the algorithm with different
hyperparameters we found that there must be another explanation.

Figure 4.3: Level generated with high KL-divergence

Reducing the target KL-divergence to 0.1 line the one used for fine-tuning NLP models to
human preference in the paper that proposed PPO as a method of fine-tuning transformer
this way resulted in better results. After an PPO step we still observed the chance of the
level being beatable to fall down, but this time to only 52%. Surprisingly this time the

17



fine-tuned model seemed to generate more times than the original levels. The amount of air
tiles in with 0.1 as KL-divergence target in PPO fine-tuning was 81.445%. The amount of
air tiles with 6 as KL-divergence target in fine-tuning was 96.097%. The training data was
equal for the first PPO iteration for both KL-divergence and contained 88.055% air tiles.

Figure 4.4: Level generated with low KIL-divergence

Symbol | Percentage | Percentage | Percentage Percentage
Real Levels No RL KL target 6 | KL target 0.1
— 86.824% 88.055% 96.097% 81.445%
< 00.177% 00.253% 00.103% 00.243%
> 00.176% 00.250% 00.099% 00.241%
? 00.090% 00.064% 00.037% 00.069%
B 00.035% 00.000% 00.000% 00.000%
E 00.550% 00.558% 00.205% 00.483%
Q 00.214% 00.172% 00.015% 00.169%
S 02.095% 00.932% 00.283% 01.044%
X 08.547% 08.227% 02.172% 14.746%
[ 00.427% 00.555% 00.245% 00.569%
] 00.429% 00.574% 00.223% 00.571%
b 00.022% 00.000% 00.000% 00.000%
0 00.411% 00.359% 00.519% 00.417%

Table 4.1: Percentage distribution of symbols

Table 4.1 shows the percentage distribution of symbols.
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Chapter 5

Discussions

In our experiments we failed to find a combination of hyperparameters that would actually
allow us to improve the model based on the A* agent. We theorize this is caused by the
model finding random coincidences when it comes to what is common in the levels are are
impossible to complete and possible to complete and just deviate from the original probability
distribution of the levels. Instead of identifying the reason or reasons a generated level got
a low score and improving on that, the model instead randomly makes subsequent levels
less like the training data. It is possible that we made the task of PPO figuring out that
impossible to overcome obstacles are the thing that makes the scores low. The current
implementation penalizes the model for the whole level after it detect that the level is

impossible, however often only a part of the level is impossible.

5.1 Autoregressive models

It’s worth discussing how various machine learning based level generation strategies differ
from each other, and one of the things that is not always the same is if the model is au-
toregressive. Autoregressive models such as GPT and LSTM generate the level in a specific
direction and can see the previously sampled parts of the level. Our solution being based on
DistilGPT-2, which is an example of an autoregressive model, sampling the level tile by tile
and each sampled tile being visible to the model when sampling the next tile. In contrast,
the GAN based approach MarioGAN][21] did not use autoregression. It would, however, be
possible to combine a GAN based approach with a generator that takes the previous part of
the level as input to generate the next part of the level by employing an architecture more
similar to an autoencoder that takes the previous part of the level as input and outputs the
next part of the level.

By employing an autoregressive implementation for level generation we gain the capability
to enforce specific rules on the model’s generation process based on the preceding input.
This is done by manipulating the logits to make sampling values that would break these
rules impossible. As an example, we will take a look at the pipe element from the game
Super Mario Bros.

The pipe in Super Mario Bros. is a multi-tile structure, comprising two tiles in width,
with a distinct tile type for the upper block. When generating a level from top to bottom,
column by column, we know that normally the only possible part of the pipe structure to
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generate is the top-left portion of the pipe. Once the top-left part of the pipe is obtained,
the model gains knowledge about the expected layout for the subsequent rows - specifically,
the bottom-left parts of the pipe follow until we reach a ground tile. on the next column
we know what positions the right side of the pipe structure needs to be in. By restricting
the sampling process to correct tile types we can ensure generation of the pipes and other
structures consistent with the desired level design.

Another example is the restriction of the bottom token element always and only generated
at the ends of columns as a guide where currently the model is in. Since we turn the 2
dimensional level into a sequence, the bottom token element is supposed to help the model

remember what the current vertical position is.

5.2 Negative Log-Likelihood as a evaluation score

Similarly to previous implementations treating the levels as sequences of tokens and gen-
erating the levels by outputting an predicted probability distribution, we used negative log
likelihood during training and on the validation dataset to tell how well the model predicts
and generalizes the predictions to levels it has not seen before. However drawbacks of this
method should be considered before using it, especially to compare different training methods
and models to each other.

One example we should consider is the possibility of adding the path of an A* agent to the
level’s representation or not. A problem with relying on the predicted probabilities when
comparing models trained on dataset with A* path and ones with normal level representation
is that the path of the A* agents gives the model more information about what it can expect
in the future than it can conclude from the level itself. If the model sees that the A* agent
began an jump in the prompt it can conclude that the agent could be trying to jump over
something increasing the probabilities of obstacles that could stand in the way requiring the
A* agent to jump like pipes. Likewise if the model observes the agent not jumping it can
conclude that there should be no obstacle in the path. When comparing the models for the
levels with paths and without paths a problem is that the negative log likelihood will get
lower pointing towards the model being better in the case of the model with paths, however
we can not know if the levels are actually going to be better when generating them with the
use of autoregression because in that case the paths are going to be imagined by the model in
contrast to the training and evaluation dataset when the paths are generated by something
like an A* agent or an actual player. The model with pathing information in prompt has
unfair advantage over models without in the case of the training and evaluation datasets.
While paths are one obvious example, other additional information like the expected amount
of pipes in the level, expected amounts of enemies in the levels and so forth are also going to
improve the negative log-likelihood scores, but not necessarily make the levels more realistic.
The biggest thing the negative log-likelihood can tell us is if the models still works on levels
it has never seen before or if it is overfitting. This method is however not necessarily a good
method of comparing different level representation and types of input since giving more
information could improve how well the model predicts existing levels but not how realistic

levels the model is actually going to generate itself.
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To actually compare different approaches of level generation with each other one good way
should be collecting enough human feedback, since that is our actual goal when generating
levels and not prediction. This would however require a lot of human effort and time.
Another statistic that gives us more information about how good the levels are things like
how often the model generates levels that are possible to complete.

5.3 Pre-training by other models

When training the model, the dataset we used consisted of levels from just two Mario games,
which is relatively small compared to datasets like OpenWebText [2]| that were used to train
GPT models. What we relied on to get somewhat good results despite training an relatively
large model compared to the size of the dataset, was to use transfer learning in order to
fine-tune a NLP model for the task of level generation. However, NLP and Mario level
generation are two different tasks that contain a large number of differences with the Mario
levels not being an natural language at all. An possible solution for this problem could be to
use other level generators to generate levels to fine-tune the NLP model to before training it
on real levels or maybe not even using NLP at all and training an GPT model from scratch
of AI generated levels. The possibility of using other models like a step between the task of
NLP and fine-tuning the GPT model on real Super Mario Bros. levels could be the basis for

future work.

5.4 Divergence from training dataset

As we fine-tune our model with PPO, we do not have any reward for the model to keep
the levels looking like the original human made levels. Therefore it is possible the model
would stop generating some types of levels in response to being fine-tuned by PPO only. For
example, the model gets penalized for making big gaps, potentially causing the model to
stop generating gaps for the player to jump over at all. In our experiments we kept the same
reference model throughout the training, which allows us to search for levels with a given
KL-divergence from the original distribution at the beginning of the training. Nevertheless,
when we fine-tune the model using PPO we are moving away from the original probability

distribution we had, making the levels less realistic.
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Chapter 6

Conclusion

In our experiments we found that we can indeed use GPT models for the purpose of proce-
dural level generation, even with the limited dataset that is Super Mario Bros. and Super
Mario Bros.: The Lost Levels when making use of pre-trained GPT models. However we
failed to make use of PPO algorithm to fine-tune the level generator to produce better levels.
As we used examples sampled from our model and checked them our initial success rate for
possible levels was 65%, but applying PPO to try to improve the score only worsened the

score.

6.1 Future Work

6.1.1 PPO avoiding invalid levels

While we did not find success in fine-tuning the model to reduce the amount of invalid levels
with our method, that doesn’t invalidate PPO as a method of fine-tuning level generators.
It’s possible that by improving on the fine-tuning process by methods like finding the exact
part of the level that is impossible to pass and penalize the model for that part rather
than penalizing the whole level could result in better scores. Possible future work is trying
to create a better PPO implementation possible being more precise with what we actually
penalize and reward in order to make it easier for the model to align with chosen goals.
Also while PPO is popular for use in the field of NLP, it is possible that another way for
rewarding and penalizing the model based on our goal could fit better in this scenario like
using some other RL algorithm.

6.1.2 Fine-tuning from human preference

Possible future work when it comes to the reward function in an RL based approach for fine-
tuning a level generator would be to test how fine-tuning the model using human feedback
would improve results. With enough data this would allow to train the generator to generate
levels that are perceived by humans as better. In Fine-Tuning Language Models from Human
Preferences by Daniel M. Ziegler et. al.[23] it is shown that "offline” data collection, that is
collecting labels only for data generated by the original model, is less effective than labeling
data from the newest version of the model at the same time as the model is fine-tuned using

RL. Doing this was omitted from this research as it would require a human participant to
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label potentially tens of thousands of levels similarly to how Fine-Tuning Language Models
from Human Preferences by Daniel M. Ziegler et. al.[23] has up to 60 000 examples, which
all show improvement in the perceived quality, in addition to evaluation by humans.
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Appendix A

Examples of generated levels

Figure A.1: Possible to complete generated levels no PPO.
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Figure A.2: Impossible to complete generated levels no PPO.
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Figure A.3: Possible to complete generated levels KL target 0.1
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Figure A.4: Impossible to complete generated levels KL target 0.1
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Figure A.5: Impossible to complete generated levels KL target 6
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