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Abstract

The breakthrough Black-Scholes (BS) model predicts a horizontal line when plotting

the implied volatility (IV) against the strike price. However, empirical studies uncovered

that the implied volatility derived from option market prices in the BS model varies with

strike prices and time to maturity, leading to the identification of three stylized facts that

the BS model fails to explain. First, the IV curves exhibit a smile/smirk pattern, with

an upward-sloping term structure for at-the-money options. Second, option prices tend

to reflect higher implied volatility compared to the realized volatility of asset returns.

Third, the negative skewness implied by options prices is greater in absolute terms

compared with the realized skewness. Consequently, numerous sophisticated models

have been developed to address these stylized facts. Nevertheless, traditional models

often fall short of fully explaining all aspects of these phenomena. This study introduces

a novel approach to the utility indifference model by incorporating behavioral utility

functions to provide a more accurate representation of these anomalies. To evaluate

the model’s performance, the standard function used in expected utility theory and

behavioral utility functions are tested under both normal and Normal Inverse Gaussian

(NIG) distributions. The findings indicate that the conventional utility function fails

to capture the observed smirk patterns. In contrast, the behavioral utility function

generates the IV smirks that closely align with empirical shapes, even under the normal

distribution. These results highlight the effectiveness of the utility indifference model

with behavioral utility functions in explaining these stylized facts that standard models

struggle to reproduce.
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Chapter 1

Introduction

The seminal work of Black & Scholes (1973) (BS) represented a significant advancement

in the development of option pricing models. This framework continues to be one of

the most successful and widely adopted applications to date, with market option prices

frequently quoted in terms of its implied volatility (IV). The implied volatility of an

option contract is defined as the volatility of the underlying instrument which, when

entered into e.g., the BS formula, returns a theoretical value equal to the current market

price of the option (McDonald, 2014). According to the BS model, plotting the IV as a

function of the strike price results in a horizontal line. However, empirical observations

have revealed significant deviations from this expectation, leading to the identification

of stylized facts that the BS model cannot explain.

The most prominent stylized facts are as follows: firstly, market prices for out-of-

the-money put options and in-the-money call options tend to be higher than the prices

predicted by the BS model, known as the IV smirk (Rubinstein, 1985). Graphically, the

BS implied volatility values exhibit a U-shaped pattern prior to the 1987 stock market

crash and a smirk pattern post-crash when plotted against the strike price (Bates, 2000).

Furthermore, the implied volatility term structure for at-the-money options is upward-

sloping (Zhang & Xiang, 2008). Secondly, implied volatility in option prices typically

exceeds realized volatility of the underlying asset returns. This disparity between realized

and implied volatility is termed the volatility risk premium (Jackwerth & Rubinstein,

1996). Thirdly, the negative skewness implied by options prices is greater in absolute

terms compared with the realized skewness, and the spread in skewness between the two
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measures is referred to as the skewness risk premium (Bakshi et al., 2003).

The primary theoretical explanations for those anomalies revolve around the simpli-

fying assumptions that underlie the BS model. Specifically, the model assumes that the

probability distribution of the underlying asset log returns is normal. However, it is well

known that the stock return distributions exhibit a left skew and higher kurtosis com-

pared to normally distributed returns. In order to reconcile the inconsistency between

the BS model and empirical observations, numerous more realistic alternative models

have been introduced in the option pricing literature.

Merton (1976) introduced the jump-diffusion model, which enhances the underlying

price dynamics of the BS model with a “Poisson-driven” jump process that accounts for

rare events. By considering volatility as a stochastic process, Heston (1993) proposed

a stochastic volatility model that captures the negative correlation between the instan-

taneous volatility and stock price, as well as the leverage effect. However, the jump-

diffusion model falls short in accurately fitting long-maturity data, while the stochastic

volatility model struggles to generate accurate IV smirk for short maturities and pro-

duces an incorrect term structure. Additionally, neither of these models can adequately

account for volatility and skewness risk premiums. Eberlein & Prause (2002) utilized

the four-parameter NIG class distribution to derive an option pricing formula under the

risk-neutral measure that performs better in fitting the observed IV smirk, neverthe-

less, it may not account for other stylized facts. Inspired by behavioral finance, Suzuki

et al. (2009) developed an agent-based equilibrium model with exponential-type utility

functions to explain those empirical puzzles using loss aversion of heterogeneous agents.

However, the term structure of their model remains unclear, and it is unknown whether

the estimated magnitude of the risk premia aligns with the market data. This observa-

tion indicates that the current body of literature does not offer a comprehensive option

pricing model that can incorporate all of the observed stylized facts.

To mitigate the limitations of existing option pricing models, this study introduces

a novel approach to the utility indifference model by incorporating behavioral utility

functions to more accurately capture the three stylized facts of IV. The novelty of the

study lies in its application of behavioral utility functions for utility-based option pricing,

which is an unexplored area of research in the literature.

The utility indifference model is founded on the equilibrium principle that option
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prices can be determined by identifying the price at which the representative investor is

indifferent between investing exclusively in stocks or in both stocks and put options to

maximize expected utility. At the equilibrium option price, the representative investor

neither buys nor sells options, resulting in an optimal quantity of options of zero and

thereby maintaining a zero net supply of options. Given the absence of analytical solu-

tions for the model, even with the standard utility function within the expected utility

theory, numerical methods are employed to obtain option prices. Furthermore, the mea-

sures of volatility and skewness in the physical and risk-neutral (estimated) contexts are

compared to determine the risk premiums for volatility and skewness. This thesis eval-

uates the performance of the model by testing it employing both the standard function

used in expected utility theory and various behavioral utility functions, considering both

normal and NIG distributions.

The findings reveal that the conventional utility function falls short in capturing the

observed smirk patterns. In contrast, the behavioral utility function successfully gen-

erates IV smirks that closely resemble the empirical shapes, even when applied to the

normal distribution. Moreover, the model reveals its ability to account for upward IV

term structure, as well as the NIG distribution forms more pronounced smirk patterns

across all utility functions. The results obtained from the evaluation of volatility and

skewness risk premia provide support for the model’s capability to generate negative

risk premiums for both volatility and skewness which is in line with the existing liter-

ature. In addition, the results suggest that the n degree lower partial moment (LPM)

behavioral utility function, where n ranges from 1 to 2, generates risk premia that are

in close accordance with the empirically observed values. These findings emphasize the

effectiveness of the utility indifference model with behavioral utility functions in suc-

cessfully explaining these stylized facts, while standard models fall short in reproducing

them. By overcoming the limitations of standard models, this research offers valuable in-

sights into understanding the dynamics of implied volatility. The findings are expected

to have important implications for option pricing, risk management, and investment

decision-making.

The remaining thesis is structured as follows. Chapter 2 reviews the previous litera-

ture. The model is presented in Chapter 3. Chapter 4 provides the numerical results of

the model and the concluding remarks is given in Chapter 5.
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Chapter 2

Literature review

Relevant literature explaining the stylized facts of implied volatility, namely, implied

volatility surface, volatility risk premium, and skewness risk premium is reviewed in this

chapter. The most common theoretical explanation lies in the fact that the probability

distribution of the underlying asset log returns deviates significantly from the normal-

ity assumed in the BS formula, rather is skewed to the left and additionally exhibits

higher kurtosis. As a result, several more sophisticated option pricing models have been

developed in the literature, primarily involving generalizations of the BS framework,

to overcome these empirical anomalies. The organization of this chapter follows these

empirical statistical regularities accordingly.

2.1 Implied volatility surface

The estimates of implied volatility typically depend on the option’s strike price and

time to maturity, suggesting that the implied volatility surface as a collection of implied

volatilities can be expressed as a two-dimensional function of strike price (IV curve)

and expiration time (term structure) (Cont & da Fonseca, 2002). Mathematically, this

implied volatility surface can be obtained by inverting option market prices for the

volatility parameter in the BS model (Rubinstein, 1994; Dumas et al., 1998; Das &

Sundaram, 1999), which reflects the return probability distribution of the underlying

asset in different time horizons in a risk-neutral world (Zhang & Xiang, 2008). Quoting

options directly in terms of implied volatilities is a common practice since the implied
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volatility surface contains all the knowledge about market option prices, enabling direct

comparisons and relative valuation.

Under the BS framework, a strong assumption states that the underlying price pro-

cess follows geometric Brownian motion with constant volatility and a Gaussian return

distribution. Therefore, the implied volatility of all options on the same underlying as-

set should be identical regardless of strike price and time to maturity. Graphically, the

shape of the implied volatility surface for an option should be the plane at the height of

the constant volatility value, that is, implied volatility as a function of the strike price

(moneyness) of an option ought to be flat and maintained a constant slope over different

expiration time, with no term structure.

In stark contrast, it is widely observed that the implied volatilities derived by the

BS model from option market prices for the same underlying asset at the same point

in time fluctuate with both strike price and time to expiration. In other words, a U-

shaped (smile) IV curve (before the 1987 stock market crash), where deep in-the-money

and deep out-of-the-money options have higher implied volatilities than at-the-money

options, or the smirk pattern (following the market crash), in which implied volatility

decreases monotonically as strike price increases, emerges in empirical data. Moreover,

these IV curves extend to nonflat surfaces as time-to-maturity changes, i.e., the shape of

the IV curve is more pronounced in short maturities and flattens out in long maturities

(e.g., Rubinstein, 1985; Das & Sundaram, 1999; Bates, 2000; Chen et al., 2016). The

stylized fact of the smile/smirk pattern is generally interpreted as the presence of high

excess kurtosis and negative skewness in the risk-neutral distribution of the underlying

return (e.g., Jackwerth & Rubinstein, 1996; Bakshi et al., 2003; Carr & Wu, 2003; Bates,

2022). The term structure of implied volatility, on the other hand, reflects investors’

market fluctuation expectations on the distribution of asset returns over different time

horizons (Ap Gwilym & Buckle, 1997; Zhang & Xiang, 2008). The invalidation of the BS

framework, especially after the 1987 market crash, has attracted widespread attention

in the financial literature in an effort to construct alternative option pricing models that

could account for stylized facts.

In order to reconcile the inconsistency between the BS model and empirical observa-

tions, a considerable number of more realistic models have been proposed in the option

pricing literature. These models most often model the implicit distribution of under-
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lying asset returns using jump-diffusion, stochastic volatility, and other non-Gaussian

distributions, such as the Normal Inverse Gaussian (NIG) distribution.

Acknowledging the leptokurtic character of asset returns in the short run, Merton

(1976) first presented the jump-diffusion model by augmenting the underlying price

dynamics of the BS model with a “Poisson-driven” jump process that captures rare

events. This model was later extended by Kou (2002) and Kou & Wang (2004) to a

double exponential jump-diffusion model through a compound Poisson process to achieve

a more pronounced asymmetric leptokurtic character, along with analytical tractability

with path-dependent options. However, these exponential Lévy class models assume a

finite number of shocks, and independent increments lead to zero autocorrelation in the

return series, suggesting the absence of volatility clustering (as in the BS model), even

though they are able to produce excess kurtosis and skewness in compliance with market

option data (Bates, 2000; Carr & Wu, 2003; Broadie & Detemple, 2004). Consequently,

the considerable kurtosis/skewness generated by the jump component does not always

persist over the medium- or long-term expirations, that is, the shape of the implied

volatility surface levels off with time to maturity faster than empirical evidence would

suggest (Das & Sundaram, 1999; Lorig & Lozano-Carbassé, 2015). This result prompts

researchers to view the dynamics of underlying volatility as a stochastic rather than a

constant process.

The stochastic volatility option pricing model generalizes the BS pricing formula in a

way that models the joint process of stock returns and instantaneous volatility allowing

for randomness. Early studies examining random variance option pricing include Hull

& White (1987), Scott (1987), and Wiggins (1987). While the previous two papers

assumed that stochastic volatility was independent of stock returns, the work done by

Wiggins (1987) allowed for an imperfect correlation between volatility and stock returns.

However, these studies can only provide numerical solutions. The Heston (1993) model

compensates for the shortcomings of previous models by providing a quasi-closed-form

solution and is capable of capturing the nature of the negative correlation between the

changes in volatility and returns, as well as the leverage effect, making it the most well-

known and popular of all stochastic volatility models. Nonetheless, a sizeable amount of

literature provides empirical evidence indicating that the Heston model is misspecified

(lack of jumps in asset returns) due to its affine square-root structure when modeling

6



stochastic volatility (e.g., Bakshi et al., 1997; Aı̈t-Sahalia & Kimmel, 2007; Broadie et

al., 2007; Christoffersen et al., 2010; Zhang et al., 2017). Thus, the IV curve created by

the Heston model is too shallow at short-term maturities compared with the empirically

expressed implied volatility surface, even though the smile/smirk pattern persists at

long-term maturities (Bakshi et al., 1997; Das & Sundaram, 1999; Jones, 2003; Gatheral,

2006). Furthermore, it fails to match the term structure of implied volatilities generated

by market data (Pan, 2002). What this reveals is the need to build a more realistic

model that goes beyond stochastic volatility models.

One strand in the literature accounts for those empirical anomalies by reconstructing

the risk-neutral density of the underlying asset using non-Gaussian distributions. Among

them, a semiparametric option pricing model was introduced by Jarrow & Rudd (1982),

in which they approximated the lognormal distribution of the underlying asset prices

according to a generalized Edgeworth series expansion. Later, Corrado & Su (1996)

derived an analogous model, with the major difference that they modeled the distribution

of underlying returns using an A-type Gram-Charlier series expansion of the normal

density function for the convenience of illustration. Both models extend the BS option

pricing formula to address the biases invoked by non-normal skewness and kurtosis in

the underlying security distribution. The additional terms added to the BS formula

improve pricing accuracy and align the models more closely with market option data.

However, negative probability values may be returned when the skewness and kurtosis

coefficient values fed into their model are high, which is often observed in practice due

to extreme events.

On the other hand, Eberlein & Prause (2002) exploit attractive properties of the

four-parameter NIG class distribution, such as computational simplicity, flexibility, es-

timability of parameters, and sufficiency as a density, to reproduce the risk-neutral

probability density of the underlying log returns. The authors proposed a generalized

hyperbolic model as an asset pricing model, which is capable of generating distribu-

tions that more accurately approximate observed empirical distributions. In addition,

they developed an option pricing formula under the risk-neutral measure that effectively

accounts for the “smile effect” produced by the BS model.
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2.2 Volatility risk premium

The at-the-money volatility implied in option prices (risk-neutral volatility) is widely

acknowledged to exhibit an upward bias compared to the ex-post realized volatility of

asset returns (physical volatility) across different time horizons, excluding the period that

includes the 1987 stock market crash (Jackwerth & Rubinstein, 1996; Poon & Granger,

2003; Jiang & Tian, 2005). This disparity between realized and implied volatilities is

commonly referred to as the volatility risk premium. Notably, researchers have identified

the negative volatility risk premium as the prominent explanation for this observed bias

(e.g., Bakshi & Kapadia, 2003; Engle, 2004; Zhao et al., 2013). Intuitively, all else being

equal, when the market price of volatility risk is negative, the drift of the risk-neutral

volatility process increases, thereby inflating option prices. Economically, the incentive

to hedge against market depreciation makes investors willing to pay more to hold options

(bear negative expected returns), which in turn makes options more expensive than they

would be if volatility were unpriced (Jackwerth & Rubinstein, 1996; Bakshi & Kapadia,

2003).

This stylized fact suggests that, in addition to the fundamental price risk of the

underlying, there is a risk premium component in option prices associated with other

risk factors. The two most dominant risk factors contributing to this risk premium

are stochastic volatility and jumps (Buraschi & Jackwerth, 2001). According to Pan

(2002), this implied volatility bias arises when neither stochastic volatility risk nor jump

risk is priced in an option pricing model. This is the case for the BS model, where,

by construction, no risks related to higher moments of the underlying asset returns

are priced since the asset return dynamics follow a two-parameter geometric Brownian

motion (Coval & Shumway, 2001).

Numerous scholars have extensively investigated the role of stochastic volatility risk

in explaining the discrepancy between realized and implied volatilities using various

methods, including parameter estimation (Chernov & Ghysels, 2000; Andersen et al.,

2002; Ederington & Guan, 2013), hedging performance (Bakshi & Kapadia, 2003),

replicating strategies (Carr & Wu, 2009), and Monte Carlo simulations (Rambharat &

Brockwell, 2011). Despite employing different methodologies, these studies consistently

demonstrate that stochastic volatility risk is a key driver of the negative market prices
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of volatility risk premiums embedded in equity index options, providing the explanation

for the observed discrepancy.

In contrast to the emphasis on volatility risk, an alternative perspective posits the

significance of the jump risk factor in explaining the observed stylized fact, with a neg-

ligible impact from volatility risk. Notable studies in this area include Guo (1998),

Bates (2000), Pan (2002), Eraker (2004), Broadie et al. (2007), and Christoffersen et al.

(2012), among others. This conclusion is attributed to the model specification error and

discretization error associated with those stochastic volatility risk studies. Pan (2002)

argues that the research on stochastic volatility risk through the parametric method

may be affected by model specification errors, implying that the presence of a significant

volatility risk premium relies substantially on the choice of a model. Therefore, improp-

erly specified models can result in misleading conclusions. The same argument is also

drawn by Broadie et al. (2007). Furthermore, Branger & Schlag (2008) point out that,

in those surveys using model-free methods, discretization errors may appear on top of

misspecification errors, which would lead to unreliable inferences.

Earlier literature, such as the jump-diffusion model of Merton (1976), as well as the

stochastic volatility models of Hull & White (1987), Scott (1987), and Wiggins (1987),

usually assumes a zero risk premium, according to Bates (2003). In contrast, Heston’s

(1993) model allows for a volatility risk premium, but it is the negative correlation

between its asset volatility and returns rather than the stochastic property itself that

shapes skewness (Dumas et al., 1998). Furthermore, the Heston model suffers from model

specification issues, leading to unclear risk premium results, and empirical evidence

shows that even with a non-zero volatility risk premium, it is still unable to properly

fit real data (Bates, 2000; Pan, 2002). This suggests that the negative volatility risk

premium cannot be explained by the jump-diffusion model of Merton (1976) or the

stochastic volatility model of Heston (1993). Non-Gaussian models do not have an

explicit risk premium parameter in their model, as they focus on considering the effect

of higher-order moments under the risk-neutral measure. In fact, theoretical research has

shown that the higher moments of the physical return (especially negative skewness) are

the primary attributes of the volatility risk premium (Bakshi & Madan, 2006; Chabi-Yo,

2012). Overall, the conventional models are unable to successfully explain this stylized

fact.
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2.3 Skewness risk premium

Another consistently observed empirical anomaly is the greater absolute value of nega-

tive skewness implied by options prices (risk-neutral skewness) compared to the realized

skewness (physical skewness), particularly more pronounced in indices following the 1987

stock market crash (Bates, 1991; Rubinstein, 1994; Bakshi et al., 2003). Graphically,

risk-neutral skewness is associated with the slope of the IV curve (Zhang & Xiang, 2008),

indicating that the IV curve (to the left) has a higher slope than that implied by the

realized skewness. This study adopts the term skewness risk premium, following the

terminology of the volatility risk premium, to describe the spread between risk-neutral

skewness and physical skewness. It implies that the tail fears perceived by investors

are generally not reflected in the historically estimated skewness and the need to hedge

against them (Finta & Aboura, 2020). This observed stylized fact has attracted consider-

able research attention, leading to numerous studies aimed at providing an explanation.

Analytical and empirical examining of models performed in a model-free manner is a

general approach among researchers. Building on Bakshi & Madan’s (2000) fundamental

results showing that it is feasible to span and price the risk-neutral payoff by option posi-

tioning across different strike prices, Bakshi et al. (2003) theoretically demonstrated how

higher moments of risk-neutral return density can be retrieved from option portfolios.

An explicit expression of risk-neutral skewness of index returns related to its physical

counterpart was given as well. Moreover, they empirically confirmed a negative skewness

risk premium rooted in leptokurtic physical index density and risk aversion. Zhao et

al. (2013) exploited Zhang & Xiang’s (2008) method by contrasting higher-order cumu-

lants under the risk-neutral measure (inferred from index options) with those obtained

from the physical measure. Their analysis attributed the skewness risk premium to

jump risk, supported by empirical evidence. However, this model-free approach is not

free from limitations. When converting risk-neutral moments into physical moments,

assumptions need to be made about the relationship between them (Langlois, 2020).

In particular, variations in physical moments and risk premiums are both affected by

variations in risk-neutral moments (Chang et al., 2013).

Previous studies have established that the skewness premium is attributable to higher

moments of return density and risk aversion (Bakshi et al., 2003; Bakshi & Madan, 2006)
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and jump risk (Zhao et al., 2013). Further, it is well noted that modeling with sym-

metric stochastic volatility and jumps are only able to produce fat tails, while leverage

and asymmetric jumps can introduce skewness (Bates, 2022). Thereby, the ability of

Merton’s (1976) jump-diffusion model and Heston’s (1993) stochastic volatility model

to explain this stylized fact can be ruled out. Specifically, Merton (1976) assumes a

diversifiable symmetric jump process that leaves the same jump parameters in risk-

neutral and physical densities (Zhang et al., 2012). Meanwhile, Heston’s (1993) model

lacks the richness to generate an asymmetric distribution (Bakshi & Kapadia, 2003).

Non-Gaussian models may fail to reproduce skewness premium as well. First, from a

parametric perspective, there is no wedge between risk-neutral and physical density in

the Gram-Charlier-based models, making it impossible to estimate the skewness under

the two distributions. Second, when a nonparametric approach requires integral opera-

tions on strike prices to recover skewness contract prices, non-Gaussian models will not

be able to handle it since the estimation accuracy for non-Gaussian settings is unknown

(Feunou et al., 2017). The preceding discussion highlights the inability of traditional

models to explain this observed stylized fact.

2.4 Utility-based models

A frequently observed limitation of stochastic volatility and jump-diffusion models is the

exogenous nature of their asset price and volatility process. Consequently, the factors

that shape the price process and their corresponding effects on option pricing remain un-

certain. In contrast, utility-based equilibrium models exhibit better explanatory power

for stylized facts where the model’s price process is given endogenously by the dynamics

of supply and demand. Additionally, these models take into account the heterogeneity

of trader types and their respective risk preferences.

Within this strand, one approach attempts to account for those empirical regularities

by exploiting a pricing kernel as a linkage between risk-neutral and physical probabil-

ity distributions (converting physical density to its risk-neutral counterpart). Since the

market under their assumed simple economy is incomplete, such an approach usually

employs a general equilibrium setting that involves a utility function. Using a rep-

resentative investor with a constant relative risk averse (CRRA) utility, Fu & Yang
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(2012) explained implied volatility smirk, negative volatility risk premium, and negative

skewness risk premium (with a negative sign and greater absolute value of risk-neutral

skewness) in the general case of a jump-diffusion model with a Lévy process. Their

option pricing model can be regarded as a modification of Merton’s (1976) model by

including a jump process in the risk-neutral density. Furthermore, their pricing kernel is

proven to be identical to the option pricing formula provided by Bakshi & Madan (2000)

in a model-free manner (discussed above). The volatility smirk and volatility and skew-

ness risk premiums are attributed to risk aversion. However, the term structure of the

implied volatility in their model is unspecified and it is uncertain whether the estimated

level of risk premia corresponds to the actual market data. In the same spirit, Li et al.

(2017) subsequently generalized Fu & Yang’s (2012) model by incorporating stochastic

volatility to the jump component and obtains a similar result.

Inspired by behavioral finance theory, an alternative approach involves using an

agent-based simulation method. The equilibrium option pricing model used in the early

study of Benninga & Mayshar (2000) and Ziegler (2002) incorporated the heterogeneous

beliefs of investors and indicate that such heterogeneity could account for the observed

volatility smiles implied by options. In similar efforts, Suzuki et al. (2009) proposed

a prospect theory-based equilibrium model with exponential-type utility functions for

different types of investors and illustrate that the loss aversion behavior of the hetero-

geneous agent can explain the implied volatility smile and the negative skewness risk

premium. Furthermore, they implicitly account for the negative volatility risk premium.

Liu et al. (2014) extended the micro-individual aspect of the previous models by taking

into account the collective behavior of traders. The proposed model by the authors

effectively replicates the observed empirical pattern of an asymmetric implied volatil-

ity curve, whereby an increase in the degree of collective behavior corresponds with a

steeper slope of the curve.

2.5 Summary

The discrepancies between the BS model and empirical observations have prompted

numerous studies attempting to construct more realistic models that can explain or

capture stylized facts, such as implied volatility smirk and term structure, volatility risk
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premium, and skewness risk premium. Typical approaches for modeling the returns

of underlying assets involve the use of jump-diffusion, stochastic volatility, and non-

Gaussian distribution models, which aim to incorporate stochastic volatility and jump

risks. However, jump-diffusion models fail to fit long-maturity data, and stochastic

volatility models cannot generate correct IV curves at short maturities. Nor can they

account for volatility and skewness risk premiums. Although non-Gaussian models can

better fit the observed IV surface, they are incapable of explaining the other two stylized

facts. It is worth emphasizing that while certain models can generate IV curves with

the correct shape, their predicted level is only half of the empirical shape (Ghysels

et al., 1996). Utility-based models, which take into account the microscopic view of

investor behavior with various types of investors, offer a better explanation for those

stylized facts. However, the IV term structure of these models remains unclear, and it

is uncertain whether the estimated magnitude of the risk premia is in accordance with

market estimates. Evidently, the existing literature lacks a comprehensive model that

can successfully explain all aspects of these stylized facts. This study aims to bridge

this gap by proposing a novel approach based on the utility indifference argument, in

which a representative investor is endowed with a loss aversion utility function. To the

best of the authors’ knowledge, this approach has not been explored previously in the

literature and offers a promising framework for capturing these empirical regularities.
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Chapter 3

Option pricing models

To facilitate the assessment of models’ ability to account for stylized facts, this chapter

presents several option pricing models for evaluating European-style option contracts,

which can in turn provide a direct comparison with the utility indifference model. The

BS option pricing formula is given primary focus as it lays the foundation for the other

models. However, the model’s assumption of normally distributed log returns fails to

generate the observed implied volatility in real markets, highlighting the need for im-

proved models. To address this issue, this thesis also covers Merton’s (1976) jump-

diffusion, Heston’s (1993) stochastic volatility, and Eberlein & Prause’s (2002) NIG

model, given their significant role in the literature. Finally, the chapter concludes by

shifting its focus to the utility indifference model.

3.1 Theoretical models

3.1.1 The BS model

The Black & Scholes (1973) option pricing formula is utilized to ascertain the theoretical

value of derivative securities with regard to the price of other investment vehicles. This

formula is grounded in the fundamental principle of risk elimination (through delta-

hedging options) via the creation of a self-financing, risk-free portfolio that involves

purchasing one option and short-selling a portion of the underlying asset. The no-

arbitrage argument underpins the BS model, forming its very foundation.

Under the model assumption, the process for the stock price S follows a geometric
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Brownian motion:
dS

S
= µdt+ σdZ, (3.1)

where µ is the mean logarithmic return on the stock, σ is constant stock volatility, and

Z is the Brownian motion that captures the potential uncertainty in the market.

The strategy is to create a self-financing risk-free portfolio with a return equal to

the continuously compounded risk-free rate of return, r, in order to prevent arbitrage

opportunities (risk-neutral). Denote by V (S(t), t) the current value of the security with

underlying S which pays V (S(T ), T ) at maturity. By applying Itô’s Lemma, one can de-

rive the famous Black-Scholes partial differential equation (PDE) that the value process

of any derivative security must satisfy:

Vt + rSVS +
1

2
σ2S2VSS = rV, (3.2)

along with the boundary conditions of a European put option V (S(T ), T ) = P (T ) =

(K − S(T ))+, where K is the strike price. The value of the put P options on a non-

dividend paying asset can be shown as:

P (S,K, σ, r, T ) = Ke−rT ×N(−d2)− S ×N(−d1), (3.3)

where N(·) is the cumulative normal distribution function, and

d1 =
ln( S

K
) + (r + 0.5σ2)T

σ
√
T

,

d2 = d1 − σ
√
T .

Alternatively, a straightforward application of the put-call parity for European op-

tions on non-dividend paying assets can also yield the put option equation. The call

(C) and put options with the same expiration date and strike prices are linked by the

non-arbitrage condition that states:

C +Ke−rT = P + S. (3.4)

Merton (1973b) further demonstrated the validity of the BS model under relaxed
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assumptions, including stochastic interest rates and the presence of dividend-paying

stocks. The BS pricing framework continues to be the predominant option pricing model,

as evidenced by the widespread use of implicit volatility as the standard method for

quoting options prices. The BS formula can also be interpreted as pricing the option

in a manner that achieves its equilibrium expected return. Furthermore, the BS option

price strictly increases relative to volatility, which establishes a unique correspondence

between price and volatility (Chen et al., 2016).

3.1.2 The Merton model

To account for jumps in stock prices, the Merton (1976) jump-diffusion model expands

upon the BS stock price dynamics by incorporating a Poisson jump process. As a result,

the model generates stock price returns through a combination of these two processes,

which can be expressed by a stochastic differential equation:

dS

S
= (µ− λk)dt+ σdZ + dq, (3.5)

where q(t) is the Poisson process with a constant jump intensity λ and a random jump

magnitude Y , independent of dZ, dq is 0 when no jump occurs, and Y − 1 otherwise.

In addition, the occurrence of a jump has a probability of λdt. k = E(Y − 1) is the

expected percentage jump of S.

The inclusion of discrete jumps in the continuous stock process creates an incomplete

market, as these jumps cannot be hedged using derivatives. Consequently, the option

payoff structure can not be replicated, and pricing becomes impossible. To overcome

this challenge, Merton made the assumption that the jump risk is non-systematic and

therefore diversifiable. The Black-Scholes PDE then becomes:

Vt + (r − λk)SVS +
1

2
σ2S2VSS + λEY [V (SY, t)− V (S, t)] = rV. (3.6)

Assuming i independent and identically distributed (i.i.d.) jumps follow a common

lognormal distribution with mean µJ and variance σ2
J , that is, ln(Y ) ∼ N (µJ , σ

2
J), and

incorporating boundary conditions, Merton demonstrated that the price of a European

call option can be written as:
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C(S,K, σ, r, T ;µJ , σJ , λ) =
∞∑
i=0

e−λ′T (λ′T )i

i!
BSCall(S,K, σi, ri, T ), (3.7)

where

λ′ ≡ λeµJ ,

σi ≡
√

σ2 +
iσ2

J

T
,

ri ≡ r − λk +
iµJ

T
.

Equation (3.7) expresses the option value as the expected value of European option

prices, which takes into account the likelihood of a certain number of jumps occurring

(McDonald, 2014). Assigning a negative value to the expected jump size parameter k

creates a thicker left tail in comparison to the lognormal distribution. However, this in

turn leads to a decline in implied volatility (Broadie & Detemple, 2004). Furthermore,

the European put option pricing formula can be obtained using put-call parity.

3.1.3 The Heston model

The Heston (1993) model allows the volatility to vary stochastically while remaining

correlated with the stock returns. Assume the spot price dynamics follows the process:

dS

S
= µdt+

√
v(t)dZ1, (3.8)

where v(t) is the stochastic return variance (instantaneous) that follows a mean-reverting

square-root process:

dv(t) = k[θ − v(t)]dt+ σv

√
v(t)dZ2, (3.9)

where v(t) approaches its long-run mean leval θ at a rate of k. σv is the volatility of

the variance, and Z1 and Z2 are correlated with a coeffient ρ. The above equation also

produces the volatility clustering effect (Broadie & Detemple, 2004).

Given the assumed stock price and volatility process, the Black-Scholes PDE for

V (S(t), v(t), t) is then as follows:
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1

2
v(t)S2VSS +

1

2
σ2
vv(t)Vvv + ρv(t)σvSVSv

+ rSVS + {k[θ − v(t)]− λ(S, v, t)}Vv + Vt = rV, (3.10)

where λ(S, v, t) denotes the variance risk premium assumed to be proportional to v(t),

that is, λ(S, v, t) = λv(t), for analytical convenience. As there are two sources of risk,

namely stock price risk (dZ1) and volatility risk (dZ2), and no asset exists to hedge

volatility, this model resorts to an equilibrium approach to price the option contract.

Consequently, the variance process under the risk-neutral measure can be expressed as:

dv(t) = {k[θ − v(t)]− λv(t)}dt+ σv

√
v(t)dZ∗

2

= k∗[θ∗ − v(t)]dt+ σv

√
v(t)dZ∗

2 , (3.11)

where k∗ = k + λ and θ∗ = kθ/(k + λ) provide the mapping between the physical

parameters and their risk-neutral counterparts. The Heston model is the stochastic

variance model of the Equation (3.11). Note that in order to implement or test this

model, it is necessary to estimate four parameters: ρ, σv, k, and θ, as well as to filter the

spot variance v(t).

Heston (1993) demonstrated that the square-root stochastic volatility model permits

an analytical option pricing formula, where the necessary probabilities are obtained by

numerically integrating the conditional characteristic function of the underlying asset

price using the Fourier inversion technique. Additionally, he observes that the presence

of a correlation between volatility and the spot price is crucial to produce skewness. In

the absence of such correlation, stochastic volatility only affects the kurtosis.

3.1.4 The NIG model

Eberlein & Prause (2002) developed an option pricing model based on the premise that in

a risk-neutral world, the stock return should be equivalent to the risk-free rate of return.

To accomplish this, they employed the NIG distribution, which is the unconditional

distribution of a random variableX under the assumption thatX is normally distributed
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with mean a + bY and conditional on the variance Y following an Inverse Gaussian

distribution.

The NIG density can be expressed by the scale-invariant parameters as follows:

f(x;α, β, ηt, δt) =
δαteδtφ+β(x−ηt)

π
√

(δt)2 + (x− ηt)2
K1

(
α
√

(δt)2 + (x− ηt)2
)
, (3.12)

where

φ =
√
α2 − β2,

and α > 0, 0 < |β| < α, are the shape parameters that determine the steepness and

asymmetry, respectively; η ∈ R, is the location parameter; δ > 0, is the scale parameter;

and K1(·) represents the modified Bessel function of the third kind of index 1. This

distribution can be fully characterized by its first four moments and has the ability to

produce heavier tails and more pronounced skewness, which are consistent with real-

world data.

The first four moments of the NIG distribution, the mean (µx), variance (σ
2
x), skew-

ness (S), and excess kurtosis (K) of x are given by:

µx = ηt+ δt
β

φ
, σ2

x = δt
α2

φ3
,

S = 3
β

α
√
δtφ

, K =
3

δtφ

(
1 + 4

(β
α

)2)
. (3.13)

The NIG parameters can be solved explicitly according to Equation (3.13). Assuming

t = 1, one can obtain:

β =
σxSθ2

3
, α =

√
β2 + θ2, δ =

σ2
xθ

2

θ2 + β2
, η = µx −

βδ

θ
, (3.14)

where

θ =
3

σx

√
3K − 5S2

,

and 3K − 5S2 > 0 to acquire meaningful parameters for the NIG distribution.

The put option price P can be written as:

P = e−rTKΦ(γ)− e−rT−ωTS

∫ γ

−∞
exf(x)dx, (3.15)
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where

γ = ln(
K

S
) + ωT,

ω = η + δ
(
φ−

√
α2 − (1 + β)2

)
− r.

The compensation term ω arises in the context of equivalent martingale measures, under

which the arbitrage-free prices can be calculated as expectations with respect to these

measures. Φ(·) is the cumulative probability distribution function of x.

3.2 The utility indifference model

This section presents the utility indifference model, an alternative approach to price

options contracts, which was proposed by Samuelson & Merton (1969) prior to the cele-

brated BS model. In this study, the utility indifference model expands upon the original

model by incorporating a behavioral utility function for the representative investor. To

obtain option prices, numerical methods are employed. Additionally, the section pro-

vides methodologies for estimating volatility and skewness risk premiums.

3.2.1 Model setup

Suppose a financial market consists of three assets: a stock index, a put option on the

stock index, and a risk-free asset. The risk-free asset yields a continuously compounded

risk-free rate of return r, and the stock pays no dividends. Given that the stock price

at time 0 is S0, the stock price at future time T is:

ST = S0e
x, (3.16)

where x is the stock log return, which is a random variable. Let the probability density

function of x be denoted as f(x). The model considers two densities: the first is the

normal distribution, which is given by

f(x, µT, σ2T ) =
1

σ
√
2πT

e−
(µT−x)2

2σ2T , (3.17)
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where µT and σ2T are the mean and variance of x, and the second is the NIG distribu-

tion, which is given by the probability density function in Equation (3.12).

To determine the utility indifference option price, consider two portfolio choices in

which the investor optimally distributes wealth among the three assets (i.e., the stock,

the put option, and the risk-free asset). Let W0 and P0 represent wealth and put option

price at time 0, respectively. The objective is to ascertain the value of the unknown

variable, P0. The first portfolio contains stocks and risk-free assets, in which the investor

purchases a shares of stocks, and the rest B is deposited in the bank. The bank account

balance is then:

B = W0 − aS0,

the future wealth of the investor at time T becomes:

WT = aS0(e
x − erT ) +W0e

rT .

Let U denote the investor’s utility, which is defined in terms of ultimate wealth WT , that

is, U(WT ), the expected utility is then E[U(WT )]. The goal of the investor is to choose

the optimal value of a that maximizes the expected utility:

J(W0, S0) = max
a

E[U(WT )]

= max
a

E[U(aS0(e
x − erT ) +W0e

rT )]. (3.18)

The second portfolio includes all three assets, that is, the investor allocates his/her

wealth to a shares of stocks, b put options on the stock, and the remaining wealth B is

placed in the bank. The sum of money in the bank is then:

B = W0 − aS0 − bP0,

the investor’s wealth at future time T is equal to:

WT = aST + bmax(K − ST , 0) + (W0 − aS0 − bP0)e
rT .

The objective of the investor is to select a and b so as to maximize the expected utility:
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V (W0, S0, P0) = max
a,b

E[U(WT )]

= max
a,b

E[U(aST + bmax(K − ST , 0) + (W0 − aS0 − bP0)e
rT )]. (3.19)

The utility indifference option price can be then derived from the following relationship:

V (W0, S0, P0) = J(W0, S0). (3.20)

This equation defines the indifference option price P0, which represents the price where

the investor is indifferent between investing solely in stocks and investing in both stocks

and put options. It is worth noting that at the equilibrium option price, the optimal

number of options in the portfolio is required to be zero, b = 0.

3.2.2 Utility functions

This thesis considers various types of utility functions, including the standard function

used in expected utility theory, as well as behavioral utility functions. The axiomatic

expected utility theory, developed by Von Neumann & Morgenstern (1944) serves as

a normative framework for rational decision-making. The theory posits that expected

utility is a weighted average of the utilities of all possible outcomes, where the weights

are the probabilities of each outcome. Moreover, the utility function in this model is

concave, implying that individuals’ preferences are risk-averse, and their choices are

consistent with maximizing expected utility.

The CRRA utility function, the standard function used in the expected utility theory,

defined over the investor’s final wealth WT , can be represented using Arrow (1971)

relative risk aversion measure as follows:

U(WT ) =


W 1−γ

T

1−γ
γ > 0, γ ̸= 1,

ln(WT ) γ = 1,

(3.21)

where γ is the “relative risk aversion coefficient”. A higher value of γ indicates a greater

degree of risk aversion. The CRRA utility function is defined for outcomes that are
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expressed as a “proportion of wealth”, and it maintains a constant rate of relative

risk aversion. However, the expected utility theory has a limited ability in capturing

decision-making patterns, prompting the development of behavioral utility functions

that can account for observed departures from expected utility maximization.

Behavioral utility functions are widely recognized as a more realistic approach to

decision-making since they incorporate the irrational aspect of human behavior. Unlike

the expected utility theory, which defines the utility function solely over an investor’s

final wealth, behavioral utility functions introduce a reference point that separates out-

comes into domains of losses and gains. By doing so, these functions account for loss

aversion and provide a more accurate representation of an investor’s risk preferences

(Barberis & Thaler, 2003).

The conventional method of measuring risk by means of the variance (or standard

deviation) of returns is inadequate when the return distribution deviates from normality

(Jarrow & Zhao, 2006). To address this shortcoming, Bawa (1975) and Fishburn (1977)

proposed the lower partial moment (LPM) as a substitute risk measure for variance.

One notable advantage of this approach is that it concentrates on downside risk by

disregarding the right tail of the probability distribution, making it more suitable for

investors who are primarily concerned with minimizing their losses. The Mean-LPMn

utility function of Fishburn (1977) expressed as expected utility as follows:

E[U(WT )] = E[WT ]− λ× LPMn(WT , R), (3.22)

where

LPMn(WT , R) =

∫
R>WT

(R−WT )
ndF

indicates the lower partial moment of order n of the distribution of WT . Additionally,

by varying n, the risk measure can capture investor utility towards both risk and losses.

In this thesis n ∈ {1, 2}. λ is the loss aversion coefficient, R = W0e
κT is the reference

level. Typically, κ is assumed to be zero, thereby establishing the reference point as the

“status quo”.

Finally, the Prospect Theory (PT) utility function of Kahneman & Tversky (1979,
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1992) is defined as:

U(WT ) =

(WT −R)α if WT > R,

−λ(R−WT )
α otherwise,

(3.23)

where R and λ are defined the same as in Equation (3.22). The downside aversion is

reflected in the curvature of the utility function at reference point R, where a kink is

typically observed.

The standard definition of the PT utility in Equation (3.23) can be presented as the

Mean-LPMn utility:

E[U(WT )] = UPMα(WT , R)− λ× LPMα(WT , R), (3.24)

where UPMα(WT , R) is the upper partial moment of WT with respect to R. Compared

to the expected utility theory, investors with PT utility functions based on Prospect

Theory exhibit a stronger tendency towards loss aversion, which is characterized by a

steeper decline in utility for losses than for gains.

Unfortunately, there is no analytical solution available for maximizing the expected

utility problem of Equations of (3.18) and (3.19), therefore, numerical methods need

to be relied upon. In addition, one needs to search for the value of P0 that satisfies

Equation (3.20).

3.2.3 Numerical optimization

The R package Rsolnp is employed to address the non-linear optimization problems

in Equations (3.18) and (3.19). This package is designed to solve general nonlinear

inequality constraints problems:

min
x

f(x)

s.t.

g(x) = B

L ≤ h(x) ≤ U

l ≤ x ≤ u
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where x is the vector of optimization parameters, vector B defines the equality con-

straints, and vectors L,U, l, and u define the lower and the upper bounds on the in-

equality function h(x) and vector x, respectively. To tackle the optimization problems,

the following constraints are imposed: a ≥ 0, b ≥ 0, and B ≥ 0. That is, selling short the

stock, selling put options, and borrowing money at the risk-free rate are not permitted.

To illustrate the implementation of numerical optimization, consider the Mean-LPM1

(the bilinear mean-expected loss) utility. Its expected utility function can be written as:

E[U(WT )] = E[WT ]− λ× LPM1(WT , R). (3.25)

When dealing with only stocks and risk-free assets, the objective function that needs

to be maximized is:

max
a

E[WT ]− λ× LPM1(WT , R). (3.26)

The solutions for E[WT ] is represented by the following equations:

E[WT ] = aS0

∫ ∞

−∞
exf(x)dx+ (W0 − aS0)e

rT . (3.27)

The solution for LPM1(WT , R) is contingent upon the condition:

W0(e
rT − eκT )− aS0e

rT > 0, (3.28)

assuming κ ≤ r. If the condition (3.28) is met, then LPM1(WT , R) = 0, otherwise:

LPM1(WT , R) =

∫ δ

−∞
(W0(e

κT − erT )− aS0(e
x − erT ))f(x)dx, (3.29)

where

δ = ln
(W0

aS0

(eκT − erT ) + erT
)
.

Numerical integration can be used to evaluate the integral equations described in (3.27)

and (3.29). The optimization problem presented in (3.26) can be solved using Rsolnp,

taking into account the aforementioned constraints.

In a similar vein, when a put option is included in addition to stocks and risk-free
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assets, the objective function to maximize becomes:

max
a,b

E[WT ]− λ× LPM1(WT , R), (3.30)

solutions to E[WT ] and LPM1(WT , R) in this scenario are expressed as:

E[WT ] = aS0

∫ ∞

−∞
exf(x)dx+ (W0 − aS0 − bP0)e

rT + b

∫ d

−∞
(K − S0e

x)f(x)dx, (3.31)

LPM1(WT , R) = Ib

∫ db2

db1

(A− bK − (a− b)S0e
x)f(x)dx

+ Ia

∫ da2

da1

(A− aS0e
x)f(x)dx, (3.32)

where

d = ln(
K

S0

),

A = W0(e
κT − erT ) + (aS0 + bP0)e

rT .

The indicator function Ib takes the value of 1 if R−WT can be positive when x < d, and

0 otherwise. In this case, db1 and db2 represent the lower and upper limits for x. Similarly,

Ia is an indicator function that evaluates to 1 when R−WT can take positive values for

x > d, and 0 otherwise. Here, da1 and da2 denote the lower and upper limits for x. The

price of the put option is determined by finding the value of P0 in Equation (3.30) that

produces the same maximum value as Equation (3.26).

3.2.4 Risk premia measurement

The risk premiums for volatility and skewness are determined by comparing the mea-

sures of volatility and skewness in the physical and risk-neutral (estimated) contexts.

Specifically, the physical volatility (σx), skewness (S), and excess kurtosis (K) values

are set to 18.5% (annual), -0.5 (monthly), and 1 (monthly), respectively, to facilitate

comparisons with prior empirical findings. Additionally, these parameters represent the

real-world characteristics of the S&P 500 index. To derive corresponding risk-neutral

measures of volatility and skewness, this study employs a parametric approach by fitting
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the implied volatility of the model to the NIG option pricing model.

The estimation of the risk-neutral measure in the literature is typically conducted

using market option prices and a model-free approach. However, in this study, the option

prices are derived from a specific assumption about the physical probability distibution,

the NIG distribution. Therefore, it is natural to employ a parametric approach.

The choice of the NIG option pricing model as the benchmark is motivated by two

factors. Firstly, the model is based on the NIG distribution, which possesses a significant

advantage over other non-Gaussian distributions in that the parameters can be specified

by the distribution’s first four moments. Secondly, the NIG option pricing model com-

putes option prices using the physical volatility and skewness of the underlying asset,

without requiring any additional adjustments. The only modification made to the stock

price process is to adjust the drift parameter to the risk-free rate of return, to generate

arbitrage-free option prices.

Assume that the underlying asset log return process adheres to a NIG distribution

in accordance with Equation (3.12), and the option prices are computed utilizing the

NIG option pricing model as given by Equation (3.15). This approach to estimating the

risk-neutral volatility and skewness involves fitting the implied volatility of the utility

indifference model for a fixed time to maturity to the implied volatility generated by the

NIG option pricing model for the same period. As a result, the estimated values of the

volatility and skewness under the risk-neutral measure can be derived as the parameters

of the NIG option pricing model that produce the same implied volatility as the utility

indifference model.

Denoting the implied volatility obtained by the utility indifference model and the

NIG option pricing model as IV and IV ∗ respectively. Let σrn, Srn, and Krn represent

risk-neutral volatility, skewness, and excess kurtosis. The corresponding risk-neutral

measures can be derived by minimizing the sum of the squared distance between the

implied volatility generated by the two models with respect to these parameters. This

can be expressed as follows:

min
σrn,Srn,Krn

N∑
i=0

(
IVi − IV ∗

i

)2

, (3.33)

where N is the moneyness. IV and IV ∗, as functions of σ, S, and K, are obtained by
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solving for the volatility parameter in the BS formula through inverse calculations of the

option prices derived from the utility indifference model and NIG option pricing model,

respectively.

The intertemporal asset pricing model of Merton (1973a) provides theoretical guid-

ance on the sign of the volatility risk premium. According to this model, an increase in

market volatility leads to a decrease in available investment opportunities. As a result,

investors seek to hedge this deterioration by accepting lower expected returns on assets

that are positively correlated with market volatility innovations. This results in a neg-

ative price of market volatility risk. Given that physical volatility is typically observed

to be smaller than risk-neutral volatility, in this thesis, the volatility risk premium is

defined as the difference between physical and risk-neutral volatility to be consistent

with empirical results. Therefore, the volatility risk premium (VRP) can be expressed

as follows:

V RP = σx − σrn. (3.34)

Currently, there is no theoretical guidance available to determine the sign of the

skewness risk premium, making its determination reliant on empirical analysis (Chang et

al., 2013). However, empirical evidence has consistently shown that risk-neutral skewness

tends to exceed physical skewness. To ensure the skewness risk premium retains a

negative sign, which has been widely documented in the literature, this thesis defines it

as the difference between risk-neutral and physical skewness. Therefore, the skewness

risk premium (SRP) is given by:

SRP = Srn − S. (3.35)

It is worth noting that, in this approach, the risk-neutral volatility and skewness are

jointly measured by calibrating the entire IV curve of the model to the NIG parameters,

rather than just at the at-the-money point. However, defining the risk premia as the

difference between at-the-money physical and risk-neutral measures is not a standard

practice in the literature.
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Chapter 4

Numerical results

This chapter presents the numerical results obtained from implementing the method-

ology introduced in the previous chapter, which includes the IV surface plots of the

utility indifference model using various utility functions under both normal and NIG

distributions, along with a table that contains the estimated values of volatility and

skewness risk premiums. In addition, a detailed discussion of the results is provided,

highlighting the key findings and implications for this research field. To offer context

for the numerical results, the chapter begins by illustrating the numerical results of the

theoretical models outlined in the preceding chapter.

4.1 Illustration of theoretical model results

4.1.1 Merton model results

Figure 4.1 exhibits the implied volatility of Merton’s jump-diffusion model as a function

of moneyness for four different times to expiration, T ∈ {0.25, 0.5, 0.75, 1} years, with

the given parameters σ = 0.135, r = 0.03, µJ = −0.093, σJ = 0.115, and λ = 1. When

the jump intensity parameter λ equals 0, this option pricing model reduces to the BS

model. The presence of a non-zero jump mean µJ in the model results in the skewed

distribution of the underlying log returns. Moreover, the stock uncertainty in this model

is composed of a continuous Brownian motion and an independent Poisson jump process.

As such, the total volatility is the sum of the volatilities from these two parts. To ensure

consistency in the numerical computations, the parameters for the model are chosen
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such that the total volatility is equal to the standard volatility parameter, σx = 0.2,

used throughout this thesis. The computation of the total volatility is executed in

compliance with Navas (2003).
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Figure 4.1: Implied volatility surface for Merton’s jump-diffusion model. The dashed
horizontal line represents a stock volatility of 20%. Moneyness is computed as the ratio
of the option strike price (K) to the underlying stock price (S).

Graphically, Merton’s jump-diffusion model is seen to generate the correct smirk

pattern for a short expiration time, which is attributed to the presence of negative

jumps (with non-zero jump mean) and resulting negative skewness in the implied stock

return density. However, as the time to maturity increases, the IV curve flattens out more

rapidly than empirical evidence would suggest. For instance, at a 0.75-year maturity, the

IV curve practically reduces to a straight line. This feature aligns with prior research

done by e.g., Carr & Wu (2003), Broadie & Detemple (2004), and Lorig & Lozano-

Carbassé (2015). Furthermore, the at-the-money IV as a risk-neutral measure is less than

the stock volatility of 20%, the physical measure, which is inconsistent with market data

as reported in previous studies such as Jackwerth & Rubinstein (1996), Poon & Granger

(2003), and Jiang & Tian (2005), among others. The implied volatility of Merton’s jump-

diffusion model is observed to be smaller than the realized volatility, implying a positive

volatility risk premium. This result contrasts with the widely accepted negative volatility

risk premium observed in the literature, which suggests that investors are willing to pay
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more for options to hedge against market depreciation, leading to expensive option prices

and negative expected returns. Additionally, the term structure of implied volatility in

Merton’s model is consistent with empirical observations, where the implied volatility

for at-the-money options increases as the time to expiration date rise (Heston & Nandi,

2000; Zhang & Xiang, 2008). Intuitively, the longer the time to expiration, the higher

the option implied volatility (option price).

4.1.2 Heston model results

Following the parameters estimated in Bakshi et al. (1997) and Rompolis & Tzavalis

(2007), that is, r = 0.03, v = 0.04, θ = 0.02, k = 1.15, σv = 0.39, and ρ = −0.64, Figure

4.2 depicts the IV surface for the Heston stochastic volatility model at 3-month, 6-month,

9-month, and 12-month maturities. This model incorporates a negative correlation (ρ)

between the changes in volatility and the spot price, which is necessary to generate

skewness in the return distribution (Heston, 1993; Dumas et al., 1998). The kurtosis of

the return distribution is largely determined by the magnitude of the volatility of vari-

ance (σv) relative to the mean-reverting speed (k), resulting in a heavier-tailed density

compared to the lognormal distribution (Jones, 2003). However, the Heston model has

been found to have limitations in fitting market data for short-term expiration due to

its inability to generate sufficiently large skewness and kurtosis in the implied return

distribution (Das & Sundaram, 1999; Zhang et al., 2017).

In contrast to Merton’s jump-diffusion model, the IV curves of the Heston model

do not level off at medium- or long-term expirations. The smirk shape is persistent at

long-term maturities, as Figure 4.2 demonstrates. However, the short-term IV curves

generated by the Heston model are often criticized for being too shallow compared to the

empirically expressed IV surface. This shortcoming is attributed to the affine square-

root structure used to model stochastic volatility, as pointed out by e.g., Bakshi et al.

(1997), Jones (2003), and Gatheral (2006). In addition, similar to Merton’s model, the

at-the-money stock volatility (σx = 0.2) is greater than implied volatility for T = 0.25,

which suggests a positive volatility risk premium contradicts the widely accepted notion

of a negative one. Moreover, Pan (2002) noted that the Heston model also falls short

in capturing the term structure of implied volatilities observed in the market, with the
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Figure 4.2: Implied volatility surface for Heston’s stochastic volatility model. The dashed
horizontal line represents a stock volatility of 20%. Moneyness is computed as the ratio
of the option strike price (K) to the underlying stock price (S).

at-the-money implied volatility exhibiting a decreasing function of the time to maturity,

as demonstrated in the figure. This implies that the option price (implied volatility)

becomes cheaper as the time to maturity increases, which contradicts empirical evidence.

4.1.3 NIG model results

Figure 4.3 illustrates IV surface for Eberlein & Prause’s (2002) NIG option pricing

model using parameters µx = 0.08, σx = 0.2,S = −0.5,K = 1, r = 0.03, and T ∈

{0.25, 0.5, 0.75, 1} years. The appropriate values for the skewness (S) and excess kurtosis

(K) parameters are crucial for modeling stock log returns accurately. In this study,

these parameters were determined using a rigorous historical estimation process with

long-term time series of daily return data from the S&P 500 stock market index. The

resulting values of -0.5 for the annual skewness and 1 for excess kurtosis provide a reliable

basis for parameterization and align with observed market dynamics, indicating a heavy-

tailed and left-skewed distribution of the underlying stock log returns. Furthermore, if

both the NIG skewness and excess kurtosis parameters are set to zero, the NIG option

pricing model simplifies to the BS model. Additionally, Equation (3.12) reveals a direct

proportionality between the mean and variance of the NIG distribution with respect to

32



time t. As a result, the location parameter η and the scale parameter δ are adjusted

accordingly for different expiration times when computing numerical results.
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Figure 4.3: Implied volatility surface for Eberlein and Prause’s NIG model with S = −0.5
and K = 1. The dashed horizontal line represents a stock volatility of 20%. Moneyness
is computed as the ratio of the option strike price (K) to the underlying stock price (S).

Figure 4.3 shows a qualitative resemblance to Figure 4.1 of the Merton model, as both

models exhibit similar features in their pricing processes. Specifically, the NIG model’s

pricing process is characterized by “purely discontinuous paths”, which is considered

more suitable for modeling the microstructure of asset prices compared to continuous

processes (Eberlein & Prause, 2002). Additionally, similar to the Merton model, the

NIG option pricing model displays a more pronounced smirk pattern for short expi-

ration times, while the IV curves for longer expiration times tend to level off quickly.

Furthermore, the at-the-money implied volatility of the NIG option pricing model is

lower than the physical volatility for a 3-month maturity, as indicated by the black line

that lies below the dashed line in the figure. This could lead to an incorrect positive

volatility risk premium. However, despite this limitation, the term structure of at-the-

money implied volatility of the NIG model is in line with the observed real-world data,

suggesting that the model captures the underlying asset’s volatility behavior over time.
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4.2 Numerical results of the model

Table 4.1 itemizes the set of parameters used to obtain the numerical results for the

utility indifference model with various utility functions. The values for the mean returns

of x, volatility of the returns, skewness, and excess kurtosis are expressed in annual

terms and are selected to be roughly in line with the long-term parameters of the S&P

500 stock market index. The time to maturity is set to T ∈ {0.25, 0.5, 0.75, 1} years. In

addition, the expected return for the lognormal distribution is computed as µx +
1
2
σ2
x,

which corresponds to 10% based on the values of µx and σx listed in Table 4.1. To

maintain simplicity, a constant continuously compounded interest rate of 3% per annum

is assumed and dividends are not considered.

Table 4.1: The standard set of parameters for the numerical computation of the model.

Parameter Value

σx 0.2

µx 0.08

S -0.5

K 1

γ 2

κ 0

λ 3

α 0.88

4.2.1 Graphical illustration of the results

This subsection presents the numerical results of the utility indifference model, which

is implemented using the methodology described in Section 3.2 and the parameters

reported in Table 4.1. The utility functions are evaluated under both normal and NIG

distributions, and the results are illustrated graphically through IV surface plots, as

shown in Figure 4.4. These plots provide an intuitive representation of the implied

volatility as a function of the option strike price and time to maturity and offer valuable

insights into the model’s performance.

Figure 4.4 demonstrates the IV surfaces generated by the utility indifference model,

using four different utility functions, the CRRA, PT, Mean-LPM1, and Mean-LPM2,
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under both normal and NIG distributions. The plots are presented in a 4 by 2 matrix

format, with each row corresponding to a specific utility function, and columns repre-

senting the normal and NIG distributions, respectively. The range of maturities covered

in the plots includes 3-month intervals from 0.25 to 1 year. Furthermore, the y-axis has

been set to a scale of 0.17 to 0.40 to facilitate easy comparison between the plots.

Taken together, the numerical results presented in the figures indicate that the model

using the Mean-LPM2 utility function creates the observed smirk curves even under the

normal distribution. In general, the smirk shapes produced by the normal distribution

are relatively shallow except for the Mean-LPM2 utility, whereas the NIG distribution

forms more pronounced smirk patterns across all utility functions. Furthermore, for both

distributions, the CRRA utility function results in the flattest IV curves, followed by

the PT and Mean-LPM1 utilities, while the Mean-LPM2 utility constructs the steepest

surface. Excluding the CRRA utility under the normal distribution, all other plots ex-

hibit an upward term structure of the at-the-money implied volatilities. Moreover, with

the exception of the CRRA utility function under both normal and NIG distributions,

the at-the-money implied volatilities consistently exceed the 20% physical volatility level

for all maturities. This suggests that the utility indifference model with the mentioned

utilities is capable of crafting a negative volatility risk premium.

The CRRA utility function is commonly used in expected utility theory to model

investor preferences. In the implemented model, the relative risk aversion coefficient (γ)

is set to 2, which is in accordance with the estimate reported by Fu & Yang (2012) and

Lin et al. (2019). Under the normal distribution, the IV curves show four horizontal lines

representing a scenario where the BS model with constant volatility is true. However,

the implied volatility remains constant across different strike prices, indicating that this

model specification is inadequate in capturing the empirically observed IV smirk in the

options market. Conversely, the NIG distribution yields a satisfactory smirk pattern

for options with a short-term expiration (T = 0.25) for a representative investor with

a relatively low level of risk aversion. However, its at-the-money implied volatility is

lower than the corresponding physical volatility, suggesting that this setting may not be

sufficient to generate a negative volatility risk premium for short-dated options.

In contrast, the following three utility functions (PT, Mean-LPM1, and Mean-LPM2)

fall under the behavior utility category, which underscores the originality of this thesis
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Figure 4.4: Implied volatility surfaces for the utility indifference model with various
utility functions under both normal and NIG distributions. The dashed horizontal line
represents a stock volatility of 20%. Moneyness is computed as the ratio of the option
strike price (K) to the underlying stock price (S).
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in using behavior utility functions for utility-based option pricing. The loss aversion

coefficient (λ) for all three utility functions is assigned a value of 3, following the estima-

tion of Abdellaoui et al. (2008), as a higher loss aversion coefficient leads to more robust

numerical computations. For the PT utility function, the degree of the upper and lower

partial moment (n) is set at 0.88, as used in the empirical study of Kahneman & Tversky

(1992), which generates an IV surface resembling that of Mean-LPM1, as illustrated in

Figure 4.4. It is noteworthy that the PT utility function displays concavity for gains

and convexity for losses relative to a reference level (R), whereas the Mean-LPM1 utility

function is characterized by linearity for both gains and losses with respect to the ref-

erence level. When considering the normal distribution, both the PT and Mean-LPM1

utilities are capable of constructing negative volatility risk premiums and correct term

structures for at-the-money implied volatilities. However, they are not adequate for pro-

ducing significant IV smirk, even for short-term maturities. Nevertheless, compared to

the PT utility, the Mean-LPM1 function formulates steeper curves and higher implied

volatility levels. When the NIG distribution is employed, both the PT and Mean-LPM1

utility functions demonstrate satisfactory steepness in the IV smirk curve for the short-

est maturity of 3 months, as their slope of the IV curve, quantified as the difference

between the implied volatility at the maximum moneyness between 0.8 to 1 and that at

moneyness 1, is greater than that of Merton’s model (9.05%), which is widely acknowl-

edged as capable of generating sufficient skewness for short-term maturities. However,

the curvature decays rapidly for longer maturities in both cases.

The Mean-LPM2 utility function presents a linear pattern for gains and a non-linear

configuration for losses relative to a reference level (R). Compared to other utility

functions, it generates the highest implied volatility levels under both the normal dis-

tribution and the NIG distribution, leading to a greater volatility risk premium at the

at-the-money. The resulting smirk pattern persists as the time to maturity increases,

in line with the Heston model. However, the IV slope of the Mean-LPM2 under the

normal distribution is lower than that of the Merton model. Meanwhile, under the NIG

distribution, this utility function exhibits the strongest curvature for short-term matu-

rities at 18.06%. This suggests that the utility indifference model with the Mean-LPM2

utility under the NIG distribution can account for the empirical evidence by generating

sufficient smirk for the short-term that persists over longer maturities.
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4.2.2 Comparative statics analysis

In this subsection, a comparative statics analysis is conducted to examine the effect of

changes in model parameters on implied volatility. Comparative statics analysis is a

method used to assess how changes in model parameters affect the results by comparing

the outcomes before and after the parameter changes. The analysis primarily focuses on

the Mean-LPM2 utility function under the NIG distribution with a time to maturity of 3

months. Furthermore, the dependence of implied volatility on the lower partial moment

order (n) of the Mean-LPMn utility function is explored as well.

The comparative statics analysis is presented graphically in Figure 4.5. The plot in

the top left shows IV curves of the Mean-LPM2 utility function across different values of

loss aversion coefficients (λ) ranging from 2 to 5. Interestingly, the results indicate that

the Mean-LPM2 utility is minimally impacted by variations in the loss aversion coefficient

(λ). This can be attributed to the fact that the lower partial moment of order 2 already

incorporates the investor’s risk aversion and accounts for potential losses (Nawrocki,

1992). This point is further illustrated by the plot in the top right corner, which depicts

the relationship between implied volatility and the degree of the lower partial moment,

n, in the Mean-LPMn utility function. The plot includes specific values of n for 1, 1.5,

2, and 2.5. As demonstrated by Fishburn (1977), the n degree LPM effectively captures

the investor utility concerning risk and loss, with higher values reflecting greater risk

aversion. This is evident in the plot, where higher values of n result in steeper IV curves,

indicating increased risk/loss aversion. However, beyond a degree of 2, further raises in

n have little effect on implied volatility.

The bottom two plots display the IV curves of the Mean-LPM2 utility function as

they vary with different values of kurtosis (ranging from 3 to 6) and skewness (0, -0.25, -

0.5, and -0.75). The plots reveal interesting patterns: when the underlying distribution is

normal (with kurtosis of 3 and skewness of 0), the resulting IV curves exhibit a relatively

flat shape, as indicated by the black curves in the plots. However, as the kurtosis and

negative skewness increase, the IV curves become more pronounced with a steeper slope

in both cases. Furthermore, the plots illustrate that kurtosis generates a symmetric IV

smile, while negative skewness produces a smirk shape with a downward slope, which is

consistent with the broad literature.
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Figure 4.5: The comparative statics analysis plots. The upper-left panel depicts the IV
curves of Mean-LPM2 utility function as they vary with different loss aversion coefficients
(λ). In the upper-right panel, the IV curves of the Mean-LPMn utility function are
displayed, with various degrees (n) of the lower partial moment. The lower-left and
lower-right panels illustrate the IV curves for Mean-LPM2 corresponding to different
kurtosis and skewness values, respectively. All the IV curves are plotted under the NIG
distribution for T = 0.25. The dashed horizontal line represents a stock volatility of 20%.
Moneyness is computed as the ratio of the option strike price (K) to the underlying stock
price (S).

The results of this comparative statics analysis demonstrate the effectiveness of the

utility indifference model with the Mean-LPMn behavioral utility function in generating

IV curves that closely align with empirical observations. Moreover, these findings offer

valuable insights into the integration of risk aversion and loss aversion through the Mean-

LPMn utility function, which enhances the model’s capacity to capture the dynamic

nature of implied volatility.
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4.2.3 Risk premia estimation of the model

In this subsection, the estimation results of volatility and skewness risk premia using the

methodology outlined in Subsection 3.2.4 are reported in Table 4.3. These estimates will

be discussed and compared with those from prior studies. To begin, empirical estimates

of volatility and skewness risk premia documented in the literature will be provided.

Researchers commonly adopt a model-free approach to gauge the relationship be-

tween options and the underlying risk-neutral density. For instance, Zhao et al. (2013)

utilized the methodology developed by Zhang & Xiang (2008) to measure the risk-neutral

cumulants and estimated the volatility and skewness risk premia by comparing the risk-

neutral and physical cumulants based on S&P 500 options data from 1996 to 2005,

producing values of -5.2% (annually) and -0.67 (monthly), respectively. Similarly, Lin

et al. (2019) estimated the risk-neutral moments using the Bakshi et al. (2003) method,

with the physical moments derived from the jump-diffusion model with CRRA utility.

Their estimates, using long-term S&P 500 options data spanning from 1990 to 2011,

were -3.4% for an annual volatility risk premium and -3.39 for a monthly skewness risk

premium. It should be noted that the estimation of volatility and skewness risk premia

can be significantly influenced by the choice of estimation techniques and datasets, in

addition to other factors. Table 4.2 provides a summary of these results. As this thesis

focuses on the volatility risk premium rather than the variance risk premium addressed

in previous literature, the VRP and SRP values reported in Table 4.2 are converted from

variance to volatility measures accordingly.

Table 4.2: Previous estimation of the volatility and skewness risk premia.

Paper Method Data VRP SRP

Zhao et al. (2013) Zhang & Xiang (2008) S&P 500 1996-2005 -5.2 -0.67

Lin et al. (2019) Bakshi et al. (2003) S&P 500 1990-2011 -3.4 -3.39

Note: This table shows the estimated volatility and skewness risk premia previously documented in

the literature, based on empirical data from the S&P 500 options. Both papers utilize a model-free

approach to estimate risk-neutral measures. The volatility risk premium is expressed as an annualized

percentage, while the skewness risk premium is reported in monthly terms.

Table 4.3 presents the estimated volatility and skewness risk premia of the utility

indifference model for four utility functions, under both normal and NIG distributions,
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implementing the method introduced in Subsection 3.2.4. It is important to note that

the risk-neutral volatility and skewness are not measured at the at-the-money point.

Instead, these quantities are jointly estimated by fitting the implied volatility for a fixed

time to maturity (T = 0.25) to the NIG model parameters, relying on the model’s

underlying assumption about the physical probability distribution. The volatility and

skewness risk premia are then computed as the difference between the corresponding

risk-neutral and physical measures, as expressed in Equations (3.34) and (3.35).

Table 4.3: The estimation of volatility and skewness risk premia of the model.

Normal distribution NIG distribution

Utility VRP SRP VRP SRP

CRRA 0.0 0.00 -0.5 -0.12

PT -0.4 -0.32 -2.8 -0.64

Mean-LPM1 -1.1 -0.44 -3.6 -0.72

Mean-LPM2 -4.5 -2.36 -7.9 -3.16

Note: This table displays the estimated risk premia obtained by fitting to the NIG distribution, as

described in Subsection 3.2.4, for a fixed time to maturity of T = 0.25. The volatility premium is

presented as an annualized percentage, while the skewness risk premium is reported in monthly terms.

The results demonstrated in Table 4.3 indicate that, with the exception of the CRRA

utility function under the normal distribution, the utility indifference model is capable of

capturing negative volatility risk premiums and negative skewness premiums. This ob-

servation implies that the risk-neutral volatility exceeds the physical volatility. Moreover,

both the risk-neutral and physical skewness exhibit negative values, with the risk-neutral

skewness being greater than the physical skewness in absolute terms. These findings are

consistent with the broader literature on option pricing.

Consistent with the pattern depicted in the graphical illustration, the CRRA utility

function exhibits the lowest risk-neutral volatility and skewness under both the normal

and NIG distributions, followed by the PT and Mean-LPM1 utility functions. On the

other hand, the Mean-LPM2 utility function generates the highest risk-neutral volatility

and skewness values under both distributions. Applying the CRRA utility function in

the model under the NIG distribution produces negative values for both VRP and SRP,

a finding that is consistent with prior research by Fu & Yang (2012), Li et al. (2017), and

Lin et al. (2019). However, the magnitude of these risk premia is relatively lower than
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that found by Lin et al. (2019). Similarly, the PT and Mean-LPM1 utility functions under

the normal distribution fail to accurately capture the volatility and skewness risk premia

that correspond to empirical data. Nonetheless, under the NIG distribution, the Mean-

LPM1 function effectively explains the real market volatility risk premium, as supported

by the measurements provided by Lin et al. (2019). Furthermore, the magnitudes of

the SRP for both the PT and Mean-LPM1 utility functions are in close proximity to

the estimations reported by Zhao et al. (2013). Interestingly, the model incorporating

the Mean-LPM2 utility function produces realistic values for VRP and SRP, even under

the normal distribution. The quantified VRP of -4.5% aligns with the previous findings

by Christoffersen et al. (2021). In contrast, the estimated VRP of -7.9% under the

NIG distribution is significantly larger than prior literature estimates, entailing that the

model with the Mean-LPM2 utility function under the NIG distribution may overprice

out-of-the-money put options. Despite that, the model is able to adequately account

for the higher probability of losses, as indicated by the SRP. The above discussions may

shed some light on the potential validity of the Mean-LPMn utility function, with the

lower partial moment (n) ranging between 1 and 2, as a plausible choice for the true

utility function.

In summary, the results indicate that the utility indifference model, with the excep-

tion of the CRRA utility function under the normal distribution, can account for the

negative volatility and skewness risk premia. Specifically, Table 4.3 illustrates that the

conventional CRRA utility function fails to generate sufficient premia under the NIG

distribution compared to other behavioral utility functions. Furthermore, increasing

the order of lower partial moments in the behavioral utility function leads to higher

magnitudes of volatility and skewness risk premiums under both the normal and NIG

distributions. Overall, comparing the model performance in accordance with empirical

data is a challenging task due to the lack of consistency in the reported results across

different datasets and methods. Nevertheless, the results of this study suggest that the

Mean-LPMn (1 < n < 2) utility function may be the most appropriate utility function

for the representative investor, given its ability to capture risk premia. Additionally,

the utility indifference model, employing the Mean-LPMn utility function with specified

parameters, exhibits the capacity to accurately reproduce the volatility and skewness

risk premia that conform to the empirical evidence.
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Chapter 5

Conclusion

The Black-Scholes model, despite its groundbreaking contribution to option pricing the-

ory, exhibits deficiencies when compared to empirical evidence. Empirical studies fre-

quently reveal anomalies, such as the smirk shape and term structure of implied volatility,

as well as the presence of volatility and skewness risk premiums. These stylized facts

have motivated researchers to develop more sophisticated models that can account for

them. However, the current literature has limitations in comprehensively explaining all

observed empirical anomalies of implied volatility. This study aims to address this gap

by employing the utility indifference model with behavioral utility functions for utility-

based option pricing. This novel approach offers a more effective means of explaining

all three stylized facts.

The model’s performance is evaluated under four utility functions (CRRA, PT, Mean-

LPM1, and Mean-LPM2) and both normal and NIG distributions. Graphical illustra-

tions show that the standard CRRA utility function falls short in capturing the observed

smirk patterns, in stark contrast, the Mean-LPM2 behavioral utility function produces

IV curves that closely match the empirical shape, even under the normal distribution.

The NIG distribution exhibits more prominent smirk patterns across all utility func-

tions compared to the normal distribution. Furthermore, the Mean-LPM2 utility func-

tion replicates the observed empirical evidence under the NIG distribution, successfully

producing pronounced IV curves for short-term options that do not flatten out rapidly

as the maturity extends. Assessing the volatility and skewness risk premia poses chal-

lenges due to inconsistencies in reported results across different datasets and estimation
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methods. Nevertheless, the estimation results confirm the graphical illustration and

reveal negative risk premiums for both volatility and skewness, consistent with exist-

ing literature. In particular, the results suggest that the Mean-LPMn utility function

(with n values ranging from 1 to 2) yields risk premia that closely correspond to the

values observed empirically. Overall, these findings highlight the efficacy of the utility

indifference model incorporating behavioral utility functions in explaining these stylized

facts that conventional models find challenging to replicate. Furthermore, these findings

are expected to have broad implications for the existing literature in option pricing, as

well as to provide valuable insights into areas such as risk management and investment

decision-making.

While the results of the study are convincing, it is important to acknowledge that due

to the limited timeframe of the study, the model parameters have not been calibrated

using current market prices of highly liquid options, as such, it may not fully reflect

future information from stock returns. These factors serve as potential areas for future

research, as the model could be further improved to more accurately reflect market

conditions.
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Appendix A

Discussion paper

Discussion paper: Responsibility - Sofie Jahnsen

The concept of responsibility has gained significant attention within the field of finance,

especially following the 2008 global financial crisis. This crisis highlighted the dispar-

ity between legally permissible actions and ethical standards, emphasizing the growing

recognition of greater accountability and transparency in financial markets. This discus-

sion paper delves into the intricate relationship between responsibility and my master’s

thesis, which investigates the issue of implied volatility. Specifically, it focuses on the

empirically observed stylized facts associated with implied volatility and proposes the ap-

plication of the utility indifference model with behavioral utility functions to effectively

explain these facts. In this discussion paper, I will begin by providing a concise overview

of my master’s thesis and subsequently explore the intricate connection it shares with

the broad concept of responsibility.

The thesis

The Black & Scholes (1973) (BS) model, a breakthrough in option pricing, yields a

horizontal line when plotting the implied volatility (IV) against the strike price. How-

ever, empirical studies have identified three stylized facts that the BS model fails to

explain. Firstly, the IV curves exhibit a smile/smirk pattern (Rubinstein, 1985), with

an upward-sloping term structure for at-the-money options (Zhang & Xiang, 2008). Sec-

ondly, option prices tend to imply higher volatility than realized asset returns, known as
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the volatility risk premium (Jackwerth & Rubinstein, 1996). Thirdly, the negative skew-

ness implied by options prices is greater in absolute terms compared with the realized

skewness, termed the skewness risk premium (Bakshi et al., 2003).

In response to these stylized facts, numerous sophisticated models have been devel-

oped. However, the standard models often fall short of fully explaining all aspects of

these phenomena. This study presents a novel approach to the utility indifference model

by incorporating behavioral utility functions to provide a more accurate representation

of these anomalies. The model’s performance is evaluated by testing the standard func-

tion used in expected utility theory and behavioral utility functions under both normal

and Normal Inverse Gaussian (NIG) distributions.

The findings reveal that the conventional utility function inadequately captures the

observed smirk patterns, while the behavioral utility function successfully generates

volatility smirks that closely align with empirical shapes, even under normal distribution

assumptions. These results underscore the effectiveness of the utility indifference model

with behavioral utility functions in explaining these stylized facts. By overcoming the

limitations of traditional models, this research offers valuable insights into understanding

implied volatility dynamics. The findings are expected to shed light on risk management

and investment decision-making.

Responsibility

In the field of finance, the concept of responsibility refers to the ethical obligation of

individuals and organizations to act in a manner that promotes the well-being of society

and the environment (Siltaoja et al., 2015), has gained attention due to the recognition

that legally permissible behavior may not always align with ethical standards. Implied

volatility, reflecting market expectations of future volatility, carries implications for in-

vestors, financial institutions, and the broader market. The stylized facts of implied

volatility, such as the smile/smirk pattern, volatility risk premium, and skewness risk

premium, emphasize the need for responsible assessment and risk management. This

research contributes to understanding responsibility in implied volatility by incorporat-

ing the impact of behavioral biases on investor behavior. By recognizing and addressing

these biases, stakeholders can navigate the complexities of implied volatility responsibly,
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promoting stability and mitigating systemic risks in the financial industry.

Horrigan (1987) argues that the application of the option pricing model to analyze

the relationships between equity holders within a firm gives rise to ethical challenges.

The option pricing model assumes that all equities in a firm can be viewed as options for

buying or selling the firm’s assets. In firms with debt in their capital structure, common

stocks can be seen as call options, while the limited liability provided to stockholders

can be considered a form of put options that protects against the consequences of debt

default. This perspective suggests that stockholders may increase the riskiness of a

firm’s operations to maximize the value of their call options, potentially at the expense

of bondholders. The widespread adoption of the options paradigm by managers and

owners would inevitably lead to a significant erosion of trust among creditors toward

firms. Moreover, it significantly increases the risk of corporate insolvency, as stockholders

can simply abandon their obligations. Overall, any strategy pursued by stockholders that

relies on profiting from the direct losses of bondholders is highly unethical.

To effectively manage the ethical challenges posed by the option pricing model and

promote responsible behavior, several strategies can be employed. First, it is crucial to

establish robust corporate governance practices that prioritize transparency, account-

ability, and ethical decision-making. Such practices ensure that the interests of all

stakeholders are considered and protected. Regulatory authorities play a key role in

enforcing regulations that discourage unethical practices and ensure compliance with

financial reporting standards, thereby fostering responsible behavior in the industry.

Educating investors about the implications of the option pricing model and the ethi-

cal challenges it presents is essential in empowering them to make informed investment

decisions. Open communication and collaboration among stakeholders, including stock-

holders, bondholders, managers, and regulators, enhance understanding and facilitate

the development of responsible solutions. Furthermore, the development and promotion

of ethical guidelines and best practices provide a comprehensive framework for respon-

sible decision-making (Boatright, 2013). By adopting these strategies, stakeholders can

effectively address ethical challenges, foster trust, and promote responsible behavior in

the financial industry.

To further advance responsibility in implied volatility research, it is essential to

address the potential biases that may arise in the research process. Biases can stem from
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various sources, including sample selection, variable choice, and statistical methods. For

instance, a study focusing solely on a specific asset or market may lack generalizability

to the broader market, while small sample sizes can limit the applicability of findings.

Researchers must conscientiously consider these biases and take measures to mitigate

their impact, ensuring the validity and reliability of their research. Additionally, the

dissemination of research findings carries ethical implications. Researchers must ensure

that their findings are communicated in a clear and unbiased manner and that they are

not used to mislead or manipulate investors or other market participants.

In the master’s thesis, I have taken several measures to ensure the robustness and

transparency of the research. I have provided comprehensive details of the research

approach, facilitating the replication of the study by fellow researchers. The chosen

risk premia estimation method aligns with the underlying assumptions of the model,

enhancing the accuracy of the results. However, it is important to acknowledge that

certain limitations exist. Due to time constraints, I was unable to calibrate the model

parameters using the current market prices of highly liquid options. While this limitation

does not compromise the findings of the research, it presents an opportunity for further

improvement to better reflect real-time market conditions. In future research, I will

address these limitations and be aware of potential biases when collecting the dataset,

ensuring a comprehensive and unbiased representation. Transparency will remain a

key principle in the research, and I will strive to enhance the accuracy and reliability

of the findings through improved calibration processes. Hopefully, this could foster a

responsible and accountable research environment.

Conclusion

In conclusion, responsibility is a crucial concept in the field of finance, and it is par-

ticularly relevant to research on implied volatility. As this paper has shown, research

on implied volatility has important implications for market participants, regulators, and

investors, and it is essential to consider the ethical and social implications of market

mechanisms. By emphasizing responsibility and promoting fairness, transparency, and

accountability, we can create a more stable and sustainable financial system that benefits

not only market participants but also society at large.
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